]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/volumes.c
btrfs: fix not enough reserved space
[mv-sheeva.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37         u64 type;
38         int io_align;
39         int io_width;
40         int stripe_len;
41         int sector_size;
42         int num_stripes;
43         int sub_stripes;
44         struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48                                 struct btrfs_root *root,
49                                 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53                             (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60         mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65         mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70         mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75         mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80         struct btrfs_device *device;
81         WARN_ON(fs_devices->opened);
82         while (!list_empty(&fs_devices->devices)) {
83                 device = list_entry(fs_devices->devices.next,
84                                     struct btrfs_device, dev_list);
85                 list_del(&device->dev_list);
86                 kfree(device->name);
87                 kfree(device);
88         }
89         kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94         struct btrfs_fs_devices *fs_devices;
95
96         while (!list_empty(&fs_uuids)) {
97                 fs_devices = list_entry(fs_uuids.next,
98                                         struct btrfs_fs_devices, list);
99                 list_del(&fs_devices->list);
100                 free_fs_devices(fs_devices);
101         }
102         return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106                                                    u64 devid, u8 *uuid)
107 {
108         struct btrfs_device *dev;
109
110         list_for_each_entry(dev, head, dev_list) {
111                 if (dev->devid == devid &&
112                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113                         return dev;
114                 }
115         }
116         return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121         struct btrfs_fs_devices *fs_devices;
122
123         list_for_each_entry(fs_devices, &fs_uuids, list) {
124                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125                         return fs_devices;
126         }
127         return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131                         struct bio *head, struct bio *tail)
132 {
133
134         struct bio *old_head;
135
136         old_head = pending_bios->head;
137         pending_bios->head = head;
138         if (pending_bios->tail)
139                 tail->bi_next = old_head;
140         else
141                 pending_bios->tail = tail;
142 }
143
144 /*
145  * we try to collect pending bios for a device so we don't get a large
146  * number of procs sending bios down to the same device.  This greatly
147  * improves the schedulers ability to collect and merge the bios.
148  *
149  * But, it also turns into a long list of bios to process and that is sure
150  * to eventually make the worker thread block.  The solution here is to
151  * make some progress and then put this work struct back at the end of
152  * the list if the block device is congested.  This way, multiple devices
153  * can make progress from a single worker thread.
154  */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157         struct bio *pending;
158         struct backing_dev_info *bdi;
159         struct btrfs_fs_info *fs_info;
160         struct btrfs_pending_bios *pending_bios;
161         struct bio *tail;
162         struct bio *cur;
163         int again = 0;
164         unsigned long num_run;
165         unsigned long num_sync_run;
166         unsigned long batch_run = 0;
167         unsigned long limit;
168         unsigned long last_waited = 0;
169         int force_reg = 0;
170
171         bdi = blk_get_backing_dev_info(device->bdev);
172         fs_info = device->dev_root->fs_info;
173         limit = btrfs_async_submit_limit(fs_info);
174         limit = limit * 2 / 3;
175
176         /* we want to make sure that every time we switch from the sync
177          * list to the normal list, we unplug
178          */
179         num_sync_run = 0;
180
181 loop:
182         spin_lock(&device->io_lock);
183
184 loop_lock:
185         num_run = 0;
186
187         /* take all the bios off the list at once and process them
188          * later on (without the lock held).  But, remember the
189          * tail and other pointers so the bios can be properly reinserted
190          * into the list if we hit congestion
191          */
192         if (!force_reg && device->pending_sync_bios.head) {
193                 pending_bios = &device->pending_sync_bios;
194                 force_reg = 1;
195         } else {
196                 pending_bios = &device->pending_bios;
197                 force_reg = 0;
198         }
199
200         pending = pending_bios->head;
201         tail = pending_bios->tail;
202         WARN_ON(pending && !tail);
203
204         /*
205          * if pending was null this time around, no bios need processing
206          * at all and we can stop.  Otherwise it'll loop back up again
207          * and do an additional check so no bios are missed.
208          *
209          * device->running_pending is used to synchronize with the
210          * schedule_bio code.
211          */
212         if (device->pending_sync_bios.head == NULL &&
213             device->pending_bios.head == NULL) {
214                 again = 0;
215                 device->running_pending = 0;
216         } else {
217                 again = 1;
218                 device->running_pending = 1;
219         }
220
221         pending_bios->head = NULL;
222         pending_bios->tail = NULL;
223
224         spin_unlock(&device->io_lock);
225
226         /*
227          * if we're doing the regular priority list, make sure we unplug
228          * for any high prio bios we've sent down
229          */
230         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231                 num_sync_run = 0;
232                 blk_run_backing_dev(bdi, NULL);
233         }
234
235         while (pending) {
236
237                 rmb();
238                 /* we want to work on both lists, but do more bios on the
239                  * sync list than the regular list
240                  */
241                 if ((num_run > 32 &&
242                     pending_bios != &device->pending_sync_bios &&
243                     device->pending_sync_bios.head) ||
244                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245                     device->pending_bios.head)) {
246                         spin_lock(&device->io_lock);
247                         requeue_list(pending_bios, pending, tail);
248                         goto loop_lock;
249                 }
250
251                 cur = pending;
252                 pending = pending->bi_next;
253                 cur->bi_next = NULL;
254                 atomic_dec(&fs_info->nr_async_bios);
255
256                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257                     waitqueue_active(&fs_info->async_submit_wait))
258                         wake_up(&fs_info->async_submit_wait);
259
260                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262                 if (cur->bi_rw & REQ_SYNC)
263                         num_sync_run++;
264
265                 submit_bio(cur->bi_rw, cur);
266                 num_run++;
267                 batch_run++;
268                 if (need_resched()) {
269                         if (num_sync_run) {
270                                 blk_run_backing_dev(bdi, NULL);
271                                 num_sync_run = 0;
272                         }
273                         cond_resched();
274                 }
275
276                 /*
277                  * we made progress, there is more work to do and the bdi
278                  * is now congested.  Back off and let other work structs
279                  * run instead
280                  */
281                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282                     fs_info->fs_devices->open_devices > 1) {
283                         struct io_context *ioc;
284
285                         ioc = current->io_context;
286
287                         /*
288                          * the main goal here is that we don't want to
289                          * block if we're going to be able to submit
290                          * more requests without blocking.
291                          *
292                          * This code does two great things, it pokes into
293                          * the elevator code from a filesystem _and_
294                          * it makes assumptions about how batching works.
295                          */
296                         if (ioc && ioc->nr_batch_requests > 0 &&
297                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298                             (last_waited == 0 ||
299                              ioc->last_waited == last_waited)) {
300                                 /*
301                                  * we want to go through our batch of
302                                  * requests and stop.  So, we copy out
303                                  * the ioc->last_waited time and test
304                                  * against it before looping
305                                  */
306                                 last_waited = ioc->last_waited;
307                                 if (need_resched()) {
308                                         if (num_sync_run) {
309                                                 blk_run_backing_dev(bdi, NULL);
310                                                 num_sync_run = 0;
311                                         }
312                                         cond_resched();
313                                 }
314                                 continue;
315                         }
316                         spin_lock(&device->io_lock);
317                         requeue_list(pending_bios, pending, tail);
318                         device->running_pending = 1;
319
320                         spin_unlock(&device->io_lock);
321                         btrfs_requeue_work(&device->work);
322                         goto done;
323                 }
324         }
325
326         if (num_sync_run) {
327                 num_sync_run = 0;
328                 blk_run_backing_dev(bdi, NULL);
329         }
330         /*
331          * IO has already been through a long path to get here.  Checksumming,
332          * async helper threads, perhaps compression.  We've done a pretty
333          * good job of collecting a batch of IO and should just unplug
334          * the device right away.
