]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/super.c
btrfs: make free_fs_info() call ->kill_sb() unconditional
[karo-tx-linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65                                       char nbuf[16])
66 {
67         char *errstr = NULL;
68
69         switch (errno) {
70         case -EIO:
71                 errstr = "IO failure";
72                 break;
73         case -ENOMEM:
74                 errstr = "Out of memory";
75                 break;
76         case -EROFS:
77                 errstr = "Readonly filesystem";
78                 break;
79         default:
80                 if (nbuf) {
81                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82                                 errstr = nbuf;
83                 }
84                 break;
85         }
86
87         return errstr;
88 }
89
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92         /*
93          * today we only save the error info into ram.  Long term we'll
94          * also send it down to the disk
95          */
96         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98
99 /* NOTE:
100  *      We move write_super stuff at umount in order to avoid deadlock
101  *      for umount hold all lock.
102  */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119         }
120 }
121
122 /*
123  * __btrfs_std_error decodes expected errors from the caller and
124  * invokes the approciate error response.
125  */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127                      unsigned int line, int errno)
128 {
129         struct super_block *sb = fs_info->sb;
130         char nbuf[16];
131         const char *errstr;
132
133         /*
134          * Special case: if the error is EROFS, and we're already
135          * under MS_RDONLY, then it is safe here.
136          */
137         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138                 return;
139
140         errstr = btrfs_decode_error(fs_info, errno, nbuf);
141         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142                 sb->s_id, function, line, errstr);
143         save_error_info(fs_info);
144
145         btrfs_handle_error(fs_info);
146 }
147
148 static void btrfs_put_super(struct super_block *sb)
149 {
150         (void)close_ctree(btrfs_sb(sb));
151         /* FIXME: need to fix VFS to return error? */
152         /* AV: return it _where_?  ->put_super() can be triggered by any number
153          * of async events, up to and including delivery of SIGKILL to the
154          * last process that kept it busy.  Or segfault in the aforementioned
155          * process...  Whom would you report that to?
156          */
157 }
158
159 enum {
160         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167         Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
168 };
169
170 static match_table_t tokens = {
171         {Opt_degraded, "degraded"},
172         {Opt_subvol, "subvol=%s"},
173         {Opt_subvolid, "subvolid=%d"},
174         {Opt_device, "device=%s"},
175         {Opt_nodatasum, "nodatasum"},
176         {Opt_nodatacow, "nodatacow"},
177         {Opt_nobarrier, "nobarrier"},
178         {Opt_max_inline, "max_inline=%s"},
179         {Opt_alloc_start, "alloc_start=%s"},
180         {Opt_thread_pool, "thread_pool=%d"},
181         {Opt_compress, "compress"},
182         {Opt_compress_type, "compress=%s"},
183         {Opt_compress_force, "compress-force"},
184         {Opt_compress_force_type, "compress-force=%s"},
185         {Opt_ssd, "ssd"},
186         {Opt_ssd_spread, "ssd_spread"},
187         {Opt_nossd, "nossd"},
188         {Opt_noacl, "noacl"},
189         {Opt_notreelog, "notreelog"},
190         {Opt_flushoncommit, "flushoncommit"},
191         {Opt_ratio, "metadata_ratio=%d"},
192         {Opt_discard, "discard"},
193         {Opt_space_cache, "space_cache"},
194         {Opt_clear_cache, "clear_cache"},
195         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196         {Opt_enospc_debug, "enospc_debug"},
197         {Opt_subvolrootid, "subvolrootid=%d"},
198         {Opt_defrag, "autodefrag"},
199         {Opt_inode_cache, "inode_cache"},
200         {Opt_no_space_cache, "nospace_cache"},
201         {Opt_recovery, "recovery"},
202         {Opt_err, NULL},
203 };
204
205 /*
206  * Regular mount options parser.  Everything that is needed only when
207  * reading in a new superblock is parsed here.
208  */
209 int btrfs_parse_options(struct btrfs_root *root, char *options)
210 {
211         struct btrfs_fs_info *info = root->fs_info;
212         substring_t args[MAX_OPT_ARGS];
213         char *p, *num, *orig = NULL;
214         u64 cache_gen;
215         int intarg;
216         int ret = 0;
217         char *compress_type;
218         bool compress_force = false;
219
220         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
221         if (cache_gen)
222                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
223
224         if (!options)
225                 goto out;
226
227         /*
228          * strsep changes the string, duplicate it because parse_options
229          * gets called twice
230          */
231         options = kstrdup(options, GFP_NOFS);
232         if (!options)
233                 return -ENOMEM;
234
235         orig = options;
236
237         while ((p = strsep(&options, ",")) != NULL) {
238                 int token;
239                 if (!*p)
240                         continue;
241
242                 token = match_token(p, tokens, args);
243                 switch (token) {
244                 case Opt_degraded:
245                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
246                         btrfs_set_opt(info->mount_opt, DEGRADED);
247                         break;
248                 case Opt_subvol:
249                 case Opt_subvolid:
250                 case Opt_subvolrootid:
251                 case Opt_device:
252                         /*
253                          * These are parsed by btrfs_parse_early_options
254                          * and can be happily ignored here.
