]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/transaction.c
Btrfs: introduce mount option no_space_cache
[karo-tx-linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 atomic_inc(&cur_trans->use_count);
220                 spin_unlock(&root->fs_info->trans_lock);
221
222                 wait_event(root->fs_info->transaction_wait,
223                            !cur_trans->blocked);
224                 put_transaction(cur_trans);
225         } else {
226                 spin_unlock(&root->fs_info->trans_lock);
227         }
228 }
229
230 enum btrfs_trans_type {
231         TRANS_START,
232         TRANS_JOIN,
233         TRANS_USERSPACE,
234         TRANS_JOIN_NOLOCK,
235 };
236
237 static int may_wait_transaction(struct btrfs_root *root, int type)
238 {
239         if (root->fs_info->log_root_recovering)
240                 return 0;
241
242         if (type == TRANS_USERSPACE)
243                 return 1;
244
245         if (type == TRANS_START &&
246             !atomic_read(&root->fs_info->open_ioctl_trans))
247                 return 1;
248
249         return 0;
250 }
251
252 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253                                                     u64 num_items, int type)
254 {
255         struct btrfs_trans_handle *h;
256         struct btrfs_transaction *cur_trans;
257         u64 num_bytes = 0;
258         int ret;
259
260         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261                 return ERR_PTR(-EROFS);
262
263         if (current->journal_info) {
264                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265                 h = current->journal_info;
266                 h->use_count++;
267                 h->orig_rsv = h->block_rsv;
268                 h->block_rsv = NULL;
269                 goto got_it;
270         }
271
272         /*
273          * Do the reservation before we join the transaction so we can do all
274          * the appropriate flushing if need be.
275          */
276         if (num_items > 0 && root != root->fs_info->chunk_root) {
277                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278                 ret = btrfs_block_rsv_add(root,
279                                           &root->fs_info->trans_block_rsv,
280                                           num_bytes);
281                 if (ret)
282                         return ERR_PTR(ret);
283         }
284 again:
285         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286         if (!h)
287                 return ERR_PTR(-ENOMEM);
288
289         if (may_wait_transaction(root, type))
290                 wait_current_trans(root);
291
292         do {
293                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294                 if (ret == -EBUSY)
295                         wait_current_trans(root);
296         } while (ret == -EBUSY);
297
298         if (ret < 0) {
299                 kmem_cache_free(btrfs_trans_handle_cachep, h);
300                 return ERR_PTR(ret);
301         }
302
303         cur_trans = root->fs_info->running_transaction;
304
305         h->transid = cur_trans->transid;
306         h->transaction = cur_trans;
307         h->blocks_used = 0;
308         h->bytes_reserved = 0;
309         h->delayed_ref_updates = 0;
310         h->use_count = 1;
311         h->block_rsv = NULL;
312         h->orig_rsv = NULL;
313
314         smp_mb();
315         if (cur_trans->blocked && may_wait_transaction(root, type)) {
316                 btrfs_commit_transaction(h, root);
317                 goto again;
318         }
319
320         if (num_bytes) {
321                 h->block_rsv = &root->fs_info->trans_block_rsv;
322                 h->bytes_reserved = num_bytes;
323         }
324
325 got_it:
326         btrfs_record_root_in_trans(h, root);
327
328         if (!current->journal_info && type != TRANS_USERSPACE)
329                 current->journal_info = h;
330         return h;
331 }
332
333 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334                                                    int num_items)
335 {
336         return start_transaction(root, num_items, TRANS_START);
337 }
338 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339 {
340         return start_transaction(root, 0, TRANS_JOIN);
341 }
342
343 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344 {
345         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346 }
347
348 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349 {
350         return start_transaction(root, 0, TRANS_USERSPACE);
351 }
352
353 /* wait for a transaction commit to be fully complete */
354 static noinline void wait_for_commit(struct btrfs_root *root,
355                                     struct btrfs_transaction *commit)
356 {
357         wait_event(commit->commit_wait, commit->commit_done);
358 }
359
360 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361 {
362         struct btrfs_transaction *cur_trans = NULL, *t;
363         int ret;
364
365         ret = 0;
366         if (transid) {
367                 if (transid <= root->fs_info->last_trans_committed)