335          *
336          * This will help anyone who is waiting on the IO, they might have
337          * already unplugged, but managed to do so before the bio they
338          * cared about found its way down here.
339          */
340         blk_run_backing_dev(bdi, NULL);
341
342         cond_resched();
343         if (again)
344                 goto loop;
345
346         spin_lock(&device->io_lock);
347         if (device->pending_bios.head || device->pending_sync_bios.head)
348                 goto loop_lock;
349         spin_unlock(&device->io_lock);
350
351 done:
352         return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357         struct btrfs_device *device;
358
359         device = container_of(work, struct btrfs_device, work);
360         run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364                            struct btrfs_super_block *disk_super,
365                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367         struct btrfs_device *device;
368         struct btrfs_fs_devices *fs_devices;
369         u64 found_transid = btrfs_super_generation(disk_super);
370         char *name;
371
372         fs_devices = find_fsid(disk_super->fsid);
373         if (!fs_devices) {
374                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375                 if (!fs_devices)
376                         return -ENOMEM;
377                 INIT_LIST_HEAD(&fs_devices->devices);
378                 INIT_LIST_HEAD(&fs_devices->alloc_list);
379                 list_add(&fs_devices->list, &fs_uuids);
380                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381                 fs_devices->latest_devid = devid;
382                 fs_devices->latest_trans = found_transid;
383                 mutex_init(&fs_devices->device_list_mutex);
384                 device = NULL;
385         } else {
386                 device = __find_device(&fs_devices->devices, devid,
387                                        disk_super->dev_item.uuid);
388         }
389         if (!device) {
390                 if (fs_devices->opened)
391                         return -EBUSY;
392
393                 device = kzalloc(sizeof(*device), GFP_NOFS);
394                 if (!device) {
395                         /* we can safely leave the fs_devices entry around */
396                         return -ENOMEM;
397                 }
398                 device->devid = devid;
399                 device->work.func = pending_bios_fn;
400                 memcpy(device->uuid, disk_super->dev_item.uuid,
401                        BTRFS_UUID_SIZE);
402                 device->barriers = 1;
403                 spin_lock_init(&device->io_lock);
404                 device->name = kstrdup(path, GFP_NOFS);
405                 if (!device->name) {
406                         kfree(device);
407                         return -ENOMEM;
408                 }
409                 INIT_LIST_HEAD(&device->dev_alloc_list);
410
411                 mutex_lock(&fs_devices->device_list_mutex);
412                 list_add(&device->dev_list, &fs_devices->devices);
413                 mutex_unlock(&fs_devices->device_list_mutex);
414
415                 device->fs_devices = fs_devices;
416                 fs_devices->num_devices++;
417         } else if (!device->name || strcmp(device->name, path)) {
418                 name = kstrdup(path, GFP_NOFS);
419                 if (!name)
420                         return -ENOMEM;
421                 kfree(device->name);
422                 device->name = name;
423                 if (device->missing) {
424                         fs_devices->missing_devices--;
425                         device->missing = 0;
426                 }
427         }
428
429         if (found_transid > fs_devices->latest_trans) {
430                 fs_devices->latest_devid = devid;
431                 fs_devices->latest_trans = found_transid;
432         }
433         *fs_devices_ret = fs_devices;
434         return 0;
435 }
436
437 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
438 {
439         struct btrfs_fs_devices *fs_devices;
440         struct btrfs_device *device;
441         struct btrfs_device *orig_dev;
442
443         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
444         if (!fs_devices)
445                 return ERR_PTR(-ENOMEM);
446
447         INIT_LIST_HEAD(&fs_devices->devices);
448         INIT_LIST_HEAD(&fs_devices->alloc_list);
449         INIT_LIST_HEAD(&fs_devices->list);
450         mutex_init(&fs_devices->device_list_mutex);
451         fs_devices->latest_devid = orig->latest_devid;
452         fs_devices->latest_trans = orig->latest_trans;
453         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
454
455         mutex_lock(&orig->device_list_mutex);
456         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
457                 device = kzalloc(sizeof(*device), GFP_NOFS);
458                 if (!device)
459                         goto error;
460
461                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
462                 if (!device->name) {
463                         kfree(device);
464                         goto error;
465                 }
466
467                 device->devid = orig_dev->devid;
468                 device->work.func = pending_bios_fn;
469                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
470                 device->barriers = 1;
471                 spin_lock_init(&device->io_lock);
472                 INIT_LIST_HEAD(&device->dev_list);
473                 INIT_LIST_HEAD(&device->dev_alloc_list);
474
475                 list_add(&device->dev_list, &fs_devices->devices);
476                 device->fs_devices = fs_devices;
477                 fs_devices->num_devices++;
478         }
479         mutex_unlock(&orig->device_list_mutex);
480         return fs_devices;
481 error:
482         mutex_unlock(&orig->device_list_mutex);
483         free_fs_devices(fs_devices);
484         return ERR_PTR(-ENOMEM);
485 }
486
487 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
488 {
489         struct btrfs_device *device, *next;
490
491         mutex_lock(&uuid_mutex);
492 again:
493         mutex_lock(&fs_devices->device_list_mutex);
494         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
495                 if (device->in_fs_metadata)
496                         continue;
497
498                 if (device->bdev) {
499                         close_bdev_exclusive(device->bdev, device->mode);
500                         device->bdev = NULL;
501                         fs_devices->open_devices--;
502                 }
503                 if (device->writeable) {
504                         list_del_init(&device->dev_alloc_list);
505                         device->writeable = 0;
506                         fs_devices->rw_devices--;
507                 }
508                 list_del_init(&device->dev_list);
509                 fs_devices->num_devices--;
510                 kfree(device->name);
511                 kfree(device);
512         }
513         mutex_unlock(&fs_devices->device_list_mutex);
514
515         if (fs_devices->seed) {
516                 fs_devices = fs_devices->seed;
517                 goto again;
518         }
519
520         mutex_unlock(&uuid_mutex);
521         return 0;
522 }
523
524 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
525 {
526         struct btrfs_device *device;
527
528         if (--fs_devices->opened > 0)
529                 return 0;
530
531         list_for_each_entry(device, &fs_devices->devices, dev_list) {
532                 if (device->bdev) {
533                         close_bdev_exclusive(device->bdev, device->mode);
534                         fs_devices->open_devices--;
535                 }
536                 if (device->writeable) {
537                         list_del_init(&device->dev_alloc_list);
538                         fs_devices->rw_devices--;
539                 }
540
541                 device->bdev = NULL;
542                 device->writeable = 0;
543                 device->in_fs_metadata = 0;
544         }
545         WARN_ON(fs_devices->open_devices);
546         WARN_ON(fs_devices->rw_devices);
547         fs_devices->opened = 0;
548         fs_devices->seeding = 0;
549
550         return 0;
551 }
552
553 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
554 {
555         struct btrfs_fs_devices *seed_devices = NULL;
556         int ret;
557
558         mutex_lock(&uuid_mutex);
559         ret = __btrfs_close_devices(fs_devices);
560         if (!fs_devices->opened) {
561                 seed_devices = fs_devices->seed;
562                 fs_devices->seed = NULL;
563         }
564         mutex_unlock(&uuid_mutex);
565
566         while (seed_devices) {
567                 fs_devices = seed_devices;
568                 seed_devices = fs_devices->seed;
569                 __btrfs_close_devices(fs_devices);
570                 free_fs_devices(fs_devices);
571         }
572         return ret;
573 }
574
575 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
576                                 fmode_t flags, void *holder)
577 {
578         struct block_device *bdev;
579         struct list_head *head = &fs_devices->devices;
580         struct btrfs_device *device;
581         struct block_device *latest_bdev = NULL;
582         struct buffer_head *bh;