255                          */
256                         break;
257                 case Opt_nodatasum:
258                         printk(KERN_INFO "btrfs: setting nodatasum\n");
259                         btrfs_set_opt(info->mount_opt, NODATASUM);
260                         break;
261                 case Opt_nodatacow:
262                         printk(KERN_INFO "btrfs: setting nodatacow\n");
263                         btrfs_set_opt(info->mount_opt, NODATACOW);
264                         btrfs_set_opt(info->mount_opt, NODATASUM);
265                         break;
266                 case Opt_compress_force:
267                 case Opt_compress_force_type:
268                         compress_force = true;
269                 case Opt_compress:
270                 case Opt_compress_type:
271                         if (token == Opt_compress ||
272                             token == Opt_compress_force ||
273                             strcmp(args[0].from, "zlib") == 0) {
274                                 compress_type = "zlib";
275                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
276                         } else if (strcmp(args[0].from, "lzo") == 0) {
277                                 compress_type = "lzo";
278                                 info->compress_type = BTRFS_COMPRESS_LZO;
279                         } else {
280                                 ret = -EINVAL;
281                                 goto out;
282                         }
283
284                         btrfs_set_opt(info->mount_opt, COMPRESS);
285                         if (compress_force) {
286                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
287                                 pr_info("btrfs: force %s compression\n",
288                                         compress_type);
289                         } else
290                                 pr_info("btrfs: use %s compression\n",
291                                         compress_type);
292                         break;
293                 case Opt_ssd:
294                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
295                         btrfs_set_opt(info->mount_opt, SSD);
296                         break;
297                 case Opt_ssd_spread:
298                         printk(KERN_INFO "btrfs: use spread ssd "
299                                "allocation scheme\n");
300                         btrfs_set_opt(info->mount_opt, SSD);
301                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
302                         break;
303                 case Opt_nossd:
304                         printk(KERN_INFO "btrfs: not using ssd allocation "
305                                "scheme\n");
306                         btrfs_set_opt(info->mount_opt, NOSSD);
307                         btrfs_clear_opt(info->mount_opt, SSD);
308                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
309                         break;
310                 case Opt_nobarrier:
311                         printk(KERN_INFO "btrfs: turning off barriers\n");
312                         btrfs_set_opt(info->mount_opt, NOBARRIER);
313                         break;
314                 case Opt_thread_pool:
315                         intarg = 0;
316                         match_int(&args[0], &intarg);
317                         if (intarg) {
318                                 info->thread_pool_size = intarg;
319                                 printk(KERN_INFO "btrfs: thread pool %d\n",
320                                        info->thread_pool_size);
321                         }
322                         break;
323                 case Opt_max_inline:
324                         num = match_strdup(&args[0]);
325                         if (num) {
326                                 info->max_inline = memparse(num, NULL);
327                                 kfree(num);
328
329                                 if (info->max_inline) {
330                                         info->max_inline = max_t(u64,
331                                                 info->max_inline,
332                                                 root->sectorsize);
333                                 }
334                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
335                                         (unsigned long long)info->max_inline);
336                         }
337                         break;
338                 case Opt_alloc_start:
339                         num = match_strdup(&args[0]);
340                         if (num) {
341                                 info->alloc_start = memparse(num, NULL);
342                                 kfree(num);
343                                 printk(KERN_INFO
344                                         "btrfs: allocations start at %llu\n",
345                                         (unsigned long long)info->alloc_start);
346                         }
347                         break;
348                 case Opt_noacl:
349                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
350                         break;
351                 case Opt_notreelog:
352                         printk(KERN_INFO "btrfs: disabling tree log\n");
353                         btrfs_set_opt(info->mount_opt, NOTREELOG);
354                         break;
355                 case Opt_flushoncommit:
356                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
357                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
358                         break;
359                 case Opt_ratio:
360                         intarg = 0;
361                         match_int(&args[0], &intarg);
362                         if (intarg) {
363                                 info->metadata_ratio = intarg;
364                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
365                                        info->metadata_ratio);
366                         }
367                         break;
368                 case Opt_discard:
369                         btrfs_set_opt(info->mount_opt, DISCARD);
370                         break;
371                 case Opt_space_cache:
372                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
373                         break;
374                 case Opt_no_space_cache:
375                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
376                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
377                         break;
378                 case Opt_inode_cache:
379                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
380                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
381                         break;
382                 case Opt_clear_cache:
383                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
384                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
385                         break;
386                 case Opt_user_subvol_rm_allowed:
387                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
388                         break;
389                 case Opt_enospc_debug:
390                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
391                         break;
392                 case Opt_defrag:
393                         printk(KERN_INFO "btrfs: enabling auto defrag");
394                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
395                         break;
396                 case Opt_recovery:
397                         printk(KERN_INFO "btrfs: enabling auto recovery");
398                         btrfs_set_opt(info->mount_opt, RECOVERY);
399                         break;
400                 case Opt_err:
401                         printk(KERN_INFO "btrfs: unrecognized mount option "
402                                "'%s'\n", p);
403                         ret = -EINVAL;
404                         goto out;
405                 default:
406                         break;
407                 }
408         }
409 out:
410         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
411                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
412         kfree(orig);
413         return ret;
414 }
415
416 /*
417  * Parse mount options that are required early in the mount process.