368                         goto out;
369
370                 /* find specified transaction */
371                 spin_lock(&root->fs_info->trans_lock);
372                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373                         if (t->transid == transid) {
374                                 cur_trans = t;
375                                 atomic_inc(&cur_trans->use_count);
376                                 break;
377                         }
378                         if (t->transid > transid)
379                                 break;
380                 }
381                 spin_unlock(&root->fs_info->trans_lock);
382                 ret = -EINVAL;
383                 if (!cur_trans)
384                         goto out;  /* bad transid */
385         } else {
386                 /* find newest transaction that is committing | committed */
387                 spin_lock(&root->fs_info->trans_lock);
388                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389                                             list) {
390                         if (t->in_commit) {
391                                 if (t->commit_done)
392                                         break;
393                                 cur_trans = t;
394                                 atomic_inc(&cur_trans->use_count);
395                                 break;
396                         }
397                 }
398                 spin_unlock(&root->fs_info->trans_lock);
399                 if (!cur_trans)
400                         goto out;  /* nothing committing|committed */
401         }
402
403         wait_for_commit(root, cur_trans);
404
405         put_transaction(cur_trans);
406         ret = 0;
407 out:
408         return ret;
409 }
410
411 void btrfs_throttle(struct btrfs_root *root)
412 {
413         if (!atomic_read(&root->fs_info->open_ioctl_trans))
414                 wait_current_trans(root);
415 }
416
417 static int should_end_transaction(struct btrfs_trans_handle *trans,
418                                   struct btrfs_root *root)
419 {
420         int ret;
421         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 0,
422                                     5, 0);
423         return ret ? 1 : 0;
424 }
425
426 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427                                  struct btrfs_root *root)
428 {
429         struct btrfs_transaction *cur_trans = trans->transaction;
430         struct btrfs_block_rsv *rsv = trans->block_rsv;
431         int updates;
432
433         smp_mb();
434         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
435                 return 1;
436
437         /*
438          * We need to do this in case we're deleting csums so the global block
439          * rsv get's used instead of the csum block rsv.
440          */
441         trans->block_rsv = NULL;
442
443         updates = trans->delayed_ref_updates;
444         trans->delayed_ref_updates = 0;
445         if (updates)
446                 btrfs_run_delayed_refs(trans, root, updates);
447
448         trans->block_rsv = rsv;
449
450         return should_end_transaction(trans, root);
451 }
452
453 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
454                           struct btrfs_root *root, int throttle, int lock)
455 {
456         struct btrfs_transaction *cur_trans = trans->transaction;
457         struct btrfs_fs_info *info = root->fs_info;
458         int count = 0;
459
460         if (--trans->use_count) {
461                 trans->block_rsv = trans->orig_rsv;
462                 return 0;
463         }
464
465         trans->block_rsv = NULL;
466         while (count < 4) {
467                 unsigned long cur = trans->delayed_ref_updates;
468                 trans->delayed_ref_updates = 0;
469                 if (cur &&
470                     trans->transaction->delayed_refs.num_heads_ready > 64) {
471                         trans->delayed_ref_updates = 0;
472
473                         /*
474                          * do a full flush if the transaction is trying
475                          * to close
476                          */
477                         if (trans->transaction->delayed_refs.flushing)
478                                 cur = 0;
479                         btrfs_run_delayed_refs(trans, root, cur);
480                 } else {
481                         break;
482                 }
483                 count++;
484         }
485
486         btrfs_trans_release_metadata(trans, root);
487
488         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
489             should_end_transaction(trans, root)) {
490                 trans->transaction->blocked = 1;
491                 smp_wmb();
492         }
493
494         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
495                 if (throttle) {
496                         /*
497                          * We may race with somebody else here so end up having
498                          * to call end_transaction on ourselves again, so inc
499                          * our use_count.