583         struct btrfs_super_block *disk_super;
584         u64 latest_devid = 0;
585         u64 latest_transid = 0;
586         u64 devid;
587         int seeding = 1;
588         int ret = 0;
589
590         list_for_each_entry(device, head, dev_list) {
591                 if (device->bdev)
592                         continue;
593                 if (!device->name)
594                         continue;
595
596                 bdev = open_bdev_exclusive(device->name, flags, holder);
597                 if (IS_ERR(bdev)) {
598                         printk(KERN_INFO "open %s failed\n", device->name);
599                         goto error;
600                 }
601                 set_blocksize(bdev, 4096);
602
603                 bh = btrfs_read_dev_super(bdev);
604                 if (!bh) {
605                         ret = -EINVAL;
606                         goto error_close;
607                 }
608
609                 disk_super = (struct btrfs_super_block *)bh->b_data;
610                 devid = btrfs_stack_device_id(&disk_super->dev_item);
611                 if (devid != device->devid)
612                         goto error_brelse;
613
614                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615                            BTRFS_UUID_SIZE))
616                         goto error_brelse;
617
618                 device->generation = btrfs_super_generation(disk_super);
619                 if (!latest_transid || device->generation > latest_transid) {
620                         latest_devid = devid;
621                         latest_transid = device->generation;
622                         latest_bdev = bdev;
623                 }
624
625                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626                         device->writeable = 0;
627                 } else {
628                         device->writeable = !bdev_read_only(bdev);
629                         seeding = 0;
630                 }
631
632                 device->bdev = bdev;
633                 device->in_fs_metadata = 0;
634                 device->mode = flags;
635
636                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637                         fs_devices->rotating = 1;
638
639                 fs_devices->open_devices++;
640                 if (device->writeable) {
641                         fs_devices->rw_devices++;
642                         list_add(&device->dev_alloc_list,
643                                  &fs_devices->alloc_list);
644                 }
645                 continue;
646
647 error_brelse:
648                 brelse(bh);
649 error_close:
650                 close_bdev_exclusive(bdev, FMODE_READ);
651 error:
652                 continue;
653         }
654         if (fs_devices->open_devices == 0) {
655                 ret = -EIO;
656                 goto out;
657         }
658         fs_devices->seeding = seeding;
659         fs_devices->opened = 1;
660         fs_devices->latest_bdev = latest_bdev;
661         fs_devices->latest_devid = latest_devid;
662         fs_devices->latest_trans = latest_transid;
663         fs_devices->total_rw_bytes = 0;
664 out:
665         return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669                        fmode_t flags, void *holder)
670 {
671         int ret;
672
673         mutex_lock(&uuid_mutex);
674         if (fs_devices->opened) {
675                 fs_devices->opened++;
676                 ret = 0;
677         } else {
678                 ret = __btrfs_open_devices(fs_devices, flags, holder);
679         }
680         mutex_unlock(&uuid_mutex);
681         return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685                           struct btrfs_fs_devices **fs_devices_ret)
686 {
687         struct btrfs_super_block *disk_super;
688         struct block_device *bdev;
689         struct buffer_head *bh;
690         int ret;
691         u64 devid;
692         u64 transid;
693
694         mutex_lock(&uuid_mutex);
695
696         bdev = open_bdev_exclusive(path, flags, holder);
697
698         if (IS_ERR(bdev)) {
699                 ret = PTR_ERR(bdev);
700                 goto error;
701         }
702
703         ret = set_blocksize(bdev, 4096);
704         if (ret)
705                 goto error_close;
706         bh = btrfs_read_dev_super(bdev);
707         if (!bh) {
708                 ret = -EINVAL;
709                 goto error_close;
710         }
711         disk_super = (struct btrfs_super_block *)bh->b_data;
712         devid = btrfs_stack_device_id(&disk_super->dev_item);
713         transid = btrfs_super_generation(disk_super);
714         if (disk_super->label[0])
715                 printk(KERN_INFO "device label %s ", disk_super->label);
716         else {
717                 /* FIXME, make a readl uuid parser */
718                 printk(KERN_INFO "device fsid %llx-%llx ",
719                        *(unsigned long long *)disk_super->fsid,
720                        *(unsigned long long *)(disk_super->fsid + 8));
721         }
722         printk(KERN_CONT "devid %llu transid %llu %s\n",
723                (unsigned long long)devid, (unsigned long long)transid, path);
724         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
725
726         brelse(bh);
727 error_close:
728         close_bdev_exclusive(bdev, flags);
729 error:
730         mutex_unlock(&uuid_mutex);
731         return ret;
732 }
733
734 /* helper to account the used device space in the range */
735 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
736                                    u64 end, u64 *length)
737 {
738         struct btrfs_key key;
739         struct btrfs_root *root = device->dev_root;
740         struct btrfs_dev_extent *dev_extent;
741         struct btrfs_path *path;
742         u64 extent_end;
743         int ret;
744         int slot;
745         struct extent_buffer *l;
746
747         *length = 0;
748
749         if (start >= device->total_bytes)
750                 return 0;
751
752         path = btrfs_alloc_path();
753         if (!path)
754                 return -ENOMEM;
755         path->reada = 2;
756
757         key.objectid = device->devid;
758         key.offset = start;
759         key.type = BTRFS_DEV_EXTENT_KEY;
760
761         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762         if (ret < 0)
763                 goto out;
764         if (ret > 0) {
765                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
766                 if (ret < 0)
767                         goto out;
768         }
769
770         while (1) {
771                 l = path->nodes[0];
772                 slot = path->slots[0];
773                 if (slot >= btrfs_header_nritems(l)) {
774                         ret = btrfs_next_leaf(root, path);
775                         if (ret == 0)
776                                 continue;
777                         if (ret < 0)
778                                 goto out;
779
780                         break;
781                 }
782                 btrfs_item_key_to_cpu(l, &key, slot);
783
784                 if (key.objectid < device->devid)
785                         goto next;
786
787                 if (key.objectid > device->devid)
788                         break;
789
790                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
791                         goto next;
792
793                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
794                 extent_end = key.offset + btrfs_dev_extent_length(l,
795                                                                   dev_extent);
796                 if (key.offset <= start && extent_end > end) {
797                         *length = end - start + 1;
798                         break;
799                 } else if (key.offset <= start && extent_end > start)
800                         *length += extent_end - start;
801                 else if (key.offset > start && extent_end <= end)
802                         *length += extent_end - key.offset;
803                 else if (key.offset > start && key.offset <= end) {
804                         *length += end - key.offset + 1;
805                         break;
806                 } else if (key.offset > end)
807                         break;
808
809 next:
810                 path->slots[0]++;
811         }
812         ret = 0;
813 out:
814         btrfs_free_path(path);
815         return ret;
816 }
817
818 /*
819  * find_free_dev_extent - find free space in the specified device
820  * @trans:      transaction handler
821  * @device:     the device which we search the free space in
822  * @num_bytes:  the size of the free space that we need
823  * @start:      store the start of the free space.
824  * @len:        the size of the free space. that we find, or the size of the max
825  *              free space if we don't find suitable free space
826  *
827  * this uses a pretty simple search, the expectation is that it is
828  * called very infrequently and that a given device has a small number
829  * of extents
830  *
831  * @start is used to store the start of the free space if we find. But if we
832  * don't find suitable free space, it will be used to store the start position
833  * of the max free space.
834  *
835  * @len is used to store the size of the free space that we find.
836  * But if we don't find suitable free space, it is used to store the size of
837  * the max free space.
