2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
55 static void lock_chunks(struct btrfs_root *root)
57 mutex_lock(&root->fs_info->chunk_mutex);
60 static void unlock_chunks(struct btrfs_root *root)
62 mutex_unlock(&root->fs_info->chunk_mutex);
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 struct btrfs_fs_devices *fs_devs;
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 return ERR_PTR(-ENOMEM);
73 mutex_init(&fs_devs->device_list_mutex);
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93 struct btrfs_fs_devices *fs_devs;
95 fs_devs = __alloc_fs_devices();
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 generate_random_uuid(fs_devs->fsid);
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
115 rcu_string_free(device->name);
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
134 void btrfs_cleanup_fs_uuids(void)
136 struct btrfs_fs_devices *fs_devices;
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
142 free_fs_devices(fs_devices);
146 static struct btrfs_device *__alloc_device(void)
148 struct btrfs_device *dev;
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 return ERR_PTR(-ENOMEM);
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
157 spin_lock_init(&dev->io_lock);
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
170 struct btrfs_device *dev;
172 list_for_each_entry(dev, head, dev_list) {
173 if (dev->devid == devid &&
174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
183 struct btrfs_fs_devices *fs_devices;
185 list_for_each_entry(fs_devices, &fs_uuids, list) {
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
202 ret = PTR_ERR(*bdev);
203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
211 blkdev_put(*bdev, flags);
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
218 blkdev_put(*bdev, flags);
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
234 struct bio *old_head;
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
241 pending_bios->tail = tail;
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
258 struct backing_dev_info *bdi;
259 struct btrfs_fs_info *fs_info;
260 struct btrfs_pending_bios *pending_bios;
264 unsigned long num_run;
265 unsigned long batch_run = 0;
267 unsigned long last_waited = 0;
269 int sync_pending = 0;
270 struct blk_plug plug;
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
278 blk_start_plug(&plug);
280 bdi = blk_get_backing_dev_info(device->bdev);
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
286 spin_lock(&device->io_lock);
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
296 if (!force_reg && device->pending_sync_bios.head) {
297 pending_bios = &device->pending_sync_bios;
300 pending_bios = &device->pending_bios;
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
306 WARN_ON(pending && !tail);
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
313 * device->running_pending is used to synchronize with the
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
319 device->running_pending = 0;
322 device->running_pending = 1;
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
328 spin_unlock(&device->io_lock);
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
347 pending = pending->bi_next;
350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
364 if (pending_bios == &device->pending_sync_bios) {
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
372 btrfsic_submit_bio(cur->bi_rw, cur);
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 fs_info->fs_devices->open_devices > 1) {
385 struct io_context *ioc;
387 ioc = current->io_context;
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 ioc->last_waited == last_waited)) {
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
408 last_waited = ioc->last_waited;
413 spin_lock(&device->io_lock);
414 requeue_list(pending_bios, pending, tail);
415 device->running_pending = 1;
417 spin_unlock(&device->io_lock);
418 btrfs_queue_work(fs_info->submit_workers,
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
437 spin_unlock(&device->io_lock);
440 blk_finish_plug(&plug);
443 static void pending_bios_fn(struct btrfs_work *work)
445 struct btrfs_device *device;
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
452 * Add new device to list of registered devices
455 * 1 - first time device is seen
456 * 0 - device already known
459 static noinline int device_list_add(const char *path,
460 struct btrfs_super_block *disk_super,
461 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
463 struct btrfs_device *device;
464 struct btrfs_fs_devices *fs_devices;
465 struct rcu_string *name;
467 u64 found_transid = btrfs_super_generation(disk_super);
469 fs_devices = find_fsid(disk_super->fsid);
471 fs_devices = alloc_fs_devices(disk_super->fsid);
472 if (IS_ERR(fs_devices))
473 return PTR_ERR(fs_devices);
475 list_add(&fs_devices->list, &fs_uuids);
476 fs_devices->latest_devid = devid;
477 fs_devices->latest_trans = found_transid;
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
485 if (fs_devices->opened)
488 device = btrfs_alloc_device(NULL, &devid,
489 disk_super->dev_item.uuid);
490 if (IS_ERR(device)) {
491 /* we can safely leave the fs_devices entry around */
492 return PTR_ERR(device);
495 name = rcu_string_strdup(path, GFP_NOFS);
500 rcu_assign_pointer(device->name, name);
502 mutex_lock(&fs_devices->device_list_mutex);
503 list_add_rcu(&device->dev_list, &fs_devices->devices);
504 fs_devices->num_devices++;
505 mutex_unlock(&fs_devices->device_list_mutex);
508 device->fs_devices = fs_devices;
509 } else if (!device->name || strcmp(device->name->str, path)) {
510 name = rcu_string_strdup(path, GFP_NOFS);
513 rcu_string_free(device->name);
514 rcu_assign_pointer(device->name, name);
515 if (device->missing) {
516 fs_devices->missing_devices--;
521 if (found_transid > fs_devices->latest_trans) {
522 fs_devices->latest_devid = devid;
523 fs_devices->latest_trans = found_transid;
525 *fs_devices_ret = fs_devices;
530 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
532 struct btrfs_fs_devices *fs_devices;
533 struct btrfs_device *device;
534 struct btrfs_device *orig_dev;
536 fs_devices = alloc_fs_devices(orig->fsid);
537 if (IS_ERR(fs_devices))
540 fs_devices->latest_devid = orig->latest_devid;
541 fs_devices->latest_trans = orig->latest_trans;
542 fs_devices->total_devices = orig->total_devices;
544 /* We have held the volume lock, it is safe to get the devices. */
545 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 struct rcu_string *name;
548 device = btrfs_alloc_device(NULL, &orig_dev->devid,
554 * This is ok to do without rcu read locked because we hold the
555 * uuid mutex so nothing we touch in here is going to disappear.
557 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
562 rcu_assign_pointer(device->name, name);
564 list_add(&device->dev_list, &fs_devices->devices);
565 device->fs_devices = fs_devices;
566 fs_devices->num_devices++;
570 free_fs_devices(fs_devices);
571 return ERR_PTR(-ENOMEM);
574 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 struct btrfs_fs_devices *fs_devices, int step)
577 struct btrfs_device *device, *next;
579 struct block_device *latest_bdev = NULL;
580 u64 latest_devid = 0;
581 u64 latest_transid = 0;
583 mutex_lock(&uuid_mutex);
585 /* This is the initialized path, it is safe to release the devices. */
586 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 if (device->in_fs_metadata) {
588 if (!device->is_tgtdev_for_dev_replace &&
590 device->generation > latest_transid)) {
591 latest_devid = device->devid;
592 latest_transid = device->generation;
593 latest_bdev = device->bdev;
598 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
600 * In the first step, keep the device which has
601 * the correct fsid and the devid that is used
602 * for the dev_replace procedure.
603 * In the second step, the dev_replace state is
604 * read from the device tree and it is known
605 * whether the procedure is really active or
606 * not, which means whether this device is
607 * used or whether it should be removed.
609 if (step == 0 || device->is_tgtdev_for_dev_replace) {
614 blkdev_put(device->bdev, device->mode);
616 fs_devices->open_devices--;
618 if (device->writeable) {
619 list_del_init(&device->dev_alloc_list);
620 device->writeable = 0;
621 if (!device->is_tgtdev_for_dev_replace)
622 fs_devices->rw_devices--;
624 list_del_init(&device->dev_list);
625 fs_devices->num_devices--;
626 rcu_string_free(device->name);
630 if (fs_devices->seed) {
631 fs_devices = fs_devices->seed;
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
639 mutex_unlock(&uuid_mutex);
642 static void __free_device(struct work_struct *work)
644 struct btrfs_device *device;
646 device = container_of(work, struct btrfs_device, rcu_work);
649 blkdev_put(device->bdev, device->mode);
651 rcu_string_free(device->name);
655 static void free_device(struct rcu_head *head)
657 struct btrfs_device *device;
659 device = container_of(head, struct btrfs_device, rcu);
661 INIT_WORK(&device->rcu_work, __free_device);
662 schedule_work(&device->rcu_work);
665 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
667 struct btrfs_device *device;
669 if (--fs_devices->opened > 0)
672 mutex_lock(&fs_devices->device_list_mutex);
673 list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 struct btrfs_device *new_device;
675 struct rcu_string *name;
678 fs_devices->open_devices--;
680 if (device->writeable &&
681 device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 list_del_init(&device->dev_alloc_list);
683 fs_devices->rw_devices--;
686 if (device->can_discard)
687 fs_devices->num_can_discard--;
689 fs_devices->missing_devices--;
691 new_device = btrfs_alloc_device(NULL, &device->devid,
693 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
695 /* Safe because we are under uuid_mutex */
697 name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 BUG_ON(!name); /* -ENOMEM */
699 rcu_assign_pointer(new_device->name, name);
702 list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 new_device->fs_devices = device->fs_devices;
705 call_rcu(&device->rcu, free_device);
707 mutex_unlock(&fs_devices->device_list_mutex);
709 WARN_ON(fs_devices->open_devices);
710 WARN_ON(fs_devices->rw_devices);
711 fs_devices->opened = 0;
712 fs_devices->seeding = 0;
717 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
719 struct btrfs_fs_devices *seed_devices = NULL;
722 mutex_lock(&uuid_mutex);
723 ret = __btrfs_close_devices(fs_devices);
724 if (!fs_devices->opened) {
725 seed_devices = fs_devices->seed;
726 fs_devices->seed = NULL;
728 mutex_unlock(&uuid_mutex);
730 while (seed_devices) {
731 fs_devices = seed_devices;
732 seed_devices = fs_devices->seed;
733 __btrfs_close_devices(fs_devices);
734 free_fs_devices(fs_devices);
737 * Wait for rcu kworkers under __btrfs_close_devices
738 * to finish all blkdev_puts so device is really
739 * free when umount is done.
745 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 fmode_t flags, void *holder)
748 struct request_queue *q;
749 struct block_device *bdev;
750 struct list_head *head = &fs_devices->devices;
751 struct btrfs_device *device;
752 struct block_device *latest_bdev = NULL;
753 struct buffer_head *bh;
754 struct btrfs_super_block *disk_super;
755 u64 latest_devid = 0;
756 u64 latest_transid = 0;
763 list_for_each_entry(device, head, dev_list) {
769 /* Just open everything we can; ignore failures here */
770 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
774 disk_super = (struct btrfs_super_block *)bh->b_data;
775 devid = btrfs_stack_device_id(&disk_super->dev_item);
776 if (devid != device->devid)
779 if (memcmp(device->uuid, disk_super->dev_item.uuid,
783 device->generation = btrfs_super_generation(disk_super);
784 if (!latest_transid || device->generation > latest_transid) {
785 latest_devid = devid;
786 latest_transid = device->generation;
790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 device->writeable = 0;
793 device->writeable = !bdev_read_only(bdev);
797 q = bdev_get_queue(bdev);
798 if (blk_queue_discard(q)) {
799 device->can_discard = 1;
800 fs_devices->num_can_discard++;
804 device->in_fs_metadata = 0;
805 device->mode = flags;
807 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 fs_devices->rotating = 1;
810 fs_devices->open_devices++;
811 if (device->writeable &&
812 device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 fs_devices->rw_devices++;
814 list_add(&device->dev_alloc_list,
815 &fs_devices->alloc_list);
822 blkdev_put(bdev, flags);
825 if (fs_devices->open_devices == 0) {
829 fs_devices->seeding = seeding;
830 fs_devices->opened = 1;
831 fs_devices->latest_bdev = latest_bdev;
832 fs_devices->latest_devid = latest_devid;
833 fs_devices->latest_trans = latest_transid;
834 fs_devices->total_rw_bytes = 0;
839 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 fmode_t flags, void *holder)
844 mutex_lock(&uuid_mutex);
845 if (fs_devices->opened) {
846 fs_devices->opened++;
849 ret = __btrfs_open_devices(fs_devices, flags, holder);
851 mutex_unlock(&uuid_mutex);
856 * Look for a btrfs signature on a device. This may be called out of the mount path
857 * and we are not allowed to call set_blocksize during the scan. The superblock
858 * is read via pagecache
860 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 struct btrfs_fs_devices **fs_devices_ret)
863 struct btrfs_super_block *disk_super;
864 struct block_device *bdev;
875 * we would like to check all the supers, but that would make
876 * a btrfs mount succeed after a mkfs from a different FS.
877 * So, we need to add a special mount option to scan for
878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
880 bytenr = btrfs_sb_offset(0);
882 mutex_lock(&uuid_mutex);
884 bdev = blkdev_get_by_path(path, flags, holder);
891 /* make sure our super fits in the device */
892 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
895 /* make sure our super fits in the page */
896 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
899 /* make sure our super doesn't straddle pages on disk */
900 index = bytenr >> PAGE_CACHE_SHIFT;
901 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
904 /* pull in the page with our super */
905 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
908 if (IS_ERR_OR_NULL(page))
913 /* align our pointer to the offset of the super block */
914 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
916 if (btrfs_super_bytenr(disk_super) != bytenr ||
917 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
920 devid = btrfs_stack_device_id(&disk_super->dev_item);
921 transid = btrfs_super_generation(disk_super);
922 total_devices = btrfs_super_num_devices(disk_super);
924 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
926 if (disk_super->label[0]) {
927 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
931 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
934 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
937 if (!ret && fs_devices_ret)
938 (*fs_devices_ret)->total_devices = total_devices;
942 page_cache_release(page);
945 blkdev_put(bdev, flags);
947 mutex_unlock(&uuid_mutex);
951 /* helper to account the used device space in the range */
952 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 u64 end, u64 *length)
955 struct btrfs_key key;
956 struct btrfs_root *root = device->dev_root;
957 struct btrfs_dev_extent *dev_extent;
958 struct btrfs_path *path;
962 struct extent_buffer *l;
966 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
969 path = btrfs_alloc_path();
974 key.objectid = device->devid;
976 key.type = BTRFS_DEV_EXTENT_KEY;
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
982 ret = btrfs_previous_item(root, path, key.objectid, key.type);
989 slot = path->slots[0];
990 if (slot >= btrfs_header_nritems(l)) {
991 ret = btrfs_next_leaf(root, path);
999 btrfs_item_key_to_cpu(l, &key, slot);
1001 if (key.objectid < device->devid)
1004 if (key.objectid > device->devid)
1007 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1010 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 extent_end = key.offset + btrfs_dev_extent_length(l,
1013 if (key.offset <= start && extent_end > end) {
1014 *length = end - start + 1;
1016 } else if (key.offset <= start && extent_end > start)
1017 *length += extent_end - start;
1018 else if (key.offset > start && extent_end <= end)
1019 *length += extent_end - key.offset;
1020 else if (key.offset > start && key.offset <= end) {
1021 *length += end - key.offset + 1;
1023 } else if (key.offset > end)
1031 btrfs_free_path(path);
1035 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 struct btrfs_device *device,
1037 u64 *start, u64 len)
1039 struct extent_map *em;
1042 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 struct map_lookup *map;
1046 map = (struct map_lookup *)em->bdev;
1047 for (i = 0; i < map->num_stripes; i++) {
1048 if (map->stripes[i].dev != device)
1050 if (map->stripes[i].physical >= *start + len ||
1051 map->stripes[i].physical + em->orig_block_len <=
1054 *start = map->stripes[i].physical +
1065 * find_free_dev_extent - find free space in the specified device
1066 * @device: the device which we search the free space in
1067 * @num_bytes: the size of the free space that we need
1068 * @start: store the start of the free space.
1069 * @len: the size of the free space. that we find, or the size of the max
1070 * free space if we don't find suitable free space
1072 * this uses a pretty simple search, the expectation is that it is
1073 * called very infrequently and that a given device has a small number
1076 * @start is used to store the start of the free space if we find. But if we
1077 * don't find suitable free space, it will be used to store the start position
1078 * of the max free space.
1080 * @len is used to store the size of the free space that we find.
1081 * But if we don't find suitable free space, it is used to store the size of
1082 * the max free space.