500                          */
501                         trans->use_count++;
502                         return btrfs_commit_transaction(trans, root);
503                 } else {
504                         wake_up_process(info->transaction_kthread);
505                 }
506         }
507
508         WARN_ON(cur_trans != info->running_transaction);
509         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510         atomic_dec(&cur_trans->num_writers);
511
512         smp_mb();
513         if (waitqueue_active(&cur_trans->writer_wait))
514                 wake_up(&cur_trans->writer_wait);
515         put_transaction(cur_trans);
516
517         if (current->journal_info == trans)
518                 current->journal_info = NULL;
519         memset(trans, 0, sizeof(*trans));
520         kmem_cache_free(btrfs_trans_handle_cachep, trans);
521
522         if (throttle)
523                 btrfs_run_delayed_iputs(root);
524
525         return 0;
526 }
527
528 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529                           struct btrfs_root *root)
530 {
531         int ret;
532
533         ret = __btrfs_end_transaction(trans, root, 0, 1);
534         if (ret)
535                 return ret;
536         return 0;
537 }
538
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540                                    struct btrfs_root *root)
541 {
542         int ret;
543
544         ret = __btrfs_end_transaction(trans, root, 1, 1);
545         if (ret)
546                 return ret;
547         return 0;
548 }
549
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551                                  struct btrfs_root *root)
552 {
553         int ret;
554
555         ret = __btrfs_end_transaction(trans, root, 0, 0);
556         if (ret)
557                 return ret;
558         return 0;
559 }
560
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562                                 struct btrfs_root *root)
563 {
564         return __btrfs_end_transaction(trans, root, 1, 1);
565 }
566
567 /*
568  * when btree blocks are allocated, they have some corresponding bits set for
569  * them in one of two extent_io trees.  This is used to make sure all of
570  * those extents are sent to disk but does not wait on them
571  */
572 int btrfs_write_marked_extents(struct btrfs_root *root,
573                                struct extent_io_tree *dirty_pages, int mark)
574 {
575         int err = 0;
576         int werr = 0;
577         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
578         u64 start = 0;
579         u64 end;
580
581         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
582                                       mark)) {
583                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
584                                    GFP_NOFS);
585                 err = filemap_fdatawrite_range(mapping, start, end);
586                 if (err)
587                         werr = err;
588                 cond_resched();
589                 start = end + 1;
590         }
591         if (err)
592                 werr = err;
593         return werr;
594 }
595
596 /*
597  * when btree blocks are allocated, they have some corresponding bits set for
598  * them in one of two extent_io trees.  This is used to make sure all of
599  * those extents are on disk for transaction or log commit.  We wait
600  * on all the pages and clear them from the dirty pages state tree
601  */
602 int btrfs_wait_marked_extents(struct btrfs_root *root,
603                               struct extent_io_tree *dirty_pages, int mark)
604 {
605         int err = 0;
606         int werr = 0;
607         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
608         u64 start = 0;
609         u64 end;
610
611         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
612                                       EXTENT_NEED_WAIT)) {
613                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
614                 err = filemap_fdatawait_range(mapping, start, end);
615                 if (err)
616                         werr = err;
617                 cond_resched();
618                 start = end + 1;
619         }
620         if (err)
621                 werr = err;
622         return werr;
623 }
624
625 /*
626  * when btree blocks are allocated, they have some corresponding bits set for
627  * them in one of two extent_io trees.  This is used to make sure all of
628  * those extents are on disk for transaction or log commit
629  */
630 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
631                                 struct extent_io_tree *dirty_pages, int mark)
632 {
633         int ret;
634         int ret2;
635
636         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
637         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
638         return ret || ret2;
639 }
640
641 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
642                                      struct btrfs_root *root)
643 {
644         if (!trans || !trans->transaction) {
645                 struct inode *btree_inode;
646                 btree_inode = root->fs_info->btree_inode;
647                 return filemap_write_and_wait(btree_inode->i_mapping);
648         }
649         return btrfs_write_and_wait_marked_extents(root,
650                                            &trans->transaction->dirty_pages,
651                                            EXTENT_DIRTY);
652 }
653
654 /*
655  * this is used to update the root pointer in the tree of tree roots.
656  *
657  * But, in the case of the extent allocation tree, updating the root
658  * pointer may allocate blocks which may change the root of the extent
659  * allocation tree.
660  *
661  * So, this loops and repeats and makes sure the cowonly root didn't
662  * change while the root pointer was being updated in the metadata.
