]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/super.c
btrfs: separate superblock items out of fs_info
[mv-sheeva.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65                                       char nbuf[16])
66 {
67         char *errstr = NULL;
68
69         switch (errno) {
70         case -EIO:
71                 errstr = "IO failure";
72                 break;
73         case -ENOMEM:
74                 errstr = "Out of memory";
75                 break;
76         case -EROFS:
77                 errstr = "Readonly filesystem";
78                 break;
79         default:
80                 if (nbuf) {
81                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82                                 errstr = nbuf;
83                 }
84                 break;
85         }
86
87         return errstr;
88 }
89
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92         /*
93          * today we only save the error info into ram.  Long term we'll
94          * also send it down to the disk
95          */
96         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98
99 /* NOTE:
100  *      We move write_super stuff at umount in order to avoid deadlock
101  *      for umount hold all lock.
102  */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119         }
120 }
121
122 /*
123  * __btrfs_std_error decodes expected errors from the caller and
124  * invokes the approciate error response.
125  */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127                      unsigned int line, int errno)
128 {
129         struct super_block *sb = fs_info->sb;
130         char nbuf[16];
131         const char *errstr;
132
133         /*
134          * Special case: if the error is EROFS, and we're already
135          * under MS_RDONLY, then it is safe here.
136          */
137         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138                 return;
139
140         errstr = btrfs_decode_error(fs_info, errno, nbuf);
141         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142                 sb->s_id, function, line, errstr);
143         save_error_info(fs_info);
144
145         btrfs_handle_error(fs_info);
146 }
147
148 static void btrfs_put_super(struct super_block *sb)
149 {
150         struct btrfs_root *root = btrfs_sb(sb);
151         int ret;
152
153         ret = close_ctree(root);
154         sb->s_fs_info = NULL;
155
156         (void)ret; /* FIXME: need to fix VFS to return error? */
157 }
158
159 enum {
160         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167         Opt_inode_cache, Opt_no_space_cache, Opt_err,
168 };
169
170 static match_table_t tokens = {
171         {Opt_degraded, "degraded"},
172         {Opt_subvol, "subvol=%s"},
173         {Opt_subvolid, "subvolid=%d"},
174         {Opt_device, "device=%s"},
175         {Opt_nodatasum, "nodatasum"},
176         {Opt_nodatacow, "nodatacow"},
177         {Opt_nobarrier, "nobarrier"},
178         {Opt_max_inline, "max_inline=%s"},
179         {Opt_alloc_start, "alloc_start=%s"},
180         {Opt_thread_pool, "thread_pool=%d"},
181         {Opt_compress, "compress"},
182         {Opt_compress_type, "compress=%s"},
183         {Opt_compress_force, "compress-force"},
184         {Opt_compress_force_type, "compress-force=%s"},
185         {Opt_ssd, "ssd"},
186         {Opt_ssd_spread, "ssd_spread"},
187         {Opt_nossd, "nossd"},
188         {Opt_noacl, "noacl"},
189         {Opt_notreelog, "notreelog"},
190         {Opt_flushoncommit, "flushoncommit"},
191         {Opt_ratio, "metadata_ratio=%d"},
192         {Opt_discard, "discard"},
193         {Opt_space_cache, "space_cache"},
194         {Opt_clear_cache, "clear_cache"},
195         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196         {Opt_enospc_debug, "enospc_debug"},
197         {Opt_subvolrootid, "subvolrootid=%d"},
198         {Opt_defrag, "autodefrag"},
199         {Opt_inode_cache, "inode_cache"},
200         {Opt_no_space_cache, "no_space_cache"},
201         {Opt_err, NULL},
202 };
203
204 /*
205  * Regular mount options parser.  Everything that is needed only when
206  * reading in a new superblock is parsed here.
207  */
208 int btrfs_parse_options(struct btrfs_root *root, char *options)
209 {
210         struct btrfs_fs_info *info = root->fs_info;
211         substring_t args[MAX_OPT_ARGS];
212         char *p, *num, *orig = NULL;
213         u64 cache_gen;
214         int intarg;
215         int ret = 0;
216         char *compress_type;
217         bool compress_force = false;
218
219         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
220         if (cache_gen)
221                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
222
223         if (!options)
224                 goto out;
225
226         /*
227          * strsep changes the string, duplicate it because parse_options
228          * gets called twice
229          */
230         options = kstrdup(options, GFP_NOFS);
231         if (!options)
232                 return -ENOMEM;
233
234         orig = options;
235
236         while ((p = strsep(&options, ",")) != NULL) {
237                 int token;
238                 if (!*p)
239                         continue;
240
241                 token = match_token(p, tokens, args);
242                 switch (token) {
243                 case Opt_degraded:
244                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
245                         btrfs_set_opt(info->mount_opt, DEGRADED);
246                         break;
247                 case Opt_subvol:
248                 case Opt_subvolid:
249                 case Opt_subvolrootid:
250                 case Opt_device:
251                         /*
252                          * These are parsed by btrfs_parse_early_options
253                          * and can be happily ignored here.