418  *
419  * All other options will be parsed on much later in the mount process and
420  * only when we need to allocate a new super block.
421  */
422 static int btrfs_parse_early_options(const char *options, fmode_t flags,
423                 void *holder, char **subvol_name, u64 *subvol_objectid,
424                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
425 {
426         substring_t args[MAX_OPT_ARGS];
427         char *device_name, *opts, *orig, *p;
428         int error = 0;
429         int intarg;
430
431         if (!options)
432                 return 0;
433
434         /*
435          * strsep changes the string, duplicate it because parse_options
436          * gets called twice
437          */
438         opts = kstrdup(options, GFP_KERNEL);
439         if (!opts)
440                 return -ENOMEM;
441         orig = opts;
442
443         while ((p = strsep(&opts, ",")) != NULL) {
444                 int token;
445                 if (!*p)
446                         continue;
447
448                 token = match_token(p, tokens, args);
449                 switch (token) {
450                 case Opt_subvol:
451                         kfree(*subvol_name);
452                         *subvol_name = match_strdup(&args[0]);
453                         break;
454                 case Opt_subvolid:
455                         intarg = 0;
456                         error = match_int(&args[0], &intarg);
457                         if (!error) {
458                                 /* we want the original fs_tree */
459                                 if (!intarg)
460                                         *subvol_objectid =
461                                                 BTRFS_FS_TREE_OBJECTID;
462                                 else
463                                         *subvol_objectid = intarg;
464                         }
465                         break;
466                 case Opt_subvolrootid:
467                         intarg = 0;
468                         error = match_int(&args[0], &intarg);
469                         if (!error) {
470                                 /* we want the original fs_tree */
471                                 if (!intarg)
472                                         *subvol_rootid =
473                                                 BTRFS_FS_TREE_OBJECTID;
474                                 else
475                                         *subvol_rootid = intarg;
476                         }
477                         break;
478                 case Opt_device:
479                         device_name = match_strdup(&args[0]);
480                         if (!device_name) {
481                                 error = -ENOMEM;
482                                 goto out;
483                         }
484                         error = btrfs_scan_one_device(device_name,
485                                         flags, holder, fs_devices);
486                         kfree(device_name);
487                         if (error)
488                                 goto out;
489                         break;
490                 default:
491                         break;
492                 }
493         }
494
495 out:
496         kfree(orig);
497         return error;
498 }
499
500 static struct dentry *get_default_root(struct super_block *sb,
501                                        u64 subvol_objectid)
502 {
503         struct btrfs_root *root = sb->s_fs_info;
504         struct btrfs_root *new_root;
505         struct btrfs_dir_item *di;
506         struct btrfs_path *path;
507         struct btrfs_key location;
508         struct inode *inode;
509         u64 dir_id;
510         int new = 0;
511
512         /*
513          * We have a specific subvol we want to mount, just setup location and
514          * go look up the root.
515          */
516         if (subvol_objectid) {
517                 location.objectid = subvol_objectid;
518                 location.type = BTRFS_ROOT_ITEM_KEY;
519                 location.offset = (u64)-1;
520                 goto find_root;
521         }
522
523         path = btrfs_alloc_path();
524         if (!path)
525                 return ERR_PTR(-ENOMEM);
526         path->leave_spinning = 1;
527
528         /*
529          * Find the "default" dir item which points to the root item that we
530          * will mount by default if we haven't been given a specific subvolume
531          * to mount.
532          */
533         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
534         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
535         if (IS_ERR(di)) {
536                 btrfs_free_path(path);
537                 return ERR_CAST(di);
538         }
539         if (!di) {
540                 /*
541                  * Ok the default dir item isn't there.  This is weird since
542                  * it's always been there, but don't freak out, just try and
543                  * mount to root most subvolume.
544                  */
545                 btrfs_free_path(path);
546                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
547                 new_root = root->fs_info->fs_root;
548                 goto setup_root;
549         }
550
551         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
552         btrfs_free_path(path);
553
554 find_root:
555         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
556         if (IS_ERR(new_root))
557                 return ERR_CAST(new_root);
558
559         if (btrfs_root_refs(&new_root->root_item) == 0)
560                 return ERR_PTR(-ENOENT);
561
562         dir_id = btrfs_root_dirid(&new_root->root_item);
563 setup_root:
564         location.objectid = dir_id;
565         location.type = BTRFS_INODE_ITEM_KEY;
566         location.offset = 0;
567
568         inode = btrfs_iget(sb, &location, new_root, &new);
569         if (IS_ERR(inode))
570                 return ERR_CAST(inode);
571
572         /*
573          * If we're just mounting the root most subvol put the inode and return
574          * a reference to the dentry.  We will have already gotten a reference
575          * to the inode in btrfs_fill_super so we're good to go.
