]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/transaction.c
Btrfs: always update root items for fs trees at commit time
[mv-sheeva.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 /*
44  * either allocate a new transaction or hop into the existing one
45  */
46 static noinline int join_transaction(struct btrfs_root *root)
47 {
48         struct btrfs_transaction *cur_trans;
49         cur_trans = root->fs_info->running_transaction;
50         if (!cur_trans) {
51                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
52                                              GFP_NOFS);
53                 BUG_ON(!cur_trans);
54                 root->fs_info->generation++;
55                 cur_trans->num_writers = 1;
56                 cur_trans->num_joined = 0;
57                 cur_trans->transid = root->fs_info->generation;
58                 init_waitqueue_head(&cur_trans->writer_wait);
59                 init_waitqueue_head(&cur_trans->commit_wait);
60                 cur_trans->in_commit = 0;
61                 cur_trans->blocked = 0;
62                 cur_trans->use_count = 1;
63                 cur_trans->commit_done = 0;
64                 cur_trans->start_time = get_seconds();
65
66                 cur_trans->delayed_refs.root.rb_node = NULL;
67                 cur_trans->delayed_refs.num_entries = 0;
68                 cur_trans->delayed_refs.num_heads_ready = 0;
69                 cur_trans->delayed_refs.num_heads = 0;
70                 cur_trans->delayed_refs.flushing = 0;
71                 cur_trans->delayed_refs.run_delayed_start = 0;
72                 spin_lock_init(&cur_trans->delayed_refs.lock);
73
74                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76                 extent_io_tree_init(&cur_trans->dirty_pages,
77                                      root->fs_info->btree_inode->i_mapping,
78                                      GFP_NOFS);
79                 spin_lock(&root->fs_info->new_trans_lock);
80                 root->fs_info->running_transaction = cur_trans;
81                 spin_unlock(&root->fs_info->new_trans_lock);
82         } else {
83                 cur_trans->num_writers++;
84                 cur_trans->num_joined++;
85         }
86
87         return 0;
88 }
89
90 /*
91  * this does all the record keeping required to make sure that a reference
92  * counted root is properly recorded in a given transaction.  This is required
93  * to make sure the old root from before we joined the transaction is deleted
94  * when the transaction commits
95  */
96 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
97                                          struct btrfs_root *root)
98 {
99         if (root->ref_cows && root->last_trans < trans->transid) {
100                 WARN_ON(root == root->fs_info->extent_root);
101                 WARN_ON(root->root_item.refs == 0);
102                 WARN_ON(root->commit_root != root->node);
103
104                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105                            (unsigned long)root->root_key.objectid,
106                            BTRFS_ROOT_TRANS_TAG);
107                 root->last_trans = trans->transid;
108                 btrfs_init_reloc_root(trans, root);
109         }
110         return 0;
111 }
112
113 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
114                                struct btrfs_root *root)
115 {
116         if (!root->ref_cows)
117                 return 0;
118
119         mutex_lock(&root->fs_info->trans_mutex);
120         if (root->last_trans == trans->transid) {
121                 mutex_unlock(&root->fs_info->trans_mutex);
122                 return 0;
123         }
124
125         record_root_in_trans(trans, root);
126         mutex_unlock(&root->fs_info->trans_mutex);
127         return 0;
128 }
129
130 /* wait for commit against the current transaction to become unblocked
131  * when this is done, it is safe to start a new transaction, but the current
132  * transaction might not be fully on disk.