254                          */
255                         break;
256                 case Opt_nodatasum:
257                         printk(KERN_INFO "btrfs: setting nodatasum\n");
258                         btrfs_set_opt(info->mount_opt, NODATASUM);
259                         break;
260                 case Opt_nodatacow:
261                         printk(KERN_INFO "btrfs: setting nodatacow\n");
262                         btrfs_set_opt(info->mount_opt, NODATACOW);
263                         btrfs_set_opt(info->mount_opt, NODATASUM);
264                         break;
265                 case Opt_compress_force:
266                 case Opt_compress_force_type:
267                         compress_force = true;
268                 case Opt_compress:
269                 case Opt_compress_type:
270                         if (token == Opt_compress ||
271                             token == Opt_compress_force ||
272                             strcmp(args[0].from, "zlib") == 0) {
273                                 compress_type = "zlib";
274                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
275                         } else if (strcmp(args[0].from, "lzo") == 0) {
276                                 compress_type = "lzo";
277                                 info->compress_type = BTRFS_COMPRESS_LZO;
278                         } else {
279                                 ret = -EINVAL;
280                                 goto out;
281                         }
282
283                         btrfs_set_opt(info->mount_opt, COMPRESS);
284                         if (compress_force) {
285                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
286                                 pr_info("btrfs: force %s compression\n",
287                                         compress_type);
288                         } else
289                                 pr_info("btrfs: use %s compression\n",
290                                         compress_type);
291                         break;
292                 case Opt_ssd:
293                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
294                         btrfs_set_opt(info->mount_opt, SSD);
295                         break;
296                 case Opt_ssd_spread:
297                         printk(KERN_INFO "btrfs: use spread ssd "
298                                "allocation scheme\n");
299                         btrfs_set_opt(info->mount_opt, SSD);
300                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
301                         break;
302                 case Opt_nossd:
303                         printk(KERN_INFO "btrfs: not using ssd allocation "
304                                "scheme\n");
305                         btrfs_set_opt(info->mount_opt, NOSSD);
306                         btrfs_clear_opt(info->mount_opt, SSD);
307                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
308                         break;
309                 case Opt_nobarrier:
310                         printk(KERN_INFO "btrfs: turning off barriers\n");
311                         btrfs_set_opt(info->mount_opt, NOBARRIER);
312                         break;
313                 case Opt_thread_pool:
314                         intarg = 0;
315                         match_int(&args[0], &intarg);
316                         if (intarg) {
317                                 info->thread_pool_size = intarg;
318                                 printk(KERN_INFO "btrfs: thread pool %d\n",
319                                        info->thread_pool_size);
320                         }
321                         break;
322                 case Opt_max_inline:
323                         num = match_strdup(&args[0]);
324                         if (num) {
325                                 info->max_inline = memparse(num, NULL);
326                                 kfree(num);
327
328                                 if (info->max_inline) {
329                                         info->max_inline = max_t(u64,
330                                                 info->max_inline,
331                                                 root->sectorsize);
332                                 }
333                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
334                                         (unsigned long long)info->max_inline);
335                         }
336                         break;
337                 case Opt_alloc_start:
338                         num = match_strdup(&args[0]);
339                         if (num) {
340                                 info->alloc_start = memparse(num, NULL);
341                                 kfree(num);
342                                 printk(KERN_INFO
343                                         "btrfs: allocations start at %llu\n",
344                                         (unsigned long long)info->alloc_start);
345                         }
346                         break;
347                 case Opt_noacl:
348                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
349                         break;
350                 case Opt_notreelog:
351                         printk(KERN_INFO "btrfs: disabling tree log\n");
352                         btrfs_set_opt(info->mount_opt, NOTREELOG);
353                         break;
354                 case Opt_flushoncommit:
355                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
356                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
357                         break;
358                 case Opt_ratio:
359                         intarg = 0;
360                         match_int(&args[0], &intarg);
361                         if (intarg) {
362                                 info->metadata_ratio = intarg;
363                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
364                                        info->metadata_ratio);
365                         }
366                         break;
367                 case Opt_discard:
368                         btrfs_set_opt(info->mount_opt, DISCARD);
369                         break;
370                 case Opt_space_cache:
371                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
372                         break;
373                 case Opt_no_space_cache:
374                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
375                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
376                         break;
377                 case Opt_inode_cache:
378                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
379                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
380                         break;
381                 case Opt_clear_cache:
382                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
383                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
384                         break;
385                 case Opt_user_subvol_rm_allowed:
386                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
387                         break;
388                 case Opt_enospc_debug:
389                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
390                         break;
391                 case Opt_defrag:
392                         printk(KERN_INFO "btrfs: enabling auto defrag");
393                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
394                         break;
395                 case Opt_err:
396                         printk(KERN_INFO "btrfs: unrecognized mount option "
397                                "'%s'\n", p);
398                         ret = -EINVAL;
399                         goto out;
400                 default:
401                         break;
402                 }
403         }
404 out:
405         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
406                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
407         kfree(orig);
408         return ret;
409 }
410
411 /*
412  * Parse mount options that are required early in the mount process.
413  *
414  * All other options will be parsed on much later in the mount process and
415  * only when we need to allocate a new super block.
