]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/transaction.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[karo-tx-linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(atomic_read(&transaction->use_count) == 0);
39         if (atomic_dec_and_test(&transaction->use_count)) {
40                 BUG_ON(!list_empty(&transaction->list));
41                 WARN_ON(transaction->delayed_refs.root.rb_node);
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 if (!nofail) {
71                         spin_unlock(&fs_info->trans_lock);
72                         return -EBUSY;
73                 }
74         }
75
76         cur_trans = fs_info->running_transaction;
77         if (cur_trans) {
78                 if (cur_trans->aborted) {
79                         spin_unlock(&fs_info->trans_lock);
80                         return cur_trans->aborted;
81                 }
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&fs_info->trans_lock);
86                 return 0;
87         }
88         spin_unlock(&fs_info->trans_lock);
89
90         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91         if (!cur_trans)
92                 return -ENOMEM;
93
94         spin_lock(&fs_info->trans_lock);
95         if (fs_info->running_transaction) {
96                 /*
97                  * someone started a transaction after we unlocked.  Make sure
98                  * to redo the trans_no_join checks above
99                  */
100                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101                 cur_trans = fs_info->running_transaction;
102                 goto loop;
103         } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104                 spin_unlock(&fs_info->trans_lock);
105                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106                 return -EROFS;
107         }
108
109         atomic_set(&cur_trans->num_writers, 1);
110         cur_trans->num_joined = 0;
111         init_waitqueue_head(&cur_trans->writer_wait);
112         init_waitqueue_head(&cur_trans->commit_wait);
113         cur_trans->in_commit = 0;
114         cur_trans->blocked = 0;
115         /*
116          * One for this trans handle, one so it will live on until we
117          * commit the transaction.
118          */
119         atomic_set(&cur_trans->use_count, 2);
120         cur_trans->commit_done = 0;
121         cur_trans->start_time = get_seconds();
122
123         cur_trans->delayed_refs.root = RB_ROOT;
124         cur_trans->delayed_refs.num_entries = 0;
125         cur_trans->delayed_refs.num_heads_ready = 0;
126         cur_trans->delayed_refs.num_heads = 0;
127         cur_trans->delayed_refs.flushing = 0;
128         cur_trans->delayed_refs.run_delayed_start = 0;
129
130         /*
131          * although the tree mod log is per file system and not per transaction,
132          * the log must never go across transaction boundaries.
133          */
134         smp_mb();
135         if (!list_empty(&fs_info->tree_mod_seq_list)) {
136                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
137                         "creating a fresh transaction\n");
138                 WARN_ON(1);
139         }
140         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
141                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
142                         "creating a fresh transaction\n");
143                 WARN_ON(1);
144         }
145         atomic_set(&fs_info->tree_mod_seq, 0);
146
147         spin_lock_init(&cur_trans->commit_lock);
148         spin_lock_init(&cur_trans->delayed_refs.lock);
149
150         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
151         list_add_tail(&cur_trans->list, &fs_info->trans_list);
152         extent_io_tree_init(&cur_trans->dirty_pages,
153                              fs_info->btree_inode->i_mapping);
154         fs_info->generation++;
155         cur_trans->transid = fs_info->generation;
156         fs_info->running_transaction = cur_trans;
157         cur_trans->aborted = 0;
158         spin_unlock(&fs_info->trans_lock);
159
160         return 0;
161 }
162
163 /*
164  * this does all the record keeping required to make sure that a reference
165  * counted root is properly recorded in a given transaction.  This is required
166  * to make sure the old root from before we joined the transaction is deleted
167  * when the transaction commits
168  */
169 static int record_root_in_trans(struct btrfs_trans_handle *trans,
170                                struct btrfs_root *root)
171 {
172         if (root->ref_cows && root->last_trans < trans->transid) {
173                 WARN_ON(root == root->fs_info->extent_root);
174                 WARN_ON(root->commit_root != root->node);
175
176                 /*
177                  * see below for in_trans_setup usage rules
178                  * we have the reloc mutex held now, so there
179                  * is only one writer in this function
180                  */
181                 root->in_trans_setup = 1;
182
183                 /* make sure readers find in_trans_setup before
184                  * they find our root->last_trans update
185                  */
186                 smp_wmb();
187
188                 spin_lock(&root->fs_info->fs_roots_radix_lock);
189                 if (root->last_trans == trans->transid) {
190                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
191                         return 0;
192                 }
193                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
194                            (unsigned long)root->root_key.objectid,
195                            BTRFS_ROOT_TRANS_TAG);
196                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
197                 root->last_trans = trans->transid;
198
199                 /* this is pretty tricky.  We don't want to
200                  * take the relocation lock in btrfs_record_root_in_trans
201                  * unless we're really doing the first setup for this root in
202                  * this transaction.
203                  *
204                  * Normally we'd use root->last_trans as a flag to decide
205                  * if we want to take the expensive mutex.
206                  *
207                  * But, we have to set root->last_trans before we
208                  * init the relocation root, otherwise, we trip over warnings
209                  * in ctree.c.  The solution used here is to flag ourselves
210                  * with root->in_trans_setup.  When this is 1, we're still
211                  * fixing up the reloc trees and everyone must wait.
212                  *
213                  * When this is zero, they can trust root->last_trans and fly
214                  * through btrfs_record_root_in_trans without having to take the
215                  * lock.  smp_wmb() makes sure that all the writes above are
216                  * done before we pop in the zero below
217                  */
218                 btrfs_init_reloc_root(trans, root);
219                 smp_wmb();
220                 root->in_trans_setup = 0;
221         }
222         return 0;
223 }
224
225
226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
227                                struct btrfs_root *root)
228 {
229         if (!root->ref_cows)
230                 return 0;
231
232         /*
233          * see record_root_in_trans for comments about in_trans_setup usage
234          * and barriers
235          */
236         smp_rmb();
237         if (root->last_trans == trans->transid &&
238             !root->in_trans_setup)
239                 return 0;
240
241         mutex_lock(&root->fs_info->reloc_mutex);
242         record_root_in_trans(trans, root);
243         mutex_unlock(&root->fs_info->reloc_mutex);
244
245         return 0;
246 }
247
248 /* wait for commit against the current transaction to become unblocked
249  * when this is done, it is safe to start a new transaction, but the current
250  * transaction might not be fully on disk.