1084 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_device *device, u64 num_bytes,
1086 u64 *start, u64 *len)
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1097 u64 search_end = device->total_bytes;
1100 struct extent_buffer *l;
1102 /* FIXME use last free of some kind */
1104 /* we don't want to overwrite the superblock on the drive,
1105 * so we make sure to start at an offset of at least 1MB
1107 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1109 path = btrfs_alloc_path();
1113 max_hole_start = search_start;
1117 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1123 path->search_commit_root = 1;
1124 path->skip_locking = 1;
1126 key.objectid = device->devid;
1127 key.offset = search_start;
1128 key.type = BTRFS_DEV_EXTENT_KEY;
1130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1134 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1141 slot = path->slots[0];
1142 if (slot >= btrfs_header_nritems(l)) {
1143 ret = btrfs_next_leaf(root, path);
1151 btrfs_item_key_to_cpu(l, &key, slot);
1153 if (key.objectid < device->devid)
1156 if (key.objectid > device->devid)
1159 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1162 if (key.offset > search_start) {
1163 hole_size = key.offset - search_start;
1166 * Have to check before we set max_hole_start, otherwise
1167 * we could end up sending back this offset anyway.
1169 if (contains_pending_extent(trans, device,
1174 if (hole_size > max_hole_size) {
1175 max_hole_start = search_start;
1176 max_hole_size = hole_size;
1180 * If this free space is greater than which we need,
1181 * it must be the max free space that we have found
1182 * until now, so max_hole_start must point to the start
1183 * of this free space and the length of this free space
1184 * is stored in max_hole_size. Thus, we return
1185 * max_hole_start and max_hole_size and go back to the
1188 if (hole_size >= num_bytes) {
1194 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 extent_end = key.offset + btrfs_dev_extent_length(l,
1197 if (extent_end > search_start)
1198 search_start = extent_end;
1205 * At this point, search_start should be the end of
1206 * allocated dev extents, and when shrinking the device,
1207 * search_end may be smaller than search_start.
1209 if (search_end > search_start)
1210 hole_size = search_end - search_start;
1212 if (hole_size > max_hole_size) {
1213 max_hole_start = search_start;
1214 max_hole_size = hole_size;
1217 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 btrfs_release_path(path);
1223 if (hole_size < num_bytes)
1229 btrfs_free_path(path);
1230 *start = max_hole_start;
1232 *len = max_hole_size;
1236 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 struct btrfs_device *device,
1241 struct btrfs_path *path;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_key key;
1244 struct btrfs_key found_key;
1245 struct extent_buffer *leaf = NULL;
1246 struct btrfs_dev_extent *extent = NULL;
1248 path = btrfs_alloc_path();
1252 key.objectid = device->devid;
1254 key.type = BTRFS_DEV_EXTENT_KEY;
1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1258 ret = btrfs_previous_item(root, path, key.objectid,
1259 BTRFS_DEV_EXTENT_KEY);
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 extent = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_dev_extent);
1266 BUG_ON(found_key.offset > start || found_key.offset +
1267 btrfs_dev_extent_length(leaf, extent) < start);
1269 btrfs_release_path(path);
1271 } else if (ret == 0) {
1272 leaf = path->nodes[0];
1273 extent = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_dev_extent);
1276 btrfs_error(root->fs_info, ret, "Slot search failed");
1280 if (device->bytes_used > 0) {
1281 u64 len = btrfs_dev_extent_length(leaf, extent);
1282 device->bytes_used -= len;
1283 spin_lock(&root->fs_info->free_chunk_lock);
1284 root->fs_info->free_chunk_space += len;
1285 spin_unlock(&root->fs_info->free_chunk_lock);
1287 ret = btrfs_del_item(trans, root, path);
1289 btrfs_error(root->fs_info, ret,
1290 "Failed to remove dev extent item");
1293 btrfs_free_path(path);
1297 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 struct btrfs_device *device,
1299 u64 chunk_tree, u64 chunk_objectid,
1300 u64 chunk_offset, u64 start, u64 num_bytes)
1303 struct btrfs_path *path;
1304 struct btrfs_root *root = device->dev_root;
1305 struct btrfs_dev_extent *extent;
1306 struct extent_buffer *leaf;
1307 struct btrfs_key key;
1309 WARN_ON(!device->in_fs_metadata);
1310 WARN_ON(device->is_tgtdev_for_dev_replace);
1311 path = btrfs_alloc_path();
1315 key.objectid = device->devid;
1317 key.type = BTRFS_DEV_EXTENT_KEY;
1318 ret = btrfs_insert_empty_item(trans, root, path, &key,
1323 leaf = path->nodes[0];
1324 extent = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_dev_extent);
1326 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1330 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1333 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 btrfs_mark_buffer_dirty(leaf);
1336 btrfs_free_path(path);
1340 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1342 struct extent_map_tree *em_tree;
1343 struct extent_map *em;
1347 em_tree = &fs_info->mapping_tree.map_tree;
1348 read_lock(&em_tree->lock);
1349 n = rb_last(&em_tree->map);
1351 em = rb_entry(n, struct extent_map, rb_node);
1352 ret = em->start + em->len;
1354 read_unlock(&em_tree->lock);
1359 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1363 struct btrfs_key key;
1364 struct btrfs_key found_key;
1365 struct btrfs_path *path;
1367 path = btrfs_alloc_path();
1371 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 key.type = BTRFS_DEV_ITEM_KEY;
1373 key.offset = (u64)-1;
1375 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1379 BUG_ON(ret == 0); /* Corruption */
1381 ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 BTRFS_DEV_ITEMS_OBJECTID,
1383 BTRFS_DEV_ITEM_KEY);
1387 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1389 *devid_ret = found_key.offset + 1;
1393 btrfs_free_path(path);
1398 * the device information is stored in the chunk root
1399 * the btrfs_device struct should be fully filled in
1401 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_device *device)
1406 struct btrfs_path *path;
1407 struct btrfs_dev_item *dev_item;
1408 struct extent_buffer *leaf;
1409 struct btrfs_key key;
1412 root = root->fs_info->chunk_root;
1414 path = btrfs_alloc_path();
1418 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 key.type = BTRFS_DEV_ITEM_KEY;
1420 key.offset = device->devid;
1422 ret = btrfs_insert_empty_item(trans, root, path, &key,
1427 leaf = path->nodes[0];
1428 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1430 btrfs_set_device_id(leaf, dev_item, device->devid);
1431 btrfs_set_device_generation(leaf, dev_item, 0);
1432 btrfs_set_device_type(leaf, dev_item, device->type);
1433 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 btrfs_set_device_group(leaf, dev_item, 0);
1439 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 btrfs_set_device_start_offset(leaf, dev_item, 0);
1443 ptr = btrfs_device_uuid(dev_item);
1444 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 ptr = btrfs_device_fsid(dev_item);
1446 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 btrfs_mark_buffer_dirty(leaf);
1451 btrfs_free_path(path);
1455 static int btrfs_rm_dev_item(struct btrfs_root *root,
1456 struct btrfs_device *device)
1459 struct btrfs_path *path;
1460 struct btrfs_key key;
1461 struct btrfs_trans_handle *trans;
1463 root = root->fs_info->chunk_root;
1465 path = btrfs_alloc_path();
1469 trans = btrfs_start_transaction(root, 0);
1470 if (IS_ERR(trans)) {
1471 btrfs_free_path(path);
1472 return PTR_ERR(trans);
1474 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1475 key.type = BTRFS_DEV_ITEM_KEY;
1476 key.offset = device->devid;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1488 ret = btrfs_del_item(trans, root, path);
1492 btrfs_free_path(path);
1493 unlock_chunks(root);
1494 btrfs_commit_transaction(trans, root);
1498 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1500 struct btrfs_device *device;
1501 struct btrfs_device *next_device;
1502 struct block_device *bdev;
1503 struct buffer_head *bh = NULL;
1504 struct btrfs_super_block *disk_super;
1505 struct btrfs_fs_devices *cur_devices;
1512 bool clear_super = false;
1514 mutex_lock(&uuid_mutex);
1517 seq = read_seqbegin(&root->fs_info->profiles_lock);
1519 all_avail = root->fs_info->avail_data_alloc_bits |
1520 root->fs_info->avail_system_alloc_bits |
1521 root->fs_info->avail_metadata_alloc_bits;
1522 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1524 num_devices = root->fs_info->fs_devices->num_devices;
1525 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1526 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1527 WARN_ON(num_devices < 1);
1530 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1532 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1533 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1537 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1538 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1542 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1543 root->fs_info->fs_devices->rw_devices <= 2) {
1544 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1547 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1548 root->fs_info->fs_devices->rw_devices <= 3) {
1549 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1553 if (strcmp(device_path, "missing") == 0) {
1554 struct list_head *devices;
1555 struct btrfs_device *tmp;
1558 devices = &root->fs_info->fs_devices->devices;
1560 * It is safe to read the devices since the volume_mutex
1563 list_for_each_entry(tmp, devices, dev_list) {
1564 if (tmp->in_fs_metadata &&
1565 !tmp->is_tgtdev_for_dev_replace &&
1575 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1579 ret = btrfs_get_bdev_and_sb(device_path,
1580 FMODE_WRITE | FMODE_EXCL,
1581 root->fs_info->bdev_holder, 0,
1585 disk_super = (struct btrfs_super_block *)bh->b_data;
1586 devid = btrfs_stack_device_id(&disk_super->dev_item);
1587 dev_uuid = disk_super->dev_item.uuid;
1588 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1596 if (device->is_tgtdev_for_dev_replace) {
1597 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1601 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1602 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1606 if (device->writeable) {
1608 list_del_init(&device->dev_alloc_list);
1609 unlock_chunks(root);
1610 root->fs_info->fs_devices->rw_devices--;
1614 mutex_unlock(&uuid_mutex);
1615 ret = btrfs_shrink_device(device, 0);
1616 mutex_lock(&uuid_mutex);
1621 * TODO: the superblock still includes this device in its num_devices
1622 * counter although write_all_supers() is not locked out. This
1623 * could give a filesystem state which requires a degraded mount.
1625 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1629 spin_lock(&root->fs_info->free_chunk_lock);
1630 root->fs_info->free_chunk_space = device->total_bytes -
1632 spin_unlock(&root->fs_info->free_chunk_lock);
1634 device->in_fs_metadata = 0;
1635 btrfs_scrub_cancel_dev(root->fs_info, device);
1638 * the device list mutex makes sure that we don't change
1639 * the device list while someone else is writing out all
1640 * the device supers. Whoever is writing all supers, should
1641 * lock the device list mutex before getting the number of
1642 * devices in the super block (super_copy). Conversely,
1643 * whoever updates the number of devices in the super block
1644 * (super_copy) should hold the device list mutex.
1647 cur_devices = device->fs_devices;
1648 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1649 list_del_rcu(&device->dev_list);
1651 device->fs_devices->num_devices--;
1652 device->fs_devices->total_devices--;
1654 if (device->missing)
1655 root->fs_info->fs_devices->missing_devices--;
1657 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1658 struct btrfs_device, dev_list);
1659 if (device->bdev == root->fs_info->sb->s_bdev)
1660 root->fs_info->sb->s_bdev = next_device->bdev;
1661 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1662 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1665 device->fs_devices->open_devices--;
1667 call_rcu(&device->rcu, free_device);
1669 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1670 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1671 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1673 if (cur_devices->open_devices == 0) {
1674 struct btrfs_fs_devices *fs_devices;
1675 fs_devices = root->fs_info->fs_devices;
1676 while (fs_devices) {
1677 if (fs_devices->seed == cur_devices)
1679 fs_devices = fs_devices->seed;
1681 fs_devices->seed = cur_devices->seed;
1682 cur_devices->seed = NULL;
1684 __btrfs_close_devices(cur_devices);
1685 unlock_chunks(root);
1686 free_fs_devices(cur_devices);
1689 root->fs_info->num_tolerated_disk_barrier_failures =
1690 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1693 * at this point, the device is zero sized. We want to
1694 * remove it from the devices list and zero out the old super
1696 if (clear_super && disk_super) {
1697 /* make sure this device isn't detected as part of
1700 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1701 set_buffer_dirty(bh);
1702 sync_dirty_buffer(bh);
1707 /* Notify udev that device has changed */
1709 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1714 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1716 mutex_unlock(&uuid_mutex);
1719 if (device->writeable) {
1721 list_add(&device->dev_alloc_list,
1722 &root->fs_info->fs_devices->alloc_list);
1723 unlock_chunks(root);
1724 root->fs_info->fs_devices->rw_devices++;
1729 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1730 struct btrfs_device *srcdev)
1732 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1734 list_del_rcu(&srcdev->dev_list);
1735 list_del_rcu(&srcdev->dev_alloc_list);
1736 fs_info->fs_devices->num_devices--;
1737 if (srcdev->missing) {
1738 fs_info->fs_devices->missing_devices--;
1739 fs_info->fs_devices->rw_devices++;
1741 if (srcdev->can_discard)
1742 fs_info->fs_devices->num_can_discard--;
1744 fs_info->fs_devices->open_devices--;
1746 /* zero out the old super */
1747 btrfs_scratch_superblock(srcdev);
1750 call_rcu(&srcdev->rcu, free_device);
1753 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1754 struct btrfs_device *tgtdev)
1756 struct btrfs_device *next_device;
1759 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1761 btrfs_scratch_superblock(tgtdev);
1762 fs_info->fs_devices->open_devices--;
1764 fs_info->fs_devices->num_devices--;
1765 if (tgtdev->can_discard)
1766 fs_info->fs_devices->num_can_discard++;
1768 next_device = list_entry(fs_info->fs_devices->devices.next,
1769 struct btrfs_device, dev_list);
1770 if (tgtdev->bdev == fs_info->sb->s_bdev)
1771 fs_info->sb->s_bdev = next_device->bdev;
1772 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1773 fs_info->fs_devices->latest_bdev = next_device->bdev;
1774 list_del_rcu(&tgtdev->dev_list);
1776 call_rcu(&tgtdev->rcu, free_device);
1778 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1781 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1782 struct btrfs_device **device)
1785 struct btrfs_super_block *disk_super;
1788 struct block_device *bdev;
1789 struct buffer_head *bh;
1792 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1793 root->fs_info->bdev_holder, 0, &bdev, &bh);
1796 disk_super = (struct btrfs_super_block *)bh->b_data;
1797 devid = btrfs_stack_device_id(&disk_super->dev_item);
1798 dev_uuid = disk_super->dev_item.uuid;
1799 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1804 blkdev_put(bdev, FMODE_READ);
1808 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1810 struct btrfs_device **device)
1813 if (strcmp(device_path, "missing") == 0) {
1814 struct list_head *devices;
1815 struct btrfs_device *tmp;
1817 devices = &root->fs_info->fs_devices->devices;
1819 * It is safe to read the devices since the volume_mutex
1820 * is held by the caller.
1822 list_for_each_entry(tmp, devices, dev_list) {
1823 if (tmp->in_fs_metadata && !tmp->bdev) {
1830 btrfs_err(root->fs_info, "no missing device found");
1836 return btrfs_find_device_by_path(root, device_path, device);
1841 * does all the dirty work required for changing file system's UUID.
1843 static int btrfs_prepare_sprout(struct btrfs_root *root)
1845 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1846 struct btrfs_fs_devices *old_devices;
1847 struct btrfs_fs_devices *seed_devices;
1848 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1849 struct btrfs_device *device;
1852 BUG_ON(!mutex_is_locked(&uuid_mutex));
1853 if (!fs_devices->seeding)
1856 seed_devices = __alloc_fs_devices();
1857 if (IS_ERR(seed_devices))
1858 return PTR_ERR(seed_devices);
1860 old_devices = clone_fs_devices(fs_devices);
1861 if (IS_ERR(old_devices)) {
1862 kfree(seed_devices);
1863 return PTR_ERR(old_devices);
1866 list_add(&old_devices->list, &fs_uuids);
1868 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1869 seed_devices->opened = 1;
1870 INIT_LIST_HEAD(&seed_devices->devices);
1871 INIT_LIST_HEAD(&seed_devices->alloc_list);
1872 mutex_init(&seed_devices->device_list_mutex);
1874 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1875 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1878 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1879 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1880 device->fs_devices = seed_devices;
1883 fs_devices->seeding = 0;
1884 fs_devices->num_devices = 0;
1885 fs_devices->open_devices = 0;
1886 fs_devices->total_devices = 0;
1887 fs_devices->seed = seed_devices;
1889 generate_random_uuid(fs_devices->fsid);
1890 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1891 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1892 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1894 super_flags = btrfs_super_flags(disk_super) &
1895 ~BTRFS_SUPER_FLAG_SEEDING;
1896 btrfs_set_super_flags(disk_super, super_flags);
1902 * strore the expected generation for seed devices in device items.