576          */
577         if (!new && sb->s_root->d_inode == inode) {
578                 iput(inode);
579                 return dget(sb->s_root);
580         }
581
582         return d_obtain_alias(inode);
583 }
584
585 static int btrfs_fill_super(struct super_block *sb,
586                             struct btrfs_fs_devices *fs_devices,
587                             void *data, int silent)
588 {
589         struct inode *inode;
590         struct dentry *root_dentry;
591         struct btrfs_root *tree_root = sb->s_fs_info;
592         struct btrfs_fs_info *fs_info = tree_root->fs_info;
593         struct btrfs_key key;
594         int err;
595
596         sb->s_maxbytes = MAX_LFS_FILESIZE;
597         sb->s_magic = BTRFS_SUPER_MAGIC;
598         sb->s_op = &btrfs_super_ops;
599         sb->s_d_op = &btrfs_dentry_operations;
600         sb->s_export_op = &btrfs_export_ops;
601         sb->s_xattr = btrfs_xattr_handlers;
602         sb->s_time_gran = 1;
603 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
604         sb->s_flags |= MS_POSIXACL;
605 #endif
606
607         err = open_ctree(sb, fs_devices, (char *)data);
608         if (err) {
609                 printk("btrfs: open_ctree failed\n");
610                 return err;
611         }
612
613         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
614         key.type = BTRFS_INODE_ITEM_KEY;
615         key.offset = 0;
616         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
617         if (IS_ERR(inode)) {
618                 err = PTR_ERR(inode);
619                 goto fail_close;
620         }
621
622         root_dentry = d_alloc_root(inode);
623         if (!root_dentry) {
624                 iput(inode);
625                 err = -ENOMEM;
626                 goto fail_close;
627         }
628
629         sb->s_root = root_dentry;
630
631         save_mount_options(sb, data);
632         cleancache_init_fs(sb);
633         return 0;
634
635 fail_close:
636         close_ctree(tree_root);
637         return err;
638 }
639
640 int btrfs_sync_fs(struct super_block *sb, int wait)
641 {
642         struct btrfs_trans_handle *trans;
643         struct btrfs_root *root = btrfs_sb(sb);
644         int ret;
645
646         trace_btrfs_sync_fs(wait);
647
648         if (!wait) {
649                 filemap_flush(root->fs_info->btree_inode->i_mapping);
650                 return 0;
651         }
652
653         btrfs_start_delalloc_inodes(root, 0);
654         btrfs_wait_ordered_extents(root, 0, 0);
655
656         trans = btrfs_start_transaction(root, 0);
657         if (IS_ERR(trans))
658                 return PTR_ERR(trans);
659         ret = btrfs_commit_transaction(trans, root);
660         return ret;
661 }
662
663 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
664 {
665         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
666         struct btrfs_fs_info *info = root->fs_info;
667         char *compress_type;
668
669         if (btrfs_test_opt(root, DEGRADED))
670                 seq_puts(seq, ",degraded");
671         if (btrfs_test_opt(root, NODATASUM))
672                 seq_puts(seq, ",nodatasum");
673         if (btrfs_test_opt(root, NODATACOW))
674                 seq_puts(seq, ",nodatacow");
675         if (btrfs_test_opt(root, NOBARRIER))
676                 seq_puts(seq, ",nobarrier");
677         if (info->max_inline != 8192 * 1024)
678                 seq_printf(seq, ",max_inline=%llu",
679                            (unsigned long long)info->max_inline);
680         if (info->alloc_start != 0)
681                 seq_printf(seq, ",alloc_start=%llu",
682                            (unsigned long long)info->alloc_start);
683         if (info->thread_pool_size !=  min_t(unsigned long,
684                                              num_online_cpus() + 2, 8))
685                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
686         if (btrfs_test_opt(root, COMPRESS)) {
687                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
688                         compress_type = "zlib";
689                 else
690                         compress_type = "lzo";
691                 if (btrfs_test_opt(root, FORCE_COMPRESS))
692                         seq_printf(seq, ",compress-force=%s", compress_type);
693                 else
694                         seq_printf(seq, ",compress=%s", compress_type);
695         }
696         if (btrfs_test_opt(root, NOSSD))
697                 seq_puts(seq, ",nossd");
698         if (btrfs_test_opt(root, SSD_SPREAD))
699                 seq_puts(seq, ",ssd_spread");
700         else if (btrfs_test_opt(root, SSD))
701                 seq_puts(seq, ",ssd");
702         if (btrfs_test_opt(root, NOTREELOG))
703                 seq_puts(seq, ",notreelog");
704         if (btrfs_test_opt(root, FLUSHONCOMMIT))
705                 seq_puts(seq, ",flushoncommit");
706         if (btrfs_test_opt(root, DISCARD))
707                 seq_puts(seq, ",discard");
708         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
709                 seq_puts(seq, ",noacl");
710         if (btrfs_test_opt(root, SPACE_CACHE))
711                 seq_puts(seq, ",space_cache");
712         else
713                 seq_puts(seq, ",nospace_cache");
714         if (btrfs_test_opt(root, CLEAR_CACHE))
715                 seq_puts(seq, ",clear_cache");
716         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
717                 seq_puts(seq, ",user_subvol_rm_allowed");
718         if (btrfs_test_opt(root, ENOSPC_DEBUG))
719                 seq_puts(seq, ",enospc_debug");
720         if (btrfs_test_opt(root, AUTO_DEFRAG))
721                 seq_puts(seq, ",autodefrag");
722         if (btrfs_test_opt(root, INODE_MAP_CACHE))
723                 seq_puts(seq, ",inode_cache");
724         return 0;
725 }
726
727 static int btrfs_test_super(struct super_block *s, void *data)
728 {
729         struct btrfs_root *test_root = data;
730         struct btrfs_root *root = btrfs_sb(s);
731
732         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
733 }
734
735 static int btrfs_set_super(struct super_block *s, void *data)
736 {
737         int err = set_anon_super(s, data);
738         if (!err)
739                 s->s_fs_info = data;
740         return err;
741 }
742
743 /*
744  * subvolumes are identified by ino 256
745  */
746 static inline int is_subvolume_inode(struct inode *inode)
747 {
748         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
749                 return 1;
750         return 0;
751 }
752
753 /*
754  * This will strip out the subvol=%s argument for an argument string and add
755  * subvolid=0 to make sure we get the actual tree root for path walking to the
756  * subvol we want.