838  */
839 int find_free_dev_extent(struct btrfs_trans_handle *trans,
840                          struct btrfs_device *device, u64 num_bytes,
841                          u64 *start, u64 *len)
842 {
843         struct btrfs_key key;
844         struct btrfs_root *root = device->dev_root;
845         struct btrfs_dev_extent *dev_extent;
846         struct btrfs_path *path;
847         u64 hole_size;
848         u64 max_hole_start;
849         u64 max_hole_size;
850         u64 extent_end;
851         u64 search_start;
852         u64 search_end = device->total_bytes;
853         int ret;
854         int slot;
855         struct extent_buffer *l;
856
857         /* FIXME use last free of some kind */
858
859         /* we don't want to overwrite the superblock on the drive,
860          * so we make sure to start at an offset of at least 1MB
861          */
862         search_start = 1024 * 1024;
863
864         if (root->fs_info->alloc_start + num_bytes <= search_end)
865                 search_start = max(root->fs_info->alloc_start, search_start);
866
867         max_hole_start = search_start;
868         max_hole_size = 0;
869
870         if (search_start >= search_end) {
871                 ret = -ENOSPC;
872                 goto error;
873         }
874
875         path = btrfs_alloc_path();
876         if (!path) {
877                 ret = -ENOMEM;
878                 goto error;
879         }
880         path->reada = 2;
881
882         key.objectid = device->devid;
883         key.offset = search_start;
884         key.type = BTRFS_DEV_EXTENT_KEY;
885
886         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
887         if (ret < 0)
888                 goto out;
889         if (ret > 0) {
890                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
891                 if (ret < 0)
892                         goto out;
893         }
894
895         while (1) {
896                 l = path->nodes[0];
897                 slot = path->slots[0];
898                 if (slot >= btrfs_header_nritems(l)) {
899                         ret = btrfs_next_leaf(root, path);
900                         if (ret == 0)
901                                 continue;
902                         if (ret < 0)
903                                 goto out;
904
905                         break;
906                 }
907                 btrfs_item_key_to_cpu(l, &key, slot);
908
909                 if (key.objectid < device->devid)
910                         goto next;
911
912                 if (key.objectid > device->devid)
913                         break;
914
915                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
916                         goto next;
917
918                 if (key.offset > search_start) {
919                         hole_size = key.offset - search_start;
920
921                         if (hole_size > max_hole_size) {
922                                 max_hole_start = search_start;
923                                 max_hole_size = hole_size;
924                         }
925
926                         /*
927                          * If this free space is greater than which we need,
928                          * it must be the max free space that we have found
929                          * until now, so max_hole_start must point to the start
930                          * of this free space and the length of this free space
931                          * is stored in max_hole_size. Thus, we return
932                          * max_hole_start and max_hole_size and go back to the
933                          * caller.
934                          */
935                         if (hole_size >= num_bytes) {
936                                 ret = 0;
937                                 goto out;
938                         }
939                 }
940
941                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
942                 extent_end = key.offset + btrfs_dev_extent_length(l,
943                                                                   dev_extent);
944                 if (extent_end > search_start)
945                         search_start = extent_end;
946 next:
947                 path->slots[0]++;
948                 cond_resched();
949         }
950
951         hole_size = search_end- search_start;
952         if (hole_size > max_hole_size) {
953                 max_hole_start = search_start;
954                 max_hole_size = hole_size;
955         }
956
957         /* See above. */
958         if (hole_size < num_bytes)
959                 ret = -ENOSPC;
960         else
961                 ret = 0;
962
963 out:
964         btrfs_free_path(path);
965 error:
966         *start = max_hole_start;
967         if (len)
968                 *len = max_hole_size;
969         return ret;
970 }
971
972 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
973                           struct btrfs_device *device,
974                           u64 start)
975 {
976         int ret;
977         struct btrfs_path *path;
978         struct btrfs_root *root = device->dev_root;
979         struct btrfs_key key;
980         struct btrfs_key found_key;
981         struct extent_buffer *leaf = NULL;
982         struct btrfs_dev_extent *extent = NULL;
983
984         path = btrfs_alloc_path();
985         if (!path)
986                 return -ENOMEM;
987
988         key.objectid = device->devid;
989         key.offset = start;
990         key.type = BTRFS_DEV_EXTENT_KEY;
991
992         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
993         if (ret > 0) {
994                 ret = btrfs_previous_item(root, path, key.objectid,
995                                           BTRFS_DEV_EXTENT_KEY);
996                 BUG_ON(ret);
997                 leaf = path->nodes[0];
998                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999                 extent = btrfs_item_ptr(leaf, path->slots[0],
1000                                         struct btrfs_dev_extent);
1001                 BUG_ON(found_key.offset > start || found_key.offset +
1002                        btrfs_dev_extent_length(leaf, extent) < start);
1003                 ret = 0;
1004         } else if (ret == 0) {
1005                 leaf = path->nodes[0];
1006                 extent = btrfs_item_ptr(leaf, path->slots[0],
1007                                         struct btrfs_dev_extent);
1008         }
1009         BUG_ON(ret);
1010
1011         if (device->bytes_used > 0)
1012                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1013         ret = btrfs_del_item(trans, root, path);
1014         BUG_ON(ret);
1015
1016         btrfs_free_path(path);
1017         return ret;
1018 }
1019
1020 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1021                            struct btrfs_device *device,
1022                            u64 chunk_tree, u64 chunk_objectid,
1023                            u64 chunk_offset, u64 start, u64 num_bytes)
1024 {
1025         int ret;
1026         struct btrfs_path *path;
1027         struct btrfs_root *root = device->dev_root;
1028         struct btrfs_dev_extent *extent;
1029         struct extent_buffer *leaf;
1030         struct btrfs_key key;
1031
1032         WARN_ON(!device->in_fs_metadata);
1033         path = btrfs_alloc_path();
1034         if (!path)
1035                 return -ENOMEM;
1036
1037         key.objectid = device->devid;
1038         key.offset = start;
1039         key.type = BTRFS_DEV_EXTENT_KEY;
1040         ret = btrfs_insert_empty_item(trans, root, path, &key,
1041                                       sizeof(*extent));
1042         BUG_ON(ret);
1043
1044         leaf = path->nodes[0];
1045         extent = btrfs_item_ptr(leaf, path->slots[0],
1046                                 struct btrfs_dev_extent);
1047         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1048         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1049         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1050
1051         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1052                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1053                     BTRFS_UUID_SIZE);
1054
1055         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1056         btrfs_mark_buffer_dirty(leaf);
1057         btrfs_free_path(path);
1058         return ret;
1059 }
1060
1061 static noinline int find_next_chunk(struct btrfs_root *root,
1062                                     u64 objectid, u64 *offset)
1063 {
1064         struct btrfs_path *path;
1065         int ret;
1066         struct btrfs_key key;
1067         struct btrfs_chunk *chunk;
1068         struct btrfs_key found_key;
1069
1070         path = btrfs_alloc_path();
1071         BUG_ON(!path);
1072
1073         key.objectid = objectid;
1074         key.offset = (u64)-1;
1075         key.type = BTRFS_CHUNK_ITEM_KEY;
1076
1077         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1078         if (ret < 0)
1079                 goto error;
1080
1081         BUG_ON(ret == 0);
1082
1083         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1084         if (ret) {
1085                 *offset = 0;
1086         } else {
1087                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1088                                       path->slots[0]);
1089                 if (found_key.objectid != objectid)
1090                         *offset = 0;
1091                 else {
1092                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1093                                                struct btrfs_chunk);