251  */
252 static void wait_current_trans(struct btrfs_root *root)
253 {
254         struct btrfs_transaction *cur_trans;
255
256         spin_lock(&root->fs_info->trans_lock);
257         cur_trans = root->fs_info->running_transaction;
258         if (cur_trans && cur_trans->blocked) {
259                 atomic_inc(&cur_trans->use_count);
260                 spin_unlock(&root->fs_info->trans_lock);
261
262                 wait_event(root->fs_info->transaction_wait,
263                            !cur_trans->blocked);
264                 put_transaction(cur_trans);
265         } else {
266                 spin_unlock(&root->fs_info->trans_lock);
267         }
268 }
269
270 enum btrfs_trans_type {
271         TRANS_START,
272         TRANS_JOIN,
273         TRANS_USERSPACE,
274         TRANS_JOIN_NOLOCK,
275 };
276
277 static int may_wait_transaction(struct btrfs_root *root, int type)
278 {
279         if (root->fs_info->log_root_recovering)
280                 return 0;
281
282         if (type == TRANS_USERSPACE)
283                 return 1;
284
285         if (type == TRANS_START &&
286             !atomic_read(&root->fs_info->open_ioctl_trans))
287                 return 1;
288
289         return 0;
290 }
291
292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
293                                                     u64 num_items, int type)
294 {
295         struct btrfs_trans_handle *h;
296         struct btrfs_transaction *cur_trans;
297         u64 num_bytes = 0;
298         int ret;
299         u64 qgroup_reserved = 0;
300
301         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
302                 return ERR_PTR(-EROFS);
303
304         if (current->journal_info) {
305                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
306                 h = current->journal_info;
307                 h->use_count++;
308                 h->orig_rsv = h->block_rsv;
309                 h->block_rsv = NULL;
310                 goto got_it;
311         }
312
313         /*
314          * Do the reservation before we join the transaction so we can do all
315          * the appropriate flushing if need be.
316          */
317         if (num_items > 0 && root != root->fs_info->chunk_root) {
318                 if (root->fs_info->quota_enabled &&
319                     is_fstree(root->root_key.objectid)) {
320                         qgroup_reserved = num_items * root->leafsize;
321                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
322                         if (ret)
323                                 return ERR_PTR(ret);
324                 }
325
326                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
327                 ret = btrfs_block_rsv_add(root,
328                                           &root->fs_info->trans_block_rsv,
329                                           num_bytes);
330                 if (ret)
331                         return ERR_PTR(ret);
332         }
333 again:
334         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
335         if (!h)
336                 return ERR_PTR(-ENOMEM);
337
338         sb_start_intwrite(root->fs_info->sb);
339
340         if (may_wait_transaction(root, type))
341                 wait_current_trans(root);
342
343         do {
344                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
345                 if (ret == -EBUSY)
346                         wait_current_trans(root);
347         } while (ret == -EBUSY);
348
349         if (ret < 0) {
350                 sb_end_intwrite(root->fs_info->sb);
351                 kmem_cache_free(btrfs_trans_handle_cachep, h);
352                 return ERR_PTR(ret);
353         }
354
355         cur_trans = root->fs_info->running_transaction;
356
357         h->transid = cur_trans->transid;
358         h->transaction = cur_trans;
359         h->blocks_used = 0;
360         h->bytes_reserved = 0;
361         h->root = root;
362         h->delayed_ref_updates = 0;
363         h->use_count = 1;
364         h->adding_csums = 0;
365         h->block_rsv = NULL;
366         h->orig_rsv = NULL;
367         h->aborted = 0;
368         h->qgroup_reserved = qgroup_reserved;
369         h->delayed_ref_elem.seq = 0;
370         INIT_LIST_HEAD(&h->qgroup_ref_list);
371
372         smp_mb();
373         if (cur_trans->blocked && may_wait_transaction(root, type)) {
374                 btrfs_commit_transaction(h, root);
375                 goto again;
376         }
377
378         if (num_bytes) {
379                 trace_btrfs_space_reservation(root->fs_info, "transaction",
380                                               h->transid, num_bytes, 1);
381                 h->block_rsv = &root->fs_info->trans_block_rsv;
382                 h->bytes_reserved = num_bytes;
383         }
384
385 got_it:
386         btrfs_record_root_in_trans(h, root);
387
388         if (!current->journal_info && type != TRANS_USERSPACE)
389                 current->journal_info = h;
390         return h;
391 }
392
393 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
394                                                    int num_items)
395 {
396         return start_transaction(root, num_items, TRANS_START);
397 }
398 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
399 {
400         return start_transaction(root, 0, TRANS_JOIN);
401 }
402
403 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
404 {
405         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
406 }
407
408 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
409 {
410         return start_transaction(root, 0, TRANS_USERSPACE);
411 }
412
413 /* wait for a transaction commit to be fully complete */
414 static noinline void wait_for_commit(struct btrfs_root *root,
415                                     struct btrfs_transaction *commit)
416 {
417         wait_event(commit->commit_wait, commit->commit_done);
418 }
419
420 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
421 {
422         struct btrfs_transaction *cur_trans = NULL, *t;
423         int ret;
424
425         ret = 0;
426         if (transid) {
427                 if (transid <= root->fs_info->last_trans_committed)
428                         goto out;
429
430                 /* find specified transaction */
431                 spin_lock(&root->fs_info->trans_lock);
432                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
433                         if (t->transid == transid) {
434                                 cur_trans = t;
435                                 atomic_inc(&cur_trans->use_count);
436                                 break;
437                         }
438                         if (t->transid > transid)
439                                 break;
440                 }
441                 spin_unlock(&root->fs_info->trans_lock);
442                 ret = -EINVAL;
443                 if (!cur_trans)
444                         goto out;  /* bad transid */
445         } else {
446                 /* find newest transaction that is committing | committed */
447                 spin_lock(&root->fs_info->trans_lock);
448                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
449                                             list) {
450                         if (t->in_commit) {
451                                 if (t->commit_done)
452                                         break;
453                                 cur_trans = t;
454                                 atomic_inc(&cur_trans->use_count);
455                                 break;
456                         }
457                 }
458                 spin_unlock(&root->fs_info->trans_lock);
459                 if (!cur_trans)
460                         goto out;  /* nothing committing|committed */
461         }
462
463         wait_for_commit(root, cur_trans);
464
465         put_transaction(cur_trans);
466         ret = 0;
467 out:
468         return ret;
469 }
470
471 void btrfs_throttle(struct btrfs_root *root)
472 {
473         if (!atomic_read(&root->fs_info->open_ioctl_trans))
474                 wait_current_trans(root);
475 }
476
477 static int should_end_transaction(struct btrfs_trans_handle *trans,
478                                   struct btrfs_root *root)
479 {
480         int ret;
481
482         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
483         return ret ? 1 : 0;
484 }
485
486 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
487                                  struct btrfs_root *root)
488 {
489         struct btrfs_transaction *cur_trans = trans->transaction;
490         int updates;
491         int err;
492
493         smp_mb();