1904 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1905 struct btrfs_root *root)
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_dev_item *dev_item;
1910 struct btrfs_device *device;
1911 struct btrfs_key key;
1912 u8 fs_uuid[BTRFS_UUID_SIZE];
1913 u8 dev_uuid[BTRFS_UUID_SIZE];
1917 path = btrfs_alloc_path();
1921 root = root->fs_info->chunk_root;
1922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1924 key.type = BTRFS_DEV_ITEM_KEY;
1927 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1931 leaf = path->nodes[0];
1933 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1934 ret = btrfs_next_leaf(root, path);
1939 leaf = path->nodes[0];
1940 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1941 btrfs_release_path(path);
1945 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1946 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1947 key.type != BTRFS_DEV_ITEM_KEY)
1950 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1951 struct btrfs_dev_item);
1952 devid = btrfs_device_id(leaf, dev_item);
1953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1957 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1959 BUG_ON(!device); /* Logic error */
1961 if (device->fs_devices->seeding) {
1962 btrfs_set_device_generation(leaf, dev_item,
1963 device->generation);
1964 btrfs_mark_buffer_dirty(leaf);
1972 btrfs_free_path(path);
1976 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1978 struct request_queue *q;
1979 struct btrfs_trans_handle *trans;
1980 struct btrfs_device *device;
1981 struct block_device *bdev;
1982 struct list_head *devices;
1983 struct super_block *sb = root->fs_info->sb;
1984 struct rcu_string *name;
1986 int seeding_dev = 0;
1989 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1992 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1993 root->fs_info->bdev_holder);
1995 return PTR_ERR(bdev);
1997 if (root->fs_info->fs_devices->seeding) {
1999 down_write(&sb->s_umount);
2000 mutex_lock(&uuid_mutex);
2003 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2005 devices = &root->fs_info->fs_devices->devices;
2007 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2008 list_for_each_entry(device, devices, dev_list) {
2009 if (device->bdev == bdev) {
2012 &root->fs_info->fs_devices->device_list_mutex);
2016 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2018 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2019 if (IS_ERR(device)) {
2020 /* we can safely leave the fs_devices entry around */
2021 ret = PTR_ERR(device);
2025 name = rcu_string_strdup(device_path, GFP_NOFS);
2031 rcu_assign_pointer(device->name, name);
2033 trans = btrfs_start_transaction(root, 0);
2034 if (IS_ERR(trans)) {
2035 rcu_string_free(device->name);
2037 ret = PTR_ERR(trans);
2043 q = bdev_get_queue(bdev);
2044 if (blk_queue_discard(q))
2045 device->can_discard = 1;
2046 device->writeable = 1;
2047 device->generation = trans->transid;
2048 device->io_width = root->sectorsize;
2049 device->io_align = root->sectorsize;
2050 device->sector_size = root->sectorsize;
2051 device->total_bytes = i_size_read(bdev->bd_inode);
2052 device->disk_total_bytes = device->total_bytes;
2053 device->dev_root = root->fs_info->dev_root;
2054 device->bdev = bdev;
2055 device->in_fs_metadata = 1;
2056 device->is_tgtdev_for_dev_replace = 0;
2057 device->mode = FMODE_EXCL;
2058 device->dev_stats_valid = 1;
2059 set_blocksize(device->bdev, 4096);
2062 sb->s_flags &= ~MS_RDONLY;
2063 ret = btrfs_prepare_sprout(root);
2064 BUG_ON(ret); /* -ENOMEM */
2067 device->fs_devices = root->fs_info->fs_devices;
2069 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2070 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2071 list_add(&device->dev_alloc_list,
2072 &root->fs_info->fs_devices->alloc_list);
2073 root->fs_info->fs_devices->num_devices++;
2074 root->fs_info->fs_devices->open_devices++;
2075 root->fs_info->fs_devices->rw_devices++;
2076 root->fs_info->fs_devices->total_devices++;
2077 if (device->can_discard)
2078 root->fs_info->fs_devices->num_can_discard++;
2079 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2081 spin_lock(&root->fs_info->free_chunk_lock);
2082 root->fs_info->free_chunk_space += device->total_bytes;
2083 spin_unlock(&root->fs_info->free_chunk_lock);
2085 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2086 root->fs_info->fs_devices->rotating = 1;
2088 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2089 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2090 total_bytes + device->total_bytes);
2092 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2093 btrfs_set_super_num_devices(root->fs_info->super_copy,
2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2098 ret = init_first_rw_device(trans, root, device);
2100 btrfs_abort_transaction(trans, root, ret);
2103 ret = btrfs_finish_sprout(trans, root);
2105 btrfs_abort_transaction(trans, root, ret);
2109 ret = btrfs_add_device(trans, root, device);
2111 btrfs_abort_transaction(trans, root, ret);
2117 * we've got more storage, clear any full flags on the space
2120 btrfs_clear_space_info_full(root->fs_info);
2122 unlock_chunks(root);
2123 root->fs_info->num_tolerated_disk_barrier_failures =
2124 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2125 ret = btrfs_commit_transaction(trans, root);
2128 mutex_unlock(&uuid_mutex);
2129 up_write(&sb->s_umount);
2131 if (ret) /* transaction commit */
2134 ret = btrfs_relocate_sys_chunks(root);
2136 btrfs_error(root->fs_info, ret,
2137 "Failed to relocate sys chunks after "
2138 "device initialization. This can be fixed "
2139 "using the \"btrfs balance\" command.");
2140 trans = btrfs_attach_transaction(root);
2141 if (IS_ERR(trans)) {
2142 if (PTR_ERR(trans) == -ENOENT)
2144 return PTR_ERR(trans);
2146 ret = btrfs_commit_transaction(trans, root);
2152 unlock_chunks(root);
2153 btrfs_end_transaction(trans, root);
2154 rcu_string_free(device->name);
2157 blkdev_put(bdev, FMODE_EXCL);
2159 mutex_unlock(&uuid_mutex);
2160 up_write(&sb->s_umount);
2165 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2166 struct btrfs_device **device_out)
2168 struct request_queue *q;
2169 struct btrfs_device *device;
2170 struct block_device *bdev;
2171 struct btrfs_fs_info *fs_info = root->fs_info;
2172 struct list_head *devices;
2173 struct rcu_string *name;
2174 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2178 if (fs_info->fs_devices->seeding)
2181 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2182 fs_info->bdev_holder);
2184 return PTR_ERR(bdev);
2186 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2188 devices = &fs_info->fs_devices->devices;
2189 list_for_each_entry(device, devices, dev_list) {
2190 if (device->bdev == bdev) {
2196 device = btrfs_alloc_device(NULL, &devid, NULL);
2197 if (IS_ERR(device)) {
2198 ret = PTR_ERR(device);
2202 name = rcu_string_strdup(device_path, GFP_NOFS);
2208 rcu_assign_pointer(device->name, name);
2210 q = bdev_get_queue(bdev);
2211 if (blk_queue_discard(q))
2212 device->can_discard = 1;
2213 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2214 device->writeable = 1;
2215 device->generation = 0;
2216 device->io_width = root->sectorsize;
2217 device->io_align = root->sectorsize;
2218 device->sector_size = root->sectorsize;
2219 device->total_bytes = i_size_read(bdev->bd_inode);
2220 device->disk_total_bytes = device->total_bytes;
2221 device->dev_root = fs_info->dev_root;
2222 device->bdev = bdev;
2223 device->in_fs_metadata = 1;
2224 device->is_tgtdev_for_dev_replace = 1;
2225 device->mode = FMODE_EXCL;
2226 device->dev_stats_valid = 1;
2227 set_blocksize(device->bdev, 4096);
2228 device->fs_devices = fs_info->fs_devices;
2229 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2230 fs_info->fs_devices->num_devices++;
2231 fs_info->fs_devices->open_devices++;
2232 if (device->can_discard)
2233 fs_info->fs_devices->num_can_discard++;
2234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2236 *device_out = device;
2240 blkdev_put(bdev, FMODE_EXCL);
2244 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2245 struct btrfs_device *tgtdev)
2247 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2248 tgtdev->io_width = fs_info->dev_root->sectorsize;
2249 tgtdev->io_align = fs_info->dev_root->sectorsize;
2250 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2251 tgtdev->dev_root = fs_info->dev_root;
2252 tgtdev->in_fs_metadata = 1;
2255 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2256 struct btrfs_device *device)
2259 struct btrfs_path *path;
2260 struct btrfs_root *root;
2261 struct btrfs_dev_item *dev_item;
2262 struct extent_buffer *leaf;
2263 struct btrfs_key key;
2265 root = device->dev_root->fs_info->chunk_root;
2267 path = btrfs_alloc_path();
2271 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2272 key.type = BTRFS_DEV_ITEM_KEY;
2273 key.offset = device->devid;
2275 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2284 leaf = path->nodes[0];
2285 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2287 btrfs_set_device_id(leaf, dev_item, device->devid);
2288 btrfs_set_device_type(leaf, dev_item, device->type);
2289 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2290 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2291 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2292 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2293 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2294 btrfs_mark_buffer_dirty(leaf);
2297 btrfs_free_path(path);
2301 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2302 struct btrfs_device *device, u64 new_size)
2304 struct btrfs_super_block *super_copy =
2305 device->dev_root->fs_info->super_copy;
2306 u64 old_total = btrfs_super_total_bytes(super_copy);
2307 u64 diff = new_size - device->total_bytes;
2309 if (!device->writeable)
2311 if (new_size <= device->total_bytes ||
2312 device->is_tgtdev_for_dev_replace)
2315 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2316 device->fs_devices->total_rw_bytes += diff;
2318 device->total_bytes = new_size;
2319 device->disk_total_bytes = new_size;
2320 btrfs_clear_space_info_full(device->dev_root->fs_info);
2322 return btrfs_update_device(trans, device);
2325 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2326 struct btrfs_device *device, u64 new_size)
2329 lock_chunks(device->dev_root);
2330 ret = __btrfs_grow_device(trans, device, new_size);
2331 unlock_chunks(device->dev_root);
2335 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root,
2337 u64 chunk_tree, u64 chunk_objectid,
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2344 root = root->fs_info->chunk_root;
2345 path = btrfs_alloc_path();
2349 key.objectid = chunk_objectid;
2350 key.offset = chunk_offset;
2351 key.type = BTRFS_CHUNK_ITEM_KEY;
2353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2356 else if (ret > 0) { /* Logic error or corruption */
2357 btrfs_error(root->fs_info, -ENOENT,
2358 "Failed lookup while freeing chunk.");
2363 ret = btrfs_del_item(trans, root, path);
2365 btrfs_error(root->fs_info, ret,
2366 "Failed to delete chunk item.");
2368 btrfs_free_path(path);
2372 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2375 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2376 struct btrfs_disk_key *disk_key;
2377 struct btrfs_chunk *chunk;
2384 struct btrfs_key key;
2386 array_size = btrfs_super_sys_array_size(super_copy);
2388 ptr = super_copy->sys_chunk_array;
2391 while (cur < array_size) {
2392 disk_key = (struct btrfs_disk_key *)ptr;
2393 btrfs_disk_key_to_cpu(&key, disk_key);
2395 len = sizeof(*disk_key);
2397 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2398 chunk = (struct btrfs_chunk *)(ptr + len);
2399 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2400 len += btrfs_chunk_item_size(num_stripes);
2405 if (key.objectid == chunk_objectid &&
2406 key.offset == chunk_offset) {
2407 memmove(ptr, ptr + len, array_size - (cur + len));
2409 btrfs_set_super_sys_array_size(super_copy, array_size);
2418 static int btrfs_relocate_chunk(struct btrfs_root *root,
2419 u64 chunk_tree, u64 chunk_objectid,
2422 struct extent_map_tree *em_tree;
2423 struct btrfs_root *extent_root;
2424 struct btrfs_trans_handle *trans;
2425 struct extent_map *em;
2426 struct map_lookup *map;
2430 root = root->fs_info->chunk_root;
2431 extent_root = root->fs_info->extent_root;
2432 em_tree = &root->fs_info->mapping_tree.map_tree;
2434 ret = btrfs_can_relocate(extent_root, chunk_offset);
2438 /* step one, relocate all the extents inside this chunk */
2439 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2443 trans = btrfs_start_transaction(root, 0);
2444 if (IS_ERR(trans)) {
2445 ret = PTR_ERR(trans);
2446 btrfs_std_error(root->fs_info, ret);
2453 * step two, delete the device extents and the
2454 * chunk tree entries
2456 read_lock(&em_tree->lock);
2457 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2458 read_unlock(&em_tree->lock);
2460 BUG_ON(!em || em->start > chunk_offset ||
2461 em->start + em->len < chunk_offset);
2462 map = (struct map_lookup *)em->bdev;
2464 for (i = 0; i < map->num_stripes; i++) {
2465 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2466 map->stripes[i].physical);
2469 if (map->stripes[i].dev) {
2470 ret = btrfs_update_device(trans, map->stripes[i].dev);
2474 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2479 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2481 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2482 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2486 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2489 write_lock(&em_tree->lock);
2490 remove_extent_mapping(em_tree, em);
2491 write_unlock(&em_tree->lock);
2496 /* once for the tree */
2497 free_extent_map(em);
2499 free_extent_map(em);
2501 unlock_chunks(root);
2502 btrfs_end_transaction(trans, root);
2506 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2508 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2509 struct btrfs_path *path;
2510 struct extent_buffer *leaf;
2511 struct btrfs_chunk *chunk;
2512 struct btrfs_key key;
2513 struct btrfs_key found_key;
2514 u64 chunk_tree = chunk_root->root_key.objectid;
2516 bool retried = false;
2520 path = btrfs_alloc_path();
2525 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2526 key.offset = (u64)-1;
2527 key.type = BTRFS_CHUNK_ITEM_KEY;
2530 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2533 BUG_ON(ret == 0); /* Corruption */
2535 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2542 leaf = path->nodes[0];
2543 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2545 chunk = btrfs_item_ptr(leaf, path->slots[0],
2546 struct btrfs_chunk);
2547 chunk_type = btrfs_chunk_type(leaf, chunk);
2548 btrfs_release_path(path);
2550 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2551 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2560 if (found_key.offset == 0)
2562 key.offset = found_key.offset - 1;
2565 if (failed && !retried) {
2569 } else if (WARN_ON(failed && retried)) {
2573 btrfs_free_path(path);
2577 static int insert_balance_item(struct btrfs_root *root,
2578 struct btrfs_balance_control *bctl)
2580 struct btrfs_trans_handle *trans;
2581 struct btrfs_balance_item *item;
2582 struct btrfs_disk_balance_args disk_bargs;
2583 struct btrfs_path *path;
2584 struct extent_buffer *leaf;
2585 struct btrfs_key key;
2588 path = btrfs_alloc_path();
2592 trans = btrfs_start_transaction(root, 0);
2593 if (IS_ERR(trans)) {
2594 btrfs_free_path(path);
2595 return PTR_ERR(trans);
2598 key.objectid = BTRFS_BALANCE_OBJECTID;
2599 key.type = BTRFS_BALANCE_ITEM_KEY;
2602 ret = btrfs_insert_empty_item(trans, root, path, &key,
2607 leaf = path->nodes[0];
2608 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2610 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2612 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2613 btrfs_set_balance_data(leaf, item, &disk_bargs);
2614 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2615 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2616 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2617 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2619 btrfs_set_balance_flags(leaf, item, bctl->flags);
2621 btrfs_mark_buffer_dirty(leaf);
2623 btrfs_free_path(path);
2624 err = btrfs_commit_transaction(trans, root);
2630 static int del_balance_item(struct btrfs_root *root)
2632 struct btrfs_trans_handle *trans;
2633 struct btrfs_path *path;
2634 struct btrfs_key key;
2637 path = btrfs_alloc_path();
2641 trans = btrfs_start_transaction(root, 0);
2642 if (IS_ERR(trans)) {
2643 btrfs_free_path(path);
2644 return PTR_ERR(trans);
2647 key.objectid = BTRFS_BALANCE_OBJECTID;
2648 key.type = BTRFS_BALANCE_ITEM_KEY;
2651 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2659 ret = btrfs_del_item(trans, root, path);
2661 btrfs_free_path(path);
2662 err = btrfs_commit_transaction(trans, root);
2669 * This is a heuristic used to reduce the number of chunks balanced on
2670 * resume after balance was interrupted.
