]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/transaction.c
Merge tag 'pm2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(atomic_read(&transaction->use_count) == 0);
39         if (atomic_dec_and_test(&transaction->use_count)) {
40                 BUG_ON(!list_empty(&transaction->list));
41                 WARN_ON(transaction->delayed_refs.root.rb_node);
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 if (!nofail) {
71                         spin_unlock(&fs_info->trans_lock);
72                         return -EBUSY;
73                 }
74         }
75
76         cur_trans = fs_info->running_transaction;
77         if (cur_trans) {
78                 if (cur_trans->aborted) {
79                         spin_unlock(&fs_info->trans_lock);
80                         return cur_trans->aborted;
81                 }
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&fs_info->trans_lock);
86                 return 0;
87         }
88         spin_unlock(&fs_info->trans_lock);
89
90         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91         if (!cur_trans)
92                 return -ENOMEM;
93
94         spin_lock(&fs_info->trans_lock);
95         if (fs_info->running_transaction) {
96                 /*
97                  * someone started a transaction after we unlocked.  Make sure
98                  * to redo the trans_no_join checks above
99                  */
100                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101                 cur_trans = fs_info->running_transaction;
102                 goto loop;
103         } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104                 spin_unlock(&fs_info->trans_lock);
105                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106                 return -EROFS;
107         }
108
109         atomic_set(&cur_trans->num_writers, 1);
110         cur_trans->num_joined = 0;
111         init_waitqueue_head(&cur_trans->writer_wait);
112         init_waitqueue_head(&cur_trans->commit_wait);
113         cur_trans->in_commit = 0;
114         cur_trans->blocked = 0;
115         /*
116          * One for this trans handle, one so it will live on until we
117          * commit the transaction.
118          */
119         atomic_set(&cur_trans->use_count, 2);
120         cur_trans->commit_done = 0;
121         cur_trans->start_time = get_seconds();
122
123         cur_trans->delayed_refs.root = RB_ROOT;
124         cur_trans->delayed_refs.num_entries = 0;
125         cur_trans->delayed_refs.num_heads_ready = 0;
126         cur_trans->delayed_refs.num_heads = 0;
127         cur_trans->delayed_refs.flushing = 0;
128         cur_trans->delayed_refs.run_delayed_start = 0;
129
130         /*
131          * although the tree mod log is per file system and not per transaction,
132          * the log must never go across transaction boundaries.
133          */
134         smp_mb();
135         if (!list_empty(&fs_info->tree_mod_seq_list)) {
136                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
137                         "creating a fresh transaction\n");
138                 WARN_ON(1);
139         }
140         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
141                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
142                         "creating a fresh transaction\n");
143                 WARN_ON(1);
144         }
145         atomic_set(&fs_info->tree_mod_seq, 0);
146
147         spin_lock_init(&cur_trans->commit_lock);
148         spin_lock_init(&cur_trans->delayed_refs.lock);
149
150         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
151         list_add_tail(&cur_trans->list, &fs_info->trans_list);
152         extent_io_tree_init(&cur_trans->dirty_pages,
153                              fs_info->btree_inode->i_mapping);
154         fs_info->generation++;
155         cur_trans->transid = fs_info->generation;
156         fs_info->running_transaction = cur_trans;
157         cur_trans->aborted = 0;
158         spin_unlock(&fs_info->trans_lock);
159
160         return 0;
161 }
162
163 /*
164  * this does all the record keeping required to make sure that a reference
165  * counted root is properly recorded in a given transaction.  This is required
166  * to make sure the old root from before we joined the transaction is deleted
167  * when the transaction commits
168  */
169 static int record_root_in_trans(struct btrfs_trans_handle *trans,
170                                struct btrfs_root *root)
171 {
172         if (root->ref_cows && root->last_trans < trans->transid) {
173                 WARN_ON(root == root->fs_info->extent_root);
174                 WARN_ON(root->commit_root != root->node);
175
176                 /*
177                  * see below for in_trans_setup usage rules
178                  * we have the reloc mutex held now, so there
179                  * is only one writer in this function
180                  */
181                 root->in_trans_setup = 1;
182
183                 /* make sure readers find in_trans_setup before
184                  * they find our root->last_trans update
185                  */
186                 smp_wmb();
187
188                 spin_lock(&root->fs_info->fs_roots_radix_lock);
189                 if (root->last_trans == trans->transid) {
190                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
191                         return 0;
192                 }
193                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
194                            (unsigned long)root->root_key.objectid,
195                            BTRFS_ROOT_TRANS_TAG);
196                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
197                 root->last_trans = trans->transid;
198
199                 /* this is pretty tricky.  We don't want to
200                  * take the relocation lock in btrfs_record_root_in_trans
201                  * unless we're really doing the first setup for this root in
202                  * this transaction.
203                  *
204                  * Normally we'd use root->last_trans as a flag to decide
205                  * if we want to take the expensive mutex.
206                  *
207                  * But, we have to set root->last_trans before we
208                  * init the relocation root, otherwise, we trip over warnings
209                  * in ctree.c.  The solution used here is to flag ourselves
210                  * with root->in_trans_setup.  When this is 1, we're still
211                  * fixing up the reloc trees and everyone must wait.
212                  *
213                  * When this is zero, they can trust root->last_trans and fly
214                  * through btrfs_record_root_in_trans without having to take the
215                  * lock.  smp_wmb() makes sure that all the writes above are
216                  * done before we pop in the zero below
217                  */
218                 btrfs_init_reloc_root(trans, root);
219                 smp_wmb();
220                 root->in_trans_setup = 0;
221         }
222         return 0;
223 }
224
225
226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
227                                struct btrfs_root *root)
228 {
229         if (!root->ref_cows)
230                 return 0;
231
232         /*
233          * see record_root_in_trans for comments about in_trans_setup usage
234          * and barriers
235          */
236         smp_rmb();
237         if (root->last_trans == trans->transid &&
238             !root->in_trans_setup)
239                 return 0;
240
241         mutex_lock(&root->fs_info->reloc_mutex);
242         record_root_in_trans(trans, root);
243         mutex_unlock(&root->fs_info->reloc_mutex);
244
245         return 0;
246 }
247
248 /* wait for commit against the current transaction to become unblocked
249  * when this is done, it is safe to start a new transaction, but the current
250  * transaction might not be fully on disk.