494         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
495                 return 1;
496
497         updates = trans->delayed_ref_updates;
498         trans->delayed_ref_updates = 0;
499         if (updates) {
500                 err = btrfs_run_delayed_refs(trans, root, updates);
501                 if (err) /* Error code will also eval true */
502                         return err;
503         }
504
505         return should_end_transaction(trans, root);
506 }
507
508 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
509                           struct btrfs_root *root, int throttle, int lock)
510 {
511         struct btrfs_transaction *cur_trans = trans->transaction;
512         struct btrfs_fs_info *info = root->fs_info;
513         int count = 0;
514         int err = 0;
515
516         if (--trans->use_count) {
517                 trans->block_rsv = trans->orig_rsv;
518                 return 0;
519         }
520
521         /*
522          * do the qgroup accounting as early as possible
523          */
524         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
525
526         btrfs_trans_release_metadata(trans, root);
527         trans->block_rsv = NULL;
528         /*
529          * the same root has to be passed to start_transaction and
530          * end_transaction. Subvolume quota depends on this.
531          */
532         WARN_ON(trans->root != root);
533
534         if (trans->qgroup_reserved) {
535                 btrfs_qgroup_free(root, trans->qgroup_reserved);
536                 trans->qgroup_reserved = 0;
537         }
538
539         while (count < 2) {
540                 unsigned long cur = trans->delayed_ref_updates;
541                 trans->delayed_ref_updates = 0;
542                 if (cur &&
543                     trans->transaction->delayed_refs.num_heads_ready > 64) {
544                         trans->delayed_ref_updates = 0;
545                         btrfs_run_delayed_refs(trans, root, cur);
546                 } else {
547                         break;
548                 }
549                 count++;
550         }
551         btrfs_trans_release_metadata(trans, root);
552         trans->block_rsv = NULL;
553
554         sb_end_intwrite(root->fs_info->sb);
555
556         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
557             should_end_transaction(trans, root)) {
558                 trans->transaction->blocked = 1;
559                 smp_wmb();
560         }
561
562         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
563                 if (throttle) {
564                         /*
565                          * We may race with somebody else here so end up having
566                          * to call end_transaction on ourselves again, so inc
567                          * our use_count.
568                          */
569                         trans->use_count++;
570                         return btrfs_commit_transaction(trans, root);
571                 } else {
572                         wake_up_process(info->transaction_kthread);
573                 }
574         }
575
576         WARN_ON(cur_trans != info->running_transaction);
577         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
578         atomic_dec(&cur_trans->num_writers);
579
580         smp_mb();
581         if (waitqueue_active(&cur_trans->writer_wait))
582                 wake_up(&cur_trans->writer_wait);
583         put_transaction(cur_trans);
584
585         if (current->journal_info == trans)
586                 current->journal_info = NULL;
587
588         if (throttle)
589                 btrfs_run_delayed_iputs(root);
590
591         if (trans->aborted ||
592             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
593                 err = -EIO;
594         }
595         assert_qgroups_uptodate(trans);
596
597         memset(trans, 0, sizeof(*trans));
598         kmem_cache_free(btrfs_trans_handle_cachep, trans);
599         return err;
600 }
601
602 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
603                           struct btrfs_root *root)
604 {
605         int ret;
606
607         ret = __btrfs_end_transaction(trans, root, 0, 1);
608         if (ret)
609                 return ret;
610         return 0;
611 }
612
613 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
614                                    struct btrfs_root *root)
615 {
616         int ret;
617
618         ret = __btrfs_end_transaction(trans, root, 1, 1);
619         if (ret)
620                 return ret;
621         return 0;
622 }
623
624 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
625                                  struct btrfs_root *root)
626 {
627         int ret;
628
629         ret = __btrfs_end_transaction(trans, root, 0, 0);
630         if (ret)
631                 return ret;
632         return 0;
633 }
634
635 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
636                                 struct btrfs_root *root)
637 {
638         return __btrfs_end_transaction(trans, root, 1, 1);
639 }
640
641 /*
642  * when btree blocks are allocated, they have some corresponding bits set for
643  * them in one of two extent_io trees.  This is used to make sure all of
644  * those extents are sent to disk but does not wait on them
645  */
646 int btrfs_write_marked_extents(struct btrfs_root *root,
647                                struct extent_io_tree *dirty_pages, int mark)
648 {
649         int err = 0;
650         int werr = 0;
651         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
652         u64 start = 0;
653         u64 end;
654
655         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
656                                       mark)) {
657                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
658                                    GFP_NOFS);
659                 err = filemap_fdatawrite_range(mapping, start, end);
660                 if (err)
661                         werr = err;
662                 cond_resched();
663                 start = end + 1;
664         }
665         if (err)
666                 werr = err;
667         return werr;
668 }
669
670 /*
671  * when btree blocks are allocated, they have some corresponding bits set for
672  * them in one of two extent_io trees.  This is used to make sure all of
673  * those extents are on disk for transaction or log commit.  We wait
674  * on all the pages and clear them from the dirty pages state tree
675  */
676 int btrfs_wait_marked_extents(struct btrfs_root *root,
677                               struct extent_io_tree *dirty_pages, int mark)
678 {
679         int err = 0;
680         int werr = 0;
681         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
682         u64 start = 0;
683         u64 end;
684
685         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
686                                       EXTENT_NEED_WAIT)) {
687                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
688                 err = filemap_fdatawait_range(mapping, start, end);
689                 if (err)
690                         werr = err;
691                 cond_resched();
692                 start = end + 1;
693         }
694         if (err)
695                 werr = err;
696         return werr;
697 }
698
699 /*
700  * when btree blocks are allocated, they have some corresponding bits set for
701  * them in one of two extent_io trees.  This is used to make sure all of
702  * those extents are on disk for transaction or log commit
703  */
704 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
705                                 struct extent_io_tree *dirty_pages, int mark)
706 {
707         int ret;
708         int ret2;
709
710         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
711         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
712
713         if (ret)
714                 return ret;
715         if (ret2)
716                 return ret2;
717         return 0;
718 }
719
720 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
721                                      struct btrfs_root *root)
722 {
723         if (!trans || !trans->transaction) {
724                 struct inode *btree_inode;
725                 btree_inode = root->fs_info->btree_inode;
726                 return filemap_write_and_wait(btree_inode->i_mapping);
727         }
728         return btrfs_write_and_wait_marked_extents(root,
729                                            &trans->transaction->dirty_pages,
730                                            EXTENT_DIRTY);
731 }
732
733 /*
734  * this is used to update the root pointer in the tree of tree roots.