1094                         *offset = found_key.offset +
1095                                 btrfs_chunk_length(path->nodes[0], chunk);
1096                 }
1097         }
1098         ret = 0;
1099 error:
1100         btrfs_free_path(path);
1101         return ret;
1102 }
1103
1104 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1105 {
1106         int ret;
1107         struct btrfs_key key;
1108         struct btrfs_key found_key;
1109         struct btrfs_path *path;
1110
1111         root = root->fs_info->chunk_root;
1112
1113         path = btrfs_alloc_path();
1114         if (!path)
1115                 return -ENOMEM;
1116
1117         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1118         key.type = BTRFS_DEV_ITEM_KEY;
1119         key.offset = (u64)-1;
1120
1121         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1122         if (ret < 0)
1123                 goto error;
1124
1125         BUG_ON(ret == 0);
1126
1127         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1128                                   BTRFS_DEV_ITEM_KEY);
1129         if (ret) {
1130                 *objectid = 1;
1131         } else {
1132                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1133                                       path->slots[0]);
1134                 *objectid = found_key.offset + 1;
1135         }
1136         ret = 0;
1137 error:
1138         btrfs_free_path(path);
1139         return ret;
1140 }
1141
1142 /*
1143  * the device information is stored in the chunk root
1144  * the btrfs_device struct should be fully filled in
1145  */
1146 int btrfs_add_device(struct btrfs_trans_handle *trans,
1147                      struct btrfs_root *root,
1148                      struct btrfs_device *device)
1149 {
1150         int ret;
1151         struct btrfs_path *path;
1152         struct btrfs_dev_item *dev_item;
1153         struct extent_buffer *leaf;
1154         struct btrfs_key key;
1155         unsigned long ptr;
1156
1157         root = root->fs_info->chunk_root;
1158
1159         path = btrfs_alloc_path();
1160         if (!path)
1161                 return -ENOMEM;
1162
1163         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1164         key.type = BTRFS_DEV_ITEM_KEY;
1165         key.offset = device->devid;
1166
1167         ret = btrfs_insert_empty_item(trans, root, path, &key,
1168                                       sizeof(*dev_item));
1169         if (ret)
1170                 goto out;
1171
1172         leaf = path->nodes[0];
1173         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1174
1175         btrfs_set_device_id(leaf, dev_item, device->devid);
1176         btrfs_set_device_generation(leaf, dev_item, 0);
1177         btrfs_set_device_type(leaf, dev_item, device->type);
1178         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1179         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1180         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1181         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1182         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1183         btrfs_set_device_group(leaf, dev_item, 0);
1184         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1185         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1186         btrfs_set_device_start_offset(leaf, dev_item, 0);
1187
1188         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1189         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1190         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1191         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1192         btrfs_mark_buffer_dirty(leaf);
1193
1194         ret = 0;
1195 out:
1196         btrfs_free_path(path);
1197         return ret;
1198 }
1199
1200 static int btrfs_rm_dev_item(struct btrfs_root *root,
1201                              struct btrfs_device *device)
1202 {
1203         int ret;
1204         struct btrfs_path *path;
1205         struct btrfs_key key;
1206         struct btrfs_trans_handle *trans;
1207
1208         root = root->fs_info->chunk_root;
1209
1210         path = btrfs_alloc_path();
1211         if (!path)
1212                 return -ENOMEM;
1213
1214         trans = btrfs_start_transaction(root, 0);
1215         if (IS_ERR(trans)) {
1216                 btrfs_free_path(path);
1217                 return PTR_ERR(trans);
1218         }
1219         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1220         key.type = BTRFS_DEV_ITEM_KEY;
1221         key.offset = device->devid;
1222         lock_chunks(root);
1223
1224         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1225         if (ret < 0)
1226                 goto out;
1227
1228         if (ret > 0) {
1229                 ret = -ENOENT;
1230                 goto out;
1231         }
1232
1233         ret = btrfs_del_item(trans, root, path);
1234         if (ret)
1235                 goto out;
1236 out:
1237         btrfs_free_path(path);
1238         unlock_chunks(root);
1239         btrfs_commit_transaction(trans, root);
1240         return ret;
1241 }
1242
1243 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1244 {
1245         struct btrfs_device *device;
1246         struct btrfs_device *next_device;
1247         struct block_device *bdev;
1248         struct buffer_head *bh = NULL;
1249         struct btrfs_super_block *disk_super;
1250         u64 all_avail;
1251         u64 devid;
1252         u64 num_devices;
1253         u8 *dev_uuid;
1254         int ret = 0;
1255
1256         mutex_lock(&uuid_mutex);
1257         mutex_lock(&root->fs_info->volume_mutex);
1258
1259         all_avail = root->fs_info->avail_data_alloc_bits |
1260                 root->fs_info->avail_system_alloc_bits |
1261                 root->fs_info->avail_metadata_alloc_bits;
1262
1263         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1264             root->fs_info->fs_devices->num_devices <= 4) {
1265                 printk(KERN_ERR "btrfs: unable to go below four devices "
1266                        "on raid10\n");
1267                 ret = -EINVAL;
1268                 goto out;
1269         }
1270
1271         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1272             root->fs_info->fs_devices->num_devices <= 2) {
1273                 printk(KERN_ERR "btrfs: unable to go below two "
1274                        "devices on raid1\n");
1275                 ret = -EINVAL;
1276                 goto out;
1277         }
1278
1279         if (strcmp(device_path, "missing") == 0) {
1280                 struct list_head *devices;
1281                 struct btrfs_device *tmp;
1282
1283                 device = NULL;
1284                 devices = &root->fs_info->fs_devices->devices;
1285                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1286                 list_for_each_entry(tmp, devices, dev_list) {
1287                         if (tmp->in_fs_metadata && !tmp->bdev) {
1288                                 device = tmp;
1289                                 break;
1290                         }
1291                 }
1292                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1293                 bdev = NULL;
1294                 bh = NULL;
1295                 disk_super = NULL;
1296                 if (!device) {
1297                         printk(KERN_ERR "btrfs: no missing devices found to "
1298                                "remove\n");
1299                         goto out;
1300                 }
1301         } else {
1302                 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1303                                       root->fs_info->bdev_holder);
1304                 if (IS_ERR(bdev)) {
1305                         ret = PTR_ERR(bdev);
1306                         goto out;
1307                 }
1308
1309                 set_blocksize(bdev, 4096);
1310                 bh = btrfs_read_dev_super(bdev);
1311                 if (!bh) {
1312                         ret = -EINVAL;
1313                         goto error_close;
1314                 }
1315                 disk_super = (struct btrfs_super_block *)bh->b_data;
1316                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1317                 dev_uuid = disk_super->dev_item.uuid;
1318                 device = btrfs_find_device(root, devid, dev_uuid,
1319                                            disk_super->fsid);
1320                 if (!device) {
1321                         ret = -ENOENT;
1322                         goto error_brelse;
1323                 }
1324         }
1325
1326         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1327                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1328                        "device\n");
1329                 ret = -EINVAL;
1330                 goto error_brelse;
1331         }
1332
1333         if (device->writeable) {
1334                 list_del_init(&device->dev_alloc_list);
1335                 root->fs_info->fs_devices->rw_devices--;
1336         }
1337
1338         ret = btrfs_shrink_device(device, 0);
1339         if (ret)
1340                 goto error_undo;
1341
1342         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1343         if (ret)
1344                 goto error_undo;
1345
1346         device->in_fs_metadata = 0;
1347
1348         /*
1349          * the device list mutex makes sure that we don't change
1350          * the device list while someone else is writing out all
1351          * the device supers.