416  */
417 static int btrfs_parse_early_options(const char *options, fmode_t flags,
418                 void *holder, char **subvol_name, u64 *subvol_objectid,
419                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
420 {
421         substring_t args[MAX_OPT_ARGS];
422         char *device_name, *opts, *orig, *p;
423         int error = 0;
424         int intarg;
425
426         if (!options)
427                 return 0;
428
429         /*
430          * strsep changes the string, duplicate it because parse_options
431          * gets called twice
432          */
433         opts = kstrdup(options, GFP_KERNEL);
434         if (!opts)
435                 return -ENOMEM;
436         orig = opts;
437
438         while ((p = strsep(&opts, ",")) != NULL) {
439                 int token;
440                 if (!*p)
441                         continue;
442
443                 token = match_token(p, tokens, args);
444                 switch (token) {
445                 case Opt_subvol:
446                         *subvol_name = match_strdup(&args[0]);
447                         break;
448                 case Opt_subvolid:
449                         intarg = 0;
450                         error = match_int(&args[0], &intarg);
451                         if (!error) {
452                                 /* we want the original fs_tree */
453                                 if (!intarg)
454                                         *subvol_objectid =
455                                                 BTRFS_FS_TREE_OBJECTID;
456                                 else
457                                         *subvol_objectid = intarg;
458                         }
459                         break;
460                 case Opt_subvolrootid:
461                         intarg = 0;
462                         error = match_int(&args[0], &intarg);
463                         if (!error) {
464                                 /* we want the original fs_tree */
465                                 if (!intarg)
466                                         *subvol_rootid =
467                                                 BTRFS_FS_TREE_OBJECTID;
468                                 else
469                                         *subvol_rootid = intarg;
470                         }
471                         break;
472                 case Opt_device:
473                         device_name = match_strdup(&args[0]);
474                         if (!device_name) {
475                                 error = -ENOMEM;
476                                 goto out;
477                         }
478                         error = btrfs_scan_one_device(device_name,
479                                         flags, holder, fs_devices);
480                         kfree(device_name);
481                         if (error)
482                                 goto out;
483                         break;
484                 default:
485                         break;
486                 }
487         }
488
489 out:
490         kfree(orig);
491         return error;
492 }
493
494 static struct dentry *get_default_root(struct super_block *sb,
495                                        u64 subvol_objectid)
496 {
497         struct btrfs_root *root = sb->s_fs_info;
498         struct btrfs_root *new_root;
499         struct btrfs_dir_item *di;
500         struct btrfs_path *path;
501         struct btrfs_key location;
502         struct inode *inode;
503         u64 dir_id;
504         int new = 0;
505
506         /*
507          * We have a specific subvol we want to mount, just setup location and
508          * go look up the root.
509          */
510         if (subvol_objectid) {
511                 location.objectid = subvol_objectid;
512                 location.type = BTRFS_ROOT_ITEM_KEY;
513                 location.offset = (u64)-1;
514                 goto find_root;
515         }
516
517         path = btrfs_alloc_path();
518         if (!path)
519                 return ERR_PTR(-ENOMEM);
520         path->leave_spinning = 1;
521
522         /*
523          * Find the "default" dir item which points to the root item that we
524          * will mount by default if we haven't been given a specific subvolume
525          * to mount.
526          */
527         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
528         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
529         if (IS_ERR(di)) {
530                 btrfs_free_path(path);
531                 return ERR_CAST(di);
532         }
533         if (!di) {
534                 /*
535                  * Ok the default dir item isn't there.  This is weird since
536                  * it's always been there, but don't freak out, just try and
537                  * mount to root most subvolume.
538                  */
539                 btrfs_free_path(path);
540                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
541                 new_root = root->fs_info->fs_root;
542                 goto setup_root;
543         }
544
545         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
546         btrfs_free_path(path);
547
548 find_root:
549         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
550         if (IS_ERR(new_root))
551                 return ERR_CAST(new_root);
552
553         if (btrfs_root_refs(&new_root->root_item) == 0)
554                 return ERR_PTR(-ENOENT);
555
556         dir_id = btrfs_root_dirid(&new_root->root_item);
557 setup_root:
558         location.objectid = dir_id;
559         location.type = BTRFS_INODE_ITEM_KEY;
560         location.offset = 0;
561
562         inode = btrfs_iget(sb, &location, new_root, &new);
563         if (IS_ERR(inode))
564                 return ERR_CAST(inode);
565
566         /*
567          * If we're just mounting the root most subvol put the inode and return
568          * a reference to the dentry.  We will have already gotten a reference
569          * to the inode in btrfs_fill_super so we're good to go.