735  *
736  * But, in the case of the extent allocation tree, updating the root
737  * pointer may allocate blocks which may change the root of the extent
738  * allocation tree.
739  *
740  * So, this loops and repeats and makes sure the cowonly root didn't
741  * change while the root pointer was being updated in the metadata.
742  */
743 static int update_cowonly_root(struct btrfs_trans_handle *trans,
744                                struct btrfs_root *root)
745 {
746         int ret;
747         u64 old_root_bytenr;
748         u64 old_root_used;
749         struct btrfs_root *tree_root = root->fs_info->tree_root;
750
751         old_root_used = btrfs_root_used(&root->root_item);
752         btrfs_write_dirty_block_groups(trans, root);
753
754         while (1) {
755                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
756                 if (old_root_bytenr == root->node->start &&
757                     old_root_used == btrfs_root_used(&root->root_item))
758                         break;
759
760                 btrfs_set_root_node(&root->root_item, root->node);
761                 ret = btrfs_update_root(trans, tree_root,
762                                         &root->root_key,
763                                         &root->root_item);
764                 if (ret)
765                         return ret;
766
767                 old_root_used = btrfs_root_used(&root->root_item);
768                 ret = btrfs_write_dirty_block_groups(trans, root);
769                 if (ret)
770                         return ret;
771         }
772
773         if (root != root->fs_info->extent_root)
774                 switch_commit_root(root);
775
776         return 0;
777 }
778
779 /*
780  * update all the cowonly tree roots on disk
781  *
782  * The error handling in this function may not be obvious. Any of the
783  * failures will cause the file system to go offline. We still need
784  * to clean up the delayed refs.
785  */
786 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
787                                          struct btrfs_root *root)
788 {
789         struct btrfs_fs_info *fs_info = root->fs_info;
790         struct list_head *next;
791         struct extent_buffer *eb;
792         int ret;
793
794         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
795         if (ret)
796                 return ret;
797
798         eb = btrfs_lock_root_node(fs_info->tree_root);
799         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
800                               0, &eb);
801         btrfs_tree_unlock(eb);
802         free_extent_buffer(eb);
803
804         if (ret)
805                 return ret;
806
807         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
808         if (ret)
809                 return ret;
810
811         ret = btrfs_run_dev_stats(trans, root->fs_info);
812         BUG_ON(ret);
813
814         ret = btrfs_run_qgroups(trans, root->fs_info);
815         BUG_ON(ret);
816
817         /* run_qgroups might have added some more refs */
818         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
819         BUG_ON(ret);
820
821         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
822                 next = fs_info->dirty_cowonly_roots.next;
823                 list_del_init(next);
824                 root = list_entry(next, struct btrfs_root, dirty_list);
825
826                 ret = update_cowonly_root(trans, root);
827                 if (ret)
828                         return ret;
829         }
830
831         down_write(&fs_info->extent_commit_sem);
832         switch_commit_root(fs_info->extent_root);
833         up_write(&fs_info->extent_commit_sem);
834
835         return 0;
836 }
837
838 /*
839  * dead roots are old snapshots that need to be deleted.  This allocates
840  * a dirty root struct and adds it into the list of dead roots that need to
841  * be deleted
842  */
843 int btrfs_add_dead_root(struct btrfs_root *root)
844 {
845         spin_lock(&root->fs_info->trans_lock);
846         list_add(&root->root_list, &root->fs_info->dead_roots);
847         spin_unlock(&root->fs_info->trans_lock);
848         return 0;
849 }
850
851 /*
852  * update all the cowonly tree roots on disk
853  */
854 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
855                                     struct btrfs_root *root)
856 {
857         struct btrfs_root *gang[8];
858         struct btrfs_fs_info *fs_info = root->fs_info;
859         int i;
860         int ret;
861         int err = 0;
862
863         spin_lock(&fs_info->fs_roots_radix_lock);
864         while (1) {
865                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
866                                                  (void **)gang, 0,
867                                                  ARRAY_SIZE(gang),
868                                                  BTRFS_ROOT_TRANS_TAG);
869                 if (ret == 0)
870                         break;
871                 for (i = 0; i < ret; i++) {
872                         root = gang[i];
873                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
874                                         (unsigned long)root->root_key.objectid,
875                                         BTRFS_ROOT_TRANS_TAG);
876                         spin_unlock(&fs_info->fs_roots_radix_lock);
877
878                         btrfs_free_log(trans, root);
879                         btrfs_update_reloc_root(trans, root);
880                         btrfs_orphan_commit_root(trans, root);
881
882                         btrfs_save_ino_cache(root, trans);
883
884                         /* see comments in should_cow_block() */
885                         root->force_cow = 0;
886                         smp_wmb();
887
888                         if (root->commit_root != root->node) {
889                                 mutex_lock(&root->fs_commit_mutex);
890                                 switch_commit_root(root);
891                                 btrfs_unpin_free_ino(root);
892                                 mutex_unlock(&root->fs_commit_mutex);
893
894                                 btrfs_set_root_node(&root->root_item,
895                                                     root->node);
896                         }
897
898                         err = btrfs_update_root(trans, fs_info->tree_root,
899                                                 &root->root_key,
900                                                 &root->root_item);
901                         spin_lock(&fs_info->fs_roots_radix_lock);
902                         if (err)
903                                 break;
904                 }
905         }
906         spin_unlock(&fs_info->fs_roots_radix_lock);
907         return err;
908 }
909
910 /*
911  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
912  * otherwise every leaf in the btree is read and defragged.