663  */
664 static int update_cowonly_root(struct btrfs_trans_handle *trans,
665                                struct btrfs_root *root)
666 {
667         int ret;
668         u64 old_root_bytenr;
669         u64 old_root_used;
670         struct btrfs_root *tree_root = root->fs_info->tree_root;
671
672         old_root_used = btrfs_root_used(&root->root_item);
673         btrfs_write_dirty_block_groups(trans, root);
674
675         while (1) {
676                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
677                 if (old_root_bytenr == root->node->start &&
678                     old_root_used == btrfs_root_used(&root->root_item))
679                         break;
680
681                 btrfs_set_root_node(&root->root_item, root->node);
682                 ret = btrfs_update_root(trans, tree_root,
683                                         &root->root_key,
684                                         &root->root_item);
685                 BUG_ON(ret);
686
687                 old_root_used = btrfs_root_used(&root->root_item);
688                 ret = btrfs_write_dirty_block_groups(trans, root);
689                 BUG_ON(ret);
690         }
691
692         if (root != root->fs_info->extent_root)
693                 switch_commit_root(root);
694
695         return 0;
696 }
697
698 /*
699  * update all the cowonly tree roots on disk
700  */
701 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
702                                          struct btrfs_root *root)
703 {
704         struct btrfs_fs_info *fs_info = root->fs_info;
705         struct list_head *next;
706         struct extent_buffer *eb;
707         int ret;
708
709         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
710         BUG_ON(ret);
711
712         eb = btrfs_lock_root_node(fs_info->tree_root);
713         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
714         btrfs_tree_unlock(eb);
715         free_extent_buffer(eb);
716
717         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
718         BUG_ON(ret);
719
720         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
721                 next = fs_info->dirty_cowonly_roots.next;
722                 list_del_init(next);
723                 root = list_entry(next, struct btrfs_root, dirty_list);
724
725                 update_cowonly_root(trans, root);
726         }
727
728         down_write(&fs_info->extent_commit_sem);
729         switch_commit_root(fs_info->extent_root);
730         up_write(&fs_info->extent_commit_sem);
731
732         return 0;
733 }
734
735 /*
736  * dead roots are old snapshots that need to be deleted.  This allocates
737  * a dirty root struct and adds it into the list of dead roots that need to
738  * be deleted
739  */
740 int btrfs_add_dead_root(struct btrfs_root *root)
741 {
742         spin_lock(&root->fs_info->trans_lock);
743         list_add(&root->root_list, &root->fs_info->dead_roots);
744         spin_unlock(&root->fs_info->trans_lock);
745         return 0;
746 }
747
748 /*
749  * update all the cowonly tree roots on disk
750  */
751 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
752                                     struct btrfs_root *root)
753 {
754         struct btrfs_root *gang[8];
755         struct btrfs_fs_info *fs_info = root->fs_info;
756         int i;
757         int ret;
758         int err = 0;
759
760         spin_lock(&fs_info->fs_roots_radix_lock);
761         while (1) {
762                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
763                                                  (void **)gang, 0,
764                                                  ARRAY_SIZE(gang),
765                                                  BTRFS_ROOT_TRANS_TAG);
766                 if (ret == 0)
767                         break;
768                 for (i = 0; i < ret; i++) {
769                         root = gang[i];
770                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
771                                         (unsigned long)root->root_key.objectid,
772                                         BTRFS_ROOT_TRANS_TAG);
773                         spin_unlock(&fs_info->fs_roots_radix_lock);
774
775                         btrfs_free_log(trans, root);
776                         btrfs_update_reloc_root(trans, root);
777                         btrfs_orphan_commit_root(trans, root);
778
779                         btrfs_save_ino_cache(root, trans);
780
781                         if (root->commit_root != root->node) {
782                                 mutex_lock(&root->fs_commit_mutex);
783                                 switch_commit_root(root);
784                                 btrfs_unpin_free_ino(root);
785                                 mutex_unlock(&root->fs_commit_mutex);
786
787                                 btrfs_set_root_node(&root->root_item,
788                                                     root->node);
789                         }
790
791                         err = btrfs_update_root(trans, fs_info->tree_root,
792                                                 &root->root_key,
793                                                 &root->root_item);
794                         spin_lock(&fs_info->fs_roots_radix_lock);
795                         if (err)
796                                 break;
797                 }
798         }
799         spin_unlock(&fs_info->fs_roots_radix_lock);
800         return err;
801 }
802
803 /*
804  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
805  * otherwise every leaf in the btree is read and defragged.