570          */
571         if (!new && sb->s_root->d_inode == inode) {
572                 iput(inode);
573                 return dget(sb->s_root);
574         }
575
576         return d_obtain_alias(inode);
577 }
578
579 static int btrfs_fill_super(struct super_block *sb,
580                             struct btrfs_fs_devices *fs_devices,
581                             void *data, int silent)
582 {
583         struct inode *inode;
584         struct dentry *root_dentry;
585         struct btrfs_root *tree_root;
586         struct btrfs_key key;
587         int err;
588
589         sb->s_maxbytes = MAX_LFS_FILESIZE;
590         sb->s_magic = BTRFS_SUPER_MAGIC;
591         sb->s_op = &btrfs_super_ops;
592         sb->s_d_op = &btrfs_dentry_operations;
593         sb->s_export_op = &btrfs_export_ops;
594         sb->s_xattr = btrfs_xattr_handlers;
595         sb->s_time_gran = 1;
596 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
597         sb->s_flags |= MS_POSIXACL;
598 #endif
599
600         tree_root = open_ctree(sb, fs_devices, (char *)data);
601
602         if (IS_ERR(tree_root)) {
603                 printk("btrfs: open_ctree failed\n");
604                 return PTR_ERR(tree_root);
605         }
606         sb->s_fs_info = tree_root;
607
608         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
609         key.type = BTRFS_INODE_ITEM_KEY;
610         key.offset = 0;
611         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
612         if (IS_ERR(inode)) {
613                 err = PTR_ERR(inode);
614                 goto fail_close;
615         }
616
617         root_dentry = d_alloc_root(inode);
618         if (!root_dentry) {
619                 iput(inode);
620                 err = -ENOMEM;
621                 goto fail_close;
622         }
623
624         sb->s_root = root_dentry;
625
626         save_mount_options(sb, data);
627         cleancache_init_fs(sb);
628         return 0;
629
630 fail_close:
631         close_ctree(tree_root);
632         return err;
633 }
634
635 int btrfs_sync_fs(struct super_block *sb, int wait)
636 {
637         struct btrfs_trans_handle *trans;
638         struct btrfs_root *root = btrfs_sb(sb);
639         int ret;
640
641         trace_btrfs_sync_fs(wait);
642
643         if (!wait) {
644                 filemap_flush(root->fs_info->btree_inode->i_mapping);
645                 return 0;
646         }
647
648         btrfs_start_delalloc_inodes(root, 0);
649         btrfs_wait_ordered_extents(root, 0, 0);
650
651         trans = btrfs_start_transaction(root, 0);
652         if (IS_ERR(trans))
653                 return PTR_ERR(trans);
654         ret = btrfs_commit_transaction(trans, root);
655         return ret;
656 }
657
658 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
659 {
660         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
661         struct btrfs_fs_info *info = root->fs_info;
662         char *compress_type;
663
664         if (btrfs_test_opt(root, DEGRADED))
665                 seq_puts(seq, ",degraded");
666         if (btrfs_test_opt(root, NODATASUM))
667                 seq_puts(seq, ",nodatasum");
668         if (btrfs_test_opt(root, NODATACOW))
669                 seq_puts(seq, ",nodatacow");
670         if (btrfs_test_opt(root, NOBARRIER))
671                 seq_puts(seq, ",nobarrier");
672         if (info->max_inline != 8192 * 1024)
673                 seq_printf(seq, ",max_inline=%llu",
674                            (unsigned long long)info->max_inline);
675         if (info->alloc_start != 0)
676                 seq_printf(seq, ",alloc_start=%llu",
677                            (unsigned long long)info->alloc_start);
678         if (info->thread_pool_size !=  min_t(unsigned long,
679                                              num_online_cpus() + 2, 8))
680                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
681         if (btrfs_test_opt(root, COMPRESS)) {
682                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
683                         compress_type = "zlib";
684                 else
685                         compress_type = "lzo";
686                 if (btrfs_test_opt(root, FORCE_COMPRESS))
687                         seq_printf(seq, ",compress-force=%s", compress_type);
688                 else
689                         seq_printf(seq, ",compress=%s", compress_type);
690         }
691         if (btrfs_test_opt(root, NOSSD))
692                 seq_puts(seq, ",nossd");
693         if (btrfs_test_opt(root, SSD_SPREAD))
694                 seq_puts(seq, ",ssd_spread");
695         else if (btrfs_test_opt(root, SSD))
696                 seq_puts(seq, ",ssd");
697         if (btrfs_test_opt(root, NOTREELOG))
698                 seq_puts(seq, ",notreelog");
699         if (btrfs_test_opt(root, FLUSHONCOMMIT))
700                 seq_puts(seq, ",flushoncommit");
701         if (btrfs_test_opt(root, DISCARD))
702                 seq_puts(seq, ",discard");
703         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
704                 seq_puts(seq, ",noacl");
705         if (btrfs_test_opt(root, SPACE_CACHE))
706                 seq_puts(seq, ",space_cache");
707         else
708                 seq_puts(seq, ",no_space_cache");
709         if (btrfs_test_opt(root, CLEAR_CACHE))
710                 seq_puts(seq, ",clear_cache");
711         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
712                 seq_puts(seq, ",user_subvol_rm_allowed");
713         if (btrfs_test_opt(root, ENOSPC_DEBUG))
714                 seq_puts(seq, ",enospc_debug");
715         if (btrfs_test_opt(root, AUTO_DEFRAG))
716                 seq_puts(seq, ",autodefrag");
717         if (btrfs_test_opt(root, INODE_MAP_CACHE))
718                 seq_puts(seq, ",inode_cache");
719         return 0;
720 }
721
722 static int btrfs_test_super(struct super_block *s, void *data)
723 {
724         struct btrfs_root *test_root = data;
725         struct btrfs_root *root = btrfs_sb(s);
726
727         /*
728          * If this super block is going away, return false as it
729          * can't match as an existing super block.