913  */
914 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
915 {
916         struct btrfs_fs_info *info = root->fs_info;
917         struct btrfs_trans_handle *trans;
918         int ret;
919         unsigned long nr;
920
921         if (xchg(&root->defrag_running, 1))
922                 return 0;
923
924         while (1) {
925                 trans = btrfs_start_transaction(root, 0);
926                 if (IS_ERR(trans))
927                         return PTR_ERR(trans);
928
929                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
930
931                 nr = trans->blocks_used;
932                 btrfs_end_transaction(trans, root);
933                 btrfs_btree_balance_dirty(info->tree_root, nr);
934                 cond_resched();
935
936                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
937                         break;
938         }
939         root->defrag_running = 0;
940         return ret;
941 }
942
943 /*
944  * new snapshots need to be created at a very specific time in the
945  * transaction commit.  This does the actual creation
946  */
947 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
948                                    struct btrfs_fs_info *fs_info,
949                                    struct btrfs_pending_snapshot *pending)
950 {
951         struct btrfs_key key;
952         struct btrfs_root_item *new_root_item;
953         struct btrfs_root *tree_root = fs_info->tree_root;
954         struct btrfs_root *root = pending->root;
955         struct btrfs_root *parent_root;
956         struct btrfs_block_rsv *rsv;
957         struct inode *parent_inode;
958         struct dentry *parent;
959         struct dentry *dentry;
960         struct extent_buffer *tmp;
961         struct extent_buffer *old;
962         struct timespec cur_time = CURRENT_TIME;
963         int ret;
964         u64 to_reserve = 0;
965         u64 index = 0;
966         u64 objectid;
967         u64 root_flags;
968         uuid_le new_uuid;
969
970         rsv = trans->block_rsv;
971
972         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
973         if (!new_root_item) {
974                 ret = pending->error = -ENOMEM;
975                 goto fail;
976         }
977
978         ret = btrfs_find_free_objectid(tree_root, &objectid);
979         if (ret) {
980                 pending->error = ret;
981                 goto fail;
982         }
983
984         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
985
986         if (to_reserve > 0) {
987                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
988                                                   to_reserve);
989                 if (ret) {
990                         pending->error = ret;
991                         goto fail;
992                 }
993         }
994
995         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
996                                    objectid, pending->inherit);
997         kfree(pending->inherit);
998         if (ret) {
999                 pending->error = ret;
1000                 goto fail;
1001         }
1002
1003         key.objectid = objectid;
1004         key.offset = (u64)-1;
1005         key.type = BTRFS_ROOT_ITEM_KEY;
1006
1007         trans->block_rsv = &pending->block_rsv;
1008
1009         dentry = pending->dentry;
1010         parent = dget_parent(dentry);
1011         parent_inode = parent->d_inode;
1012         parent_root = BTRFS_I(parent_inode)->root;
1013         record_root_in_trans(trans, parent_root);
1014
1015         /*
1016          * insert the directory item
1017          */
1018         ret = btrfs_set_inode_index(parent_inode, &index);
1019         BUG_ON(ret); /* -ENOMEM */
1020         ret = btrfs_insert_dir_item(trans, parent_root,
1021                                 dentry->d_name.name, dentry->d_name.len,
1022                                 parent_inode, &key,
1023                                 BTRFS_FT_DIR, index);
1024         if (ret == -EEXIST) {
1025                 pending->error = -EEXIST;
1026                 dput(parent);
1027                 goto fail;
1028         } else if (ret) {
1029                 goto abort_trans_dput;
1030         }
1031
1032         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1033                                          dentry->d_name.len * 2);
1034         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1035         ret = btrfs_update_inode(trans, parent_root, parent_inode);
1036         if (ret)
1037                 goto abort_trans_dput;
1038
1039         /*
1040          * pull in the delayed directory update
1041          * and the delayed inode item
1042          * otherwise we corrupt the FS during
1043          * snapshot
1044          */
1045         ret = btrfs_run_delayed_items(trans, root);
1046         if (ret) { /* Transaction aborted */
1047                 dput(parent);
1048                 goto fail;
1049         }
1050
1051         record_root_in_trans(trans, root);
1052         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1053         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1054         btrfs_check_and_init_root_item(new_root_item);
1055
1056         root_flags = btrfs_root_flags(new_root_item);
1057         if (pending->readonly)
1058                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1059         else
1060                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1061         btrfs_set_root_flags(new_root_item, root_flags);
1062
1063         btrfs_set_root_generation_v2(new_root_item,
1064                         trans->transid);
1065         uuid_le_gen(&new_uuid);
1066         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1067         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1068                         BTRFS_UUID_SIZE);
1069         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1070         new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1071         btrfs_set_root_otransid(new_root_item, trans->transid);
1072         memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1073         memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1074         btrfs_set_root_stransid(new_root_item, 0);
1075         btrfs_set_root_rtransid(new_root_item, 0);
1076
1077         old = btrfs_lock_root_node(root);
1078         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1079         if (ret) {
1080                 btrfs_tree_unlock(old);
1081                 free_extent_buffer(old);
1082                 goto abort_trans_dput;
1083         }
1084
1085         btrfs_set_lock_blocking(old);
1086
1087         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1088         /* clean up in any case */