251  */
252 static void wait_current_trans(struct btrfs_root *root)
253 {
254         struct btrfs_transaction *cur_trans;
255
256         spin_lock(&root->fs_info->trans_lock);
257         cur_trans = root->fs_info->running_transaction;
258         if (cur_trans && cur_trans->blocked) {
259                 atomic_inc(&cur_trans->use_count);
260                 spin_unlock(&root->fs_info->trans_lock);
261
262                 wait_event(root->fs_info->transaction_wait,
263                            !cur_trans->blocked);
264                 put_transaction(cur_trans);
265         } else {
266                 spin_unlock(&root->fs_info->trans_lock);
267         }
268 }
269
270 enum btrfs_trans_type {
271         TRANS_START,
272         TRANS_JOIN,
273         TRANS_USERSPACE,
274         TRANS_JOIN_NOLOCK,
275 };
276
277 static int may_wait_transaction(struct btrfs_root *root, int type)
278 {
279         if (root->fs_info->log_root_recovering)
280                 return 0;
281
282         if (type == TRANS_USERSPACE)
283                 return 1;
284
285         if (type == TRANS_START &&
286             !atomic_read(&root->fs_info->open_ioctl_trans))
287                 return 1;
288
289         return 0;
290 }
291
292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
293                                                     u64 num_items, int type)
294 {
295         struct btrfs_trans_handle *h;
296         struct btrfs_transaction *cur_trans;
297         u64 num_bytes = 0;
298         int ret;
299         u64 qgroup_reserved = 0;
300
301         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
302                 return ERR_PTR(-EROFS);
303
304         if (current->journal_info) {
305                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
306                 h = current->journal_info;
307                 h->use_count++;
308                 h->orig_rsv = h->block_rsv;
309                 h->block_rsv = NULL;
310                 goto got_it;
311         }
312
313         /*
314          * Do the reservation before we join the transaction so we can do all
315          * the appropriate flushing if need be.
316          */
317         if (num_items > 0 && root != root->fs_info->chunk_root) {
318                 if (root->fs_info->quota_enabled &&
319                     is_fstree(root->root_key.objectid)) {
320                         qgroup_reserved = num_items * root->leafsize;
321                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
322                         if (ret)
323                                 return ERR_PTR(ret);
324                 }
325
326                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
327                 ret = btrfs_block_rsv_add(root,
328                                           &root->fs_info->trans_block_rsv,
329                                           num_bytes);
330                 if (ret)
331                         return ERR_PTR(ret);
332         }
333 again:
334         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
335         if (!h)
336                 return ERR_PTR(-ENOMEM);
337
338         sb_start_intwrite(root->fs_info->sb);
339
340         if (may_wait_transaction(root, type))
341                 wait_current_trans(root);
342
343         do {
344                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
345                 if (ret == -EBUSY)
346                         wait_current_trans(root);
347         } while (ret == -EBUSY);
348
349         if (ret < 0) {
350                 sb_end_intwrite(root->fs_info->sb);
351                 kmem_cache_free(btrfs_trans_handle_cachep, h);
352                 return ERR_PTR(ret);
353         }
354
355         cur_trans = root->fs_info->running_transaction;
356
357         h->transid = cur_trans->transid;
358         h->transaction = cur_trans;
359         h->blocks_used = 0;
360         h->bytes_reserved = 0;
361         h->root = root;
362         h->delayed_ref_updates = 0;
363         h->use_count = 1;
364         h->adding_csums = 0;
365         h->block_rsv = NULL;
366         h->orig_rsv = NULL;
367         h->aborted = 0;
368         h->qgroup_reserved = qgroup_reserved;
369         h->delayed_ref_elem.seq = 0;
370         INIT_LIST_HEAD(&h->qgroup_ref_list);
371
372         smp_mb();
373         if (cur_trans->blocked && may_wait_transaction(root, type)) {
374                 btrfs_commit_transaction(h, root);
375                 goto again;
376         }
377
378         if (num_bytes) {
379                 trace_btrfs_space_reservation(root->fs_info, "transaction",
380                                               h->transid, num_bytes, 1);
381                 h->block_rsv = &root->fs_info->trans_block_rsv;
382                 h->bytes_reserved = num_bytes;
383         }
384
385 got_it:
386         btrfs_record_root_in_trans(h, root);
387
388         if (!current->journal_info && type != TRANS_USERSPACE)
389                 current->journal_info = h;
390         return h;
391 }
392
393 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
394                                                    int num_items)
395 {
396         return start_transaction(root, num_items, TRANS_START);
397 }
398 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
399 {
400         return start_transaction(root, 0, TRANS_JOIN);
401 }
402
403 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
404 {
405         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
406 }
407
408 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
409 {
410         return start_transaction(root, 0, TRANS_USERSPACE);
411 }
412
413 /* wait for a transaction commit to be fully complete */
414 static noinline void wait_for_commit(struct btrfs_root *root,
415                                     struct btrfs_transaction *commit)
416 {
417         wait_event(commit->commit_wait, commit->commit_done);
418 }
419
420 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
421 {
422         struct btrfs_transaction *cur_trans = NULL, *t;
423         int ret;
424
425         ret = 0;
426         if (transid) {
427                 if (transid <= root->fs_info->last_trans_committed)
428                         goto out;
429
430                 /* find specified transaction */
431                 spin_lock(&root->fs_info->trans_lock);
432                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
433                         if (t->transid == transid) {
434                                 cur_trans = t;
435                                 atomic_inc(&cur_trans->use_count);
436                                 break;
437                         }
438                         if (t->transid > transid)
439                                 break;
440                 }
441                 spin_unlock(&root->fs_info->trans_lock);
442                 ret = -EINVAL;
443                 if (!cur_trans)
444                         goto out;  /* bad transid */
445         } else {
446                 /* find newest transaction that is committing | committed */
447                 spin_lock(&root->fs_info->trans_lock);
448                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
449                                             list) {
450                         if (t->in_commit) {
451                                 if (t->commit_done)
452                                         break;
453                                 cur_trans = t;
454                                 atomic_inc(&cur_trans->use_count);
455                                 break;
456                         }
457                 }
458                 spin_unlock(&root->fs_info->trans_lock);
459                 if (!cur_trans)
460                         goto out;  /* nothing committing|committed */
461         }
462
463         wait_for_commit(root, cur_trans);
464
465         put_transaction(cur_trans);
466         ret = 0;
467 out:
468         return ret;
469 }
470
471 void btrfs_throttle(struct btrfs_root *root)
472 {
473         if (!atomic_read(&root->fs_info->open_ioctl_trans))
474                 wait_current_trans(root);
475 }
476
477 static int should_end_transaction(struct btrfs_trans_handle *trans,
478                                   struct btrfs_root *root)
479 {
480         int ret;
481
482         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
483         return ret ? 1 : 0;
484 }
485
486 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
487                                  struct btrfs_root *root)
488 {
489         struct btrfs_transaction *cur_trans = trans->transaction;
490         int updates;
491         int err;
492
493         smp_mb();