2672 static void update_balance_args(struct btrfs_balance_control *bctl)
2675 * Turn on soft mode for chunk types that were being converted.
2677 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2678 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2679 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2680 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2681 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2682 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2685 * Turn on usage filter if is not already used. The idea is
2686 * that chunks that we have already balanced should be
2687 * reasonably full. Don't do it for chunks that are being
2688 * converted - that will keep us from relocating unconverted
2689 * (albeit full) chunks.
2691 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2692 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2693 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2694 bctl->data.usage = 90;
2696 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2697 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2698 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2699 bctl->sys.usage = 90;
2701 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2702 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2703 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2704 bctl->meta.usage = 90;
2709 * Should be called with both balance and volume mutexes held to
2710 * serialize other volume operations (add_dev/rm_dev/resize) with
2711 * restriper. Same goes for unset_balance_control.
2713 static void set_balance_control(struct btrfs_balance_control *bctl)
2715 struct btrfs_fs_info *fs_info = bctl->fs_info;
2717 BUG_ON(fs_info->balance_ctl);
2719 spin_lock(&fs_info->balance_lock);
2720 fs_info->balance_ctl = bctl;
2721 spin_unlock(&fs_info->balance_lock);
2724 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2728 BUG_ON(!fs_info->balance_ctl);
2730 spin_lock(&fs_info->balance_lock);
2731 fs_info->balance_ctl = NULL;
2732 spin_unlock(&fs_info->balance_lock);
2738 * Balance filters. Return 1 if chunk should be filtered out
2739 * (should not be balanced).
2741 static int chunk_profiles_filter(u64 chunk_type,
2742 struct btrfs_balance_args *bargs)
2744 chunk_type = chunk_to_extended(chunk_type) &
2745 BTRFS_EXTENDED_PROFILE_MASK;
2747 if (bargs->profiles & chunk_type)
2753 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2754 struct btrfs_balance_args *bargs)
2756 struct btrfs_block_group_cache *cache;
2757 u64 chunk_used, user_thresh;
2760 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2761 chunk_used = btrfs_block_group_used(&cache->item);
2763 if (bargs->usage == 0)
2765 else if (bargs->usage > 100)
2766 user_thresh = cache->key.offset;
2768 user_thresh = div_factor_fine(cache->key.offset,
2771 if (chunk_used < user_thresh)
2774 btrfs_put_block_group(cache);
2778 static int chunk_devid_filter(struct extent_buffer *leaf,
2779 struct btrfs_chunk *chunk,
2780 struct btrfs_balance_args *bargs)
2782 struct btrfs_stripe *stripe;
2783 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2786 for (i = 0; i < num_stripes; i++) {
2787 stripe = btrfs_stripe_nr(chunk, i);
2788 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2795 /* [pstart, pend) */
2796 static int chunk_drange_filter(struct extent_buffer *leaf,
2797 struct btrfs_chunk *chunk,
2799 struct btrfs_balance_args *bargs)
2801 struct btrfs_stripe *stripe;
2802 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2808 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2811 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2812 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2813 factor = num_stripes / 2;
2814 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2815 factor = num_stripes - 1;
2816 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2817 factor = num_stripes - 2;
2819 factor = num_stripes;
2822 for (i = 0; i < num_stripes; i++) {
2823 stripe = btrfs_stripe_nr(chunk, i);
2824 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2827 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2828 stripe_length = btrfs_chunk_length(leaf, chunk);
2829 do_div(stripe_length, factor);
2831 if (stripe_offset < bargs->pend &&
2832 stripe_offset + stripe_length > bargs->pstart)
2839 /* [vstart, vend) */
2840 static int chunk_vrange_filter(struct extent_buffer *leaf,
2841 struct btrfs_chunk *chunk,
2843 struct btrfs_balance_args *bargs)
2845 if (chunk_offset < bargs->vend &&
2846 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2847 /* at least part of the chunk is inside this vrange */
2853 static int chunk_soft_convert_filter(u64 chunk_type,
2854 struct btrfs_balance_args *bargs)
2856 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2859 chunk_type = chunk_to_extended(chunk_type) &
2860 BTRFS_EXTENDED_PROFILE_MASK;
2862 if (bargs->target == chunk_type)
2868 static int should_balance_chunk(struct btrfs_root *root,
2869 struct extent_buffer *leaf,
2870 struct btrfs_chunk *chunk, u64 chunk_offset)
2872 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2873 struct btrfs_balance_args *bargs = NULL;
2874 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2877 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2878 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2882 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2883 bargs = &bctl->data;
2884 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2886 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2887 bargs = &bctl->meta;
2889 /* profiles filter */
2890 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2891 chunk_profiles_filter(chunk_type, bargs)) {
2896 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2897 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2902 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2903 chunk_devid_filter(leaf, chunk, bargs)) {
2907 /* drange filter, makes sense only with devid filter */
2908 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2909 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2914 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2915 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2919 /* soft profile changing mode */
2920 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2921 chunk_soft_convert_filter(chunk_type, bargs)) {
2928 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2930 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2931 struct btrfs_root *chunk_root = fs_info->chunk_root;
2932 struct btrfs_root *dev_root = fs_info->dev_root;
2933 struct list_head *devices;
2934 struct btrfs_device *device;
2937 struct btrfs_chunk *chunk;
2938 struct btrfs_path *path;
2939 struct btrfs_key key;
2940 struct btrfs_key found_key;
2941 struct btrfs_trans_handle *trans;
2942 struct extent_buffer *leaf;
2945 int enospc_errors = 0;
2946 bool counting = true;
2948 /* step one make some room on all the devices */
2949 devices = &fs_info->fs_devices->devices;
2950 list_for_each_entry(device, devices, dev_list) {
2951 old_size = device->total_bytes;
2952 size_to_free = div_factor(old_size, 1);
2953 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2954 if (!device->writeable ||
2955 device->total_bytes - device->bytes_used > size_to_free ||
2956 device->is_tgtdev_for_dev_replace)
2959 ret = btrfs_shrink_device(device, old_size - size_to_free);
2964 trans = btrfs_start_transaction(dev_root, 0);
2965 BUG_ON(IS_ERR(trans));
2967 ret = btrfs_grow_device(trans, device, old_size);
2970 btrfs_end_transaction(trans, dev_root);
2973 /* step two, relocate all the chunks */
2974 path = btrfs_alloc_path();
2980 /* zero out stat counters */
2981 spin_lock(&fs_info->balance_lock);
2982 memset(&bctl->stat, 0, sizeof(bctl->stat));
2983 spin_unlock(&fs_info->balance_lock);
2985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2986 key.offset = (u64)-1;
2987 key.type = BTRFS_CHUNK_ITEM_KEY;
2990 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2991 atomic_read(&fs_info->balance_cancel_req)) {
2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3001 * this shouldn't happen, it means the last relocate
3005 BUG(); /* FIXME break ? */
3007 ret = btrfs_previous_item(chunk_root, path, 0,
3008 BTRFS_CHUNK_ITEM_KEY);
3014 leaf = path->nodes[0];
3015 slot = path->slots[0];
3016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3018 if (found_key.objectid != key.objectid)
3021 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3024 spin_lock(&fs_info->balance_lock);
3025 bctl->stat.considered++;
3026 spin_unlock(&fs_info->balance_lock);
3029 ret = should_balance_chunk(chunk_root, leaf, chunk,
3031 btrfs_release_path(path);
3036 spin_lock(&fs_info->balance_lock);
3037 bctl->stat.expected++;
3038 spin_unlock(&fs_info->balance_lock);
3042 ret = btrfs_relocate_chunk(chunk_root,
3043 chunk_root->root_key.objectid,
3046 if (ret && ret != -ENOSPC)
3048 if (ret == -ENOSPC) {
3051 spin_lock(&fs_info->balance_lock);
3052 bctl->stat.completed++;
3053 spin_unlock(&fs_info->balance_lock);
3056 if (found_key.offset == 0)
3058 key.offset = found_key.offset - 1;
3062 btrfs_release_path(path);
3067 btrfs_free_path(path);
3068 if (enospc_errors) {
3069 btrfs_info(fs_info, "%d enospc errors during balance",
3079 * alloc_profile_is_valid - see if a given profile is valid and reduced
3080 * @flags: profile to validate
3081 * @extended: if true @flags is treated as an extended profile
3083 static int alloc_profile_is_valid(u64 flags, int extended)
3085 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3086 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3088 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3090 /* 1) check that all other bits are zeroed */
3094 /* 2) see if profile is reduced */
3096 return !extended; /* "0" is valid for usual profiles */
3098 /* true if exactly one bit set */
3099 return (flags & (flags - 1)) == 0;
3102 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3104 /* cancel requested || normal exit path */
3105 return atomic_read(&fs_info->balance_cancel_req) ||
3106 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3107 atomic_read(&fs_info->balance_cancel_req) == 0);
3110 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3114 unset_balance_control(fs_info);
3115 ret = del_balance_item(fs_info->tree_root);
3117 btrfs_std_error(fs_info, ret);
3119 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3123 * Should be called with both balance and volume mutexes held
3125 int btrfs_balance(struct btrfs_balance_control *bctl,
3126 struct btrfs_ioctl_balance_args *bargs)
3128 struct btrfs_fs_info *fs_info = bctl->fs_info;
3135 if (btrfs_fs_closing(fs_info) ||
3136 atomic_read(&fs_info->balance_pause_req) ||
3137 atomic_read(&fs_info->balance_cancel_req)) {
3142 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3143 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3147 * In case of mixed groups both data and meta should be picked,
3148 * and identical options should be given for both of them.
3150 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3151 if (mixed && (bctl->flags & allowed)) {
3152 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3153 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3154 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3155 btrfs_err(fs_info, "with mixed groups data and "
3156 "metadata balance options must be the same");
3162 num_devices = fs_info->fs_devices->num_devices;
3163 btrfs_dev_replace_lock(&fs_info->dev_replace);
3164 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3165 BUG_ON(num_devices < 1);
3168 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3169 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3170 if (num_devices == 1)
3171 allowed |= BTRFS_BLOCK_GROUP_DUP;
3172 else if (num_devices > 1)
3173 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3174 if (num_devices > 2)
3175 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3176 if (num_devices > 3)
3177 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3178 BTRFS_BLOCK_GROUP_RAID6);
3179 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3180 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3181 (bctl->data.target & ~allowed))) {
3182 btrfs_err(fs_info, "unable to start balance with target "
3183 "data profile %llu",
3188 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3189 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3190 (bctl->meta.target & ~allowed))) {
3192 "unable to start balance with target metadata profile %llu",
3197 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3198 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3199 (bctl->sys.target & ~allowed))) {
3201 "unable to start balance with target system profile %llu",
3207 /* allow dup'ed data chunks only in mixed mode */
3208 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3209 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3210 btrfs_err(fs_info, "dup for data is not allowed");
3215 /* allow to reduce meta or sys integrity only if force set */
3216 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3217 BTRFS_BLOCK_GROUP_RAID10 |
3218 BTRFS_BLOCK_GROUP_RAID5 |
3219 BTRFS_BLOCK_GROUP_RAID6;
3221 seq = read_seqbegin(&fs_info->profiles_lock);
3223 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3224 (fs_info->avail_system_alloc_bits & allowed) &&
3225 !(bctl->sys.target & allowed)) ||
3226 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3227 (fs_info->avail_metadata_alloc_bits & allowed) &&
3228 !(bctl->meta.target & allowed))) {
3229 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3230 btrfs_info(fs_info, "force reducing metadata integrity");
3232 btrfs_err(fs_info, "balance will reduce metadata "
3233 "integrity, use force if you want this");
3238 } while (read_seqretry(&fs_info->profiles_lock, seq));
3240 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3241 int num_tolerated_disk_barrier_failures;
3242 u64 target = bctl->sys.target;
3244 num_tolerated_disk_barrier_failures =
3245 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3246 if (num_tolerated_disk_barrier_failures > 0 &&
3248 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3249 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3250 num_tolerated_disk_barrier_failures = 0;
3251 else if (num_tolerated_disk_barrier_failures > 1 &&
3253 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3254 num_tolerated_disk_barrier_failures = 1;
3256 fs_info->num_tolerated_disk_barrier_failures =
3257 num_tolerated_disk_barrier_failures;
3260 ret = insert_balance_item(fs_info->tree_root, bctl);
3261 if (ret && ret != -EEXIST)
3264 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3265 BUG_ON(ret == -EEXIST);
3266 set_balance_control(bctl);
3268 BUG_ON(ret != -EEXIST);
3269 spin_lock(&fs_info->balance_lock);
3270 update_balance_args(bctl);
3271 spin_unlock(&fs_info->balance_lock);
3274 atomic_inc(&fs_info->balance_running);
3275 mutex_unlock(&fs_info->balance_mutex);
3277 ret = __btrfs_balance(fs_info);
3279 mutex_lock(&fs_info->balance_mutex);
3280 atomic_dec(&fs_info->balance_running);
3282 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3283 fs_info->num_tolerated_disk_barrier_failures =
3284 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3288 memset(bargs, 0, sizeof(*bargs));
3289 update_ioctl_balance_args(fs_info, 0, bargs);
3292 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3293 balance_need_close(fs_info)) {
3294 __cancel_balance(fs_info);
3297 wake_up(&fs_info->balance_wait_q);
3301 if (bctl->flags & BTRFS_BALANCE_RESUME)
3302 __cancel_balance(fs_info);
3305 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3310 static int balance_kthread(void *data)
3312 struct btrfs_fs_info *fs_info = data;
3315 mutex_lock(&fs_info->volume_mutex);
3316 mutex_lock(&fs_info->balance_mutex);
3318 if (fs_info->balance_ctl) {
3319 btrfs_info(fs_info, "continuing balance");
3320 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3323 mutex_unlock(&fs_info->balance_mutex);
3324 mutex_unlock(&fs_info->volume_mutex);
3329 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3331 struct task_struct *tsk;
3333 spin_lock(&fs_info->balance_lock);
3334 if (!fs_info->balance_ctl) {
3335 spin_unlock(&fs_info->balance_lock);
3338 spin_unlock(&fs_info->balance_lock);
3340 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3341 btrfs_info(fs_info, "force skipping balance");
3345 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3346 return PTR_ERR_OR_ZERO(tsk);
3349 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3351 struct btrfs_balance_control *bctl;
3352 struct btrfs_balance_item *item;
3353 struct btrfs_disk_balance_args disk_bargs;
3354 struct btrfs_path *path;
3355 struct extent_buffer *leaf;
3356 struct btrfs_key key;
3359 path = btrfs_alloc_path();
3363 key.objectid = BTRFS_BALANCE_OBJECTID;
3364 key.type = BTRFS_BALANCE_ITEM_KEY;
3367 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3370 if (ret > 0) { /* ret = -ENOENT; */
3375 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3381 leaf = path->nodes[0];
3382 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3384 bctl->fs_info = fs_info;
3385 bctl->flags = btrfs_balance_flags(leaf, item);
3386 bctl->flags |= BTRFS_BALANCE_RESUME;
3388 btrfs_balance_data(leaf, item, &disk_bargs);
3389 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3390 btrfs_balance_meta(leaf, item, &disk_bargs);
3391 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3392 btrfs_balance_sys(leaf, item, &disk_bargs);
3393 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3395 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3397 mutex_lock(&fs_info->volume_mutex);
3398 mutex_lock(&fs_info->balance_mutex);
3400 set_balance_control(bctl);
3402 mutex_unlock(&fs_info->balance_mutex);
3403 mutex_unlock(&fs_info->volume_mutex);
3405 btrfs_free_path(path);
3409 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3413 mutex_lock(&fs_info->balance_mutex);
3414 if (!fs_info->balance_ctl) {
3415 mutex_unlock(&fs_info->balance_mutex);
3419 if (atomic_read(&fs_info->balance_running)) {
3420 atomic_inc(&fs_info->balance_pause_req);
3421 mutex_unlock(&fs_info->balance_mutex);
3423 wait_event(fs_info->balance_wait_q,
3424 atomic_read(&fs_info->balance_running) == 0);
3426 mutex_lock(&fs_info->balance_mutex);
3427 /* we are good with balance_ctl ripped off from under us */
3428 BUG_ON(atomic_read(&fs_info->balance_running));
3429 atomic_dec(&fs_info->balance_pause_req);
3434 mutex_unlock(&fs_info->balance_mutex);
3438 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3440 if (fs_info->sb->s_flags & MS_RDONLY)
3443 mutex_lock(&fs_info->balance_mutex);
3444 if (!fs_info->balance_ctl) {
3445 mutex_unlock(&fs_info->balance_mutex);
3449 atomic_inc(&fs_info->balance_cancel_req);
3451 * if we are running just wait and return, balance item is
3452 * deleted in btrfs_balance in this case
3454 if (atomic_read(&fs_info->balance_running)) {
3455 mutex_unlock(&fs_info->balance_mutex);
3456 wait_event(fs_info->balance_wait_q,
3457 atomic_read(&fs_info->balance_running) == 0);
3458 mutex_lock(&fs_info->balance_mutex);
3460 /* __cancel_balance needs volume_mutex */
3461 mutex_unlock(&fs_info->balance_mutex);
3462 mutex_lock(&fs_info->volume_mutex);
3463 mutex_lock(&fs_info->balance_mutex);
3465 if (fs_info->balance_ctl)
3466 __cancel_balance(fs_info);
3468 mutex_unlock(&fs_info->volume_mutex);
3471 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3472 atomic_dec(&fs_info->balance_cancel_req);
3473 mutex_unlock(&fs_info->balance_mutex);
3477 static int btrfs_uuid_scan_kthread(void *data)
3479 struct btrfs_fs_info *fs_info = data;
3480 struct btrfs_root *root = fs_info->tree_root;
3481 struct btrfs_key key;
3482 struct btrfs_key max_key;
3483 struct btrfs_path *path = NULL;
3485 struct extent_buffer *eb;
3487 struct btrfs_root_item root_item;
3489 struct btrfs_trans_handle *trans = NULL;
3491 path = btrfs_alloc_path();
3498 key.type = BTRFS_ROOT_ITEM_KEY;
3501 max_key.objectid = (u64)-1;
3502 max_key.type = BTRFS_ROOT_ITEM_KEY;
3503 max_key.offset = (u64)-1;
3505 path->keep_locks = 1;
3508 ret = btrfs_search_forward(root, &key, path, 0);
3515 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3516 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3517 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3518 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3521 eb = path->nodes[0];
3522 slot = path->slots[0];
3523 item_size = btrfs_item_size_nr(eb, slot);
3524 if (item_size < sizeof(root_item))
3527 read_extent_buffer(eb, &root_item,
3528 btrfs_item_ptr_offset(eb, slot),
3529 (int)sizeof(root_item));
3530 if (btrfs_root_refs(&root_item) == 0)
3533 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3534 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3538 btrfs_release_path(path);
3540 * 1 - subvol uuid item
3541 * 1 - received_subvol uuid item
3543 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3544 if (IS_ERR(trans)) {
3545 ret = PTR_ERR(trans);
3553 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3554 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3556 BTRFS_UUID_KEY_SUBVOL,
3559 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3565 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3566 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3567 root_item.received_uuid,
3568 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3571 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3579 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3585 btrfs_release_path(path);
3586 if (key.offset < (u64)-1) {
3588 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3590 key.type = BTRFS_ROOT_ITEM_KEY;
3591 } else if (key.objectid < (u64)-1) {
3593 key.type = BTRFS_ROOT_ITEM_KEY;
3602 btrfs_free_path(path);
3603 if (trans && !IS_ERR(trans))
3604 btrfs_end_transaction(trans, fs_info->uuid_root);
3606 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3608 fs_info->update_uuid_tree_gen = 1;
3609 up(&fs_info->uuid_tree_rescan_sem);
3614 * Callback for btrfs_uuid_tree_iterate().