806  */
807 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
808 {
809         struct btrfs_fs_info *info = root->fs_info;
810         struct btrfs_trans_handle *trans;
811         int ret;
812         unsigned long nr;
813
814         if (xchg(&root->defrag_running, 1))
815                 return 0;
816
817         while (1) {
818                 trans = btrfs_start_transaction(root, 0);
819                 if (IS_ERR(trans))
820                         return PTR_ERR(trans);
821
822                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
823
824                 nr = trans->blocks_used;
825                 btrfs_end_transaction(trans, root);
826                 btrfs_btree_balance_dirty(info->tree_root, nr);
827                 cond_resched();
828
829                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
830                         break;
831         }
832         root->defrag_running = 0;
833         return ret;
834 }
835
836 /*
837  * new snapshots need to be created at a very specific time in the
838  * transaction commit.  This does the actual creation
839  */
840 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
841                                    struct btrfs_fs_info *fs_info,
842                                    struct btrfs_pending_snapshot *pending)
843 {
844         struct btrfs_key key;
845         struct btrfs_root_item *new_root_item;
846         struct btrfs_root *tree_root = fs_info->tree_root;
847         struct btrfs_root *root = pending->root;
848         struct btrfs_root *parent_root;
849         struct btrfs_block_rsv *rsv;
850         struct inode *parent_inode;
851         struct dentry *parent;
852         struct dentry *dentry;
853         struct extent_buffer *tmp;
854         struct extent_buffer *old;
855         int ret;
856         u64 to_reserve = 0;
857         u64 index = 0;
858         u64 objectid;
859         u64 root_flags;
860
861         rsv = trans->block_rsv;
862
863         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
864         if (!new_root_item) {
865                 pending->error = -ENOMEM;
866                 goto fail;
867         }
868
869         ret = btrfs_find_free_objectid(tree_root, &objectid);
870         if (ret) {
871                 pending->error = ret;
872                 goto fail;
873         }
874
875         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
876
877         if (to_reserve > 0) {
878                 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
879                                           to_reserve);
880                 if (ret) {
881                         pending->error = ret;
882                         goto fail;
883                 }
884         }
885
886         key.objectid = objectid;
887         key.offset = (u64)-1;
888         key.type = BTRFS_ROOT_ITEM_KEY;
889
890         trans->block_rsv = &pending->block_rsv;
891
892         dentry = pending->dentry;
893         parent = dget_parent(dentry);
894         parent_inode = parent->d_inode;
895         parent_root = BTRFS_I(parent_inode)->root;
896         record_root_in_trans(trans, parent_root);
897
898         /*
899          * insert the directory item
900          */
901         ret = btrfs_set_inode_index(parent_inode, &index);
902         BUG_ON(ret);
903         ret = btrfs_insert_dir_item(trans, parent_root,
904                                 dentry->d_name.name, dentry->d_name.len,
905                                 parent_inode, &key,
906                                 BTRFS_FT_DIR, index);
907         BUG_ON(ret);
908
909         btrfs_i_size_write(parent_inode, parent_inode->i_size +
910                                          dentry->d_name.len * 2);
911         ret = btrfs_update_inode(trans, parent_root, parent_inode);
912         BUG_ON(ret);
913
914         /*
915          * pull in the delayed directory update
916          * and the delayed inode item
917          * otherwise we corrupt the FS during
918          * snapshot
919          */
920         ret = btrfs_run_delayed_items(trans, root);
921         BUG_ON(ret);
922
923         record_root_in_trans(trans, root);
924         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
925         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
926         btrfs_check_and_init_root_item(new_root_item);
927
928         root_flags = btrfs_root_flags(new_root_item);
929         if (pending->readonly)
930                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
931         else
932                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
933         btrfs_set_root_flags(new_root_item, root_flags);
934
935         old = btrfs_lock_root_node(root);
936         btrfs_cow_block(trans, root, old, NULL, 0, &old);
937         btrfs_set_lock_blocking(old);
938
939         btrfs_copy_root(trans, root, old, &tmp, objectid);
940         btrfs_tree_unlock(old);
941         free_extent_buffer(old);
942
943         btrfs_set_root_node(new_root_item, tmp);
944         /* record when the snapshot was created in key.offset */
945         key.offset = trans->transid;
946         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
947         btrfs_tree_unlock(tmp);
948         free_extent_buffer(tmp);
949         BUG_ON(ret);
950
951         /*
952          * insert root back/forward references
953          */
954         ret = btrfs_add_root_ref(trans, tree_root, objectid,
955                                  parent_root->root_key.objectid,
956                                  btrfs_ino(parent_inode), index,
957                                  dentry->d_name.name, dentry->d_name.len);
958         BUG_ON(ret);
959         dput(parent);
960
961         key.offset = (u64)-1;
962         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
963         BUG_ON(IS_ERR(pending->snap));
964
965         btrfs_reloc_post_snapshot(trans, pending);
966 fail:
967         kfree(new_root_item);
968         trans->block_rsv = rsv;
969         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
970         return 0;
971 }
972
973 /*