1352          */
1353         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1354         list_del_init(&device->dev_list);
1355         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1356
1357         device->fs_devices->num_devices--;
1358
1359         if (device->missing)
1360                 root->fs_info->fs_devices->missing_devices--;
1361
1362         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1363                                  struct btrfs_device, dev_list);
1364         if (device->bdev == root->fs_info->sb->s_bdev)
1365                 root->fs_info->sb->s_bdev = next_device->bdev;
1366         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1367                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1368
1369         if (device->bdev) {
1370                 close_bdev_exclusive(device->bdev, device->mode);
1371                 device->bdev = NULL;
1372                 device->fs_devices->open_devices--;
1373         }
1374
1375         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1376         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1377
1378         if (device->fs_devices->open_devices == 0) {
1379                 struct btrfs_fs_devices *fs_devices;
1380                 fs_devices = root->fs_info->fs_devices;
1381                 while (fs_devices) {
1382                         if (fs_devices->seed == device->fs_devices)
1383                                 break;
1384                         fs_devices = fs_devices->seed;
1385                 }
1386                 fs_devices->seed = device->fs_devices->seed;
1387                 device->fs_devices->seed = NULL;
1388                 __btrfs_close_devices(device->fs_devices);
1389                 free_fs_devices(device->fs_devices);
1390         }
1391
1392         /*
1393          * at this point, the device is zero sized.  We want to
1394          * remove it from the devices list and zero out the old super
1395          */
1396         if (device->writeable) {
1397                 /* make sure this device isn't detected as part of
1398                  * the FS anymore
1399                  */
1400                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1401                 set_buffer_dirty(bh);
1402                 sync_dirty_buffer(bh);
1403         }
1404
1405         kfree(device->name);
1406         kfree(device);
1407         ret = 0;
1408
1409 error_brelse:
1410         brelse(bh);
1411 error_close:
1412         if (bdev)
1413                 close_bdev_exclusive(bdev, FMODE_READ);
1414 out:
1415         mutex_unlock(&root->fs_info->volume_mutex);
1416         mutex_unlock(&uuid_mutex);
1417         return ret;
1418 error_undo:
1419         if (device->writeable) {
1420                 list_add(&device->dev_alloc_list,
1421                          &root->fs_info->fs_devices->alloc_list);
1422                 root->fs_info->fs_devices->rw_devices++;
1423         }
1424         goto error_brelse;
1425 }
1426
1427 /*
1428  * does all the dirty work required for changing file system's UUID.
1429  */
1430 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1431                                 struct btrfs_root *root)
1432 {
1433         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1434         struct btrfs_fs_devices *old_devices;
1435         struct btrfs_fs_devices *seed_devices;
1436         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1437         struct btrfs_device *device;
1438         u64 super_flags;
1439
1440         BUG_ON(!mutex_is_locked(&uuid_mutex));
1441         if (!fs_devices->seeding)
1442                 return -EINVAL;
1443
1444         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1445         if (!seed_devices)
1446                 return -ENOMEM;
1447
1448         old_devices = clone_fs_devices(fs_devices);
1449         if (IS_ERR(old_devices)) {
1450                 kfree(seed_devices);
1451                 return PTR_ERR(old_devices);
1452         }
1453
1454         list_add(&old_devices->list, &fs_uuids);
1455
1456         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1457         seed_devices->opened = 1;
1458         INIT_LIST_HEAD(&seed_devices->devices);
1459         INIT_LIST_HEAD(&seed_devices->alloc_list);
1460         mutex_init(&seed_devices->device_list_mutex);
1461         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1462         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1463         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1464                 device->fs_devices = seed_devices;
1465         }
1466
1467         fs_devices->seeding = 0;
1468         fs_devices->num_devices = 0;
1469         fs_devices->open_devices = 0;
1470         fs_devices->seed = seed_devices;
1471
1472         generate_random_uuid(fs_devices->fsid);
1473         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1474         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1475         super_flags = btrfs_super_flags(disk_super) &
1476                       ~BTRFS_SUPER_FLAG_SEEDING;
1477         btrfs_set_super_flags(disk_super, super_flags);
1478
1479         return 0;
1480 }
1481
1482 /*
1483  * strore the expected generation for seed devices in device items.
1484  */
1485 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1486                                struct btrfs_root *root)
1487 {
1488         struct btrfs_path *path;
1489         struct extent_buffer *leaf;
1490         struct btrfs_dev_item *dev_item;
1491         struct btrfs_device *device;
1492         struct btrfs_key key;
1493         u8 fs_uuid[BTRFS_UUID_SIZE];
1494         u8 dev_uuid[BTRFS_UUID_SIZE];
1495         u64 devid;
1496         int ret;
1497
1498         path = btrfs_alloc_path();
1499         if (!path)
1500                 return -ENOMEM;
1501
1502         root = root->fs_info->chunk_root;
1503         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1504         key.offset = 0;
1505         key.type = BTRFS_DEV_ITEM_KEY;
1506
1507         while (1) {
1508                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1509                 if (ret < 0)
1510                         goto error;
1511
1512                 leaf = path->nodes[0];
1513 next_slot:
1514                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1515                         ret = btrfs_next_leaf(root, path);
1516                         if (ret > 0)
1517                                 break;
1518                         if (ret < 0)
1519                                 goto error;
1520                         leaf = path->nodes[0];
1521                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1522                         btrfs_release_path(root, path);
1523                         continue;
1524                 }
1525
1526                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1527                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1528                     key.type != BTRFS_DEV_ITEM_KEY)
1529                         break;
1530
1531                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1532                                           struct btrfs_dev_item);
1533                 devid = btrfs_device_id(leaf, dev_item);
1534                 read_extent_buffer(leaf, dev_uuid,
1535                                    (unsigned long)btrfs_device_uuid(dev_item),
1536                                    BTRFS_UUID_SIZE);
1537                 read_extent_buffer(leaf, fs_uuid,
1538                                    (unsigned long)btrfs_device_fsid(dev_item),
1539                                    BTRFS_UUID_SIZE);
1540                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1541                 BUG_ON(!device);
1542
1543                 if (device->fs_devices->seeding) {
1544                         btrfs_set_device_generation(leaf, dev_item,
1545                                                     device->generation);
1546                         btrfs_mark_buffer_dirty(leaf);
1547                 }
1548
1549                 path->slots[0]++;
1550                 goto next_slot;
1551         }
1552         ret = 0;
1553 error:
1554         btrfs_free_path(path);
1555         return ret;
1556 }
1557
1558 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1559 {
1560         struct btrfs_trans_handle *trans;
1561         struct btrfs_device *device;
1562         struct block_device *bdev;
1563         struct list_head *devices;
1564         struct super_block *sb = root->fs_info->sb;
1565         u64 total_bytes;
1566         int seeding_dev = 0;
1567         int ret = 0;
1568
1569         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1570                 return -EINVAL;
1571
1572         bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1573         if (IS_ERR(bdev))
1574                 return PTR_ERR(bdev);
1575
1576         if (root->fs_info->fs_devices->seeding) {
1577                 seeding_dev = 1;
1578                 down_write(&sb->s_umount);
1579                 mutex_lock(&uuid_mutex);
1580         }
1581
1582         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1583         mutex_lock(&root->fs_info->volume_mutex);
1584
1585         devices = &root->fs_info->fs_devices->devices;
1586         /*
1587          * we have the volume lock, so we don't need the extra
1588          * device list mutex while reading the list here.