3616 * 0 check succeeded, the entry is not outdated.
3617 * < 0 if an error occured.
3618 * > 0 if the check failed, which means the caller shall remove the entry.
3620 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3621 u8 *uuid, u8 type, u64 subid)
3623 struct btrfs_key key;
3625 struct btrfs_root *subvol_root;
3627 if (type != BTRFS_UUID_KEY_SUBVOL &&
3628 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3631 key.objectid = subid;
3632 key.type = BTRFS_ROOT_ITEM_KEY;
3633 key.offset = (u64)-1;
3634 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3635 if (IS_ERR(subvol_root)) {
3636 ret = PTR_ERR(subvol_root);
3643 case BTRFS_UUID_KEY_SUBVOL:
3644 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3647 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3648 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3658 static int btrfs_uuid_rescan_kthread(void *data)
3660 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3664 * 1st step is to iterate through the existing UUID tree and
3665 * to delete all entries that contain outdated data.
3666 * 2nd step is to add all missing entries to the UUID tree.
3668 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3670 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3671 up(&fs_info->uuid_tree_rescan_sem);
3674 return btrfs_uuid_scan_kthread(data);
3677 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3679 struct btrfs_trans_handle *trans;
3680 struct btrfs_root *tree_root = fs_info->tree_root;
3681 struct btrfs_root *uuid_root;
3682 struct task_struct *task;
3689 trans = btrfs_start_transaction(tree_root, 2);
3691 return PTR_ERR(trans);
3693 uuid_root = btrfs_create_tree(trans, fs_info,
3694 BTRFS_UUID_TREE_OBJECTID);
3695 if (IS_ERR(uuid_root)) {
3696 btrfs_abort_transaction(trans, tree_root,
3697 PTR_ERR(uuid_root));
3698 return PTR_ERR(uuid_root);
3701 fs_info->uuid_root = uuid_root;
3703 ret = btrfs_commit_transaction(trans, tree_root);
3707 down(&fs_info->uuid_tree_rescan_sem);
3708 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3710 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3711 btrfs_warn(fs_info, "failed to start uuid_scan task");
3712 up(&fs_info->uuid_tree_rescan_sem);
3713 return PTR_ERR(task);
3719 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3721 struct task_struct *task;
3723 down(&fs_info->uuid_tree_rescan_sem);
3724 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3726 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3727 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3728 up(&fs_info->uuid_tree_rescan_sem);
3729 return PTR_ERR(task);
3736 * shrinking a device means finding all of the device extents past
3737 * the new size, and then following the back refs to the chunks.
3738 * The chunk relocation code actually frees the device extent
3740 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3742 struct btrfs_trans_handle *trans;
3743 struct btrfs_root *root = device->dev_root;
3744 struct btrfs_dev_extent *dev_extent = NULL;
3745 struct btrfs_path *path;
3753 bool retried = false;
3754 struct extent_buffer *l;
3755 struct btrfs_key key;
3756 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3757 u64 old_total = btrfs_super_total_bytes(super_copy);
3758 u64 old_size = device->total_bytes;
3759 u64 diff = device->total_bytes - new_size;
3761 if (device->is_tgtdev_for_dev_replace)
3764 path = btrfs_alloc_path();
3772 device->total_bytes = new_size;
3773 if (device->writeable) {
3774 device->fs_devices->total_rw_bytes -= diff;
3775 spin_lock(&root->fs_info->free_chunk_lock);
3776 root->fs_info->free_chunk_space -= diff;
3777 spin_unlock(&root->fs_info->free_chunk_lock);
3779 unlock_chunks(root);
3782 key.objectid = device->devid;
3783 key.offset = (u64)-1;
3784 key.type = BTRFS_DEV_EXTENT_KEY;
3787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3791 ret = btrfs_previous_item(root, path, 0, key.type);
3796 btrfs_release_path(path);
3801 slot = path->slots[0];
3802 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3804 if (key.objectid != device->devid) {
3805 btrfs_release_path(path);
3809 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3810 length = btrfs_dev_extent_length(l, dev_extent);
3812 if (key.offset + length <= new_size) {
3813 btrfs_release_path(path);
3817 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3818 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3819 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3820 btrfs_release_path(path);
3822 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3824 if (ret && ret != -ENOSPC)
3828 } while (key.offset-- > 0);
3830 if (failed && !retried) {
3834 } else if (failed && retried) {
3838 device->total_bytes = old_size;
3839 if (device->writeable)
3840 device->fs_devices->total_rw_bytes += diff;
3841 spin_lock(&root->fs_info->free_chunk_lock);
3842 root->fs_info->free_chunk_space += diff;
3843 spin_unlock(&root->fs_info->free_chunk_lock);
3844 unlock_chunks(root);
3848 /* Shrinking succeeded, else we would be at "done". */
3849 trans = btrfs_start_transaction(root, 0);
3850 if (IS_ERR(trans)) {
3851 ret = PTR_ERR(trans);
3857 device->disk_total_bytes = new_size;
3858 /* Now btrfs_update_device() will change the on-disk size. */
3859 ret = btrfs_update_device(trans, device);
3861 unlock_chunks(root);
3862 btrfs_end_transaction(trans, root);
3865 WARN_ON(diff > old_total);
3866 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3867 unlock_chunks(root);
3868 btrfs_end_transaction(trans, root);
3870 btrfs_free_path(path);
3874 static int btrfs_add_system_chunk(struct btrfs_root *root,
3875 struct btrfs_key *key,
3876 struct btrfs_chunk *chunk, int item_size)
3878 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3879 struct btrfs_disk_key disk_key;
3883 array_size = btrfs_super_sys_array_size(super_copy);
3884 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3887 ptr = super_copy->sys_chunk_array + array_size;
3888 btrfs_cpu_key_to_disk(&disk_key, key);
3889 memcpy(ptr, &disk_key, sizeof(disk_key));
3890 ptr += sizeof(disk_key);
3891 memcpy(ptr, chunk, item_size);
3892 item_size += sizeof(disk_key);
3893 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3898 * sort the devices in descending order by max_avail, total_avail
3900 static int btrfs_cmp_device_info(const void *a, const void *b)
3902 const struct btrfs_device_info *di_a = a;
3903 const struct btrfs_device_info *di_b = b;
3905 if (di_a->max_avail > di_b->max_avail)
3907 if (di_a->max_avail < di_b->max_avail)
3909 if (di_a->total_avail > di_b->total_avail)
3911 if (di_a->total_avail < di_b->total_avail)
3916 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3917 [BTRFS_RAID_RAID10] = {
3920 .devs_max = 0, /* 0 == as many as possible */
3922 .devs_increment = 2,
3925 [BTRFS_RAID_RAID1] = {
3930 .devs_increment = 2,
3933 [BTRFS_RAID_DUP] = {
3938 .devs_increment = 1,
3941 [BTRFS_RAID_RAID0] = {
3946 .devs_increment = 1,
3949 [BTRFS_RAID_SINGLE] = {
3954 .devs_increment = 1,
3957 [BTRFS_RAID_RAID5] = {
3962 .devs_increment = 1,
3965 [BTRFS_RAID_RAID6] = {
3970 .devs_increment = 1,
3975 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3977 /* TODO allow them to set a preferred stripe size */
3981 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3983 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3986 btrfs_set_fs_incompat(info, RAID56);
3989 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *extent_root, u64 start,
3993 struct btrfs_fs_info *info = extent_root->fs_info;
3994 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3995 struct list_head *cur;
3996 struct map_lookup *map = NULL;
3997 struct extent_map_tree *em_tree;
3998 struct extent_map *em;
3999 struct btrfs_device_info *devices_info = NULL;
4001 int num_stripes; /* total number of stripes to allocate */
4002 int data_stripes; /* number of stripes that count for
4004 int sub_stripes; /* sub_stripes info for map */
4005 int dev_stripes; /* stripes per dev */
4006 int devs_max; /* max devs to use */
4007 int devs_min; /* min devs needed */
4008 int devs_increment; /* ndevs has to be a multiple of this */
4009 int ncopies; /* how many copies to data has */
4011 u64 max_stripe_size;
4015 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4021 BUG_ON(!alloc_profile_is_valid(type, 0));
4023 if (list_empty(&fs_devices->alloc_list))
4026 index = __get_raid_index(type);
4028 sub_stripes = btrfs_raid_array[index].sub_stripes;
4029 dev_stripes = btrfs_raid_array[index].dev_stripes;
4030 devs_max = btrfs_raid_array[index].devs_max;
4031 devs_min = btrfs_raid_array[index].devs_min;
4032 devs_increment = btrfs_raid_array[index].devs_increment;
4033 ncopies = btrfs_raid_array[index].ncopies;
4035 if (type & BTRFS_BLOCK_GROUP_DATA) {
4036 max_stripe_size = 1024 * 1024 * 1024;
4037 max_chunk_size = 10 * max_stripe_size;
4038 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4039 /* for larger filesystems, use larger metadata chunks */
4040 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4041 max_stripe_size = 1024 * 1024 * 1024;
4043 max_stripe_size = 256 * 1024 * 1024;
4044 max_chunk_size = max_stripe_size;
4045 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4046 max_stripe_size = 32 * 1024 * 1024;
4047 max_chunk_size = 2 * max_stripe_size;
4049 btrfs_err(info, "invalid chunk type 0x%llx requested\n",
4054 /* we don't want a chunk larger than 10% of writeable space */
4055 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4058 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4063 cur = fs_devices->alloc_list.next;
4066 * in the first pass through the devices list, we gather information
4067 * about the available holes on each device.
4070 while (cur != &fs_devices->alloc_list) {
4071 struct btrfs_device *device;
4075 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4079 if (!device->writeable) {
4081 "BTRFS: read-only device in alloc_list\n");
4085 if (!device->in_fs_metadata ||
4086 device->is_tgtdev_for_dev_replace)
4089 if (device->total_bytes > device->bytes_used)
4090 total_avail = device->total_bytes - device->bytes_used;
4094 /* If there is no space on this device, skip it. */
4095 if (total_avail == 0)
4098 ret = find_free_dev_extent(trans, device,
4099 max_stripe_size * dev_stripes,
4100 &dev_offset, &max_avail);
4101 if (ret && ret != -ENOSPC)
4105 max_avail = max_stripe_size * dev_stripes;
4107 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4110 if (ndevs == fs_devices->rw_devices) {
4111 WARN(1, "%s: found more than %llu devices\n",
4112 __func__, fs_devices->rw_devices);
4115 devices_info[ndevs].dev_offset = dev_offset;
4116 devices_info[ndevs].max_avail = max_avail;
4117 devices_info[ndevs].total_avail = total_avail;
4118 devices_info[ndevs].dev = device;
4123 * now sort the devices by hole size / available space
4125 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4126 btrfs_cmp_device_info, NULL);
4128 /* round down to number of usable stripes */
4129 ndevs -= ndevs % devs_increment;
4131 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4136 if (devs_max && ndevs > devs_max)
4139 * the primary goal is to maximize the number of stripes, so use as many
4140 * devices as possible, even if the stripes are not maximum sized.