757  */
758 static char *setup_root_args(char *args)
759 {
760         unsigned copied = 0;
761         unsigned len = strlen(args) + 2;
762         char *pos;
763         char *ret;
764
765         /*
766          * We need the same args as before, but minus
767          *
768          * subvol=a
769          *
770          * and add
771          *
772          * subvolid=0
773          *
774          * which is a difference of 2 characters, so we allocate strlen(args) +
775          * 2 characters.
776          */
777         ret = kzalloc(len * sizeof(char), GFP_NOFS);
778         if (!ret)
779                 return NULL;
780         pos = strstr(args, "subvol=");
781
782         /* This shouldn't happen, but just in case.. */
783         if (!pos) {
784                 kfree(ret);
785                 return NULL;
786         }
787
788         /*
789          * The subvol=<> arg is not at the front of the string, copy everybody
790          * up to that into ret.
791          */
792         if (pos != args) {
793                 *pos = '\0';
794                 strcpy(ret, args);
795                 copied += strlen(args);
796                 pos++;
797         }
798
799         strncpy(ret + copied, "subvolid=0", len - copied);
800
801         /* Length of subvolid=0 */
802         copied += 10;
803
804         /*
805          * If there is no , after the subvol= option then we know there's no
806          * other options and we can just return.
807          */
808         pos = strchr(pos, ',');
809         if (!pos)
810                 return ret;
811
812         /* Copy the rest of the arguments into our buffer */
813         strncpy(ret + copied, pos, len - copied);
814         copied += strlen(pos);
815
816         return ret;
817 }
818
819 static struct dentry *mount_subvol(const char *subvol_name, int flags,
820                                    const char *device_name, char *data)
821 {
822         struct dentry *root;
823         struct vfsmount *mnt;
824         char *newargs;
825
826         newargs = setup_root_args(data);
827         if (!newargs)
828                 return ERR_PTR(-ENOMEM);
829         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
830                              newargs);
831         kfree(newargs);
832         if (IS_ERR(mnt))
833                 return ERR_CAST(mnt);
834
835         root = mount_subtree(mnt, subvol_name);
836
837         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
838                 struct super_block *s = root->d_sb;
839                 dput(root);
840                 root = ERR_PTR(-EINVAL);
841                 deactivate_locked_super(s);
842                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
843                                 subvol_name);
844         }
845
846         return root;
847 }
848
849 /*
850  * Find a superblock for the given device / mount point.
851  *
852  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
853  *        for multiple device setup.  Make sure to keep it in sync.
854  */
855 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
856                 const char *device_name, void *data)
857 {
858         struct block_device *bdev = NULL;
859         struct super_block *s;
860         struct dentry *root;
861         struct btrfs_fs_devices *fs_devices = NULL;
862         struct btrfs_fs_info *fs_info = NULL;
863         fmode_t mode = FMODE_READ;
864         char *subvol_name = NULL;
865         u64 subvol_objectid = 0;
866         u64 subvol_rootid = 0;
867         int error = 0;
868
869         if (!(flags & MS_RDONLY))
870                 mode |= FMODE_WRITE;
871
872         error = btrfs_parse_early_options(data, mode, fs_type,
873                                           &subvol_name, &subvol_objectid,
874                                           &subvol_rootid, &fs_devices);
875         if (error) {
876                 kfree(subvol_name);
877                 return ERR_PTR(error);
878         }
879
880         if (subvol_name) {
881                 root = mount_subvol(subvol_name, flags, device_name, data);
882                 kfree(subvol_name);
883                 return root;
884         }
885
886         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
887         if (error)
888                 return ERR_PTR(error);
889
890         /*
891          * Setup a dummy root and fs_info for test/set super.  This is because
892          * we don't actually fill this stuff out until open_ctree, but we need
893          * it for searching for existing supers, so this lets us do that and
894          * then open_ctree will properly initialize everything later.