133  */
134 static void wait_current_trans(struct btrfs_root *root)
135 {
136         struct btrfs_transaction *cur_trans;
137
138         cur_trans = root->fs_info->running_transaction;
139         if (cur_trans && cur_trans->blocked) {
140                 DEFINE_WAIT(wait);
141                 cur_trans->use_count++;
142                 while (1) {
143                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
144                                         TASK_UNINTERRUPTIBLE);
145                         if (cur_trans->blocked) {
146                                 mutex_unlock(&root->fs_info->trans_mutex);
147                                 schedule();
148                                 mutex_lock(&root->fs_info->trans_mutex);
149                                 finish_wait(&root->fs_info->transaction_wait,
150                                             &wait);
151                         } else {
152                                 finish_wait(&root->fs_info->transaction_wait,
153                                             &wait);
154                                 break;
155                         }
156                 }
157                 put_transaction(cur_trans);
158         }
159 }
160
161 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
162                                              int num_blocks, int wait)
163 {
164         struct btrfs_trans_handle *h =
165                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
166         int ret;
167
168         mutex_lock(&root->fs_info->trans_mutex);
169         if (!root->fs_info->log_root_recovering &&
170             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
171                 wait_current_trans(root);
172         ret = join_transaction(root);
173         BUG_ON(ret);
174
175         h->transid = root->fs_info->running_transaction->transid;
176         h->transaction = root->fs_info->running_transaction;
177         h->blocks_reserved = num_blocks;
178         h->blocks_used = 0;
179         h->block_group = 0;
180         h->alloc_exclude_nr = 0;
181         h->alloc_exclude_start = 0;
182         h->delayed_ref_updates = 0;
183
184         root->fs_info->running_transaction->use_count++;
185         record_root_in_trans(h, root);
186         mutex_unlock(&root->fs_info->trans_mutex);
187         return h;
188 }
189
190 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
191                                                    int num_blocks)
192 {
193         return start_transaction(root, num_blocks, 1);
194 }
195 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
196                                                    int num_blocks)
197 {
198         return start_transaction(root, num_blocks, 0);
199 }
200
201 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
202                                                          int num_blocks)
203 {
204         return start_transaction(r, num_blocks, 2);
205 }
206
207 /* wait for a transaction commit to be fully complete */
208 static noinline int wait_for_commit(struct btrfs_root *root,
209                                     struct btrfs_transaction *commit)
210 {
211         DEFINE_WAIT(wait);
212         mutex_lock(&root->fs_info->trans_mutex);
213         while (!commit->commit_done) {
214                 prepare_to_wait(&commit->commit_wait, &wait,
215                                 TASK_UNINTERRUPTIBLE);
216                 if (commit->commit_done)
217                         break;
218                 mutex_unlock(&root->fs_info->trans_mutex);
219                 schedule();
220                 mutex_lock(&root->fs_info->trans_mutex);
221         }
222         mutex_unlock(&root->fs_info->trans_mutex);
223         finish_wait(&commit->commit_wait, &wait);
224         return 0;
225 }
226
227 #if 0
228 /*
229  * rate limit against the drop_snapshot code.  This helps to slow down new
230  * operations if the drop_snapshot code isn't able to keep up.
231  */
232 static void throttle_on_drops(struct btrfs_root *root)
233 {
234         struct btrfs_fs_info *info = root->fs_info;
235         int harder_count = 0;
236
237 harder:
238         if (atomic_read(&info->throttles)) {
239                 DEFINE_WAIT(wait);
240                 int thr;
241                 thr = atomic_read(&info->throttle_gen);
242
243                 do {
244                         prepare_to_wait(&info->transaction_throttle,
245                                         &wait, TASK_UNINTERRUPTIBLE);
246                         if (!atomic_read(&info->throttles)) {
247                                 finish_wait(&info->transaction_throttle, &wait);
248                                 break;
249                         }
250                         schedule();
251                         finish_wait(&info->transaction_throttle, &wait);
252                 } while (thr == atomic_read(&info->throttle_gen));
253                 harder_count++;
254
255                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
256                     harder_count < 2)
257                         goto harder;
258
259                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
260                     harder_count < 10)
261                         goto harder;
262
263                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
264                     harder_count < 20)
265                         goto harder;
266         }
267 }
268 #endif
269
270 void btrfs_throttle(struct btrfs_root *root)
271 {
272         mutex_lock(&root->fs_info->trans_mutex);
273         if (!root->fs_info->open_ioctl_trans)
274                 wait_current_trans(root);
275         mutex_unlock(&root->fs_info->trans_mutex);
276 }
277
278 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
279                           struct btrfs_root *root, int throttle)
280 {
281         struct btrfs_transaction *cur_trans;
282         struct btrfs_fs_info *info = root->fs_info;
283         int count = 0;
284
285         while (count < 4) {
286                 unsigned long cur = trans->delayed_ref_updates;