4142 stripe_size = devices_info[ndevs-1].max_avail;
4143 num_stripes = ndevs * dev_stripes;
4146 * this will have to be fixed for RAID1 and RAID10 over
4149 data_stripes = num_stripes / ncopies;
4151 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4152 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4153 btrfs_super_stripesize(info->super_copy));
4154 data_stripes = num_stripes - 1;
4156 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4157 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4158 btrfs_super_stripesize(info->super_copy));
4159 data_stripes = num_stripes - 2;
4163 * Use the number of data stripes to figure out how big this chunk
4164 * is really going to be in terms of logical address space,
4165 * and compare that answer with the max chunk size
4167 if (stripe_size * data_stripes > max_chunk_size) {
4168 u64 mask = (1ULL << 24) - 1;
4169 stripe_size = max_chunk_size;
4170 do_div(stripe_size, data_stripes);
4172 /* bump the answer up to a 16MB boundary */
4173 stripe_size = (stripe_size + mask) & ~mask;
4175 /* but don't go higher than the limits we found
4176 * while searching for free extents
4178 if (stripe_size > devices_info[ndevs-1].max_avail)
4179 stripe_size = devices_info[ndevs-1].max_avail;
4182 do_div(stripe_size, dev_stripes);
4184 /* align to BTRFS_STRIPE_LEN */
4185 do_div(stripe_size, raid_stripe_len);
4186 stripe_size *= raid_stripe_len;
4188 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4193 map->num_stripes = num_stripes;
4195 for (i = 0; i < ndevs; ++i) {
4196 for (j = 0; j < dev_stripes; ++j) {
4197 int s = i * dev_stripes + j;
4198 map->stripes[s].dev = devices_info[i].dev;
4199 map->stripes[s].physical = devices_info[i].dev_offset +
4203 map->sector_size = extent_root->sectorsize;
4204 map->stripe_len = raid_stripe_len;
4205 map->io_align = raid_stripe_len;
4206 map->io_width = raid_stripe_len;
4208 map->sub_stripes = sub_stripes;
4210 num_bytes = stripe_size * data_stripes;
4212 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4214 em = alloc_extent_map();
4219 em->bdev = (struct block_device *)map;
4221 em->len = num_bytes;
4222 em->block_start = 0;
4223 em->block_len = em->len;
4224 em->orig_block_len = stripe_size;
4226 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4227 write_lock(&em_tree->lock);
4228 ret = add_extent_mapping(em_tree, em, 0);
4230 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4231 atomic_inc(&em->refs);
4233 write_unlock(&em_tree->lock);
4235 free_extent_map(em);
4239 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4240 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4243 goto error_del_extent;
4245 free_extent_map(em);
4246 check_raid56_incompat_flag(extent_root->fs_info, type);
4248 kfree(devices_info);
4252 write_lock(&em_tree->lock);
4253 remove_extent_mapping(em_tree, em);
4254 write_unlock(&em_tree->lock);
4256 /* One for our allocation */
4257 free_extent_map(em);
4258 /* One for the tree reference */
4259 free_extent_map(em);
4262 kfree(devices_info);
4266 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4267 struct btrfs_root *extent_root,
4268 u64 chunk_offset, u64 chunk_size)
4270 struct btrfs_key key;
4271 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4272 struct btrfs_device *device;
4273 struct btrfs_chunk *chunk;
4274 struct btrfs_stripe *stripe;
4275 struct extent_map_tree *em_tree;
4276 struct extent_map *em;
4277 struct map_lookup *map;
4284 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4285 read_lock(&em_tree->lock);
4286 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4287 read_unlock(&em_tree->lock);
4290 btrfs_crit(extent_root->fs_info, "unable to find logical "
4291 "%Lu len %Lu", chunk_offset, chunk_size);
4295 if (em->start != chunk_offset || em->len != chunk_size) {
4296 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4297 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4298 chunk_size, em->start, em->len);
4299 free_extent_map(em);
4303 map = (struct map_lookup *)em->bdev;
4304 item_size = btrfs_chunk_item_size(map->num_stripes);
4305 stripe_size = em->orig_block_len;
4307 chunk = kzalloc(item_size, GFP_NOFS);
4313 for (i = 0; i < map->num_stripes; i++) {
4314 device = map->stripes[i].dev;
4315 dev_offset = map->stripes[i].physical;
4317 device->bytes_used += stripe_size;
4318 ret = btrfs_update_device(trans, device);
4321 ret = btrfs_alloc_dev_extent(trans, device,
4322 chunk_root->root_key.objectid,
4323 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4324 chunk_offset, dev_offset,
4330 spin_lock(&extent_root->fs_info->free_chunk_lock);
4331 extent_root->fs_info->free_chunk_space -= (stripe_size *
4333 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4335 stripe = &chunk->stripe;
4336 for (i = 0; i < map->num_stripes; i++) {
4337 device = map->stripes[i].dev;
4338 dev_offset = map->stripes[i].physical;
4340 btrfs_set_stack_stripe_devid(stripe, device->devid);
4341 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4342 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4346 btrfs_set_stack_chunk_length(chunk, chunk_size);
4347 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4348 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4349 btrfs_set_stack_chunk_type(chunk, map->type);
4350 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4351 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4352 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4353 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4354 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4356 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4357 key.type = BTRFS_CHUNK_ITEM_KEY;
4358 key.offset = chunk_offset;
4360 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4361 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4363 * TODO: Cleanup of inserted chunk root in case of
4366 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4372 free_extent_map(em);
4377 * Chunk allocation falls into two parts. The first part does works
4378 * that make the new allocated chunk useable, but not do any operation
4379 * that modifies the chunk tree. The second part does the works that
4380 * require modifying the chunk tree. This division is important for the
4381 * bootstrap process of adding storage to a seed btrfs.
4383 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4384 struct btrfs_root *extent_root, u64 type)
4388 chunk_offset = find_next_chunk(extent_root->fs_info);
4389 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4392 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4393 struct btrfs_root *root,
4394 struct btrfs_device *device)
4397 u64 sys_chunk_offset;
4399 struct btrfs_fs_info *fs_info = root->fs_info;
4400 struct btrfs_root *extent_root = fs_info->extent_root;
4403 chunk_offset = find_next_chunk(fs_info);
4404 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4405 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4410 sys_chunk_offset = find_next_chunk(root->fs_info);
4411 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4412 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4415 btrfs_abort_transaction(trans, root, ret);
4419 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4421 btrfs_abort_transaction(trans, root, ret);
4426 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4428 struct extent_map *em;
4429 struct map_lookup *map;
4430 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4434 read_lock(&map_tree->map_tree.lock);
4435 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4436 read_unlock(&map_tree->map_tree.lock);
4440 if (btrfs_test_opt(root, DEGRADED)) {
4441 free_extent_map(em);
4445 map = (struct map_lookup *)em->bdev;
4446 for (i = 0; i < map->num_stripes; i++) {
4447 if (!map->stripes[i].dev->writeable) {
4452 free_extent_map(em);
4456 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4458 extent_map_tree_init(&tree->map_tree);
4461 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4463 struct extent_map *em;
4466 write_lock(&tree->map_tree.lock);
4467 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4469 remove_extent_mapping(&tree->map_tree, em);
4470 write_unlock(&tree->map_tree.lock);
4475 free_extent_map(em);
4476 /* once for the tree */
4477 free_extent_map(em);
4481 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4483 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4484 struct extent_map *em;
4485 struct map_lookup *map;
4486 struct extent_map_tree *em_tree = &map_tree->map_tree;
4489 read_lock(&em_tree->lock);
4490 em = lookup_extent_mapping(em_tree, logical, len);
4491 read_unlock(&em_tree->lock);
4494 * We could return errors for these cases, but that could get ugly and
4495 * we'd probably do the same thing which is just not do anything else
4496 * and exit, so return 1 so the callers don't try to use other copies.
4499 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4504 if (em->start > logical || em->start + em->len < logical) {
4505 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4506 "%Lu-%Lu\n", logical, logical+len, em->start,
4507 em->start + em->len);
4508 free_extent_map(em);
4512 map = (struct map_lookup *)em->bdev;
4513 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4514 ret = map->num_stripes;
4515 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4516 ret = map->sub_stripes;
4517 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4519 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4523 free_extent_map(em);
4525 btrfs_dev_replace_lock(&fs_info->dev_replace);
4526 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4528 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4533 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4534 struct btrfs_mapping_tree *map_tree,
4537 struct extent_map *em;
4538 struct map_lookup *map;
4539 struct extent_map_tree *em_tree = &map_tree->map_tree;
4540 unsigned long len = root->sectorsize;
4542 read_lock(&em_tree->lock);
4543 em = lookup_extent_mapping(em_tree, logical, len);
4544 read_unlock(&em_tree->lock);
4547 BUG_ON(em->start > logical || em->start + em->len < logical);
4548 map = (struct map_lookup *)em->bdev;
4549 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4550 BTRFS_BLOCK_GROUP_RAID6)) {
4551 len = map->stripe_len * nr_data_stripes(map);
4553 free_extent_map(em);
4557 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4558 u64 logical, u64 len, int mirror_num)
4560 struct extent_map *em;
4561 struct map_lookup *map;
4562 struct extent_map_tree *em_tree = &map_tree->map_tree;
4565 read_lock(&em_tree->lock);
4566 em = lookup_extent_mapping(em_tree, logical, len);
4567 read_unlock(&em_tree->lock);
4570 BUG_ON(em->start > logical || em->start + em->len < logical);
4571 map = (struct map_lookup *)em->bdev;
4572 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4573 BTRFS_BLOCK_GROUP_RAID6))
4575 free_extent_map(em);
4579 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4580 struct map_lookup *map, int first, int num,
4581 int optimal, int dev_replace_is_ongoing)
4585 struct btrfs_device *srcdev;
4587 if (dev_replace_is_ongoing &&
4588 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4589 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4590 srcdev = fs_info->dev_replace.srcdev;
4595 * try to avoid the drive that is the source drive for a
4596 * dev-replace procedure, only choose it if no other non-missing
4597 * mirror is available
4599 for (tolerance = 0; tolerance < 2; tolerance++) {
4600 if (map->stripes[optimal].dev->bdev &&
4601 (tolerance || map->stripes[optimal].dev != srcdev))
4603 for (i = first; i < first + num; i++) {
4604 if (map->stripes[i].dev->bdev &&
4605 (tolerance || map->stripes[i].dev != srcdev))
4610 /* we couldn't find one that doesn't fail. Just return something
4611 * and the io error handling code will clean up eventually
4616 static inline int parity_smaller(u64 a, u64 b)
4621 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4622 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4624 struct btrfs_bio_stripe s;
4631 for (i = 0; i < bbio->num_stripes - 1; i++) {
4632 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4633 s = bbio->stripes[i];
4635 bbio->stripes[i] = bbio->stripes[i+1];
4636 raid_map[i] = raid_map[i+1];
4637 bbio->stripes[i+1] = s;
4645 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4646 u64 logical, u64 *length,
4647 struct btrfs_bio **bbio_ret,
4648 int mirror_num, u64 **raid_map_ret)
4650 struct extent_map *em;
4651 struct map_lookup *map;
4652 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4653 struct extent_map_tree *em_tree = &map_tree->map_tree;
4656 u64 stripe_end_offset;
4661 u64 *raid_map = NULL;
4667 struct btrfs_bio *bbio = NULL;
4668 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4669 int dev_replace_is_ongoing = 0;
4670 int num_alloc_stripes;
4671 int patch_the_first_stripe_for_dev_replace = 0;
4672 u64 physical_to_patch_in_first_stripe = 0;
4673 u64 raid56_full_stripe_start = (u64)-1;
4675 read_lock(&em_tree->lock);
4676 em = lookup_extent_mapping(em_tree, logical, *length);
4677 read_unlock(&em_tree->lock);
4680 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4685 if (em->start > logical || em->start + em->len < logical) {
4686 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4687 "found %Lu-%Lu\n", logical, em->start,
4688 em->start + em->len);
4689 free_extent_map(em);
4693 map = (struct map_lookup *)em->bdev;
4694 offset = logical - em->start;
4696 stripe_len = map->stripe_len;
4699 * stripe_nr counts the total number of stripes we have to stride
4700 * to get to this block
4702 do_div(stripe_nr, stripe_len);
4704 stripe_offset = stripe_nr * stripe_len;
4705 BUG_ON(offset < stripe_offset);
4707 /* stripe_offset is the offset of this block in its stripe*/
4708 stripe_offset = offset - stripe_offset;
4710 /* if we're here for raid56, we need to know the stripe aligned start */
4711 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4712 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4713 raid56_full_stripe_start = offset;
4715 /* allow a write of a full stripe, but make sure we don't
4716 * allow straddling of stripes
4718 do_div(raid56_full_stripe_start, full_stripe_len);
4719 raid56_full_stripe_start *= full_stripe_len;
4722 if (rw & REQ_DISCARD) {
4723 /* we don't discard raid56 yet */
4725 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4729 *length = min_t(u64, em->len - offset, *length);
4730 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4732 /* For writes to RAID[56], allow a full stripeset across all disks.
4733 For other RAID types and for RAID[56] reads, just allow a single
4734 stripe (on a single disk). */
4735 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4737 max_len = stripe_len * nr_data_stripes(map) -
4738 (offset - raid56_full_stripe_start);
4740 /* we limit the length of each bio to what fits in a stripe */
4741 max_len = stripe_len - stripe_offset;
4743 *length = min_t(u64, em->len - offset, max_len);
4745 *length = em->len - offset;
4748 /* This is for when we're called from btrfs_merge_bio_hook() and all
4749 it cares about is the length */
4753 btrfs_dev_replace_lock(dev_replace);
4754 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4755 if (!dev_replace_is_ongoing)
4756 btrfs_dev_replace_unlock(dev_replace);
4758 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4759 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4760 dev_replace->tgtdev != NULL) {
4762 * in dev-replace case, for repair case (that's the only
4763 * case where the mirror is selected explicitly when
4764 * calling btrfs_map_block), blocks left of the left cursor
4765 * can also be read from the target drive.
4766 * For REQ_GET_READ_MIRRORS, the target drive is added as
4767 * the last one to the array of stripes. For READ, it also
4768 * needs to be supported using the same mirror number.
4769 * If the requested block is not left of the left cursor,
4770 * EIO is returned. This can happen because btrfs_num_copies()
4771 * returns one more in the dev-replace case.
4773 u64 tmp_length = *length;
4774 struct btrfs_bio *tmp_bbio = NULL;
4775 int tmp_num_stripes;
4776 u64 srcdev_devid = dev_replace->srcdev->devid;
4777 int index_srcdev = 0;
4779 u64 physical_of_found = 0;
4781 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4782 logical, &tmp_length, &tmp_bbio, 0, NULL);
4784 WARN_ON(tmp_bbio != NULL);
4788 tmp_num_stripes = tmp_bbio->num_stripes;
4789 if (mirror_num > tmp_num_stripes) {
4791 * REQ_GET_READ_MIRRORS does not contain this
4792 * mirror, that means that the requested area
4793 * is not left of the left cursor
4801 * process the rest of the function using the mirror_num
4802 * of the source drive. Therefore look it up first.