895          */
896         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
897         if (!fs_info)
898                 return ERR_PTR(-ENOMEM);
899
900         fs_info->tree_root = btrfs_alloc_root(fs_info);
901         if (!fs_info->tree_root) {
902                 error = -ENOMEM;
903                 goto error_fs_info;
904         }
905         fs_info->fs_devices = fs_devices;
906
907         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
908         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
909         if (!fs_info->super_copy || !fs_info->super_for_commit) {
910                 error = -ENOMEM;
911                 goto error_fs_info;
912         }
913
914         error = btrfs_open_devices(fs_devices, mode, fs_type);
915         if (error)
916                 goto error_fs_info;
917
918         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
919                 error = -EACCES;
920                 goto error_close_devices;
921         }
922
923         bdev = fs_devices->latest_bdev;
924         s = sget(fs_type, btrfs_test_super, btrfs_set_super,
925                  fs_info->tree_root);
926         if (IS_ERR(s)) {
927                 error = PTR_ERR(s);
928                 goto error_close_devices;
929         }
930
931         if (s->s_root) {
932                 if ((flags ^ s->s_flags) & MS_RDONLY) {
933                         deactivate_locked_super(s);
934                         error = -EBUSY;
935                         goto error_close_devices;
936                 }
937
938                 btrfs_close_devices(fs_devices);
939                 free_fs_info(fs_info);
940         } else {
941                 char b[BDEVNAME_SIZE];
942
943                 s->s_flags = flags | MS_NOSEC;
944                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
945                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
946                 error = btrfs_fill_super(s, fs_devices, data,
947                                          flags & MS_SILENT ? 1 : 0);
948                 if (error) {
949                         deactivate_locked_super(s);
950                         return ERR_PTR(error);
951                 }
952
953                 s->s_flags |= MS_ACTIVE;
954         }
955
956         root = get_default_root(s, subvol_objectid);
957         if (IS_ERR(root)) {
958                 deactivate_locked_super(s);
959                 return root;
960         }
961
962         return root;
963
964 error_close_devices:
965         btrfs_close_devices(fs_devices);
966 error_fs_info:
967         free_fs_info(fs_info);
968         return ERR_PTR(error);
969 }
970
971 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
972 {
973         struct btrfs_root *root = btrfs_sb(sb);
974         int ret;
975
976         ret = btrfs_parse_options(root, data);
977         if (ret)
978                 return -EINVAL;
979
980         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
981                 return 0;
982
983         if (*flags & MS_RDONLY) {
984                 sb->s_flags |= MS_RDONLY;
985
986                 ret =  btrfs_commit_super(root);
987                 WARN_ON(ret);
988         } else {
989                 if (root->fs_info->fs_devices->rw_devices == 0)
990                         return -EACCES;
991
992                 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
993                         return -EINVAL;
994
995                 ret = btrfs_cleanup_fs_roots(root->fs_info);
996                 WARN_ON(ret);
997
998                 /* recover relocation */
999                 ret = btrfs_recover_relocation(root);
1000                 WARN_ON(ret);
1001
1002                 sb->s_flags &= ~MS_RDONLY;
1003         }
1004
1005         return 0;
1006 }
1007
1008 /* Used to sort the devices by max_avail(descending sort) */
1009 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1010                                        const void *dev_info2)
1011 {
1012         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1013             ((struct btrfs_device_info *)dev_info2)->max_avail)
1014                 return -1;
1015         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1016                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1017                 return 1;
1018         else
1019         return 0;
1020 }
1021
1022 /*
1023  * sort the devices by max_avail, in which max free extent size of each device
1024  * is stored.(Descending Sort)
1025  */
1026 static inline void btrfs_descending_sort_devices(
1027                                         struct btrfs_device_info *devices,
1028                                         size_t nr_devices)
1029 {
1030         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1031              btrfs_cmp_device_free_bytes, NULL);
1032 }
1033
1034 /*
1035  * The helper to calc the free space on the devices that can be used to store
1036  * file data.
1037  */
1038 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1039 {
1040         struct btrfs_fs_info *fs_info = root->fs_info;
1041         struct btrfs_device_info *devices_info;
1042         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1043         struct btrfs_device *device;
1044         u64 skip_space;
1045         u64 type;
1046         u64 avail_space;
1047         u64 used_space;
1048         u64 min_stripe_size;
1049         int min_stripes = 1, num_stripes = 1;
1050         int i = 0, nr_devices;
1051         int ret;
1052
1053         nr_devices = fs_info->fs_devices->open_devices;
1054         BUG_ON(!nr_devices);
1055
1056         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1057                                GFP_NOFS);
1058         if (!devices_info)
1059                 return -ENOMEM;
1060
1061         /* calc min stripe number for data space alloction */
1062         type = btrfs_get_alloc_profile(root, 1);
1063         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1064                 min_stripes = 2;
1065                 num_stripes = nr_devices;
1066         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1067                 min_stripes = 2;
1068                 num_stripes = 2;
1069         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1070                 min_stripes = 4;
1071                 num_stripes = 4;
1072         }
1073
1074         if (type & BTRFS_BLOCK_GROUP_DUP)
1075                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1076         else
1077                 min_stripe_size = BTRFS_STRIPE_LEN;
1078
1079         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1080                 if (!device->in_fs_metadata || !device->bdev)
1081                         continue;
1082
1083                 avail_space = device->total_bytes - device->bytes_used;
1084
1085                 /* align with stripe_len */
1086                 do_div(avail_space, BTRFS_STRIPE_LEN);
1087                 avail_space *= BTRFS_STRIPE_LEN;
1088
1089                 /*
1090                  * In order to avoid overwritting the superblock on the drive,
1091                  * btrfs starts at an offset of at least 1MB when doing chunk
1092                  * allocation.