974  * create all the snapshots we've scheduled for creation
975  */
976 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
977                                              struct btrfs_fs_info *fs_info)
978 {
979         struct btrfs_pending_snapshot *pending;
980         struct list_head *head = &trans->transaction->pending_snapshots;
981         int ret;
982
983         list_for_each_entry(pending, head, list) {
984                 ret = create_pending_snapshot(trans, fs_info, pending);
985                 BUG_ON(ret);
986         }
987         return 0;
988 }
989
990 static void update_super_roots(struct btrfs_root *root)
991 {
992         struct btrfs_root_item *root_item;
993         struct btrfs_super_block *super;
994
995         super = &root->fs_info->super_copy;
996
997         root_item = &root->fs_info->chunk_root->root_item;
998         super->chunk_root = root_item->bytenr;
999         super->chunk_root_generation = root_item->generation;
1000         super->chunk_root_level = root_item->level;
1001
1002         root_item = &root->fs_info->tree_root->root_item;
1003         super->root = root_item->bytenr;
1004         super->generation = root_item->generation;
1005         super->root_level = root_item->level;
1006         if (btrfs_test_opt(root, SPACE_CACHE))
1007                 super->cache_generation = root_item->generation;
1008 }
1009
1010 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1011 {
1012         int ret = 0;
1013         spin_lock(&info->trans_lock);
1014         if (info->running_transaction)
1015                 ret = info->running_transaction->in_commit;
1016         spin_unlock(&info->trans_lock);
1017         return ret;
1018 }
1019
1020 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1021 {
1022         int ret = 0;
1023         spin_lock(&info->trans_lock);
1024         if (info->running_transaction)
1025                 ret = info->running_transaction->blocked;
1026         spin_unlock(&info->trans_lock);
1027         return ret;
1028 }
1029
1030 /*
1031  * wait for the current transaction commit to start and block subsequent
1032  * transaction joins
1033  */
1034 static void wait_current_trans_commit_start(struct btrfs_root *root,
1035                                             struct btrfs_transaction *trans)
1036 {
1037         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1038 }
1039
1040 /*
1041  * wait for the current transaction to start and then become unblocked.
1042  * caller holds ref.
1043  */
1044 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1045                                          struct btrfs_transaction *trans)
1046 {
1047         wait_event(root->fs_info->transaction_wait,
1048                    trans->commit_done || (trans->in_commit && !trans->blocked));
1049 }
1050
1051 /*
1052  * commit transactions asynchronously. once btrfs_commit_transaction_async
1053  * returns, any subsequent transaction will not be allowed to join.
1054  */
1055 struct btrfs_async_commit {
1056         struct btrfs_trans_handle *newtrans;
1057         struct btrfs_root *root;
1058         struct delayed_work work;
1059 };
1060
1061 static void do_async_commit(struct work_struct *work)
1062 {
1063         struct btrfs_async_commit *ac =
1064                 container_of(work, struct btrfs_async_commit, work.work);
1065
1066         btrfs_commit_transaction(ac->newtrans, ac->root);
1067         kfree(ac);
1068 }
1069
1070 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1071                                    struct btrfs_root *root,
1072                                    int wait_for_unblock)
1073 {
1074         struct btrfs_async_commit *ac;
1075         struct btrfs_transaction *cur_trans;
1076
1077         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1078         if (!ac)
1079                 return -ENOMEM;
1080
1081         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1082         ac->root = root;
1083         ac->newtrans = btrfs_join_transaction(root);
1084         if (IS_ERR(ac->newtrans)) {
1085                 int err = PTR_ERR(ac->newtrans);
1086                 kfree(ac);
1087                 return err;
1088         }
1089
1090         /* take transaction reference */
1091         cur_trans = trans->transaction;
1092         atomic_inc(&cur_trans->use_count);
1093
1094         btrfs_end_transaction(trans, root);
1095         schedule_delayed_work(&ac->work, 0);
1096
1097         /* wait for transaction to start and unblock */
1098         if (wait_for_unblock)
1099                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1100         else
1101                 wait_current_trans_commit_start(root, cur_trans);
1102
1103         if (current->journal_info == trans)
1104                 current->journal_info = NULL;
1105
1106         put_transaction(cur_trans);
1107         return 0;
1108 }
1109
1110 /*
1111  * btrfs_transaction state sequence:
1112  *    in_commit = 0, blocked = 0  (initial)
1113  *    in_commit = 1, blocked = 1
1114  *    blocked = 0
1115  *    commit_done = 1
1116  */
1117 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1118                              struct btrfs_root *root)
1119 {
1120         unsigned long joined = 0;
1121         struct btrfs_transaction *cur_trans;
1122         struct btrfs_transaction *prev_trans = NULL;
1123         DEFINE_WAIT(wait);
1124         int ret;
1125         int should_grow = 0;
1126         unsigned long now = get_seconds();
1127         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1128
1129         btrfs_run_ordered_operations(root, 0);
1130
1131         trans->block_rsv = NULL;
1132
1133         /* make a pass through all the delayed refs we have so far
1134          * any runnings procs may add more while we are here
1135          */
1136         ret = btrfs_run_delayed_refs(trans, root, 0);
1137         BUG_ON(ret);
1138
1139         btrfs_trans_release_metadata(trans, root);
1140
1141         cur_trans = trans->transaction;
1142         /*
1143          * set the flushing flag so procs in this transaction have to
1144          * start sending their work down.