287                 trans->delayed_ref_updates = 0;
288                 if (cur &&
289                     trans->transaction->delayed_refs.num_heads_ready > 64) {
290                         trans->delayed_ref_updates = 0;
291
292                         /*
293                          * do a full flush if the transaction is trying
294                          * to close
295                          */
296                         if (trans->transaction->delayed_refs.flushing)
297                                 cur = 0;
298                         btrfs_run_delayed_refs(trans, root, cur);
299                 } else {
300                         break;
301                 }
302                 count++;
303         }
304
305         mutex_lock(&info->trans_mutex);
306         cur_trans = info->running_transaction;
307         WARN_ON(cur_trans != trans->transaction);
308         WARN_ON(cur_trans->num_writers < 1);
309         cur_trans->num_writers--;
310
311         if (waitqueue_active(&cur_trans->writer_wait))
312                 wake_up(&cur_trans->writer_wait);
313         put_transaction(cur_trans);
314         mutex_unlock(&info->trans_mutex);
315         memset(trans, 0, sizeof(*trans));
316         kmem_cache_free(btrfs_trans_handle_cachep, trans);
317
318         return 0;
319 }
320
321 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
322                           struct btrfs_root *root)
323 {
324         return __btrfs_end_transaction(trans, root, 0);
325 }
326
327 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
328                                    struct btrfs_root *root)
329 {
330         return __btrfs_end_transaction(trans, root, 1);
331 }
332
333 /*
334  * when btree blocks are allocated, they have some corresponding bits set for
335  * them in one of two extent_io trees.  This is used to make sure all of
336  * those extents are on disk for transaction or log commit
337  */
338 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
339                                         struct extent_io_tree *dirty_pages)
340 {
341         int ret;
342         int err = 0;
343         int werr = 0;
344         struct page *page;
345         struct inode *btree_inode = root->fs_info->btree_inode;
346         u64 start = 0;
347         u64 end;
348         unsigned long index;
349
350         while (1) {
351                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
352                                             EXTENT_DIRTY);
353                 if (ret)
354                         break;
355                 while (start <= end) {
356                         cond_resched();
357
358                         index = start >> PAGE_CACHE_SHIFT;
359                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
360                         page = find_get_page(btree_inode->i_mapping, index);
361                         if (!page)
362                                 continue;
363
364                         btree_lock_page_hook(page);
365                         if (!page->mapping) {
366                                 unlock_page(page);
367                                 page_cache_release(page);
368                                 continue;
369                         }
370
371                         if (PageWriteback(page)) {
372                                 if (PageDirty(page))
373                                         wait_on_page_writeback(page);
374                                 else {
375                                         unlock_page(page);
376                                         page_cache_release(page);
377                                         continue;
378                                 }
379                         }
380                         err = write_one_page(page, 0);
381                         if (err)
382                                 werr = err;
383                         page_cache_release(page);
384                 }
385         }
386         while (1) {
387                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
388                                             EXTENT_DIRTY);
389                 if (ret)
390                         break;
391
392                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
393                 while (start <= end) {
394                         index = start >> PAGE_CACHE_SHIFT;
395                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
396                         page = find_get_page(btree_inode->i_mapping, index);
397                         if (!page)
398                                 continue;
399                         if (PageDirty(page)) {
400                                 btree_lock_page_hook(page);
401                                 wait_on_page_writeback(page);
402                                 err = write_one_page(page, 0);
403                                 if (err)
404                                         werr = err;
405                         }
406                         wait_on_page_writeback(page);
407                         page_cache_release(page);
408                         cond_resched();
409                 }
410         }
411         if (err)
412                 werr = err;
413         return werr;
414 }
415
416 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
417                                      struct btrfs_root *root)
418 {
419         if (!trans || !trans->transaction) {
420                 struct inode *btree_inode;
421                 btree_inode = root->fs_info->btree_inode;
422                 return filemap_write_and_wait(btree_inode->i_mapping);
423         }
424         return btrfs_write_and_wait_marked_extents(root,
425                                            &trans->transaction->dirty_pages);
426 }
427
428 /*
429  * this is used to update the root pointer in the tree of tree roots.
430  *
431  * But, in the case of the extent allocation tree, updating the root
432  * pointer may allocate blocks which may change the root of the extent
433  * allocation tree.