1093                  */
1094                 skip_space = 1024 * 1024;
1095
1096                 /* user can set the offset in fs_info->alloc_start. */
1097                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1098                     device->total_bytes)
1099                         skip_space = max(fs_info->alloc_start, skip_space);
1100
1101                 /*
1102                  * btrfs can not use the free space in [0, skip_space - 1],
1103                  * we must subtract it from the total. In order to implement
1104                  * it, we account the used space in this range first.
1105                  */
1106                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1107                                                      &used_space);
1108                 if (ret) {
1109                         kfree(devices_info);
1110                         return ret;
1111                 }
1112
1113                 /* calc the free space in [0, skip_space - 1] */
1114                 skip_space -= used_space;
1115
1116                 /*
1117                  * we can use the free space in [0, skip_space - 1], subtract
1118                  * it from the total.
1119                  */
1120                 if (avail_space && avail_space >= skip_space)
1121                         avail_space -= skip_space;
1122                 else
1123                         avail_space = 0;
1124
1125                 if (avail_space < min_stripe_size)
1126                         continue;
1127
1128                 devices_info[i].dev = device;
1129                 devices_info[i].max_avail = avail_space;
1130
1131                 i++;
1132         }
1133
1134         nr_devices = i;
1135
1136         btrfs_descending_sort_devices(devices_info, nr_devices);
1137
1138         i = nr_devices - 1;
1139         avail_space = 0;
1140         while (nr_devices >= min_stripes) {
1141                 if (num_stripes > nr_devices)
1142                         num_stripes = nr_devices;
1143
1144                 if (devices_info[i].max_avail >= min_stripe_size) {
1145                         int j;
1146                         u64 alloc_size;
1147
1148                         avail_space += devices_info[i].max_avail * num_stripes;
1149                         alloc_size = devices_info[i].max_avail;
1150                         for (j = i + 1 - num_stripes; j <= i; j++)
1151                                 devices_info[j].max_avail -= alloc_size;
1152                 }
1153                 i--;
1154                 nr_devices--;
1155         }
1156
1157         kfree(devices_info);
1158         *free_bytes = avail_space;
1159         return 0;
1160 }
1161
1162 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1163 {
1164         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1165         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1166         struct list_head *head = &root->fs_info->space_info;
1167         struct btrfs_space_info *found;
1168         u64 total_used = 0;
1169         u64 total_free_data = 0;
1170         int bits = dentry->d_sb->s_blocksize_bits;
1171         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1172         int ret;
1173
1174         /* holding chunk_muext to avoid allocating new chunks */
1175         mutex_lock(&root->fs_info->chunk_mutex);
1176         rcu_read_lock();
1177         list_for_each_entry_rcu(found, head, list) {
1178                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1179                         total_free_data += found->disk_total - found->disk_used;
1180                         total_free_data -=
1181                                 btrfs_account_ro_block_groups_free_space(found);
1182                 }
1183
1184                 total_used += found->disk_used;
1185         }
1186         rcu_read_unlock();
1187
1188         buf->f_namelen = BTRFS_NAME_LEN;
1189         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1190         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1191         buf->f_bsize = dentry->d_sb->s_blocksize;
1192         buf->f_type = BTRFS_SUPER_MAGIC;
1193         buf->f_bavail = total_free_data;
1194         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1195         if (ret) {
1196                 mutex_unlock(&root->fs_info->chunk_mutex);
1197                 return ret;
1198         }
1199         buf->f_bavail += total_free_data;
1200         buf->f_bavail = buf->f_bavail >> bits;
1201         mutex_unlock(&root->fs_info->chunk_mutex);
1202
1203         /* We treat it as constant endianness (it doesn't matter _which_)
1204            because we want the fsid to come out the same whether mounted
1205            on a big-endian or little-endian host */
1206         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1207         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1208         /* Mask in the root object ID too, to disambiguate subvols */
1209         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1210         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1211
1212         return 0;
1213 }
1214
1215 static void btrfs_kill_super(struct super_block *sb)
1216 {
1217         struct btrfs_fs_info *fs_info = btrfs_sb(sb)->fs_info;
1218         kill_anon_super(sb);
1219         free_fs_info(fs_info);
1220 }
1221
1222 static struct file_system_type btrfs_fs_type = {
1223         .owner          = THIS_MODULE,