494         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
495                 return 1;
496
497         updates = trans->delayed_ref_updates;
498         trans->delayed_ref_updates = 0;
499         if (updates) {
500                 err = btrfs_run_delayed_refs(trans, root, updates);
501                 if (err) /* Error code will also eval true */
502                         return err;
503         }
504
505         return should_end_transaction(trans, root);
506 }
507
508 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
509                           struct btrfs_root *root, int throttle, int lock)
510 {
511         struct btrfs_transaction *cur_trans = trans->transaction;
512         struct btrfs_fs_info *info = root->fs_info;
513         int count = 0;
514         int err = 0;
515
516         if (--trans->use_count) {
517                 trans->block_rsv = trans->orig_rsv;
518                 return 0;
519         }
520
521         /*
522          * do the qgroup accounting as early as possible
523          */
524         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
525
526         btrfs_trans_release_metadata(trans, root);
527         trans->block_rsv = NULL;
528         /*
529          * the same root has to be passed to start_transaction and
530          * end_transaction. Subvolume quota depends on this.
531          */
532         WARN_ON(trans->root != root);
533
534         if (trans->qgroup_reserved) {
535                 btrfs_qgroup_free(root, trans->qgroup_reserved);
536                 trans->qgroup_reserved = 0;
537         }
538
539         while (count < 2) {
540                 unsigned long cur = trans->delayed_ref_updates;
541                 trans->delayed_ref_updates = 0;
542                 if (cur &&
543                     trans->transaction->delayed_refs.num_heads_ready > 64) {
544                         trans->delayed_ref_updates = 0;
545                         btrfs_run_delayed_refs(trans, root, cur);
546                 } else {
547                         break;
548                 }
549                 count++;
550         }
551         btrfs_trans_release_metadata(trans, root);
552         trans->block_rsv = NULL;
553
554         sb_end_intwrite(root->fs_info->sb);
555
556         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
557             should_end_transaction(trans, root)) {
558                 trans->transaction->blocked = 1;
559                 smp_wmb();
560         }
561
562         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
563                 if (throttle) {
564                         /*
565                          * We may race with somebody else here so end up having
566                          * to call end_transaction on ourselves again, so inc
567                          * our use_count.
568                          */
569                         trans->use_count++;
570                         return btrfs_commit_transaction(trans, root);
571                 } else {
572                         wake_up_process(info->transaction_kthread);
573                 }
574         }
575
576         WARN_ON(cur_trans != info->running_transaction);
577         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
578         atomic_dec(&cur_trans->num_writers);
579
580         smp_mb();
581         if (waitqueue_active(&cur_trans->writer_wait))
582                 wake_up(&cur_trans->writer_wait);
583         put_transaction(cur_trans);
584
585         if (current->journal_info == trans)
586                 current->journal_info = NULL;
587
588         if (throttle)
589                 btrfs_run_delayed_iputs(root);
590
591         if (trans->aborted ||
592             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
593                 err = -EIO;
594         }
595         assert_qgroups_uptodate(trans);
596
597         memset(trans, 0, sizeof(*trans));
598         kmem_cache_free(btrfs_trans_handle_cachep, trans);
599         return err;
600 }
601
602 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
603                           struct btrfs_root *root)
604 {
605         int ret;
606
607         ret = __btrfs_end_transaction(trans, root, 0, 1);
608         if (ret)
609                 return ret;
610         return 0;
611 }
612
613 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
614                                    struct btrfs_root *root)
615 {
616         int ret;
617
618         ret = __btrfs_end_transaction(trans, root, 1, 1);
619         if (ret)
620                 return ret;
621         return 0;
622 }
623
624 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
625                                  struct btrfs_root *root)
626 {
627         int ret;
628
629         ret = __btrfs_end_transaction(trans, root, 0, 0);
630         if (ret)
631                 return ret;
632         return 0;
633 }
634
635 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
636                                 struct btrfs_root *root)
637 {
638         return __btrfs_end_transaction(trans, root, 1, 1);
639 }
640
641 /*
642  * when btree blocks are allocated, they have some corresponding bits set for
643  * them in one of two extent_io trees.  This is used to make sure all of
644  * those extents are sent to disk but does not wait on them
645  */
646 int btrfs_write_marked_extents(struct btrfs_root *root,
647                                struct extent_io_tree *dirty_pages, int mark)
648 {
649         int err = 0;
650         int werr = 0;
651         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
652         u64 start = 0;
653         u64 end;
654
655         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
656                                       mark)) {
657                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
658                                    GFP_NOFS);
659                 err = filemap_fdatawrite_range(mapping, start, end);
660                 if (err)
661                         werr = err;
662                 cond_resched();
663                 start = end + 1;
664         }
665         if (err)
666                 werr = err;
667         return werr;
668 }
669
670 /*
671  * when btree blocks are allocated, they have some corresponding bits set for
672  * them in one of two extent_io trees.  This is used to make sure all of
673  * those extents are on disk for transaction or log commit.  We wait
674  * on all the pages and clear them from the dirty pages state tree
675  */
676 int btrfs_wait_marked_extents(struct btrfs_root *root,
677                               struct extent_io_tree *dirty_pages, int mark)
678 {
679         int err = 0;
680         int werr = 0;
681         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
682         u64 start = 0;
683         u64 end;
684
685         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
686                                       EXTENT_NEED_WAIT)) {
687                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
688                 err = filemap_fdatawait_range(mapping, start, end);
689                 if (err)
690                         werr = err;
691                 cond_resched();
692                 start = end + 1;
693         }
694         if (err)
695                 werr = err;
696         return werr;
697 }
698
699 /*
700  * when btree blocks are allocated, they have some corresponding bits set for
701  * them in one of two extent_io trees.  This is used to make sure all of
702  * those extents are on disk for transaction or log commit
703  */
704 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
705                                 struct extent_io_tree *dirty_pages, int mark)
706 {
707         int ret;
708         int ret2;
709
710         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
711         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
712
713         if (ret)
714                 return ret;
715         if (ret2)
716                 return ret2;
717         return 0;
718 }
719
720 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
721                                      struct btrfs_root *root)
722 {
723         if (!trans || !trans->transaction) {
724                 struct inode *btree_inode;
725                 btree_inode = root->fs_info->btree_inode;
726                 return filemap_write_and_wait(btree_inode->i_mapping);
727         }
728         return btrfs_write_and_wait_marked_extents(root,
729                                            &trans->transaction->dirty_pages,
730                                            EXTENT_DIRTY);
731 }
732
733 /*
734  * this is used to update the root pointer in the tree of tree roots.