434  *
435  * So, this loops and repeats and makes sure the cowonly root didn't
436  * change while the root pointer was being updated in the metadata.
437  */
438 static int update_cowonly_root(struct btrfs_trans_handle *trans,
439                                struct btrfs_root *root)
440 {
441         int ret;
442         u64 old_root_bytenr;
443         struct btrfs_root *tree_root = root->fs_info->tree_root;
444
445         btrfs_write_dirty_block_groups(trans, root);
446
447         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
448         BUG_ON(ret);
449
450         while (1) {
451                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
452                 if (old_root_bytenr == root->node->start)
453                         break;
454
455                 btrfs_set_root_node(&root->root_item, root->node);
456                 ret = btrfs_update_root(trans, tree_root,
457                                         &root->root_key,
458                                         &root->root_item);
459                 BUG_ON(ret);
460                 btrfs_write_dirty_block_groups(trans, root);
461
462                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
463                 BUG_ON(ret);
464         }
465         free_extent_buffer(root->commit_root);
466         root->commit_root = btrfs_root_node(root);
467         return 0;
468 }
469
470 /*
471  * update all the cowonly tree roots on disk
472  */
473 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
474                                          struct btrfs_root *root)
475 {
476         struct btrfs_fs_info *fs_info = root->fs_info;
477         struct list_head *next;
478         struct extent_buffer *eb;
479         int ret;
480
481         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
482         BUG_ON(ret);
483
484         eb = btrfs_lock_root_node(fs_info->tree_root);
485         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
486         btrfs_tree_unlock(eb);
487         free_extent_buffer(eb);
488
489         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
490         BUG_ON(ret);
491
492         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
493                 next = fs_info->dirty_cowonly_roots.next;
494                 list_del_init(next);
495                 root = list_entry(next, struct btrfs_root, dirty_list);
496
497                 update_cowonly_root(trans, root);
498
499                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
500                 BUG_ON(ret);
501         }
502         return 0;
503 }
504
505 /*
506  * dead roots are old snapshots that need to be deleted.  This allocates
507  * a dirty root struct and adds it into the list of dead roots that need to
508  * be deleted
509  */
510 int btrfs_add_dead_root(struct btrfs_root *root)
511 {
512         mutex_lock(&root->fs_info->trans_mutex);
513         list_add(&root->root_list, &root->fs_info->dead_roots);
514         mutex_unlock(&root->fs_info->trans_mutex);
515         return 0;
516 }
517
518 /*
519  * update all the cowonly tree roots on disk
520  */
521 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
522                                     struct btrfs_root *root)
523 {
524         struct btrfs_root *gang[8];
525         struct btrfs_fs_info *fs_info = root->fs_info;
526         int i;
527         int ret;
528         int err = 0;
529
530         while (1) {
531                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
532                                                  (void **)gang, 0,
533                                                  ARRAY_SIZE(gang),
534                                                  BTRFS_ROOT_TRANS_TAG);
535                 if (ret == 0)
536                         break;
537                 for (i = 0; i < ret; i++) {
538                         root = gang[i];
539                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
540                                         (unsigned long)root->root_key.objectid,
541                                         BTRFS_ROOT_TRANS_TAG);
542
543                         btrfs_free_log(trans, root);
544                         btrfs_update_reloc_root(trans, root);
545
546                         if (root->commit_root != root->node) {
547                                 free_extent_buffer(root->commit_root);
548                                 root->commit_root = btrfs_root_node(root);
549                                 btrfs_set_root_node(&root->root_item,
550                                                     root->node);
551                         }
552
553                         err = btrfs_update_root(trans, fs_info->tree_root,
554                                                 &root->root_key,
555                                                 &root->root_item);
556                         if (err)
557                                 break;
558                 }
559         }
560         return err;
561 }
562
563 /*
564  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
565  * otherwise every leaf in the btree is read and defragged.