730          */
731         if (!atomic_read(&s->s_active))
732                 return 0;
733         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
734 }
735
736 static int btrfs_set_super(struct super_block *s, void *data)
737 {
738         s->s_fs_info = data;
739
740         return set_anon_super(s, data);
741 }
742
743 /*
744  * subvolumes are identified by ino 256
745  */
746 static inline int is_subvolume_inode(struct inode *inode)
747 {
748         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
749                 return 1;
750         return 0;
751 }
752
753 /*
754  * This will strip out the subvol=%s argument for an argument string and add
755  * subvolid=0 to make sure we get the actual tree root for path walking to the
756  * subvol we want.
757  */
758 static char *setup_root_args(char *args)
759 {
760         unsigned copied = 0;
761         unsigned len = strlen(args) + 2;
762         char *pos;
763         char *ret;
764
765         /*
766          * We need the same args as before, but minus
767          *
768          * subvol=a
769          *
770          * and add
771          *
772          * subvolid=0
773          *
774          * which is a difference of 2 characters, so we allocate strlen(args) +
775          * 2 characters.
776          */
777         ret = kzalloc(len * sizeof(char), GFP_NOFS);
778         if (!ret)
779                 return NULL;
780         pos = strstr(args, "subvol=");
781
782         /* This shouldn't happen, but just in case.. */
783         if (!pos) {
784                 kfree(ret);
785                 return NULL;
786         }
787
788         /*
789          * The subvol=<> arg is not at the front of the string, copy everybody
790          * up to that into ret.
791          */
792         if (pos != args) {
793                 *pos = '\0';
794                 strcpy(ret, args);
795                 copied += strlen(args);
796                 pos++;
797         }
798
799         strncpy(ret + copied, "subvolid=0", len - copied);
800
801         /* Length of subvolid=0 */
802         copied += 10;
803
804         /*
805          * If there is no , after the subvol= option then we know there's no
806          * other options and we can just return.
807          */
808         pos = strchr(pos, ',');
809         if (!pos)
810                 return ret;
811
812         /* Copy the rest of the arguments into our buffer */
813         strncpy(ret + copied, pos, len - copied);
814         copied += strlen(pos);
815
816         return ret;
817 }
818
819 static struct dentry *mount_subvol(const char *subvol_name, int flags,
820                                    const char *device_name, char *data)
821 {
822         struct super_block *s;
823         struct dentry *root;
824         struct vfsmount *mnt;
825         struct mnt_namespace *ns_private;
826         char *newargs;
827         struct path path;
828         int error;
829
830         newargs = setup_root_args(data);
831         if (!newargs)
832                 return ERR_PTR(-ENOMEM);
833         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
834                              newargs);
835         kfree(newargs);
836         if (IS_ERR(mnt))
837                 return ERR_CAST(mnt);
838
839         ns_private = create_mnt_ns(mnt);
840         if (IS_ERR(ns_private)) {
841                 mntput(mnt);
842                 return ERR_CAST(ns_private);
843         }
844
845         /*
846          * This will trigger the automount of the subvol so we can just
847          * drop the mnt we have here and return the dentry that we
848          * found.
849          */
850         error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
851                                 LOOKUP_FOLLOW, &path);
852         put_mnt_ns(ns_private);
853         if (error)
854                 return ERR_PTR(error);
855
856         if (!is_subvolume_inode(path.dentry->d_inode)) {
857                 path_put(&path);
858                 mntput(mnt);
859                 error = -EINVAL;
860                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
861                                 subvol_name);
862                 return ERR_PTR(-EINVAL);
863         }
864
865         /* Get a ref to the sb and the dentry we found and return it */
866         s = path.mnt->mnt_sb;
867         atomic_inc(&s->s_active);
868         root = dget(path.dentry);
869         path_put(&path);
870         down_write(&s->s_umount);
871
872         return root;
873 }
874
875 /*
876  * Find a superblock for the given device / mount point.
877  *
878  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
879  *        for multiple device setup.  Make sure to keep it in sync.
880  */
881 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
882                 const char *device_name, void *data)
883 {
884         struct block_device *bdev = NULL;
885         struct super_block *s;
886         struct dentry *root;
887         struct btrfs_fs_devices *fs_devices = NULL;
888         struct btrfs_root *tree_root = NULL;
889         struct btrfs_fs_info *fs_info = NULL;
890         fmode_t mode = FMODE_READ;
891         char *subvol_name = NULL;
892         u64 subvol_objectid = 0;
893         u64 subvol_rootid = 0;
894         int error = 0;
895
896         if (!(flags & MS_RDONLY))
897                 mode |= FMODE_WRITE;
898
899         error = btrfs_parse_early_options(data, mode, fs_type,
900                                           &subvol_name, &subvol_objectid,
901                                           &subvol_rootid, &fs_devices);
902         if (error)
903                 return ERR_PTR(error);
904
905         if (subvol_name) {
906                 root = mount_subvol(subvol_name, flags, device_name, data);
907                 kfree(subvol_name);
908                 return root;
909         }
910
911         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
912         if (error)
913                 return ERR_PTR(error);
914
915         error = btrfs_open_devices(fs_devices, mode, fs_type);
916         if (error)
917                 return ERR_PTR(error);
918
919         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
920                 error = -EACCES;
921                 goto error_close_devices;
922         }
923
924         /*
925          * Setup a dummy root and fs_info for test/set super.  This is because
926          * we don't actually fill this stuff out until open_ctree, but we need
927          * it for searching for existing supers, so this lets us do that and
928          * then open_ctree will properly initialize everything later.