735  *
736  * But, in the case of the extent allocation tree, updating the root
737  * pointer may allocate blocks which may change the root of the extent
738  * allocation tree.
739  *
740  * So, this loops and repeats and makes sure the cowonly root didn't
741  * change while the root pointer was being updated in the metadata.
742  */
743 static int update_cowonly_root(struct btrfs_trans_handle *trans,
744                                struct btrfs_root *root)
745 {
746         int ret;
747         u64 old_root_bytenr;
748         u64 old_root_used;
749         struct btrfs_root *tree_root = root->fs_info->tree_root;
750
751         old_root_used = btrfs_root_used(&root->root_item);
752         btrfs_write_dirty_block_groups(trans, root);
753
754         while (1) {
755                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
756                 if (old_root_bytenr == root->node->start &&
757                     old_root_used == btrfs_root_used(&root->root_item))
758                         break;
759
760                 btrfs_set_root_node(&root->root_item, root->node);
761                 ret = btrfs_update_root(trans, tree_root,
762                                         &root->root_key,
763                                         &root->root_item);
764                 if (ret)
765                         return ret;
766
767                 old_root_used = btrfs_root_used(&root->root_item);
768                 ret = btrfs_write_dirty_block_groups(trans, root);
769                 if (ret)
770                         return ret;
771         }
772
773         if (root != root->fs_info->extent_root)
774                 switch_commit_root(root);
775
776         return 0;
777 }
778
779 /*
780  * update all the cowonly tree roots on disk
781  *
782  * The error handling in this function may not be obvious. Any of the
783  * failures will cause the file system to go offline. We still need
784  * to clean up the delayed refs.
785  */
786 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
787                                          struct btrfs_root *root)
788 {
789         struct btrfs_fs_info *fs_info = root->fs_info;
790         struct list_head *next;
791         struct extent_buffer *eb;
792         int ret;
793
794         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
795         if (ret)
796                 return ret;
797
798         eb = btrfs_lock_root_node(fs_info->tree_root);
799         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
800                               0, &eb);
801         btrfs_tree_unlock(eb);
802         free_extent_buffer(eb);
803
804         if (ret)
805                 return ret;
806
807         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
808         if (ret)
809                 return ret;
810
811         ret = btrfs_run_dev_stats(trans, root->fs_info);
812         BUG_ON(ret);
813
814         ret = btrfs_run_qgroups(trans, root->fs_info);
815         BUG_ON(ret);
816
817         /* run_qgroups might have added some more refs */
818         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
819         BUG_ON(ret);
820
821         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
822                 next = fs_info->dirty_cowonly_roots.next;
823                 list_del_init(next);
824                 root = list_entry(next, struct btrfs_root, dirty_list);
825
826                 ret = update_cowonly_root(trans, root);
827                 if (ret)
828                         return ret;
829         }
830
831         down_write(&fs_info->extent_commit_sem);
832         switch_commit_root(fs_info->extent_root);
833         up_write(&fs_info->extent_commit_sem);
834
835         return 0;
836 }
837
838 /*
839  * dead roots are old snapshots that need to be deleted.  This allocates
840  * a dirty root struct and adds it into the list of dead roots that need to
841  * be deleted
842  */
843 int btrfs_add_dead_root(struct btrfs_root *root)
844 {
845         spin_lock(&root->fs_info->trans_lock);
846         list_add(&root->root_list, &root->fs_info->dead_roots);
847         spin_unlock(&root->fs_info->trans_lock);
848         return 0;
849 }
850
851 /*
852  * update all the cowonly tree roots on disk
853  */
854 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
855                                     struct btrfs_root *root)
856 {
857         struct btrfs_root *gang[8];
858         struct btrfs_fs_info *fs_info = root->fs_info;
859         int i;
860         int ret;
861         int err = 0;
862
863         spin_lock(&fs_info->fs_roots_radix_lock);
864         while (1) {
865                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
866                                                  (void **)gang, 0,
867                                                  ARRAY_SIZE(gang),
868                                                  BTRFS_ROOT_TRANS_TAG);
869                 if (ret == 0)
870                         break;
871                 for (i = 0; i < ret; i++) {
872                         root = gang[i];
873                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
874                                         (unsigned long)root->root_key.objectid,
875                                         BTRFS_ROOT_TRANS_TAG);
876                         spin_unlock(&fs_info->fs_roots_radix_lock);
877
878                         btrfs_free_log(trans, root);
879                         btrfs_update_reloc_root(trans, root);
880                         btrfs_orphan_commit_root(trans, root);
881
882                         btrfs_save_ino_cache(root, trans);
883
884                         /* see comments in should_cow_block() */
885                         root->force_cow = 0;
886                         smp_wmb();
887
888                         if (root->commit_root != root->node) {
889                                 mutex_lock(&root->fs_commit_mutex);
890                                 switch_commit_root(root);
891                                 btrfs_unpin_free_ino(root);
892                                 mutex_unlock(&root->fs_commit_mutex);
893
894                                 btrfs_set_root_node(&root->root_item,
895                                                     root->node);
896                         }
897
898                         err = btrfs_update_root(trans, fs_info->tree_root,
899                                                 &root->root_key,
900                                                 &root->root_item);
901                         spin_lock(&fs_info->fs_roots_radix_lock);
902                         if (err)
903                                 break;
904                 }
905         }
906         spin_unlock(&fs_info->fs_roots_radix_lock);
907         return err;
908 }
909
910 /*
911  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
912  * otherwise every leaf in the btree is read and defragged.