566  */
567 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
568 {
569         struct btrfs_fs_info *info = root->fs_info;
570         int ret;
571         struct btrfs_trans_handle *trans;
572         unsigned long nr;
573
574         smp_mb();
575         if (root->defrag_running)
576                 return 0;
577         trans = btrfs_start_transaction(root, 1);
578         while (1) {
579                 root->defrag_running = 1;
580                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
581                 nr = trans->blocks_used;
582                 btrfs_end_transaction(trans, root);
583                 btrfs_btree_balance_dirty(info->tree_root, nr);
584                 cond_resched();
585
586                 trans = btrfs_start_transaction(root, 1);
587                 if (root->fs_info->closing || ret != -EAGAIN)
588                         break;
589         }
590         root->defrag_running = 0;
591         smp_mb();
592         btrfs_end_transaction(trans, root);
593         return 0;
594 }
595
596 /*
597  * when dropping snapshots, we generate a ton of delayed refs, and it makes
598  * sense not to join the transaction while it is trying to flush the current
599  * queue of delayed refs out.
600  *
601  * This is used by the drop snapshot code only
602  */
603 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
604 {
605         DEFINE_WAIT(wait);
606
607         mutex_lock(&info->trans_mutex);
608         while (info->running_transaction &&
609                info->running_transaction->delayed_refs.flushing) {
610                 prepare_to_wait(&info->transaction_wait, &wait,
611                                 TASK_UNINTERRUPTIBLE);
612                 mutex_unlock(&info->trans_mutex);
613
614                 schedule();
615
616                 mutex_lock(&info->trans_mutex);
617                 finish_wait(&info->transaction_wait, &wait);
618         }
619         mutex_unlock(&info->trans_mutex);
620         return 0;
621 }
622
623 /*
624  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
625  * all of them
626  */
627 int btrfs_drop_dead_root(struct btrfs_root *root)
628 {
629         struct btrfs_trans_handle *trans;
630         struct btrfs_root *tree_root = root->fs_info->tree_root;
631         unsigned long nr;
632         int ret;
633
634         while (1) {
635                 /*
636                  * we don't want to jump in and create a bunch of
637                  * delayed refs if the transaction is starting to close
638                  */
639                 wait_transaction_pre_flush(tree_root->fs_info);
640                 trans = btrfs_start_transaction(tree_root, 1);
641
642                 /*
643                  * we've joined a transaction, make sure it isn't
644                  * closing right now
645                  */
646                 if (trans->transaction->delayed_refs.flushing) {
647                         btrfs_end_transaction(trans, tree_root);
648                         continue;
649                 }
650
651                 ret = btrfs_drop_snapshot(trans, root);
652                 if (ret != -EAGAIN)
653                         break;
654
655                 ret = btrfs_update_root(trans, tree_root,
656                                         &root->root_key,
657                                         &root->root_item);
658                 if (ret)
659                         break;
660
661                 nr = trans->blocks_used;
662                 ret = btrfs_end_transaction(trans, tree_root);
663                 BUG_ON(ret);
664
665                 btrfs_btree_balance_dirty(tree_root, nr);
666                 cond_resched();
667         }
668         BUG_ON(ret);
669
670         ret = btrfs_del_root(trans, tree_root, &root->root_key);
671         BUG_ON(ret);
672
673         nr = trans->blocks_used;
674         ret = btrfs_end_transaction(trans, tree_root);
675         BUG_ON(ret);
676
677         free_extent_buffer(root->node);
678         free_extent_buffer(root->commit_root);
679         kfree(root);
680
681         btrfs_btree_balance_dirty(tree_root, nr);
682         return ret;
683 }
684
685 /*
686  * new snapshots need to be created at a very specific time in the
687  * transaction commit.  This does the actual creation
688  */
689 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
690                                    struct btrfs_fs_info *fs_info,
691                                    struct btrfs_pending_snapshot *pending)
692 {
693         struct btrfs_key key;
694         struct btrfs_root_item *new_root_item;
695         struct btrfs_root *tree_root = fs_info->tree_root;
696         struct btrfs_root *root = pending->root;
697         struct extent_buffer *tmp;
698         struct extent_buffer *old;
699         int ret;
700         u64 objectid;
701
702         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
703         if (!new_root_item) {
704                 ret = -ENOMEM;
705                 goto fail;
706         }
707         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
708         if (ret)
709                 goto fail;
710
711         record_root_in_trans(trans, root);
712         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
713         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
714
715         key.objectid = objectid;
716         key.offset = 0;
717         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
718
719         old = btrfs_lock_root_node(root);
720         btrfs_cow_block(trans, root, old, NULL, 0, &old);
721         btrfs_set_lock_blocking(old);
722
723         btrfs_copy_root(trans, root, old, &tmp, objectid);
724         btrfs_tree_unlock(old);
725         free_extent_buffer(old);
726
727         btrfs_set_root_node(new_root_item, tmp);