1089         btrfs_tree_unlock(old);
1090         free_extent_buffer(old);
1091         if (ret)
1092                 goto abort_trans_dput;
1093
1094         /* see comments in should_cow_block() */
1095         root->force_cow = 1;
1096         smp_wmb();
1097
1098         btrfs_set_root_node(new_root_item, tmp);
1099         /* record when the snapshot was created in key.offset */
1100         key.offset = trans->transid;
1101         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1102         btrfs_tree_unlock(tmp);
1103         free_extent_buffer(tmp);
1104         if (ret)
1105                 goto abort_trans_dput;
1106
1107         /*
1108          * insert root back/forward references
1109          */
1110         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1111                                  parent_root->root_key.objectid,
1112                                  btrfs_ino(parent_inode), index,
1113                                  dentry->d_name.name, dentry->d_name.len);
1114         dput(parent);
1115         if (ret)
1116                 goto fail;
1117
1118         key.offset = (u64)-1;
1119         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1120         if (IS_ERR(pending->snap)) {
1121                 ret = PTR_ERR(pending->snap);
1122                 goto abort_trans;
1123         }
1124
1125         ret = btrfs_reloc_post_snapshot(trans, pending);
1126         if (ret)
1127                 goto abort_trans;
1128         ret = 0;
1129 fail:
1130         kfree(new_root_item);
1131         trans->block_rsv = rsv;
1132         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1133         return ret;
1134
1135 abort_trans_dput:
1136         dput(parent);
1137 abort_trans:
1138         btrfs_abort_transaction(trans, root, ret);
1139         goto fail;
1140 }
1141
1142 /*
1143  * create all the snapshots we've scheduled for creation
1144  */
1145 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1146                                              struct btrfs_fs_info *fs_info)
1147 {
1148         struct btrfs_pending_snapshot *pending;
1149         struct list_head *head = &trans->transaction->pending_snapshots;
1150
1151         list_for_each_entry(pending, head, list)
1152                 create_pending_snapshot(trans, fs_info, pending);
1153         return 0;
1154 }
1155
1156 static void update_super_roots(struct btrfs_root *root)
1157 {
1158         struct btrfs_root_item *root_item;
1159         struct btrfs_super_block *super;
1160
1161         super = root->fs_info->super_copy;
1162
1163         root_item = &root->fs_info->chunk_root->root_item;
1164         super->chunk_root = root_item->bytenr;
1165         super->chunk_root_generation = root_item->generation;
1166         super->chunk_root_level = root_item->level;
1167
1168         root_item = &root->fs_info->tree_root->root_item;
1169         super->root = root_item->bytenr;
1170         super->generation = root_item->generation;
1171         super->root_level = root_item->level;
1172         if (btrfs_test_opt(root, SPACE_CACHE))
1173                 super->cache_generation = root_item->generation;
1174 }
1175
1176 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1177 {
1178         int ret = 0;
1179         spin_lock(&info->trans_lock);
1180         if (info->running_transaction)
1181                 ret = info->running_transaction->in_commit;
1182         spin_unlock(&info->trans_lock);
1183         return ret;
1184 }
1185
1186 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1187 {
1188         int ret = 0;
1189         spin_lock(&info->trans_lock);
1190         if (info->running_transaction)
1191                 ret = info->running_transaction->blocked;
1192         spin_unlock(&info->trans_lock);
1193         return ret;
1194 }
1195
1196 /*
1197  * wait for the current transaction commit to start and block subsequent
1198  * transaction joins
1199  */
1200 static void wait_current_trans_commit_start(struct btrfs_root *root,
1201                                             struct btrfs_transaction *trans)
1202 {
1203         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1204 }
1205
1206 /*
1207  * wait for the current transaction to start and then become unblocked.
1208  * caller holds ref.
1209  */
1210 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1211                                          struct btrfs_transaction *trans)
1212 {
1213         wait_event(root->fs_info->transaction_wait,
1214                    trans->commit_done || (trans->in_commit && !trans->blocked));
1215 }
1216
1217 /*
1218  * commit transactions asynchronously. once btrfs_commit_transaction_async
1219  * returns, any subsequent transaction will not be allowed to join.
1220  */
1221 struct btrfs_async_commit {
1222         struct btrfs_trans_handle *newtrans;
1223         struct btrfs_root *root;
1224         struct delayed_work work;
1225 };
1226
1227 static void do_async_commit(struct work_struct *work)
1228 {
1229         struct btrfs_async_commit *ac =
1230                 container_of(work, struct btrfs_async_commit, work.work);
1231
1232         btrfs_commit_transaction(ac->newtrans, ac->root);
1233         kfree(ac);
1234 }
1235
1236 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1237                                    struct btrfs_root *root,
1238                                    int wait_for_unblock)
1239 {
1240         struct btrfs_async_commit *ac;
1241         struct btrfs_transaction *cur_trans;
1242
1243         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1244         if (!ac)
1245                 return -ENOMEM;
1246
1247         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1248         ac->root = root;
1249         ac->newtrans = btrfs_join_transaction(root);
1250         if (IS_ERR(ac->newtrans)) {
1251                 int err = PTR_ERR(ac->newtrans);
1252                 kfree(ac);
1253                 return err;
1254         }
1255
1256         /* take transaction reference */
1257         cur_trans = trans->transaction;
1258         atomic_inc(&cur_trans->use_count);
1259
1260         btrfs_end_transaction(trans, root);
1261         schedule_delayed_work(&ac->work, 0);
1262
1263         /* wait for transaction to start and unblock */
1264         if (wait_for_unblock)
1265                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1266         else
1267                 wait_current_trans_commit_start(root, cur_trans);
1268
1269         if (current->journal_info == trans)
1270                 current->journal_info = NULL;
1271
1272         put_transaction(cur_trans);
1273         return 0;
1274 }
1275