913  */
914 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
915 {
916         struct btrfs_fs_info *info = root->fs_info;
917         struct btrfs_trans_handle *trans;
918         int ret;
919         unsigned long nr;
920
921         if (xchg(&root->defrag_running, 1))
922                 return 0;
923
924         while (1) {
925                 trans = btrfs_start_transaction(root, 0);
926                 if (IS_ERR(trans))
927                         return PTR_ERR(trans);
928
929                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
930
931                 nr = trans->blocks_used;
932                 btrfs_end_transaction(trans, root);
933                 btrfs_btree_balance_dirty(info->tree_root, nr);
934                 cond_resched();
935
936                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
937                         break;
938         }
939         root->defrag_running = 0;
940         return ret;
941 }
942
943 /*
944  * new snapshots need to be created at a very specific time in the
945  * transaction commit.  This does the actual creation
946  */
947 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
948                                    struct btrfs_fs_info *fs_info,
949                                    struct btrfs_pending_snapshot *pending)
950 {
951         struct btrfs_key key;
952         struct btrfs_root_item *new_root_item;
953         struct btrfs_root *tree_root = fs_info->tree_root;
954         struct btrfs_root *root = pending->root;
955         struct btrfs_root *parent_root;
956         struct btrfs_block_rsv *rsv;
957         struct inode *parent_inode;
958         struct dentry *parent;
959         struct dentry *dentry;
960         struct extent_buffer *tmp;
961         struct extent_buffer *old;
962         struct timespec cur_time = CURRENT_TIME;
963         int ret;
964         u64 to_reserve = 0;
965         u64 index = 0;
966         u64 objectid;
967         u64 root_flags;
968         uuid_le new_uuid;
969
970         rsv = trans->block_rsv;
971
972         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
973         if (!new_root_item) {
974                 ret = pending->error = -ENOMEM;
975                 goto fail;
976         }
977
978         ret = btrfs_find_free_objectid(tree_root, &objectid);
979         if (ret) {
980                 pending->error = ret;
981                 goto fail;
982         }
983
984         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
985
986         if (to_reserve > 0) {
987                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
988                                                   to_reserve);
989                 if (ret) {
990                         pending->error = ret;
991                         goto fail;
992                 }
993         }
994
995         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
996                                    objectid, pending->inherit);
997         kfree(pending->inherit);
998         if (ret) {
999                 pending->error = ret;
1000                 goto fail;
1001         }
1002
1003         key.objectid = objectid;
1004         key.offset = (u64)-1;
1005         key.type = BTRFS_ROOT_ITEM_KEY;
1006
1007         trans->block_rsv = &pending->block_rsv;
1008
1009         dentry = pending->dentry;
1010         parent = dget_parent(dentry);
1011         parent_inode = parent->d_inode;
1012         parent_root = BTRFS_I(parent_inode)->root;
1013         record_root_in_trans(trans, parent_root);
1014
1015         /*
1016          * insert the directory item
1017          */
1018         ret = btrfs_set_inode_index(parent_inode, &index);
1019         BUG_ON(ret); /* -ENOMEM */
1020         ret = btrfs_insert_dir_item(trans, parent_root,
1021                                 dentry->d_name.name, dentry->d_name.len,
1022                                 parent_inode, &key,
1023                                 BTRFS_FT_DIR, index);
1024         if (ret == -EEXIST) {
1025                 pending->error = -EEXIST;
1026                 dput(parent);
1027                 goto fail;
1028         } else if (ret) {
1029                 goto abort_trans_dput;
1030         }
1031
1032         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1033                                          dentry->d_name.len * 2);
1034         ret = btrfs_update_inode(trans, parent_root, parent_inode);
1035         if (ret)
1036                 goto abort_trans_dput;
1037
1038         /*
1039          * pull in the delayed directory update
1040          * and the delayed inode item
1041          * otherwise we corrupt the FS during
1042          * snapshot
1043          */
1044         ret = btrfs_run_delayed_items(trans, root);
1045         if (ret) { /* Transaction aborted */
1046                 dput(parent);
1047                 goto fail;
1048         }
1049
1050         record_root_in_trans(trans, root);
1051         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1052         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1053         btrfs_check_and_init_root_item(new_root_item);
1054
1055         root_flags = btrfs_root_flags(new_root_item);
1056         if (pending->readonly)
1057                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1058         else
1059                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1060         btrfs_set_root_flags(new_root_item, root_flags);
1061
1062         btrfs_set_root_generation_v2(new_root_item,
1063                         trans->transid);
1064         uuid_le_gen(&new_uuid);
1065         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1066         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1067                         BTRFS_UUID_SIZE);
1068         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1069         new_root_item->otime.nsec = cpu_to_le64(cur_time.tv_nsec);
1070         btrfs_set_root_otransid(new_root_item, trans->transid);
1071         memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1072         memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1073         btrfs_set_root_stransid(new_root_item, 0);
1074         btrfs_set_root_rtransid(new_root_item, 0);
1075
1076         old = btrfs_lock_root_node(root);
1077         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1078         if (ret) {
1079                 btrfs_tree_unlock(old);
1080                 free_extent_buffer(old);
1081                 goto abort_trans_dput;
1082         }
1083
1084         btrfs_set_lock_blocking(old);
1085
1086         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1087         /* clean up in any case */