1145          */
1146         cur_trans->delayed_refs.flushing = 1;
1147
1148         ret = btrfs_run_delayed_refs(trans, root, 0);
1149         BUG_ON(ret);
1150
1151         spin_lock(&cur_trans->commit_lock);
1152         if (cur_trans->in_commit) {
1153                 spin_unlock(&cur_trans->commit_lock);
1154                 atomic_inc(&cur_trans->use_count);
1155                 btrfs_end_transaction(trans, root);
1156
1157                 wait_for_commit(root, cur_trans);
1158
1159                 put_transaction(cur_trans);
1160
1161                 return 0;
1162         }
1163
1164         trans->transaction->in_commit = 1;
1165         trans->transaction->blocked = 1;
1166         spin_unlock(&cur_trans->commit_lock);
1167         wake_up(&root->fs_info->transaction_blocked_wait);
1168
1169         spin_lock(&root->fs_info->trans_lock);
1170         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1171                 prev_trans = list_entry(cur_trans->list.prev,
1172                                         struct btrfs_transaction, list);
1173                 if (!prev_trans->commit_done) {
1174                         atomic_inc(&prev_trans->use_count);
1175                         spin_unlock(&root->fs_info->trans_lock);
1176
1177                         wait_for_commit(root, prev_trans);
1178
1179                         put_transaction(prev_trans);
1180                 } else {
1181                         spin_unlock(&root->fs_info->trans_lock);
1182                 }
1183         } else {
1184                 spin_unlock(&root->fs_info->trans_lock);
1185         }
1186
1187         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1188                 should_grow = 1;
1189
1190         do {
1191                 int snap_pending = 0;
1192
1193                 joined = cur_trans->num_joined;
1194                 if (!list_empty(&trans->transaction->pending_snapshots))
1195                         snap_pending = 1;
1196
1197                 WARN_ON(cur_trans != trans->transaction);
1198
1199                 if (flush_on_commit || snap_pending) {
1200                         btrfs_start_delalloc_inodes(root, 1);
1201                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1202                         BUG_ON(ret);
1203                 }
1204
1205                 ret = btrfs_run_delayed_items(trans, root);
1206                 BUG_ON(ret);
1207
1208                 /*
1209                  * rename don't use btrfs_join_transaction, so, once we
1210                  * set the transaction to blocked above, we aren't going
1211                  * to get any new ordered operations.  We can safely run
1212                  * it here and no for sure that nothing new will be added
1213                  * to the list
1214                  */
1215                 btrfs_run_ordered_operations(root, 1);
1216
1217                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1218                                 TASK_UNINTERRUPTIBLE);
1219
1220                 if (atomic_read(&cur_trans->num_writers) > 1)
1221                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1222                 else if (should_grow)
1223                         schedule_timeout(1);
1224
1225                 finish_wait(&cur_trans->writer_wait, &wait);
1226         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1227                  (should_grow && cur_trans->num_joined != joined));
1228
1229         /*
1230          * Ok now we need to make sure to block out any other joins while we
1231          * commit the transaction.  We could have started a join before setting
1232          * no_join so make sure to wait for num_writers to == 1 again.
1233          */
1234         spin_lock(&root->fs_info->trans_lock);
1235         root->fs_info->trans_no_join = 1;
1236         spin_unlock(&root->fs_info->trans_lock);
1237         wait_event(cur_trans->writer_wait,
1238                    atomic_read(&cur_trans->num_writers) == 1);
1239
1240         /*
1241          * the reloc mutex makes sure that we stop
1242          * the balancing code from coming in and moving
1243          * extents around in the middle of the commit
1244          */
1245         mutex_lock(&root->fs_info->reloc_mutex);
1246
1247         ret = btrfs_run_delayed_items(trans, root);
1248         BUG_ON(ret);
1249
1250         ret = create_pending_snapshots(trans, root->fs_info);
1251         BUG_ON(ret);
1252
1253         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1254         BUG_ON(ret);
1255
1256         /*
1257          * make sure none of the code above managed to slip in a
1258          * delayed item
1259          */
1260         btrfs_assert_delayed_root_empty(root);
1261
1262         WARN_ON(cur_trans != trans->transaction);
1263
1264         btrfs_scrub_pause(root);
1265         /* btrfs_commit_tree_roots is responsible for getting the
1266          * various roots consistent with each other.  Every pointer
1267          * in the tree of tree roots has to point to the most up to date
1268          * root for every subvolume and other tree.  So, we have to keep
1269          * the tree logging code from jumping in and changing any
1270          * of the trees.