1589          */
1590         list_for_each_entry(device, devices, dev_list) {
1591                 if (device->bdev == bdev) {
1592                         ret = -EEXIST;
1593                         goto error;
1594                 }
1595         }
1596
1597         device = kzalloc(sizeof(*device), GFP_NOFS);
1598         if (!device) {
1599                 /* we can safely leave the fs_devices entry around */
1600                 ret = -ENOMEM;
1601                 goto error;
1602         }
1603
1604         device->name = kstrdup(device_path, GFP_NOFS);
1605         if (!device->name) {
1606                 kfree(device);
1607                 ret = -ENOMEM;
1608                 goto error;
1609         }
1610
1611         ret = find_next_devid(root, &device->devid);
1612         if (ret) {
1613                 kfree(device->name);
1614                 kfree(device);
1615                 goto error;
1616         }
1617
1618         trans = btrfs_start_transaction(root, 0);
1619         if (IS_ERR(trans)) {
1620                 kfree(device->name);
1621                 kfree(device);
1622                 ret = PTR_ERR(trans);
1623                 goto error;
1624         }
1625
1626         lock_chunks(root);
1627
1628         device->barriers = 1;
1629         device->writeable = 1;
1630         device->work.func = pending_bios_fn;
1631         generate_random_uuid(device->uuid);
1632         spin_lock_init(&device->io_lock);
1633         device->generation = trans->transid;
1634         device->io_width = root->sectorsize;
1635         device->io_align = root->sectorsize;
1636         device->sector_size = root->sectorsize;
1637         device->total_bytes = i_size_read(bdev->bd_inode);
1638         device->disk_total_bytes = device->total_bytes;
1639         device->dev_root = root->fs_info->dev_root;
1640         device->bdev = bdev;
1641         device->in_fs_metadata = 1;
1642         device->mode = FMODE_EXCL;
1643         set_blocksize(device->bdev, 4096);
1644
1645         if (seeding_dev) {
1646                 sb->s_flags &= ~MS_RDONLY;
1647                 ret = btrfs_prepare_sprout(trans, root);
1648                 BUG_ON(ret);
1649         }
1650
1651         device->fs_devices = root->fs_info->fs_devices;
1652
1653         /*
1654          * we don't want write_supers to jump in here with our device
1655          * half setup
1656          */
1657         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1658         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1659         list_add(&device->dev_alloc_list,
1660                  &root->fs_info->fs_devices->alloc_list);
1661         root->fs_info->fs_devices->num_devices++;
1662         root->fs_info->fs_devices->open_devices++;
1663         root->fs_info->fs_devices->rw_devices++;
1664         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1665
1666         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1667                 root->fs_info->fs_devices->rotating = 1;
1668
1669         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1670         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1671                                     total_bytes + device->total_bytes);
1672
1673         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1674         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1675                                     total_bytes + 1);
1676         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1677
1678         if (seeding_dev) {
1679                 ret = init_first_rw_device(trans, root, device);
1680                 BUG_ON(ret);
1681                 ret = btrfs_finish_sprout(trans, root);
1682                 BUG_ON(ret);
1683         } else {
1684                 ret = btrfs_add_device(trans, root, device);
1685         }
1686
1687         /*
1688          * we've got more storage, clear any full flags on the space
1689          * infos
1690          */
1691         btrfs_clear_space_info_full(root->fs_info);
1692
1693         unlock_chunks(root);
1694         btrfs_commit_transaction(trans, root);
1695
1696         if (seeding_dev) {
1697                 mutex_unlock(&uuid_mutex);
1698                 up_write(&sb->s_umount);
1699
1700                 ret = btrfs_relocate_sys_chunks(root);
1701                 BUG_ON(ret);
1702         }
1703 out:
1704         mutex_unlock(&root->fs_info->volume_mutex);
1705         return ret;
1706 error:
1707         close_bdev_exclusive(bdev, 0);
1708         if (seeding_dev) {
1709                 mutex_unlock(&uuid_mutex);
1710                 up_write(&sb->s_umount);
1711         }
1712         goto out;
1713 }
1714
1715 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1716                                         struct btrfs_device *device)
1717 {
1718         int ret;
1719         struct btrfs_path *path;
1720         struct btrfs_root *root;
1721         struct btrfs_dev_item *dev_item;
1722         struct extent_buffer *leaf;
1723         struct btrfs_key key;
1724
1725         root = device->dev_root->fs_info->chunk_root;
1726
1727         path = btrfs_alloc_path();
1728         if (!path)
1729                 return -ENOMEM;
1730
1731         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1732         key.type = BTRFS_DEV_ITEM_KEY;
1733         key.offset = device->devid;
1734
1735         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1736         if (ret < 0)
1737                 goto out;
1738
1739         if (ret > 0) {
1740                 ret = -ENOENT;
1741                 goto out;
1742         }
1743
1744         leaf = path->nodes[0];
1745         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1746
1747         btrfs_set_device_id(leaf, dev_item, device->devid);
1748         btrfs_set_device_type(leaf, dev_item, device->type);
1749         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1750         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1751         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1752         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1753         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1754         btrfs_mark_buffer_dirty(leaf);
1755
1756 out:
1757         btrfs_free_path(path);
1758         return ret;
1759 }
1760
1761 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1762                       struct btrfs_device *device, u64 new_size)
1763 {
1764         struct btrfs_super_block *super_copy =
1765                 &device->dev_root->fs_info->super_copy;
1766         u64 old_total = btrfs_super_total_bytes(super_copy);
1767         u64 diff = new_size - device->total_bytes;
1768
1769         if (!device->writeable)
1770                 return -EACCES;
1771         if (new_size <= device->total_bytes)
1772                 return -EINVAL;
1773
1774         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1775         device->fs_devices->total_rw_bytes += diff;
1776
1777         device->total_bytes = new_size;
1778         device->disk_total_bytes = new_size;
1779         btrfs_clear_space_info_full(device->dev_root->fs_info);
1780
1781         return btrfs_update_device(trans, device);
1782 }
1783
1784 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1785                       struct btrfs_device *device, u64 new_size)
1786 {
1787         int ret;
1788         lock_chunks(device->dev_root);
1789         ret = __btrfs_grow_device(trans, device, new_size);
1790         unlock_chunks(device->dev_root);
1791         return ret;
1792 }
1793
1794 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1795                             struct btrfs_root *root,
1796                             u64 chunk_tree, u64 chunk_objectid,
1797                             u64 chunk_offset)
1798 {
1799         int ret;
1800         struct btrfs_path *path;
1801         struct btrfs_key key;
1802
1803         root = root->fs_info->chunk_root;
1804         path = btrfs_alloc_path();
1805         if (!path)
1806                 return -ENOMEM;
1807
1808         key.objectid = chunk_objectid;
1809         key.offset = chunk_offset;
1810         key.type = BTRFS_CHUNK_ITEM_KEY;
1811
1812         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1813         BUG_ON(ret);
1814
1815         ret = btrfs_del_item(trans, root, path);
1816         BUG_ON(ret);
1817
1818         btrfs_free_path(path);
1819         return 0;
1820 }
1821
1822 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1823                         chunk_offset)
1824 {
1825         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1826         struct btrfs_disk_key *disk_key;
1827         struct btrfs_chunk *chunk;
1828         u8 *ptr;
1829         int ret = 0;
1830         u32 num_stripes;
1831         u32 array_size;
1832         u32 len = 0;
1833         u32 cur;
1834         struct btrfs_key key;
1835
1836         array_size = btrfs_super_sys_array_size(super_copy);
1837
1838         ptr = super_copy->sys_chunk_array;
1839         cur = 0;
1840
1841         while (cur < array_size) {
1842                 disk_key = (struct btrfs_disk_key *)ptr;
1843                 btrfs_disk_key_to_cpu(&key, disk_key);
1844
1845                 len = sizeof(*disk_key);
1846
1847                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1848                         chunk = (struct btrfs_chunk *)(ptr + len);
1849                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1850                         len += btrfs_chunk_item_size(num_stripes);
1851                 } else {
1852                         ret = -EIO;
1853                         break;
1854                 }
1855                 if (key.objectid == chunk_objectid &&
1856                     key.offset == chunk_offset) {
1857                         memmove(ptr, ptr + len, array_size - (cur + len));