4803 * At the end, patch the device pointer to the one of the
4806 for (i = 0; i < tmp_num_stripes; i++) {
4807 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4809 * In case of DUP, in order to keep it
4810 * simple, only add the mirror with the
4811 * lowest physical address
4814 physical_of_found <=
4815 tmp_bbio->stripes[i].physical)
4820 tmp_bbio->stripes[i].physical;
4825 mirror_num = index_srcdev + 1;
4826 patch_the_first_stripe_for_dev_replace = 1;
4827 physical_to_patch_in_first_stripe = physical_of_found;
4836 } else if (mirror_num > map->num_stripes) {
4842 stripe_nr_orig = stripe_nr;
4843 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4844 do_div(stripe_nr_end, map->stripe_len);
4845 stripe_end_offset = stripe_nr_end * map->stripe_len -
4848 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4849 if (rw & REQ_DISCARD)
4850 num_stripes = min_t(u64, map->num_stripes,
4851 stripe_nr_end - stripe_nr_orig);
4852 stripe_index = do_div(stripe_nr, map->num_stripes);
4853 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4854 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4855 num_stripes = map->num_stripes;
4856 else if (mirror_num)
4857 stripe_index = mirror_num - 1;
4859 stripe_index = find_live_mirror(fs_info, map, 0,
4861 current->pid % map->num_stripes,
4862 dev_replace_is_ongoing);
4863 mirror_num = stripe_index + 1;
4866 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4867 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4868 num_stripes = map->num_stripes;
4869 } else if (mirror_num) {
4870 stripe_index = mirror_num - 1;
4875 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4876 int factor = map->num_stripes / map->sub_stripes;
4878 stripe_index = do_div(stripe_nr, factor);
4879 stripe_index *= map->sub_stripes;
4881 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4882 num_stripes = map->sub_stripes;
4883 else if (rw & REQ_DISCARD)
4884 num_stripes = min_t(u64, map->sub_stripes *
4885 (stripe_nr_end - stripe_nr_orig),
4887 else if (mirror_num)
4888 stripe_index += mirror_num - 1;
4890 int old_stripe_index = stripe_index;
4891 stripe_index = find_live_mirror(fs_info, map,
4893 map->sub_stripes, stripe_index +
4894 current->pid % map->sub_stripes,
4895 dev_replace_is_ongoing);
4896 mirror_num = stripe_index - old_stripe_index + 1;
4899 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4900 BTRFS_BLOCK_GROUP_RAID6)) {
4903 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4907 /* push stripe_nr back to the start of the full stripe */
4908 stripe_nr = raid56_full_stripe_start;
4909 do_div(stripe_nr, stripe_len);
4911 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4913 /* RAID[56] write or recovery. Return all stripes */
4914 num_stripes = map->num_stripes;
4915 max_errors = nr_parity_stripes(map);
4917 raid_map = kmalloc_array(num_stripes, sizeof(u64),
4924 /* Work out the disk rotation on this stripe-set */
4926 rot = do_div(tmp, num_stripes);
4928 /* Fill in the logical address of each stripe */
4929 tmp = stripe_nr * nr_data_stripes(map);
4930 for (i = 0; i < nr_data_stripes(map); i++)
4931 raid_map[(i+rot) % num_stripes] =
4932 em->start + (tmp + i) * map->stripe_len;
4934 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4935 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936 raid_map[(i+rot+1) % num_stripes] =
4939 *length = map->stripe_len;
4944 * Mirror #0 or #1 means the original data block.
4945 * Mirror #2 is RAID5 parity block.
4946 * Mirror #3 is RAID6 Q block.
4948 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4950 stripe_index = nr_data_stripes(map) +
4953 /* We distribute the parity blocks across stripes */
4954 tmp = stripe_nr + stripe_index;
4955 stripe_index = do_div(tmp, map->num_stripes);
4959 * after this do_div call, stripe_nr is the number of stripes
4960 * on this device we have to walk to find the data, and
4961 * stripe_index is the number of our device in the stripe array
4963 stripe_index = do_div(stripe_nr, map->num_stripes);
4964 mirror_num = stripe_index + 1;
4966 BUG_ON(stripe_index >= map->num_stripes);
4968 num_alloc_stripes = num_stripes;
4969 if (dev_replace_is_ongoing) {
4970 if (rw & (REQ_WRITE | REQ_DISCARD))
4971 num_alloc_stripes <<= 1;
4972 if (rw & REQ_GET_READ_MIRRORS)
4973 num_alloc_stripes++;
4975 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4981 atomic_set(&bbio->error, 0);
4983 if (rw & REQ_DISCARD) {
4985 int sub_stripes = 0;
4986 u64 stripes_per_dev = 0;
4987 u32 remaining_stripes = 0;
4988 u32 last_stripe = 0;
4991 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4992 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4995 sub_stripes = map->sub_stripes;
4997 factor = map->num_stripes / sub_stripes;
4998 stripes_per_dev = div_u64_rem(stripe_nr_end -
5001 &remaining_stripes);
5002 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5003 last_stripe *= sub_stripes;
5006 for (i = 0; i < num_stripes; i++) {
5007 bbio->stripes[i].physical =
5008 map->stripes[stripe_index].physical +
5009 stripe_offset + stripe_nr * map->stripe_len;
5010 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5012 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5013 BTRFS_BLOCK_GROUP_RAID10)) {
5014 bbio->stripes[i].length = stripes_per_dev *
5017 if (i / sub_stripes < remaining_stripes)
5018 bbio->stripes[i].length +=
5022 * Special for the first stripe and
5025 * |-------|...|-------|
5029 if (i < sub_stripes)
5030 bbio->stripes[i].length -=
5033 if (stripe_index >= last_stripe &&
5034 stripe_index <= (last_stripe +
5036 bbio->stripes[i].length -=
5039 if (i == sub_stripes - 1)
5042 bbio->stripes[i].length = *length;
5045 if (stripe_index == map->num_stripes) {
5046 /* This could only happen for RAID0/10 */
5052 for (i = 0; i < num_stripes; i++) {
5053 bbio->stripes[i].physical =
5054 map->stripes[stripe_index].physical +
5056 stripe_nr * map->stripe_len;
5057 bbio->stripes[i].dev =
5058 map->stripes[stripe_index].dev;
5063 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5064 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5065 BTRFS_BLOCK_GROUP_RAID10 |
5066 BTRFS_BLOCK_GROUP_RAID5 |
5067 BTRFS_BLOCK_GROUP_DUP)) {
5069 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5074 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5075 dev_replace->tgtdev != NULL) {
5076 int index_where_to_add;
5077 u64 srcdev_devid = dev_replace->srcdev->devid;
5080 * duplicate the write operations while the dev replace
5081 * procedure is running. Since the copying of the old disk
5082 * to the new disk takes place at run time while the
5083 * filesystem is mounted writable, the regular write
5084 * operations to the old disk have to be duplicated to go
5085 * to the new disk as well.
5086 * Note that device->missing is handled by the caller, and
5087 * that the write to the old disk is already set up in the
5090 index_where_to_add = num_stripes;
5091 for (i = 0; i < num_stripes; i++) {
5092 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5093 /* write to new disk, too */
5094 struct btrfs_bio_stripe *new =
5095 bbio->stripes + index_where_to_add;
5096 struct btrfs_bio_stripe *old =
5099 new->physical = old->physical;
5100 new->length = old->length;
5101 new->dev = dev_replace->tgtdev;
5102 index_where_to_add++;
5106 num_stripes = index_where_to_add;
5107 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5108 dev_replace->tgtdev != NULL) {
5109 u64 srcdev_devid = dev_replace->srcdev->devid;
5110 int index_srcdev = 0;
5112 u64 physical_of_found = 0;
5115 * During the dev-replace procedure, the target drive can
5116 * also be used to read data in case it is needed to repair
5117 * a corrupt block elsewhere. This is possible if the
5118 * requested area is left of the left cursor. In this area,
5119 * the target drive is a full copy of the source drive.
5121 for (i = 0; i < num_stripes; i++) {
5122 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5124 * In case of DUP, in order to keep it
5125 * simple, only add the mirror with the
5126 * lowest physical address
5129 physical_of_found <=
5130 bbio->stripes[i].physical)
5134 physical_of_found = bbio->stripes[i].physical;
5138 u64 length = map->stripe_len;
5140 if (physical_of_found + length <=
5141 dev_replace->cursor_left) {
5142 struct btrfs_bio_stripe *tgtdev_stripe =
5143 bbio->stripes + num_stripes;
5145 tgtdev_stripe->physical = physical_of_found;
5146 tgtdev_stripe->length =
5147 bbio->stripes[index_srcdev].length;
5148 tgtdev_stripe->dev = dev_replace->tgtdev;
5156 bbio->num_stripes = num_stripes;
5157 bbio->max_errors = max_errors;
5158 bbio->mirror_num = mirror_num;
5161 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5162 * mirror_num == num_stripes + 1 && dev_replace target drive is
5163 * available as a mirror
5165 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5166 WARN_ON(num_stripes > 1);
5167 bbio->stripes[0].dev = dev_replace->tgtdev;
5168 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5169 bbio->mirror_num = map->num_stripes + 1;
5172 sort_parity_stripes(bbio, raid_map);
5173 *raid_map_ret = raid_map;
5176 if (dev_replace_is_ongoing)
5177 btrfs_dev_replace_unlock(dev_replace);
5178 free_extent_map(em);
5182 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5183 u64 logical, u64 *length,
5184 struct btrfs_bio **bbio_ret, int mirror_num)
5186 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5190 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5191 u64 chunk_start, u64 physical, u64 devid,
5192 u64 **logical, int *naddrs, int *stripe_len)
5194 struct extent_map_tree *em_tree = &map_tree->map_tree;
5195 struct extent_map *em;
5196 struct map_lookup *map;
5204 read_lock(&em_tree->lock);
5205 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5206 read_unlock(&em_tree->lock);
5209 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5214 if (em->start != chunk_start) {
5215 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5216 em->start, chunk_start);
5217 free_extent_map(em);
5220 map = (struct map_lookup *)em->bdev;
5223 rmap_len = map->stripe_len;
5225 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5226 do_div(length, map->num_stripes / map->sub_stripes);
5227 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5228 do_div(length, map->num_stripes);
5229 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5230 BTRFS_BLOCK_GROUP_RAID6)) {
5231 do_div(length, nr_data_stripes(map));
5232 rmap_len = map->stripe_len * nr_data_stripes(map);
5235 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5236 BUG_ON(!buf); /* -ENOMEM */
5238 for (i = 0; i < map->num_stripes; i++) {
5239 if (devid && map->stripes[i].dev->devid != devid)
5241 if (map->stripes[i].physical > physical ||
5242 map->stripes[i].physical + length <= physical)
5245 stripe_nr = physical - map->stripes[i].physical;
5246 do_div(stripe_nr, map->stripe_len);
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5249 stripe_nr = stripe_nr * map->num_stripes + i;
5250 do_div(stripe_nr, map->sub_stripes);
5251 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5252 stripe_nr = stripe_nr * map->num_stripes + i;
5253 } /* else if RAID[56], multiply by nr_data_stripes().
5254 * Alternatively, just use rmap_len below instead of
5255 * map->stripe_len */
5257 bytenr = chunk_start + stripe_nr * rmap_len;
5258 WARN_ON(nr >= map->num_stripes);
5259 for (j = 0; j < nr; j++) {
5260 if (buf[j] == bytenr)
5264 WARN_ON(nr >= map->num_stripes);
5271 *stripe_len = rmap_len;
5273 free_extent_map(em);
5277 static void btrfs_end_bio(struct bio *bio, int err)
5279 struct btrfs_bio *bbio = bio->bi_private;
5280 struct btrfs_device *dev = bbio->stripes[0].dev;
5281 int is_orig_bio = 0;
5284 atomic_inc(&bbio->error);
5285 if (err == -EIO || err == -EREMOTEIO) {
5286 unsigned int stripe_index =
5287 btrfs_io_bio(bio)->stripe_index;
5289 BUG_ON(stripe_index >= bbio->num_stripes);
5290 dev = bbio->stripes[stripe_index].dev;
5292 if (bio->bi_rw & WRITE)
5293 btrfs_dev_stat_inc(dev,
5294 BTRFS_DEV_STAT_WRITE_ERRS);
5296 btrfs_dev_stat_inc(dev,
5297 BTRFS_DEV_STAT_READ_ERRS);
5298 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5299 btrfs_dev_stat_inc(dev,
5300 BTRFS_DEV_STAT_FLUSH_ERRS);
5301 btrfs_dev_stat_print_on_error(dev);
5306 if (bio == bbio->orig_bio)
5309 btrfs_bio_counter_dec(bbio->fs_info);
5311 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5314 bio = bbio->orig_bio;
5318 * We have original bio now. So increment bi_remaining to
5319 * account for it in endio
5321 atomic_inc(&bio->bi_remaining);
5323 bio->bi_private = bbio->private;
5324 bio->bi_end_io = bbio->end_io;
5325 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5326 /* only send an error to the higher layers if it is
5327 * beyond the tolerance of the btrfs bio
5329 if (atomic_read(&bbio->error) > bbio->max_errors) {
5333 * this bio is actually up to date, we didn't
5334 * go over the max number of errors
5336 set_bit(BIO_UPTODATE, &bio->bi_flags);
5341 bio_endio(bio, err);
5342 } else if (!is_orig_bio) {
5348 * see run_scheduled_bios for a description of why bios are collected for
5351 * This will add one bio to the pending list for a device and make sure
5352 * the work struct is scheduled.
5354 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5355 struct btrfs_device *device,
5356 int rw, struct bio *bio)
5358 int should_queue = 1;
5359 struct btrfs_pending_bios *pending_bios;
5361 if (device->missing || !device->bdev) {
5362 bio_endio(bio, -EIO);
5366 /* don't bother with additional async steps for reads, right now */
5367 if (!(rw & REQ_WRITE)) {
5369 btrfsic_submit_bio(rw, bio);
5375 * nr_async_bios allows us to reliably return congestion to the
5376 * higher layers. Otherwise, the async bio makes it appear we have
5377 * made progress against dirty pages when we've really just put it
5378 * on a queue for later
5380 atomic_inc(&root->fs_info->nr_async_bios);
5381 WARN_ON(bio->bi_next);
5382 bio->bi_next = NULL;
5385 spin_lock(&device->io_lock);
5386 if (bio->bi_rw & REQ_SYNC)
5387 pending_bios = &device->pending_sync_bios;
5389 pending_bios = &device->pending_bios;
5391 if (pending_bios->tail)
5392 pending_bios->tail->bi_next = bio;
5394 pending_bios->tail = bio;
5395 if (!pending_bios->head)
5396 pending_bios->head = bio;
5397 if (device->running_pending)
5400 spin_unlock(&device->io_lock);
5403 btrfs_queue_work(root->fs_info->submit_workers,
5407 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5410 struct bio_vec *prev;
5411 struct request_queue *q = bdev_get_queue(bdev);
5412 unsigned int max_sectors = queue_max_sectors(q);
5413 struct bvec_merge_data bvm = {
5415 .bi_sector = sector,
5416 .bi_rw = bio->bi_rw,
5419 if (WARN_ON(bio->bi_vcnt == 0))
5422 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5423 if (bio_sectors(bio) > max_sectors)
5426 if (!q->merge_bvec_fn)
5429 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5430 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5435 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5436 struct bio *bio, u64 physical, int dev_nr,
5439 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5441 bio->bi_private = bbio;
5442 btrfs_io_bio(bio)->stripe_index = dev_nr;
5443 bio->bi_end_io = btrfs_end_bio;
5444 bio->bi_iter.bi_sector = physical >> 9;
5447 struct rcu_string *name;
5450 name = rcu_dereference(dev->name);
5451 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5452 "(%s id %llu), size=%u\n", rw,
5453 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5454 name->str, dev->devid, bio->bi_size);
5458 bio->bi_bdev = dev->bdev;
5460 btrfs_bio_counter_inc_noblocked(root->fs_info);
5463 btrfs_schedule_bio(root, dev, rw, bio);
5465 btrfsic_submit_bio(rw, bio);
5468 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5469 struct bio *first_bio, struct btrfs_device *dev,
5470 int dev_nr, int rw, int async)
5472 struct bio_vec *bvec = first_bio->bi_io_vec;
5474 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5475 u64 physical = bbio->stripes[dev_nr].physical;
5478 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5482 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5483 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5484 bvec->bv_offset) < bvec->bv_len) {
5485 u64 len = bio->bi_iter.bi_size;
5487 atomic_inc(&bbio->stripes_pending);
5488 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5496 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5500 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5502 atomic_inc(&bbio->error);
5503 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5504 bio->bi_private = bbio->private;
5505 bio->bi_end_io = bbio->end_io;
5506 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5507 bio->bi_iter.bi_sector = logical >> 9;
5509 bio_endio(bio, -EIO);
5513 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5514 int mirror_num, int async_submit)
5516 struct btrfs_device *dev;
5517 struct bio *first_bio = bio;
5518 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5521 u64 *raid_map = NULL;
5525 struct btrfs_bio *bbio = NULL;
5527 length = bio->bi_iter.bi_size;
5528 map_length = length;
5530 btrfs_bio_counter_inc_blocked(root->fs_info);
5531 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5532 mirror_num, &raid_map);
5534 btrfs_bio_counter_dec(root->fs_info);
5538 total_devs = bbio->num_stripes;
5539 bbio->orig_bio = first_bio;
5540 bbio->private = first_bio->bi_private;
5541 bbio->end_io = first_bio->bi_end_io;
5542 bbio->fs_info = root->fs_info;
5543 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5546 /* In this case, map_length has been set to the length of
5547 a single stripe; not the whole write */
5549 ret = raid56_parity_write(root, bio, bbio,
5550 raid_map, map_length);
5552 ret = raid56_parity_recover(root, bio, bbio,
5553 raid_map, map_length,
5557 * FIXME, replace dosen't support raid56 yet, please fix
5560 btrfs_bio_counter_dec(root->fs_info);
5564 if (map_length < length) {
5565 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5566 logical, length, map_length);
5570 while (dev_nr < total_devs) {
5571 dev = bbio->stripes[dev_nr].dev;
5572 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5573 bbio_error(bbio, first_bio, logical);
5579 * Check and see if we're ok with this bio based on it's size
5580 * and offset with the given device.