728         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
729                                 new_root_item);
730         btrfs_tree_unlock(tmp);
731         free_extent_buffer(tmp);
732         if (ret)
733                 goto fail;
734
735         key.offset = (u64)-1;
736         memcpy(&pending->root_key, &key, sizeof(key));
737 fail:
738         kfree(new_root_item);
739         return ret;
740 }
741
742 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
743                                    struct btrfs_pending_snapshot *pending)
744 {
745         int ret;
746         int namelen;
747         u64 index = 0;
748         struct btrfs_trans_handle *trans;
749         struct inode *parent_inode;
750         struct inode *inode;
751         struct btrfs_root *parent_root;
752
753         parent_inode = pending->dentry->d_parent->d_inode;
754         parent_root = BTRFS_I(parent_inode)->root;
755         trans = btrfs_join_transaction(parent_root, 1);
756
757         /*
758          * insert the directory item
759          */
760         namelen = strlen(pending->name);
761         ret = btrfs_set_inode_index(parent_inode, &index);
762         ret = btrfs_insert_dir_item(trans, parent_root,
763                             pending->name, namelen,
764                             parent_inode->i_ino,
765                             &pending->root_key, BTRFS_FT_DIR, index);
766
767         if (ret)
768                 goto fail;
769
770         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
771         ret = btrfs_update_inode(trans, parent_root, parent_inode);
772         BUG_ON(ret);
773
774         /* add the backref first */
775         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
776                                  pending->root_key.objectid,
777                                  BTRFS_ROOT_BACKREF_KEY,
778                                  parent_root->root_key.objectid,
779                                  parent_inode->i_ino, index, pending->name,
780                                  namelen);
781
782         BUG_ON(ret);
783
784         /* now add the forward ref */
785         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
786                                  parent_root->root_key.objectid,
787                                  BTRFS_ROOT_REF_KEY,
788                                  pending->root_key.objectid,
789                                  parent_inode->i_ino, index, pending->name,
790                                  namelen);
791
792         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
793         d_instantiate(pending->dentry, inode);
794 fail:
795         btrfs_end_transaction(trans, fs_info->fs_root);
796         return ret;
797 }
798
799 /*
800  * create all the snapshots we've scheduled for creation
801  */
802 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
803                                              struct btrfs_fs_info *fs_info)
804 {
805         struct btrfs_pending_snapshot *pending;
806         struct list_head *head = &trans->transaction->pending_snapshots;
807         int ret;
808
809         list_for_each_entry(pending, head, list) {
810                 ret = create_pending_snapshot(trans, fs_info, pending);
811                 BUG_ON(ret);
812         }
813         return 0;
814 }
815
816 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
817                                              struct btrfs_fs_info *fs_info)
818 {
819         struct btrfs_pending_snapshot *pending;
820         struct list_head *head = &trans->transaction->pending_snapshots;
821         int ret;
822
823         while (!list_empty(head)) {
824                 pending = list_entry(head->next,
825                                      struct btrfs_pending_snapshot, list);
826                 ret = finish_pending_snapshot(fs_info, pending);
827                 BUG_ON(ret);
828                 list_del(&pending->list);
829                 kfree(pending->name);
830                 kfree(pending);
831         }
832         return 0;
833 }
834
835 static void update_super_roots(struct btrfs_root *root)
836 {
837         struct btrfs_root_item *root_item;
838         struct btrfs_super_block *super;
839
840         super = &root->fs_info->super_copy;
841
842         root_item = &root->fs_info->chunk_root->root_item;
843         super->chunk_root = root_item->bytenr;
844         super->chunk_root_generation = root_item->generation;
845         super->chunk_root_level = root_item->level;
846
847         root_item = &root->fs_info->tree_root->root_item;
848         super->root = root_item->bytenr;
849         super->generation = root_item->generation;
850         super->root_level = root_item->level;
851 }
852
853 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
854                              struct btrfs_root *root)
855 {
856         unsigned long joined = 0;
857         unsigned long timeout = 1;
858         struct btrfs_transaction *cur_trans;
859         struct btrfs_transaction *prev_trans = NULL;
860         struct extent_io_tree *pinned_copy;
861         DEFINE_WAIT(wait);
862         int ret;
863         int should_grow = 0;
864         unsigned long now = get_seconds();
865         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
866
867         btrfs_run_ordered_operations(root, 0);
868
869         /* make a pass through all the delayed refs we have so far
870          * any runnings procs may add more while we are here
871          */
872         ret = btrfs_run_delayed_refs(trans, root, 0);
873         BUG_ON(ret);
874
875         cur_trans = trans->transaction;
876         /*
877          * set the flushing flag so procs in this transaction have to
878          * start sending their work down.