929          */
930         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
931         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
932         if (!fs_info || !tree_root) {
933                 error = -ENOMEM;
934                 goto error_close_devices;
935         }
936         fs_info->tree_root = tree_root;
937         fs_info->fs_devices = fs_devices;
938         tree_root->fs_info = fs_info;
939
940         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
941         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
942         if (!fs_info->super_copy || !fs_info->super_for_commit) {
943                 error = -ENOMEM;
944                 goto error_close_devices;
945         }
946
947         bdev = fs_devices->latest_bdev;
948         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
949         if (IS_ERR(s)) {
950                 error = PTR_ERR(s);
951                 goto error_close_devices;
952         }
953
954         if (s->s_root) {
955                 if ((flags ^ s->s_flags) & MS_RDONLY) {
956                         deactivate_locked_super(s);
957                         return ERR_PTR(-EBUSY);
958                 }
959
960                 btrfs_close_devices(fs_devices);
961                 free_fs_info(fs_info);
962                 kfree(tree_root);
963         } else {
964                 char b[BDEVNAME_SIZE];
965
966                 s->s_flags = flags | MS_NOSEC;
967                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
968                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
969                 error = btrfs_fill_super(s, fs_devices, data,
970                                          flags & MS_SILENT ? 1 : 0);
971                 if (error) {
972                         deactivate_locked_super(s);
973                         return ERR_PTR(error);
974                 }
975
976                 s->s_flags |= MS_ACTIVE;
977         }
978
979         root = get_default_root(s, subvol_objectid);
980         if (IS_ERR(root)) {
981                 deactivate_locked_super(s);
982                 return root;
983         }
984
985         return root;
986
987 error_close_devices:
988         btrfs_close_devices(fs_devices);
989         free_fs_info(fs_info);
990         kfree(tree_root);
991         return ERR_PTR(error);
992 }
993
994 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
995 {
996         struct btrfs_root *root = btrfs_sb(sb);
997         int ret;
998
999         ret = btrfs_parse_options(root, data);
1000         if (ret)
1001                 return -EINVAL;
1002
1003         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1004                 return 0;
1005
1006         if (*flags & MS_RDONLY) {
1007                 sb->s_flags |= MS_RDONLY;
1008
1009                 ret =  btrfs_commit_super(root);
1010                 WARN_ON(ret);
1011         } else {
1012                 if (root->fs_info->fs_devices->rw_devices == 0)
1013                         return -EACCES;
1014
1015                 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1016                         return -EINVAL;
1017
1018                 ret = btrfs_cleanup_fs_roots(root->fs_info);
1019                 WARN_ON(ret);
1020
1021                 /* recover relocation */
1022                 ret = btrfs_recover_relocation(root);
1023                 WARN_ON(ret);
1024
1025                 sb->s_flags &= ~MS_RDONLY;
1026         }
1027
1028         return 0;
1029 }
1030
1031 /* Used to sort the devices by max_avail(descending sort) */
1032 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1033                                        const void *dev_info2)
1034 {
1035         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1036             ((struct btrfs_device_info *)dev_info2)->max_avail)
1037                 return -1;
1038         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1039                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1040                 return 1;
1041         else
1042         return 0;
1043 }
1044
1045 /*
1046  * sort the devices by max_avail, in which max free extent size of each device
1047  * is stored.(Descending Sort)
1048  */
1049 static inline void btrfs_descending_sort_devices(
1050                                         struct btrfs_device_info *devices,
1051                                         size_t nr_devices)
1052 {
1053         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1054              btrfs_cmp_device_free_bytes, NULL);
1055 }
1056
1057 /*
1058  * The helper to calc the free space on the devices that can be used to store
1059  * file data.