1224         .name           = "btrfs",
1225         .mount          = btrfs_mount,
1226         .kill_sb        = btrfs_kill_super,
1227         .fs_flags       = FS_REQUIRES_DEV,
1228 };
1229
1230 /*
1231  * used by btrfsctl to scan devices when no FS is mounted
1232  */
1233 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1234                                 unsigned long arg)
1235 {
1236         struct btrfs_ioctl_vol_args *vol;
1237         struct btrfs_fs_devices *fs_devices;
1238         int ret = -ENOTTY;
1239
1240         if (!capable(CAP_SYS_ADMIN))
1241                 return -EPERM;
1242
1243         vol = memdup_user((void __user *)arg, sizeof(*vol));
1244         if (IS_ERR(vol))
1245                 return PTR_ERR(vol);
1246
1247         switch (cmd) {
1248         case BTRFS_IOC_SCAN_DEV:
1249                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1250                                             &btrfs_fs_type, &fs_devices);
1251                 break;
1252         }
1253
1254         kfree(vol);
1255         return ret;
1256 }
1257
1258 static int btrfs_freeze(struct super_block *sb)
1259 {
1260         struct btrfs_root *root = btrfs_sb(sb);
1261         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1262         mutex_lock(&root->fs_info->cleaner_mutex);
1263         return 0;
1264 }
1265
1266 static int btrfs_unfreeze(struct super_block *sb)
1267 {
1268         struct btrfs_root *root = btrfs_sb(sb);
1269         mutex_unlock(&root->fs_info->cleaner_mutex);
1270         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1271         return 0;
1272 }
1273
1274 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1275 {
1276         int ret;
1277
1278         ret = btrfs_dirty_inode(inode);
1279         if (ret)
1280                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1281                                    "error %d\n", btrfs_ino(inode), ret);
1282 }
1283
1284 static const struct super_operations btrfs_super_ops = {
1285         .drop_inode     = btrfs_drop_inode,
1286         .evict_inode    = btrfs_evict_inode,
1287         .put_super      = btrfs_put_super,
1288         .sync_fs        = btrfs_sync_fs,
1289         .show_options   = btrfs_show_options,
1290         .write_inode    = btrfs_write_inode,
1291         .dirty_inode    = btrfs_fs_dirty_inode,
1292         .alloc_inode    = btrfs_alloc_inode,
1293         .destroy_inode  = btrfs_destroy_inode,
1294         .statfs         = btrfs_statfs,
1295         .remount_fs     = btrfs_remount,
1296         .freeze_fs      = btrfs_freeze,
1297         .unfreeze_fs    = btrfs_unfreeze,
1298 };
1299
1300 static const struct file_operations btrfs_ctl_fops = {
1301         .unlocked_ioctl  = btrfs_control_ioctl,
1302         .compat_ioctl = btrfs_control_ioctl,
1303         .owner   = THIS_MODULE,
1304         .llseek = noop_llseek,
1305 };
1306
1307 static struct miscdevice btrfs_misc = {
1308         .minor          = BTRFS_MINOR,
1309         .name           = "btrfs-control",
1310         .fops           = &btrfs_ctl_fops
1311 };
1312
1313 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1314 MODULE_ALIAS("devname:btrfs-control");
1315
1316 static int btrfs_interface_init(void)
1317 {
1318         return misc_register(&btrfs_misc);
1319 }
1320
1321 static void btrfs_interface_exit(void)
1322 {
1323         if (misc_deregister(&btrfs_misc) < 0)
1324                 printk(KERN_INFO "misc_deregister failed for control device");
1325 }
1326
1327 static int __init init_btrfs_fs(void)
1328 {
1329         int err;
1330
1331         err = btrfs_init_sysfs();
1332         if (err)
1333                 return err;
1334
1335         err = btrfs_init_compress();
1336         if (err)
1337                 goto free_sysfs;
1338
1339         err = btrfs_init_cachep();
1340         if (err)
1341                 goto free_compress;
1342
1343         err = extent_io_init();
1344         if (err)
1345                 goto free_cachep;
1346
1347         err = extent_map_init();
1348         if (err)
1349                 goto free_extent_io;
1350
1351         err = btrfs_delayed_inode_init();
1352         if (err)
1353                 goto free_extent_map;
1354
1355         err = btrfs_interface_init();
1356         if (err)
1357                 goto free_delayed_inode;
1358
1359         err = register_filesystem(&btrfs_fs_type);
1360         if (err)
1361                 goto unregister_ioctl;
1362
1363         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1364         return 0;
1365
1366 unregister_ioctl:
1367         btrfs_interface_exit();
1368 free_delayed_inode:
1369         btrfs_delayed_inode_exit();
1370 free_extent_map:
1371         extent_map_exit();
1372 free_extent_io:
1373         extent_io_exit();
1374 free_cachep:
1375         btrfs_destroy_cachep();
1376 free_compress:
1377         btrfs_exit_compress();
1378 free_sysfs:
1379         btrfs_exit_sysfs();
1380         return err;
1381 }
1382
1383 static void __exit exit_btrfs_fs(void)
1384 {
1385         btrfs_destroy_cachep();
1386         btrfs_delayed_inode_exit();
1387         extent_map_exit();
1388         extent_io_exit();
1389         btrfs_interface_exit();
1390         unregister_filesystem(&btrfs_fs_type);
1391         btrfs_exit_sysfs();
1392         btrfs_cleanup_fs_uuids();
1393         btrfs_exit_compress();
1394 }
1395
1396 module_init(init_btrfs_fs)
1397 module_exit(exit_btrfs_fs)
1398
1399 MODULE_LICENSE("GPL");