879          */
880         cur_trans->delayed_refs.flushing = 1;
881
882         ret = btrfs_run_delayed_refs(trans, root, 0);
883         BUG_ON(ret);
884
885         mutex_lock(&root->fs_info->trans_mutex);
886         if (cur_trans->in_commit) {
887                 cur_trans->use_count++;
888                 mutex_unlock(&root->fs_info->trans_mutex);
889                 btrfs_end_transaction(trans, root);
890
891                 ret = wait_for_commit(root, cur_trans);
892                 BUG_ON(ret);
893
894                 mutex_lock(&root->fs_info->trans_mutex);
895                 put_transaction(cur_trans);
896                 mutex_unlock(&root->fs_info->trans_mutex);
897
898                 return 0;
899         }
900
901         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
902         if (!pinned_copy)
903                 return -ENOMEM;
904
905         extent_io_tree_init(pinned_copy,
906                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
907
908         trans->transaction->in_commit = 1;
909         trans->transaction->blocked = 1;
910         if (cur_trans->list.prev != &root->fs_info->trans_list) {
911                 prev_trans = list_entry(cur_trans->list.prev,
912                                         struct btrfs_transaction, list);
913                 if (!prev_trans->commit_done) {
914                         prev_trans->use_count++;
915                         mutex_unlock(&root->fs_info->trans_mutex);
916
917                         wait_for_commit(root, prev_trans);
918
919                         mutex_lock(&root->fs_info->trans_mutex);
920                         put_transaction(prev_trans);
921                 }
922         }
923
924         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
925                 should_grow = 1;
926
927         do {
928                 int snap_pending = 0;
929                 joined = cur_trans->num_joined;
930                 if (!list_empty(&trans->transaction->pending_snapshots))
931                         snap_pending = 1;
932
933                 WARN_ON(cur_trans != trans->transaction);
934                 prepare_to_wait(&cur_trans->writer_wait, &wait,
935                                 TASK_UNINTERRUPTIBLE);
936
937                 if (cur_trans->num_writers > 1)
938                         timeout = MAX_SCHEDULE_TIMEOUT;
939                 else if (should_grow)
940                         timeout = 1;
941
942                 mutex_unlock(&root->fs_info->trans_mutex);
943
944                 if (flush_on_commit || snap_pending) {
945                         if (flush_on_commit)
946                                 btrfs_start_delalloc_inodes(root);
947                         ret = btrfs_wait_ordered_extents(root, 1);
948                         BUG_ON(ret);
949                 }
950
951                 /*
952                  * rename don't use btrfs_join_transaction, so, once we
953                  * set the transaction to blocked above, we aren't going
954                  * to get any new ordered operations.  We can safely run
955                  * it here and no for sure that nothing new will be added
956                  * to the list
957                  */
958                 btrfs_run_ordered_operations(root, 1);
959
960                 smp_mb();
961                 if (cur_trans->num_writers > 1 || should_grow)
962                         schedule_timeout(timeout);
963
964                 mutex_lock(&root->fs_info->trans_mutex);
965                 finish_wait(&cur_trans->writer_wait, &wait);
966         } while (cur_trans->num_writers > 1 ||
967                  (should_grow && cur_trans->num_joined != joined));
968
969         ret = create_pending_snapshots(trans, root->fs_info);
970         BUG_ON(ret);
971
972         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
973         BUG_ON(ret);
974
975         WARN_ON(cur_trans != trans->transaction);
976
977         /* btrfs_commit_tree_roots is responsible for getting the
978          * various roots consistent with each other.  Every pointer
979          * in the tree of tree roots has to point to the most up to date
980          * root for every subvolume and other tree.  So, we have to keep
981          * the tree logging code from jumping in and changing any
982          * of the trees.