1276
1277 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1278                                 struct btrfs_root *root, int err)
1279 {
1280         struct btrfs_transaction *cur_trans = trans->transaction;
1281
1282         WARN_ON(trans->use_count > 1);
1283
1284         btrfs_abort_transaction(trans, root, err);
1285
1286         spin_lock(&root->fs_info->trans_lock);
1287         list_del_init(&cur_trans->list);
1288         if (cur_trans == root->fs_info->running_transaction) {
1289                 root->fs_info->running_transaction = NULL;
1290                 root->fs_info->trans_no_join = 0;
1291         }
1292         spin_unlock(&root->fs_info->trans_lock);
1293
1294         btrfs_cleanup_one_transaction(trans->transaction, root);
1295
1296         put_transaction(cur_trans);
1297         put_transaction(cur_trans);
1298
1299         trace_btrfs_transaction_commit(root);
1300
1301         btrfs_scrub_continue(root);
1302
1303         if (current->journal_info == trans)
1304                 current->journal_info = NULL;
1305
1306         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1307 }
1308
1309 /*
1310  * btrfs_transaction state sequence:
1311  *    in_commit = 0, blocked = 0  (initial)
1312  *    in_commit = 1, blocked = 1
1313  *    blocked = 0
1314  *    commit_done = 1
1315  */
1316 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1317                              struct btrfs_root *root)
1318 {
1319         unsigned long joined = 0;
1320         struct btrfs_transaction *cur_trans = trans->transaction;
1321         struct btrfs_transaction *prev_trans = NULL;
1322         DEFINE_WAIT(wait);
1323         int ret = -EIO;
1324         int should_grow = 0;
1325         unsigned long now = get_seconds();
1326         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1327
1328         btrfs_run_ordered_operations(root, 0);
1329
1330         if (cur_trans->aborted)
1331                 goto cleanup_transaction;
1332
1333         /* make a pass through all the delayed refs we have so far
1334          * any runnings procs may add more while we are here
1335          */
1336         ret = btrfs_run_delayed_refs(trans, root, 0);
1337         if (ret)
1338                 goto cleanup_transaction;
1339
1340         btrfs_trans_release_metadata(trans, root);
1341         trans->block_rsv = NULL;
1342
1343         cur_trans = trans->transaction;
1344
1345         /*
1346          * set the flushing flag so procs in this transaction have to
1347          * start sending their work down.
1348          */
1349         cur_trans->delayed_refs.flushing = 1;
1350
1351         ret = btrfs_run_delayed_refs(trans, root, 0);
1352         if (ret)
1353                 goto cleanup_transaction;
1354
1355         spin_lock(&cur_trans->commit_lock);
1356         if (cur_trans->in_commit) {
1357                 spin_unlock(&cur_trans->commit_lock);
1358                 atomic_inc(&cur_trans->use_count);
1359                 ret = btrfs_end_transaction(trans, root);
1360
1361                 wait_for_commit(root, cur_trans);
1362
1363                 put_transaction(cur_trans);
1364
1365                 return ret;
1366         }
1367
1368         trans->transaction->in_commit = 1;
1369         trans->transaction->blocked = 1;
1370         spin_unlock(&cur_trans->commit_lock);
1371         wake_up(&root->fs_info->transaction_blocked_wait);
1372
1373         spin_lock(&root->fs_info->trans_lock);
1374         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1375                 prev_trans = list_entry(cur_trans->list.prev,
1376                                         struct btrfs_transaction, list);
1377                 if (!prev_trans->commit_done) {
1378                         atomic_inc(&prev_trans->use_count);
1379                         spin_unlock(&root->fs_info->trans_lock);
1380
1381                         wait_for_commit(root, prev_trans);
1382
1383                         put_transaction(prev_trans);
1384                 } else {
1385                         spin_unlock(&root->fs_info->trans_lock);
1386                 }
1387         } else {
1388                 spin_unlock(&root->fs_info->trans_lock);
1389         }
1390
1391         if (!btrfs_test_opt(root, SSD) &&
1392             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1393                 should_grow = 1;
1394
1395         do {
1396                 int snap_pending = 0;
1397
1398                 joined = cur_trans->num_joined;
1399                 if (!list_empty(&trans->transaction->pending_snapshots))
1400                         snap_pending = 1;
1401
1402                 WARN_ON(cur_trans != trans->transaction);
1403
1404                 if (flush_on_commit || snap_pending) {
1405                         btrfs_start_delalloc_inodes(root, 1);
1406                         btrfs_wait_ordered_extents(root, 0, 1);
1407                 }
1408
1409                 ret = btrfs_run_delayed_items(trans, root);
1410                 if (ret)
1411                         goto cleanup_transaction;
1412
1413                 /*
1414                  * running the delayed items may have added new refs. account
1415                  * them now so that they hinder processing of more delayed refs
1416                  * as little as possible.
1417                  */
1418                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1419
1420                 /*
1421                  * rename don't use btrfs_join_transaction, so, once we
1422                  * set the transaction to blocked above, we aren't going
1423                  * to get any new ordered operations.  We can safely run
1424                  * it here and no for sure that nothing new will be added
1425                  * to the list
1426                  */
1427                 btrfs_run_ordered_operations(root, 1);
1428
1429                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1430                                 TASK_UNINTERRUPTIBLE);
1431
1432                 if (atomic_read(&cur_trans->num_writers) > 1)
1433                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1434                 else if (should_grow)
1435                         schedule_timeout(1);
1436
1437                 finish_wait(&cur_trans->writer_wait, &wait);
1438         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1439                  (should_grow && cur_trans->num_joined != joined));
1440
1441         /*
1442          * Ok now we need to make sure to block out any other joins while we
1443          * commit the transaction.  We could have started a join before setting
1444          * no_join so make sure to wait for num_writers to == 1 again.