1088         btrfs_tree_unlock(old);
1089         free_extent_buffer(old);
1090         if (ret)
1091                 goto abort_trans_dput;
1092
1093         /* see comments in should_cow_block() */
1094         root->force_cow = 1;
1095         smp_wmb();
1096
1097         btrfs_set_root_node(new_root_item, tmp);
1098         /* record when the snapshot was created in key.offset */
1099         key.offset = trans->transid;
1100         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1101         btrfs_tree_unlock(tmp);
1102         free_extent_buffer(tmp);
1103         if (ret)
1104                 goto abort_trans_dput;
1105
1106         /*
1107          * insert root back/forward references
1108          */
1109         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1110                                  parent_root->root_key.objectid,
1111                                  btrfs_ino(parent_inode), index,
1112                                  dentry->d_name.name, dentry->d_name.len);
1113         dput(parent);
1114         if (ret)
1115                 goto fail;
1116
1117         key.offset = (u64)-1;
1118         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1119         if (IS_ERR(pending->snap)) {
1120                 ret = PTR_ERR(pending->snap);
1121                 goto abort_trans;
1122         }
1123
1124         ret = btrfs_reloc_post_snapshot(trans, pending);
1125         if (ret)
1126                 goto abort_trans;
1127         ret = 0;
1128 fail:
1129         kfree(new_root_item);
1130         trans->block_rsv = rsv;
1131         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1132         return ret;
1133
1134 abort_trans_dput:
1135         dput(parent);
1136 abort_trans:
1137         btrfs_abort_transaction(trans, root, ret);
1138         goto fail;
1139 }
1140
1141 /*
1142  * create all the snapshots we've scheduled for creation
1143  */
1144 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1145                                              struct btrfs_fs_info *fs_info)
1146 {
1147         struct btrfs_pending_snapshot *pending;
1148         struct list_head *head = &trans->transaction->pending_snapshots;
1149
1150         list_for_each_entry(pending, head, list)
1151                 create_pending_snapshot(trans, fs_info, pending);
1152         return 0;
1153 }
1154
1155 static void update_super_roots(struct btrfs_root *root)
1156 {
1157         struct btrfs_root_item *root_item;
1158         struct btrfs_super_block *super;
1159
1160         super = root->fs_info->super_copy;
1161
1162         root_item = &root->fs_info->chunk_root->root_item;
1163         super->chunk_root = root_item->bytenr;
1164         super->chunk_root_generation = root_item->generation;
1165         super->chunk_root_level = root_item->level;
1166
1167         root_item = &root->fs_info->tree_root->root_item;
1168         super->root = root_item->bytenr;
1169         super->generation = root_item->generation;
1170         super->root_level = root_item->level;
1171         if (btrfs_test_opt(root, SPACE_CACHE))
1172                 super->cache_generation = root_item->generation;
1173 }
1174
1175 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1176 {
1177         int ret = 0;
1178         spin_lock(&info->trans_lock);
1179         if (info->running_transaction)
1180                 ret = info->running_transaction->in_commit;
1181         spin_unlock(&info->trans_lock);
1182         return ret;
1183 }
1184
1185 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1186 {
1187         int ret = 0;
1188         spin_lock(&info->trans_lock);
1189         if (info->running_transaction)
1190                 ret = info->running_transaction->blocked;
1191         spin_unlock(&info->trans_lock);
1192         return ret;
1193 }
1194
1195 /*
1196  * wait for the current transaction commit to start and block subsequent
1197  * transaction joins
1198  */
1199 static void wait_current_trans_commit_start(struct btrfs_root *root,
1200                                             struct btrfs_transaction *trans)
1201 {
1202         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1203 }
1204
1205 /*
1206  * wait for the current transaction to start and then become unblocked.
1207  * caller holds ref.
1208  */
1209 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1210                                          struct btrfs_transaction *trans)
1211 {
1212         wait_event(root->fs_info->transaction_wait,
1213                    trans->commit_done || (trans->in_commit && !trans->blocked));
1214 }
1215
1216 /*
1217  * commit transactions asynchronously. once btrfs_commit_transaction_async
1218  * returns, any subsequent transaction will not be allowed to join.
1219  */
1220 struct btrfs_async_commit {
1221         struct btrfs_trans_handle *newtrans;
1222         struct btrfs_root *root;
1223         struct delayed_work work;
1224 };
1225
1226 static void do_async_commit(struct work_struct *work)
1227 {
1228         struct btrfs_async_commit *ac =
1229                 container_of(work, struct btrfs_async_commit, work.work);
1230
1231         btrfs_commit_transaction(ac->newtrans, ac->root);
1232         kfree(ac);
1233 }
1234
1235 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1236                                    struct btrfs_root *root,
1237                                    int wait_for_unblock)
1238 {
1239         struct btrfs_async_commit *ac;
1240         struct btrfs_transaction *cur_trans;
1241
1242         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1243         if (!ac)
1244                 return -ENOMEM;
1245
1246         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1247         ac->root = root;
1248         ac->newtrans = btrfs_join_transaction(root);
1249         if (IS_ERR(ac->newtrans)) {
1250                 int err = PTR_ERR(ac->newtrans);
1251                 kfree(ac);
1252                 return err;
1253         }
1254
1255         /* take transaction reference */
1256         cur_trans = trans->transaction;
1257         atomic_inc(&cur_trans->use_count);
1258
1259         btrfs_end_transaction(trans, root);
1260         schedule_delayed_work(&ac->work, 0);
1261
1262         /* wait for transaction to start and unblock */
1263         if (wait_for_unblock)
1264                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1265         else
1266                 wait_current_trans_commit_start(root, cur_trans);
1267
1268         if (current->journal_info == trans)
1269                 current->journal_info = NULL;
1270
1271         put_transaction(cur_trans);
1272         return 0;
1273 }
1274
1275