5582 if (!bio_size_ok(dev->bdev, first_bio,
5583 bbio->stripes[dev_nr].physical >> 9)) {
5584 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5585 dev_nr, rw, async_submit);
5591 if (dev_nr < total_devs - 1) {
5592 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5593 BUG_ON(!bio); /* -ENOMEM */
5598 submit_stripe_bio(root, bbio, bio,
5599 bbio->stripes[dev_nr].physical, dev_nr, rw,
5603 btrfs_bio_counter_dec(root->fs_info);
5607 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5610 struct btrfs_device *device;
5611 struct btrfs_fs_devices *cur_devices;
5613 cur_devices = fs_info->fs_devices;
5614 while (cur_devices) {
5616 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5617 device = __find_device(&cur_devices->devices,
5622 cur_devices = cur_devices->seed;
5627 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5628 u64 devid, u8 *dev_uuid)
5630 struct btrfs_device *device;
5631 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5633 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5637 list_add(&device->dev_list, &fs_devices->devices);
5638 device->fs_devices = fs_devices;
5639 fs_devices->num_devices++;
5641 device->missing = 1;
5642 fs_devices->missing_devices++;
5648 * btrfs_alloc_device - allocate struct btrfs_device
5649 * @fs_info: used only for generating a new devid, can be NULL if
5650 * devid is provided (i.e. @devid != NULL).
5651 * @devid: a pointer to devid for this device. If NULL a new devid
5653 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5656 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5657 * on error. Returned struct is not linked onto any lists and can be
5658 * destroyed with kfree() right away.
5660 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5664 struct btrfs_device *dev;
5667 if (WARN_ON(!devid && !fs_info))
5668 return ERR_PTR(-EINVAL);
5670 dev = __alloc_device();
5679 ret = find_next_devid(fs_info, &tmp);
5682 return ERR_PTR(ret);
5688 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5690 generate_random_uuid(dev->uuid);
5692 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5697 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5698 struct extent_buffer *leaf,
5699 struct btrfs_chunk *chunk)
5701 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5702 struct map_lookup *map;
5703 struct extent_map *em;
5707 u8 uuid[BTRFS_UUID_SIZE];
5712 logical = key->offset;
5713 length = btrfs_chunk_length(leaf, chunk);
5715 read_lock(&map_tree->map_tree.lock);
5716 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5717 read_unlock(&map_tree->map_tree.lock);
5719 /* already mapped? */
5720 if (em && em->start <= logical && em->start + em->len > logical) {
5721 free_extent_map(em);
5724 free_extent_map(em);
5727 em = alloc_extent_map();
5730 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5731 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5733 free_extent_map(em);
5737 em->bdev = (struct block_device *)map;
5738 em->start = logical;
5741 em->block_start = 0;
5742 em->block_len = em->len;
5744 map->num_stripes = num_stripes;
5745 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5746 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5747 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5748 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5749 map->type = btrfs_chunk_type(leaf, chunk);
5750 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5751 for (i = 0; i < num_stripes; i++) {
5752 map->stripes[i].physical =
5753 btrfs_stripe_offset_nr(leaf, chunk, i);
5754 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5755 read_extent_buffer(leaf, uuid, (unsigned long)
5756 btrfs_stripe_dev_uuid_nr(chunk, i),
5758 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5760 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5762 free_extent_map(em);
5765 if (!map->stripes[i].dev) {
5766 map->stripes[i].dev =
5767 add_missing_dev(root, devid, uuid);
5768 if (!map->stripes[i].dev) {
5770 free_extent_map(em);
5774 map->stripes[i].dev->in_fs_metadata = 1;
5777 write_lock(&map_tree->map_tree.lock);
5778 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5779 write_unlock(&map_tree->map_tree.lock);
5780 BUG_ON(ret); /* Tree corruption */
5781 free_extent_map(em);
5786 static void fill_device_from_item(struct extent_buffer *leaf,
5787 struct btrfs_dev_item *dev_item,
5788 struct btrfs_device *device)
5792 device->devid = btrfs_device_id(leaf, dev_item);
5793 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5794 device->total_bytes = device->disk_total_bytes;
5795 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5796 device->type = btrfs_device_type(leaf, dev_item);
5797 device->io_align = btrfs_device_io_align(leaf, dev_item);
5798 device->io_width = btrfs_device_io_width(leaf, dev_item);
5799 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5800 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5801 device->is_tgtdev_for_dev_replace = 0;
5803 ptr = btrfs_device_uuid(dev_item);
5804 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5807 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5809 struct btrfs_fs_devices *fs_devices;
5812 BUG_ON(!mutex_is_locked(&uuid_mutex));
5814 fs_devices = root->fs_info->fs_devices->seed;
5815 while (fs_devices) {
5816 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5820 fs_devices = fs_devices->seed;
5823 fs_devices = find_fsid(fsid);
5829 fs_devices = clone_fs_devices(fs_devices);
5830 if (IS_ERR(fs_devices)) {
5831 ret = PTR_ERR(fs_devices);
5835 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5836 root->fs_info->bdev_holder);
5838 free_fs_devices(fs_devices);
5842 if (!fs_devices->seeding) {
5843 __btrfs_close_devices(fs_devices);
5844 free_fs_devices(fs_devices);
5849 fs_devices->seed = root->fs_info->fs_devices->seed;
5850 root->fs_info->fs_devices->seed = fs_devices;
5855 static int read_one_dev(struct btrfs_root *root,
5856 struct extent_buffer *leaf,
5857 struct btrfs_dev_item *dev_item)
5859 struct btrfs_device *device;
5862 u8 fs_uuid[BTRFS_UUID_SIZE];
5863 u8 dev_uuid[BTRFS_UUID_SIZE];
5865 devid = btrfs_device_id(leaf, dev_item);
5866 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5868 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5871 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5872 ret = open_seed_devices(root, fs_uuid);
5873 if (ret && !btrfs_test_opt(root, DEGRADED))
5877 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5878 if (!device || !device->bdev) {
5879 if (!btrfs_test_opt(root, DEGRADED))
5883 btrfs_warn(root->fs_info, "devid %llu missing", devid);
5884 device = add_missing_dev(root, devid, dev_uuid);
5887 } else if (!device->missing) {
5889 * this happens when a device that was properly setup
5890 * in the device info lists suddenly goes bad.
5891 * device->bdev is NULL, and so we have to set
5892 * device->missing to one here
5894 root->fs_info->fs_devices->missing_devices++;
5895 device->missing = 1;
5899 if (device->fs_devices != root->fs_info->fs_devices) {
5900 BUG_ON(device->writeable);
5901 if (device->generation !=
5902 btrfs_device_generation(leaf, dev_item))
5906 fill_device_from_item(leaf, dev_item, device);
5907 device->in_fs_metadata = 1;
5908 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5909 device->fs_devices->total_rw_bytes += device->total_bytes;
5910 spin_lock(&root->fs_info->free_chunk_lock);
5911 root->fs_info->free_chunk_space += device->total_bytes -
5913 spin_unlock(&root->fs_info->free_chunk_lock);
5919 int btrfs_read_sys_array(struct btrfs_root *root)
5921 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5922 struct extent_buffer *sb;
5923 struct btrfs_disk_key *disk_key;
5924 struct btrfs_chunk *chunk;
5926 unsigned long sb_ptr;
5932 struct btrfs_key key;
5934 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5935 BTRFS_SUPER_INFO_SIZE);
5938 btrfs_set_buffer_uptodate(sb);
5939 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5941 * The sb extent buffer is artifical and just used to read the system array.
5942 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5943 * pages up-to-date when the page is larger: extent does not cover the
5944 * whole page and consequently check_page_uptodate does not find all
5945 * the page's extents up-to-date (the hole beyond sb),
5946 * write_extent_buffer then triggers a WARN_ON.
5948 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5949 * but sb spans only this function. Add an explicit SetPageUptodate call
5950 * to silence the warning eg. on PowerPC 64.
5952 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5953 SetPageUptodate(sb->pages[0]);
5955 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5956 array_size = btrfs_super_sys_array_size(super_copy);
5958 ptr = super_copy->sys_chunk_array;
5959 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5962 while (cur < array_size) {
5963 disk_key = (struct btrfs_disk_key *)ptr;
5964 btrfs_disk_key_to_cpu(&key, disk_key);
5966 len = sizeof(*disk_key); ptr += len;
5970 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5971 chunk = (struct btrfs_chunk *)sb_ptr;
5972 ret = read_one_chunk(root, &key, sb, chunk);
5975 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5976 len = btrfs_chunk_item_size(num_stripes);
5985 free_extent_buffer(sb);
5989 int btrfs_read_chunk_tree(struct btrfs_root *root)
5991 struct btrfs_path *path;
5992 struct extent_buffer *leaf;
5993 struct btrfs_key key;
5994 struct btrfs_key found_key;
5998 root = root->fs_info->chunk_root;
6000 path = btrfs_alloc_path();
6004 mutex_lock(&uuid_mutex);
6008 * Read all device items, and then all the chunk items. All
6009 * device items are found before any chunk item (their object id
6010 * is smaller than the lowest possible object id for a chunk
6011 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6013 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6020 leaf = path->nodes[0];
6021 slot = path->slots[0];
6022 if (slot >= btrfs_header_nritems(leaf)) {
6023 ret = btrfs_next_leaf(root, path);
6030 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6031 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6032 struct btrfs_dev_item *dev_item;
6033 dev_item = btrfs_item_ptr(leaf, slot,
6034 struct btrfs_dev_item);
6035 ret = read_one_dev(root, leaf, dev_item);
6038 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6039 struct btrfs_chunk *chunk;
6040 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6041 ret = read_one_chunk(root, &found_key, leaf, chunk);
6049 unlock_chunks(root);
6050 mutex_unlock(&uuid_mutex);
6052 btrfs_free_path(path);
6056 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6058 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6059 struct btrfs_device *device;
6061 mutex_lock(&fs_devices->device_list_mutex);
6062 list_for_each_entry(device, &fs_devices->devices, dev_list)
6063 device->dev_root = fs_info->dev_root;
6064 mutex_unlock(&fs_devices->device_list_mutex);
6067 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6071 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6072 btrfs_dev_stat_reset(dev, i);
6075 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6077 struct btrfs_key key;
6078 struct btrfs_key found_key;
6079 struct btrfs_root *dev_root = fs_info->dev_root;
6080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6081 struct extent_buffer *eb;
6084 struct btrfs_device *device;
6085 struct btrfs_path *path = NULL;
6088 path = btrfs_alloc_path();
6094 mutex_lock(&fs_devices->device_list_mutex);
6095 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6097 struct btrfs_dev_stats_item *ptr;
6100 key.type = BTRFS_DEV_STATS_KEY;
6101 key.offset = device->devid;
6102 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6104 __btrfs_reset_dev_stats(device);
6105 device->dev_stats_valid = 1;
6106 btrfs_release_path(path);
6109 slot = path->slots[0];
6110 eb = path->nodes[0];
6111 btrfs_item_key_to_cpu(eb, &found_key, slot);
6112 item_size = btrfs_item_size_nr(eb, slot);
6114 ptr = btrfs_item_ptr(eb, slot,
6115 struct btrfs_dev_stats_item);
6117 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6118 if (item_size >= (1 + i) * sizeof(__le64))
6119 btrfs_dev_stat_set(device, i,
6120 btrfs_dev_stats_value(eb, ptr, i));
6122 btrfs_dev_stat_reset(device, i);
6125 device->dev_stats_valid = 1;
6126 btrfs_dev_stat_print_on_load(device);
6127 btrfs_release_path(path);
6129 mutex_unlock(&fs_devices->device_list_mutex);
6132 btrfs_free_path(path);
6133 return ret < 0 ? ret : 0;
6136 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6137 struct btrfs_root *dev_root,
6138 struct btrfs_device *device)
6140 struct btrfs_path *path;
6141 struct btrfs_key key;
6142 struct extent_buffer *eb;
6143 struct btrfs_dev_stats_item *ptr;
6148 key.type = BTRFS_DEV_STATS_KEY;
6149 key.offset = device->devid;
6151 path = btrfs_alloc_path();
6153 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6155 printk_in_rcu(KERN_WARNING "BTRFS: "
6156 "error %d while searching for dev_stats item for device %s!\n",
6157 ret, rcu_str_deref(device->name));
6162 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6163 /* need to delete old one and insert a new one */
6164 ret = btrfs_del_item(trans, dev_root, path);
6166 printk_in_rcu(KERN_WARNING "BTRFS: "
6167 "delete too small dev_stats item for device %s failed %d!\n",
6168 rcu_str_deref(device->name), ret);
6175 /* need to insert a new item */
6176 btrfs_release_path(path);
6177 ret = btrfs_insert_empty_item(trans, dev_root, path,
6178 &key, sizeof(*ptr));
6180 printk_in_rcu(KERN_WARNING "BTRFS: "
6181 "insert dev_stats item for device %s failed %d!\n",
6182 rcu_str_deref(device->name), ret);
6187 eb = path->nodes[0];
6188 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6189 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6190 btrfs_set_dev_stats_value(eb, ptr, i,
6191 btrfs_dev_stat_read(device, i));
6192 btrfs_mark_buffer_dirty(eb);
6195 btrfs_free_path(path);
6200 * called from commit_transaction. Writes all changed device stats to disk.
6202 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6203 struct btrfs_fs_info *fs_info)
6205 struct btrfs_root *dev_root = fs_info->dev_root;
6206 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6207 struct btrfs_device *device;
6210 mutex_lock(&fs_devices->device_list_mutex);
6211 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6212 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6215 ret = update_dev_stat_item(trans, dev_root, device);
6217 device->dev_stats_dirty = 0;
6219 mutex_unlock(&fs_devices->device_list_mutex);
6224 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6226 btrfs_dev_stat_inc(dev, index);
6227 btrfs_dev_stat_print_on_error(dev);
6230 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6232 if (!dev->dev_stats_valid)
6234 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6235 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6236 rcu_str_deref(dev->name),
6237 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6238 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6239 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6240 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6241 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6244 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6248 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6249 if (btrfs_dev_stat_read(dev, i) != 0)
6251 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6252 return; /* all values == 0, suppress message */
6254 printk_in_rcu(KERN_INFO "BTRFS: "
6255 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6256 rcu_str_deref(dev->name),
6257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6260 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6261 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6264 int btrfs_get_dev_stats(struct btrfs_root *root,
6265 struct btrfs_ioctl_get_dev_stats *stats)
6267 struct btrfs_device *dev;
6268 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6271 mutex_lock(&fs_devices->device_list_mutex);
6272 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6273 mutex_unlock(&fs_devices->device_list_mutex);
6276 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6278 } else if (!dev->dev_stats_valid) {
6279 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6281 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6282 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6283 if (stats->nr_items > i)
6285 btrfs_dev_stat_read_and_reset(dev, i);
6287 btrfs_dev_stat_reset(dev, i);
6290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6291 if (stats->nr_items > i)
6292 stats->values[i] = btrfs_dev_stat_read(dev, i);
6294 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6295 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6299 int btrfs_scratch_superblock(struct btrfs_device *device)
6301 struct buffer_head *bh;
6302 struct btrfs_super_block *disk_super;
6304 bh = btrfs_read_dev_super(device->bdev);
6307 disk_super = (struct btrfs_super_block *)bh->b_data;
6309 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6310 set_buffer_dirty(bh);
6311 sync_dirty_buffer(bh);