1271          *
1272          * At this point in the commit, there can't be any tree-log
1273          * writers, but a little lower down we drop the trans mutex
1274          * and let new people in.  By holding the tree_log_mutex
1275          * from now until after the super is written, we avoid races
1276          * with the tree-log code.
1277          */
1278         mutex_lock(&root->fs_info->tree_log_mutex);
1279
1280         ret = commit_fs_roots(trans, root);
1281         BUG_ON(ret);
1282
1283         /* commit_fs_roots gets rid of all the tree log roots, it is now
1284          * safe to free the root of tree log roots
1285          */
1286         btrfs_free_log_root_tree(trans, root->fs_info);
1287
1288         ret = commit_cowonly_roots(trans, root);
1289         BUG_ON(ret);
1290
1291         btrfs_prepare_extent_commit(trans, root);
1292
1293         cur_trans = root->fs_info->running_transaction;
1294
1295         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1296                             root->fs_info->tree_root->node);
1297         switch_commit_root(root->fs_info->tree_root);
1298
1299         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1300                             root->fs_info->chunk_root->node);
1301         switch_commit_root(root->fs_info->chunk_root);
1302
1303         update_super_roots(root);
1304
1305         if (!root->fs_info->log_root_recovering) {
1306                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1307                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1308         }
1309
1310         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1311                sizeof(root->fs_info->super_copy));
1312
1313         trans->transaction->blocked = 0;
1314         spin_lock(&root->fs_info->trans_lock);
1315         root->fs_info->running_transaction = NULL;
1316         root->fs_info->trans_no_join = 0;
1317         spin_unlock(&root->fs_info->trans_lock);
1318         mutex_unlock(&root->fs_info->reloc_mutex);
1319
1320         wake_up(&root->fs_info->transaction_wait);
1321
1322         ret = btrfs_write_and_wait_transaction(trans, root);
1323         BUG_ON(ret);
1324         write_ctree_super(trans, root, 0);
1325
1326         /*
1327          * the super is written, we can safely allow the tree-loggers
1328          * to go about their business
1329          */
1330         mutex_unlock(&root->fs_info->tree_log_mutex);
1331
1332         btrfs_finish_extent_commit(trans, root);
1333
1334         cur_trans->commit_done = 1;
1335
1336         root->fs_info->last_trans_committed = cur_trans->transid;
1337
1338         wake_up(&cur_trans->commit_wait);
1339
1340         spin_lock(&root->fs_info->trans_lock);
1341         list_del_init(&cur_trans->list);
1342         spin_unlock(&root->fs_info->trans_lock);
1343
1344         put_transaction(cur_trans);
1345         put_transaction(cur_trans);
1346
1347         trace_btrfs_transaction_commit(root);
1348
1349         btrfs_scrub_continue(root);
1350
1351         if (current->journal_info == trans)
1352                 current->journal_info = NULL;
1353
1354         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1355
1356         if (current != root->fs_info->transaction_kthread)
1357                 btrfs_run_delayed_iputs(root);
1358
1359         return ret;
1360 }
1361
1362 /*
1363  * interface function to delete all the snapshots we have scheduled for deletion
1364  */
1365 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1366 {
1367         LIST_HEAD(list);
1368         struct btrfs_fs_info *fs_info = root->fs_info;
1369
1370         spin_lock(&fs_info->trans_lock);
1371         list_splice_init(&fs_info->dead_roots, &list);
1372         spin_unlock(&fs_info->trans_lock);
1373
1374         while (!list_empty(&list)) {
1375                 root = list_entry(list.next, struct btrfs_root, root_list);
1376                 list_del(&root->root_list);
1377
1378                 btrfs_kill_all_delayed_nodes(root);
1379
1380                 if (btrfs_header_backref_rev(root->node) <
1381                     BTRFS_MIXED_BACKREF_REV)
1382                         btrfs_drop_snapshot(root, NULL, 0);
1383                 else
1384                         btrfs_drop_snapshot(root, NULL, 1);
1385         }
1386         return 0;
1387 }