1276 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1277                                 struct btrfs_root *root, int err)
1278 {
1279         struct btrfs_transaction *cur_trans = trans->transaction;
1280
1281         WARN_ON(trans->use_count > 1);
1282
1283         btrfs_abort_transaction(trans, root, err);
1284
1285         spin_lock(&root->fs_info->trans_lock);
1286         list_del_init(&cur_trans->list);
1287         if (cur_trans == root->fs_info->running_transaction) {
1288                 root->fs_info->running_transaction = NULL;
1289                 root->fs_info->trans_no_join = 0;
1290         }
1291         spin_unlock(&root->fs_info->trans_lock);
1292
1293         btrfs_cleanup_one_transaction(trans->transaction, root);
1294
1295         put_transaction(cur_trans);
1296         put_transaction(cur_trans);
1297
1298         trace_btrfs_transaction_commit(root);
1299
1300         btrfs_scrub_continue(root);
1301
1302         if (current->journal_info == trans)
1303                 current->journal_info = NULL;
1304
1305         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1306 }
1307
1308 /*
1309  * btrfs_transaction state sequence:
1310  *    in_commit = 0, blocked = 0  (initial)
1311  *    in_commit = 1, blocked = 1
1312  *    blocked = 0
1313  *    commit_done = 1
1314  */
1315 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1316                              struct btrfs_root *root)
1317 {
1318         unsigned long joined = 0;
1319         struct btrfs_transaction *cur_trans = trans->transaction;
1320         struct btrfs_transaction *prev_trans = NULL;
1321         DEFINE_WAIT(wait);
1322         int ret = -EIO;
1323         int should_grow = 0;
1324         unsigned long now = get_seconds();
1325         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1326
1327         btrfs_run_ordered_operations(root, 0);
1328
1329         if (cur_trans->aborted)
1330                 goto cleanup_transaction;
1331
1332         /* make a pass through all the delayed refs we have so far
1333          * any runnings procs may add more while we are here
1334          */
1335         ret = btrfs_run_delayed_refs(trans, root, 0);
1336         if (ret)
1337                 goto cleanup_transaction;
1338
1339         btrfs_trans_release_metadata(trans, root);
1340         trans->block_rsv = NULL;
1341
1342         cur_trans = trans->transaction;
1343
1344         /*
1345          * set the flushing flag so procs in this transaction have to
1346          * start sending their work down.
1347          */
1348         cur_trans->delayed_refs.flushing = 1;
1349
1350         ret = btrfs_run_delayed_refs(trans, root, 0);
1351         if (ret)
1352                 goto cleanup_transaction;
1353
1354         spin_lock(&cur_trans->commit_lock);
1355         if (cur_trans->in_commit) {
1356                 spin_unlock(&cur_trans->commit_lock);
1357                 atomic_inc(&cur_trans->use_count);
1358                 ret = btrfs_end_transaction(trans, root);
1359
1360                 wait_for_commit(root, cur_trans);
1361
1362                 put_transaction(cur_trans);
1363
1364                 return ret;
1365         }
1366
1367         trans->transaction->in_commit = 1;
1368         trans->transaction->blocked = 1;
1369         spin_unlock(&cur_trans->commit_lock);
1370         wake_up(&root->fs_info->transaction_blocked_wait);
1371
1372         spin_lock(&root->fs_info->trans_lock);
1373         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1374                 prev_trans = list_entry(cur_trans->list.prev,
1375                                         struct btrfs_transaction, list);
1376                 if (!prev_trans->commit_done) {
1377                         atomic_inc(&prev_trans->use_count);
1378                         spin_unlock(&root->fs_info->trans_lock);
1379
1380                         wait_for_commit(root, prev_trans);
1381
1382                         put_transaction(prev_trans);
1383                 } else {
1384                         spin_unlock(&root->fs_info->trans_lock);
1385                 }
1386         } else {
1387                 spin_unlock(&root->fs_info->trans_lock);
1388         }
1389
1390         if (!btrfs_test_opt(root, SSD) &&
1391             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1392                 should_grow = 1;
1393
1394         do {
1395                 int snap_pending = 0;
1396
1397                 joined = cur_trans->num_joined;
1398                 if (!list_empty(&trans->transaction->pending_snapshots))
1399                         snap_pending = 1;
1400
1401                 WARN_ON(cur_trans != trans->transaction);
1402
1403                 if (flush_on_commit || snap_pending) {
1404                         btrfs_start_delalloc_inodes(root, 1);
1405                         btrfs_wait_ordered_extents(root, 0, 1);
1406                 }
1407
1408                 ret = btrfs_run_delayed_items(trans, root);
1409                 if (ret)
1410                         goto cleanup_transaction;
1411
1412                 /*
1413                  * running the delayed items may have added new refs. account
1414                  * them now so that they hinder processing of more delayed refs
1415                  * as little as possible.
1416                  */
1417                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1418
1419                 /*
1420                  * rename don't use btrfs_join_transaction, so, once we
1421                  * set the transaction to blocked above, we aren't going
1422                  * to get any new ordered operations.  We can safely run
1423                  * it here and no for sure that nothing new will be added
1424                  * to the list
1425                  */
1426                 btrfs_run_ordered_operations(root, 1);
1427
1428                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1429                                 TASK_UNINTERRUPTIBLE);
1430
1431                 if (atomic_read(&cur_trans->num_writers) > 1)
1432                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1433                 else if (should_grow)
1434                         schedule_timeout(1);
1435
1436                 finish_wait(&cur_trans->writer_wait, &wait);
1437         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1438                  (should_grow && cur_trans->num_joined != joined));
1439
1440         /*
1441          * Ok now we need to make sure to block out any other joins while we
1442          * commit the transaction.  We could have started a join before setting
1443          * no_join so make sure to wait for num_writers to == 1 again.