1445          */
1446         spin_lock(&root->fs_info->trans_lock);
1447         root->fs_info->trans_no_join = 1;
1448         spin_unlock(&root->fs_info->trans_lock);
1449         wait_event(cur_trans->writer_wait,
1450                    atomic_read(&cur_trans->num_writers) == 1);
1451
1452         /*
1453          * the reloc mutex makes sure that we stop
1454          * the balancing code from coming in and moving
1455          * extents around in the middle of the commit
1456          */
1457         mutex_lock(&root->fs_info->reloc_mutex);
1458
1459         ret = btrfs_run_delayed_items(trans, root);
1460         if (ret) {
1461                 mutex_unlock(&root->fs_info->reloc_mutex);
1462                 goto cleanup_transaction;
1463         }
1464
1465         ret = create_pending_snapshots(trans, root->fs_info);
1466         if (ret) {
1467                 mutex_unlock(&root->fs_info->reloc_mutex);
1468                 goto cleanup_transaction;
1469         }
1470
1471         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1472         if (ret) {
1473                 mutex_unlock(&root->fs_info->reloc_mutex);
1474                 goto cleanup_transaction;
1475         }
1476
1477         /*
1478          * make sure none of the code above managed to slip in a
1479          * delayed item
1480          */
1481         btrfs_assert_delayed_root_empty(root);
1482
1483         WARN_ON(cur_trans != trans->transaction);
1484
1485         btrfs_scrub_pause(root);
1486         /* btrfs_commit_tree_roots is responsible for getting the
1487          * various roots consistent with each other.  Every pointer
1488          * in the tree of tree roots has to point to the most up to date
1489          * root for every subvolume and other tree.  So, we have to keep
1490          * the tree logging code from jumping in and changing any
1491          * of the trees.
1492          *
1493          * At this point in the commit, there can't be any tree-log
1494          * writers, but a little lower down we drop the trans mutex
1495          * and let new people in.  By holding the tree_log_mutex
1496          * from now until after the super is written, we avoid races
1497          * with the tree-log code.
1498          */
1499         mutex_lock(&root->fs_info->tree_log_mutex);
1500
1501         ret = commit_fs_roots(trans, root);
1502         if (ret) {
1503                 mutex_unlock(&root->fs_info->tree_log_mutex);
1504                 mutex_unlock(&root->fs_info->reloc_mutex);
1505                 goto cleanup_transaction;
1506         }
1507
1508         /* commit_fs_roots gets rid of all the tree log roots, it is now
1509          * safe to free the root of tree log roots
1510          */
1511         btrfs_free_log_root_tree(trans, root->fs_info);
1512
1513         ret = commit_cowonly_roots(trans, root);
1514         if (ret) {
1515                 mutex_unlock(&root->fs_info->tree_log_mutex);
1516                 mutex_unlock(&root->fs_info->reloc_mutex);
1517                 goto cleanup_transaction;
1518         }
1519
1520         btrfs_prepare_extent_commit(trans, root);
1521
1522         cur_trans = root->fs_info->running_transaction;
1523
1524         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1525                             root->fs_info->tree_root->node);
1526         switch_commit_root(root->fs_info->tree_root);
1527
1528         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1529                             root->fs_info->chunk_root->node);
1530         switch_commit_root(root->fs_info->chunk_root);
1531
1532         assert_qgroups_uptodate(trans);
1533         update_super_roots(root);
1534
1535         if (!root->fs_info->log_root_recovering) {
1536                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1537                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1538         }
1539
1540         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1541                sizeof(*root->fs_info->super_copy));
1542
1543         trans->transaction->blocked = 0;
1544         spin_lock(&root->fs_info->trans_lock);
1545         root->fs_info->running_transaction = NULL;
1546         root->fs_info->trans_no_join = 0;
1547         spin_unlock(&root->fs_info->trans_lock);
1548         mutex_unlock(&root->fs_info->reloc_mutex);
1549
1550         wake_up(&root->fs_info->transaction_wait);
1551
1552         ret = btrfs_write_and_wait_transaction(trans, root);
1553         if (ret) {
1554                 btrfs_error(root->fs_info, ret,
1555                             "Error while writing out transaction.");
1556                 mutex_unlock(&root->fs_info->tree_log_mutex);
1557                 goto cleanup_transaction;
1558         }
1559
1560         ret = write_ctree_super(trans, root, 0);
1561         if (ret) {
1562                 mutex_unlock(&root->fs_info->tree_log_mutex);
1563                 goto cleanup_transaction;
1564         }
1565
1566         /*
1567          * the super is written, we can safely allow the tree-loggers
1568          * to go about their business
1569          */
1570         mutex_unlock(&root->fs_info->tree_log_mutex);
1571
1572         btrfs_finish_extent_commit(trans, root);
1573
1574         cur_trans->commit_done = 1;
1575
1576         root->fs_info->last_trans_committed = cur_trans->transid;
1577
1578         wake_up(&cur_trans->commit_wait);
1579
1580         spin_lock(&root->fs_info->trans_lock);
1581         list_del_init(&cur_trans->list);
1582         spin_unlock(&root->fs_info->trans_lock);
1583
1584         put_transaction(cur_trans);
1585         put_transaction(cur_trans);
1586
1587         sb_end_intwrite(root->fs_info->sb);
1588
1589         trace_btrfs_transaction_commit(root);
1590
1591         btrfs_scrub_continue(root);
1592
1593         if (current->journal_info == trans)
1594                 current->journal_info = NULL;
1595
1596         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1597
1598         if (current != root->fs_info->transaction_kthread)
1599                 btrfs_run_delayed_iputs(root);
1600
1601         return ret;
1602
1603 cleanup_transaction:
1604         btrfs_trans_release_metadata(trans, root);
1605         trans->block_rsv = NULL;
1606         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1607 //      WARN_ON(1);
1608         if (current->journal_info == trans)
1609                 current->journal_info = NULL;
1610         cleanup_transaction(trans, root, ret);
1611
1612         return ret;
1613 }
1614
1615 /*
1616  * interface function to delete all the snapshots we have scheduled for deletion
1617  */
1618 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1619 {
1620         LIST_HEAD(list);
1621         struct btrfs_fs_info *fs_info = root->fs_info;
1622
1623         spin_lock(&fs_info->trans_lock);
1624         list_splice_init(&fs_info->dead_roots, &list);
1625         spin_unlock(&fs_info->trans_lock);
1626
1627         while (!list_empty(&list)) {
1628                 int ret;
1629
1630                 root = list_entry(list.next, struct btrfs_root, root_list);
1631                 list_del(&root->root_list);
1632
1633                 btrfs_kill_all_delayed_nodes(root);
1634
1635                 if (btrfs_header_backref_rev(root->node) <
1636                     BTRFS_MIXED_BACKREF_REV)
1637                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1638                 else
1639                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1640                 BUG_ON(ret < 0);
1641         }
1642         return 0;
1643 }