983          *
984          * At this point in the commit, there can't be any tree-log
985          * writers, but a little lower down we drop the trans mutex
986          * and let new people in.  By holding the tree_log_mutex
987          * from now until after the super is written, we avoid races
988          * with the tree-log code.
989          */
990         mutex_lock(&root->fs_info->tree_log_mutex);
991
992         ret = commit_fs_roots(trans, root);
993         BUG_ON(ret);
994
995         /* commit_fs_roots gets rid of all the tree log roots, it is now
996          * safe to free the root of tree log roots
997          */
998         btrfs_free_log_root_tree(trans, root->fs_info);
999
1000         ret = commit_cowonly_roots(trans, root);
1001         BUG_ON(ret);
1002
1003         cur_trans = root->fs_info->running_transaction;
1004         spin_lock(&root->fs_info->new_trans_lock);
1005         root->fs_info->running_transaction = NULL;
1006         spin_unlock(&root->fs_info->new_trans_lock);
1007
1008         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1009                             root->fs_info->tree_root->node);
1010         free_extent_buffer(root->fs_info->tree_root->commit_root);
1011         root->fs_info->tree_root->commit_root =
1012                                 btrfs_root_node(root->fs_info->tree_root);
1013
1014         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1015                             root->fs_info->chunk_root->node);
1016         free_extent_buffer(root->fs_info->chunk_root->commit_root);
1017         root->fs_info->chunk_root->commit_root =
1018                                 btrfs_root_node(root->fs_info->chunk_root);
1019
1020         update_super_roots(root);
1021
1022         if (!root->fs_info->log_root_recovering) {
1023                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1024                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1025         }
1026
1027         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1028                sizeof(root->fs_info->super_copy));
1029
1030         btrfs_copy_pinned(root, pinned_copy);
1031
1032         trans->transaction->blocked = 0;
1033
1034         wake_up(&root->fs_info->transaction_wait);
1035
1036         mutex_unlock(&root->fs_info->trans_mutex);
1037         ret = btrfs_write_and_wait_transaction(trans, root);
1038         BUG_ON(ret);
1039         write_ctree_super(trans, root, 0);
1040
1041         /*
1042          * the super is written, we can safely allow the tree-loggers
1043          * to go about their business
1044          */
1045         mutex_unlock(&root->fs_info->tree_log_mutex);
1046
1047         btrfs_finish_extent_commit(trans, root, pinned_copy);
1048         kfree(pinned_copy);
1049
1050         /* do the directory inserts of any pending snapshot creations */
1051         finish_pending_snapshots(trans, root->fs_info);
1052
1053         mutex_lock(&root->fs_info->trans_mutex);
1054
1055         cur_trans->commit_done = 1;
1056
1057         root->fs_info->last_trans_committed = cur_trans->transid;
1058         wake_up(&cur_trans->commit_wait);
1059
1060         put_transaction(cur_trans);
1061         put_transaction(cur_trans);
1062
1063         mutex_unlock(&root->fs_info->trans_mutex);
1064
1065         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1066         return ret;
1067 }
1068
1069 /*
1070  * interface function to delete all the snapshots we have scheduled for deletion
1071  */
1072 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1073 {
1074         LIST_HEAD(list);
1075         struct btrfs_fs_info *fs_info = root->fs_info;
1076
1077         mutex_lock(&fs_info->trans_mutex);
1078         list_splice_init(&fs_info->dead_roots, &list);
1079         mutex_unlock(&fs_info->trans_mutex);
1080
1081         while (!list_empty(&list)) {
1082                 root = list_entry(list.next, struct btrfs_root, root_list);
1083                 list_del_init(&root->root_list);
1084                 btrfs_drop_dead_root(root);
1085         }
1086         return 0;
1087 }