1444          */
1445         spin_lock(&root->fs_info->trans_lock);
1446         root->fs_info->trans_no_join = 1;
1447         spin_unlock(&root->fs_info->trans_lock);
1448         wait_event(cur_trans->writer_wait,
1449                    atomic_read(&cur_trans->num_writers) == 1);
1450
1451         /*
1452          * the reloc mutex makes sure that we stop
1453          * the balancing code from coming in and moving
1454          * extents around in the middle of the commit
1455          */
1456         mutex_lock(&root->fs_info->reloc_mutex);
1457
1458         ret = btrfs_run_delayed_items(trans, root);
1459         if (ret) {
1460                 mutex_unlock(&root->fs_info->reloc_mutex);
1461                 goto cleanup_transaction;
1462         }
1463
1464         ret = create_pending_snapshots(trans, root->fs_info);
1465         if (ret) {
1466                 mutex_unlock(&root->fs_info->reloc_mutex);
1467                 goto cleanup_transaction;
1468         }
1469
1470         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1471         if (ret) {
1472                 mutex_unlock(&root->fs_info->reloc_mutex);
1473                 goto cleanup_transaction;
1474         }
1475
1476         /*
1477          * make sure none of the code above managed to slip in a
1478          * delayed item
1479          */
1480         btrfs_assert_delayed_root_empty(root);
1481
1482         WARN_ON(cur_trans != trans->transaction);
1483
1484         btrfs_scrub_pause(root);
1485         /* btrfs_commit_tree_roots is responsible for getting the
1486          * various roots consistent with each other.  Every pointer
1487          * in the tree of tree roots has to point to the most up to date
1488          * root for every subvolume and other tree.  So, we have to keep
1489          * the tree logging code from jumping in and changing any
1490          * of the trees.
1491          *
1492          * At this point in the commit, there can't be any tree-log
1493          * writers, but a little lower down we drop the trans mutex
1494          * and let new people in.  By holding the tree_log_mutex
1495          * from now until after the super is written, we avoid races
1496          * with the tree-log code.
1497          */
1498         mutex_lock(&root->fs_info->tree_log_mutex);
1499
1500         ret = commit_fs_roots(trans, root);
1501         if (ret) {
1502                 mutex_unlock(&root->fs_info->tree_log_mutex);
1503                 mutex_unlock(&root->fs_info->reloc_mutex);
1504                 goto cleanup_transaction;
1505         }
1506
1507         /* commit_fs_roots gets rid of all the tree log roots, it is now
1508          * safe to free the root of tree log roots
1509          */
1510         btrfs_free_log_root_tree(trans, root->fs_info);
1511
1512         ret = commit_cowonly_roots(trans, root);
1513         if (ret) {
1514                 mutex_unlock(&root->fs_info->tree_log_mutex);
1515                 mutex_unlock(&root->fs_info->reloc_mutex);
1516                 goto cleanup_transaction;
1517         }
1518
1519         btrfs_prepare_extent_commit(trans, root);
1520
1521         cur_trans = root->fs_info->running_transaction;
1522
1523         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1524                             root->fs_info->tree_root->node);
1525         switch_commit_root(root->fs_info->tree_root);
1526
1527         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1528                             root->fs_info->chunk_root->node);
1529         switch_commit_root(root->fs_info->chunk_root);
1530
1531         assert_qgroups_uptodate(trans);
1532         update_super_roots(root);
1533
1534         if (!root->fs_info->log_root_recovering) {
1535                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1536                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1537         }
1538
1539         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1540                sizeof(*root->fs_info->super_copy));
1541
1542         trans->transaction->blocked = 0;
1543         spin_lock(&root->fs_info->trans_lock);
1544         root->fs_info->running_transaction = NULL;
1545         root->fs_info->trans_no_join = 0;
1546         spin_unlock(&root->fs_info->trans_lock);
1547         mutex_unlock(&root->fs_info->reloc_mutex);
1548
1549         wake_up(&root->fs_info->transaction_wait);
1550
1551         ret = btrfs_write_and_wait_transaction(trans, root);
1552         if (ret) {
1553                 btrfs_error(root->fs_info, ret,
1554                             "Error while writing out transaction.");
1555                 mutex_unlock(&root->fs_info->tree_log_mutex);
1556                 goto cleanup_transaction;
1557         }
1558
1559         ret = write_ctree_super(trans, root, 0);
1560         if (ret) {
1561                 mutex_unlock(&root->fs_info->tree_log_mutex);
1562                 goto cleanup_transaction;
1563         }
1564
1565         /*
1566          * the super is written, we can safely allow the tree-loggers
1567          * to go about their business
1568          */
1569         mutex_unlock(&root->fs_info->tree_log_mutex);
1570
1571         btrfs_finish_extent_commit(trans, root);
1572
1573         cur_trans->commit_done = 1;
1574
1575         root->fs_info->last_trans_committed = cur_trans->transid;
1576
1577         wake_up(&cur_trans->commit_wait);
1578
1579         spin_lock(&root->fs_info->trans_lock);
1580         list_del_init(&cur_trans->list);
1581         spin_unlock(&root->fs_info->trans_lock);
1582
1583         put_transaction(cur_trans);
1584         put_transaction(cur_trans);
1585
1586         sb_end_intwrite(root->fs_info->sb);
1587
1588         trace_btrfs_transaction_commit(root);
1589
1590         btrfs_scrub_continue(root);
1591
1592         if (current->journal_info == trans)
1593                 current->journal_info = NULL;
1594
1595         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1596
1597         if (current != root->fs_info->transaction_kthread)
1598                 btrfs_run_delayed_iputs(root);
1599
1600         return ret;
1601
1602 cleanup_transaction:
1603         btrfs_trans_release_metadata(trans, root);
1604         trans->block_rsv = NULL;
1605         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1606 //      WARN_ON(1);
1607         if (current->journal_info == trans)
1608                 current->journal_info = NULL;
1609         cleanup_transaction(trans, root, ret);
1610
1611         return ret;
1612 }
1613
1614 /*
1615  * interface function to delete all the snapshots we have scheduled for deletion
1616  */
1617 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1618 {
1619         LIST_HEAD(list);
1620         struct btrfs_fs_info *fs_info = root->fs_info;
1621
1622         spin_lock(&fs_info->trans_lock);
1623         list_splice_init(&fs_info->dead_roots, &list);
1624         spin_unlock(&fs_info->trans_lock);
1625
1626         while (!list_empty(&list)) {
1627                 int ret;
1628
1629                 root = list_entry(list.next, struct btrfs_root, root_list);
1630                 list_del(&root->root_list);
1631
1632                 btrfs_kill_all_delayed_nodes(root);
1633
1634                 if (btrfs_header_backref_rev(root->node) <
1635                     BTRFS_MIXED_BACKREF_REV)
1636                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1637                 else
1638                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1639                 BUG_ON(ret < 0);
1640         }
1641         return 0;
1642 }