1060  */
1061 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1062 {
1063         struct btrfs_fs_info *fs_info = root->fs_info;
1064         struct btrfs_device_info *devices_info;
1065         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1066         struct btrfs_device *device;
1067         u64 skip_space;
1068         u64 type;
1069         u64 avail_space;
1070         u64 used_space;
1071         u64 min_stripe_size;
1072         int min_stripes = 1;
1073         int i = 0, nr_devices;
1074         int ret;
1075
1076         nr_devices = fs_info->fs_devices->rw_devices;
1077         BUG_ON(!nr_devices);
1078
1079         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1080                                GFP_NOFS);
1081         if (!devices_info)
1082                 return -ENOMEM;
1083
1084         /* calc min stripe number for data space alloction */
1085         type = btrfs_get_alloc_profile(root, 1);
1086         if (type & BTRFS_BLOCK_GROUP_RAID0)
1087                 min_stripes = 2;
1088         else if (type & BTRFS_BLOCK_GROUP_RAID1)
1089                 min_stripes = 2;
1090         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1091                 min_stripes = 4;
1092
1093         if (type & BTRFS_BLOCK_GROUP_DUP)
1094                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1095         else
1096                 min_stripe_size = BTRFS_STRIPE_LEN;
1097
1098         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1099                 if (!device->in_fs_metadata)
1100                         continue;
1101
1102                 avail_space = device->total_bytes - device->bytes_used;
1103
1104                 /* align with stripe_len */
1105                 do_div(avail_space, BTRFS_STRIPE_LEN);
1106                 avail_space *= BTRFS_STRIPE_LEN;
1107
1108                 /*
1109                  * In order to avoid overwritting the superblock on the drive,
1110                  * btrfs starts at an offset of at least 1MB when doing chunk
1111                  * allocation.
1112                  */
1113                 skip_space = 1024 * 1024;
1114
1115                 /* user can set the offset in fs_info->alloc_start. */
1116                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1117                     device->total_bytes)
1118                         skip_space = max(fs_info->alloc_start, skip_space);
1119
1120                 /*
1121                  * btrfs can not use the free space in [0, skip_space - 1],
1122                  * we must subtract it from the total. In order to implement
1123                  * it, we account the used space in this range first.
1124                  */
1125                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1126                                                      &used_space);
1127                 if (ret) {
1128                         kfree(devices_info);
1129                         return ret;
1130                 }
1131
1132                 /* calc the free space in [0, skip_space - 1] */
1133                 skip_space -= used_space;
1134
1135                 /*
1136                  * we can use the free space in [0, skip_space - 1], subtract
1137                  * it from the total.
1138                  */
1139                 if (avail_space && avail_space >= skip_space)
1140                         avail_space -= skip_space;
1141                 else
1142                         avail_space = 0;
1143
1144                 if (avail_space < min_stripe_size)
1145                         continue;
1146
1147                 devices_info[i].dev = device;
1148                 devices_info[i].max_avail = avail_space;
1149
1150                 i++;
1151         }
1152
1153         nr_devices = i;
1154
1155         btrfs_descending_sort_devices(devices_info, nr_devices);
1156
1157         i = nr_devices - 1;
1158         avail_space = 0;
1159         while (nr_devices >= min_stripes) {
1160                 if (devices_info[i].max_avail >= min_stripe_size) {
1161                         int j;
1162                         u64 alloc_size;
1163
1164                         avail_space += devices_info[i].max_avail * min_stripes;
1165                         alloc_size = devices_info[i].max_avail;
1166                         for (j = i + 1 - min_stripes; j <= i; j++)
1167                                 devices_info[j].max_avail -= alloc_size;
1168                 }
1169                 i--;
1170                 nr_devices--;
1171         }
1172
1173         kfree(devices_info);
1174         *free_bytes = avail_space;
1175         return 0;
1176 }
1177
1178 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1179 {
1180         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1181         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1182         struct list_head *head = &root->fs_info->space_info;
1183         struct btrfs_space_info *found;
1184         u64 total_used = 0;
1185         u64 total_free_data = 0;
1186         int bits = dentry->d_sb->s_blocksize_bits;
1187         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1188         int ret;
1189
1190         /* holding chunk_muext to avoid allocating new chunks */
1191         mutex_lock(&root->fs_info->chunk_mutex);
1192         rcu_read_lock();
1193         list_for_each_entry_rcu(found, head, list) {
1194                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1195                         total_free_data += found->disk_total - found->disk_used;
1196                         total_free_data -=
1197                                 btrfs_account_ro_block_groups_free_space(found);
1198                 }
1199
1200                 total_used += found->disk_used;
1201         }
1202         rcu_read_unlock();
1203
1204         buf->f_namelen = BTRFS_NAME_LEN;
1205         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1206         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1207         buf->f_bsize = dentry->d_sb->s_blocksize;
1208         buf->f_type = BTRFS_SUPER_MAGIC;
1209         buf->f_bavail = total_free_data;
1210         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1211         if (ret) {
1212                 mutex_unlock(&root->fs_info->chunk_mutex);
1213                 return ret;
1214         }
1215         buf->f_bavail += total_free_data;
1216         buf->f_bavail = buf->f_bavail >> bits;
1217         mutex_unlock(&root->fs_info->chunk_mutex);
1218
1219         /* We treat it as constant endianness (it doesn't matter _which_)
1220            because we want the fsid to come out the same whether mounted
1221            on a big-endian or little-endian host */
1222         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1223         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1224         /* Mask in the root object ID too, to disambiguate subvols */
1225         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1226         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1227
1228         return 0;
1229 }
1230
1231 static struct file_system_type btrfs_fs_type = {
1232         .owner          = THIS_MODULE,
1233         .name           = "btrfs",
1234         .mount          = btrfs_mount,
1235         .kill_sb        = kill_anon_super,
1236         .fs_flags       = FS_REQUIRES_DEV,
1237 };
1238
1239 /*
1240  * used by btrfsctl to scan devices when no FS is mounted
1241  */
1242 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1243                                 unsigned long arg)
1244 {
1245         struct btrfs_ioctl_vol_args *vol;
1246         struct btrfs_fs_devices *fs_devices;
1247         int ret = -ENOTTY;
1248
1249         if (!capable(CAP_SYS_ADMIN))
1250                 return -EPERM;
1251
1252         vol = memdup_user((void __user *)arg, sizeof(*vol));
1253         if (IS_ERR(vol))
1254                 return PTR_ERR(vol);
1255
1256         switch (cmd) {
1257         case BTRFS_IOC_SCAN_DEV:
1258                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1259                                             &btrfs_fs_type, &fs_devices);
1260                 break;
1261         }
1262
1263         kfree(vol);
1264         return ret;
1265 }
1266
1267 static int btrfs_freeze(struct super_block *sb)
1268 {
1269         struct btrfs_root *root = btrfs_sb(sb);
1270         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1271         mutex_lock(&root->fs_info->cleaner_mutex);
1272         return 0;
1273 }
1274
1275 static int btrfs_unfreeze(struct super_block *sb)
1276 {
1277         struct btrfs_root *root = btrfs_sb(sb);
1278         mutex_unlock(&root->fs_info->cleaner_mutex);
1279         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1280         return 0;
1281 }
1282
1283 static const struct super_operations btrfs_super_ops = {
1284         .drop_inode     = btrfs_drop_inode,
1285         .evict_inode    = btrfs_evict_inode,
1286         .put_super      = btrfs_put_super,
1287         .sync_fs        = btrfs_sync_fs,
1288         .show_options   = btrfs_show_options,
1289         .write_inode    = btrfs_write_inode,
1290         .dirty_inode    = btrfs_dirty_inode,
1291         .alloc_inode    = btrfs_alloc_inode,
1292         .destroy_inode  = btrfs_destroy_inode,
1293         .statfs         = btrfs_statfs,
1294         .remount_fs     = btrfs_remount,
1295         .freeze_fs      = btrfs_freeze,
1296         .unfreeze_fs    = btrfs_unfreeze,
1297 };
1298
1299 static const struct file_operations btrfs_ctl_fops = {
1300         .unlocked_ioctl  = btrfs_control_ioctl,
1301         .compat_ioctl = btrfs_control_ioctl,
1302         .owner   = THIS_MODULE,
1303         .llseek = noop_llseek,
1304 };
1305
1306 static struct miscdevice btrfs_misc = {
1307         .minor          = BTRFS_MINOR,
1308         .name           = "btrfs-control",
1309         .fops           = &btrfs_ctl_fops
1310 };
1311
1312 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1313 MODULE_ALIAS("devname:btrfs-control");
1314
1315 static int btrfs_interface_init(void)
1316 {
1317         return misc_register(&btrfs_misc);
1318 }
1319
1320 static void btrfs_interface_exit(void)
1321 {
1322         if (misc_deregister(&btrfs_misc) < 0)
1323                 printk(KERN_INFO "misc_deregister failed for control device");
1324 }
1325
1326 static int __init init_btrfs_fs(void)
1327 {
1328         int err;
1329
1330         err = btrfs_init_sysfs();
1331         if (err)
1332                 return err;
1333
1334         err = btrfs_init_compress();
1335         if (err)
1336                 goto free_sysfs;
1337
1338         err = btrfs_init_cachep();
1339         if (err)
1340                 goto free_compress;
1341
1342         err = extent_io_init();
1343         if (err)
1344                 goto free_cachep;
1345
1346         err = extent_map_init();
1347         if (err)
1348                 goto free_extent_io;
1349
1350         err = btrfs_delayed_inode_init();
1351         if (err)
1352                 goto free_extent_map;
1353
1354         err = btrfs_interface_init();
1355         if (err)
1356                 goto free_delayed_inode;
1357
1358         err = register_filesystem(&btrfs_fs_type);
1359         if (err)
1360                 goto unregister_ioctl;
1361
1362         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1363         return 0;
1364
1365 unregister_ioctl:
1366         btrfs_interface_exit();
1367 free_delayed_inode:
1368         btrfs_delayed_inode_exit();
1369 free_extent_map:
1370         extent_map_exit();
1371 free_extent_io:
1372         extent_io_exit();
1373 free_cachep:
1374         btrfs_destroy_cachep();
1375 free_compress:
1376         btrfs_exit_compress();
1377 free_sysfs:
1378         btrfs_exit_sysfs();
1379         return err;
1380 }
1381
1382 static void __exit exit_btrfs_fs(void)
1383 {
1384         btrfs_destroy_cachep();
1385         btrfs_delayed_inode_exit();
1386         extent_map_exit();
1387         extent_io_exit();
1388         btrfs_interface_exit();
1389         unregister_filesystem(&btrfs_fs_type);
1390         btrfs_exit_sysfs();
1391         btrfs_cleanup_fs_uuids();
1392         btrfs_exit_compress();
1393 }
1394
1395 module_init(init_btrfs_fs)
1396 module_exit(exit_btrfs_fs)
1397
1398 MODULE_LICENSE("GPL");