1858                         array_size -= len;
1859                         btrfs_set_super_sys_array_size(super_copy, array_size);
1860                 } else {
1861                         ptr += len;
1862                         cur += len;
1863                 }
1864         }
1865         return ret;
1866 }
1867
1868 static int btrfs_relocate_chunk(struct btrfs_root *root,
1869                          u64 chunk_tree, u64 chunk_objectid,
1870                          u64 chunk_offset)
1871 {
1872         struct extent_map_tree *em_tree;
1873         struct btrfs_root *extent_root;
1874         struct btrfs_trans_handle *trans;
1875         struct extent_map *em;
1876         struct map_lookup *map;
1877         int ret;
1878         int i;
1879
1880         root = root->fs_info->chunk_root;
1881         extent_root = root->fs_info->extent_root;
1882         em_tree = &root->fs_info->mapping_tree.map_tree;
1883
1884         ret = btrfs_can_relocate(extent_root, chunk_offset);
1885         if (ret)
1886                 return -ENOSPC;
1887
1888         /* step one, relocate all the extents inside this chunk */
1889         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1890         if (ret)
1891                 return ret;
1892
1893         trans = btrfs_start_transaction(root, 0);
1894         BUG_ON(IS_ERR(trans));
1895
1896         lock_chunks(root);
1897
1898         /*
1899          * step two, delete the device extents and the
1900          * chunk tree entries
1901          */
1902         read_lock(&em_tree->lock);
1903         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1904         read_unlock(&em_tree->lock);
1905
1906         BUG_ON(em->start > chunk_offset ||
1907                em->start + em->len < chunk_offset);
1908         map = (struct map_lookup *)em->bdev;
1909
1910         for (i = 0; i < map->num_stripes; i++) {
1911                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1912                                             map->stripes[i].physical);
1913                 BUG_ON(ret);
1914
1915                 if (map->stripes[i].dev) {
1916                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1917                         BUG_ON(ret);
1918                 }
1919         }
1920         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1921                                chunk_offset);
1922
1923         BUG_ON(ret);
1924
1925         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1926                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1927                 BUG_ON(ret);
1928         }
1929
1930         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1931         BUG_ON(ret);
1932
1933         write_lock(&em_tree->lock);
1934         remove_extent_mapping(em_tree, em);
1935         write_unlock(&em_tree->lock);
1936
1937         kfree(map);
1938         em->bdev = NULL;
1939
1940         /* once for the tree */
1941         free_extent_map(em);
1942         /* once for us */
1943         free_extent_map(em);
1944
1945         unlock_chunks(root);
1946         btrfs_end_transaction(trans, root);
1947         return 0;
1948 }
1949
1950 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1951 {
1952         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1953         struct btrfs_path *path;
1954         struct extent_buffer *leaf;
1955         struct btrfs_chunk *chunk;
1956         struct btrfs_key key;
1957         struct btrfs_key found_key;
1958         u64 chunk_tree = chunk_root->root_key.objectid;
1959         u64 chunk_type;
1960         bool retried = false;
1961         int failed = 0;
1962         int ret;
1963
1964         path = btrfs_alloc_path();
1965         if (!path)
1966                 return -ENOMEM;
1967
1968 again:
1969         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1970         key.offset = (u64)-1;
1971         key.type = BTRFS_CHUNK_ITEM_KEY;
1972
1973         while (1) {
1974                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1975                 if (ret < 0)
1976                         goto error;
1977                 BUG_ON(ret == 0);
1978
1979                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1980                                           key.type);
1981                 if (ret < 0)
1982                         goto error;
1983                 if (ret > 0)
1984                         break;
1985
1986                 leaf = path->nodes[0];
1987                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1988
1989                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1990                                        struct btrfs_chunk);
1991                 chunk_type = btrfs_chunk_type(leaf, chunk);
1992                 btrfs_release_path(chunk_root, path);
1993
1994                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1995                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1996                                                    found_key.objectid,
1997                                                    found_key.offset);
1998                         if (ret == -ENOSPC)
1999                                 failed++;
2000                         else if (ret)
2001                                 BUG();
2002                 }
2003
2004                 if (found_key.offset == 0)
2005                         break;
2006                 key.offset = found_key.offset - 1;
2007         }
2008         ret = 0;
2009         if (failed && !retried) {
2010                 failed = 0;
2011                 retried = true;
2012                 goto again;
2013         } else if (failed && retried) {
2014                 WARN_ON(1);
2015                 ret = -ENOSPC;
2016         }
2017 error:
2018         btrfs_free_path(path);
2019         return ret;
2020 }
2021
2022 static u64 div_factor(u64 num, int factor)
2023 {
2024         if (factor == 10)
2025                 return num;
2026         num *= factor;
2027         do_div(num, 10);
2028         return num;
2029 }
2030
2031 int btrfs_balance(struct btrfs_root *dev_root)
2032 {
2033         int ret;
2034         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2035         struct btrfs_device *device;
2036         u64 old_size;
2037         u64 size_to_free;
2038         struct btrfs_path *path;
2039         struct btrfs_key key;
2040         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2041         struct btrfs_trans_handle *trans;
2042         struct btrfs_key found_key;
2043
2044         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2045                 return -EROFS;
2046
2047         if (!capable(CAP_SYS_ADMIN))
2048                 return -EPERM;
2049
2050         mutex_lock(&dev_root->fs_info->volume_mutex);
2051         dev_root = dev_root->fs_info->dev_root;
2052
2053         /* step one make some room on all the devices */
2054         list_for_each_entry(device, devices, dev_list) {
2055                 old_size = device->total_bytes;
2056                 size_to_free = div_factor(old_size, 1);
2057                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2058                 if (!device->writeable ||
2059                     device->total_bytes - device->bytes_used > size_to_free)
2060                         continue;
2061
2062                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2063                 if (ret == -ENOSPC)
2064                         break;
2065                 BUG_ON(ret);
2066
2067                 trans = btrfs_start_transaction(dev_root, 0);
2068                 BUG_ON(IS_ERR(trans));
2069
2070                 ret = btrfs_grow_device(trans, device, old_size);
2071                 BUG_ON(ret);
2072
2073                 btrfs_end_transaction(trans, dev_root);
2074         }
2075
2076         /* step two, relocate all the chunks */
2077         path = btrfs_alloc_path();
2078         BUG_ON(!path);
2079
2080         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2081         key.offset = (u64)-1;
2082         key.type = BTRFS_CHUNK_ITEM_KEY;
2083
2084         while (1) {
2085                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2086                 if (ret < 0)
2087                         goto error;
2088
2089                 /*
2090                  * this shouldn't happen, it means the last relocate
2091                  * failed
2092                  */
2093                 if (ret == 0)
2094                         break;
2095
2096                 ret = btrfs_previous_item(chunk_root, path, 0,
2097                                           BTRFS_CHUNK_ITEM_KEY);
2098                 if (ret)
2099                         break;
2100
2101                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2102                                       path->slots[0]);
2103                 if (found_key.objectid != key.objectid)
2104                         break;
2105
2106                 /* chunk zero is special */
2107                 if (found_key.offset == 0)
2108                         break;
2109
2110                 btrfs_release_path(chunk_root, path);
2111                 ret = btrfs_relocate_chunk(chunk_root,
2112                                            chunk_root->root_key.objectid,
2113                                            found_key.objectid,
2114                                            found_key.offset);
2115                 BUG_ON(ret && ret != -ENOSPC);
2116                 key.offset = found_key.offset - 1;
2117         }
2118         ret = 0;
2119 error:
2120         btrfs_free_path(path);
2121         mutex_unlock(&dev_root->fs_info->volume_mutex);
2122         return ret;
2123 }
2124
2125 /*
2126  * shrinking a device means finding all of the device extents past
2127  * the new size, and then following the back refs to the chunks.
2128  * The chunk relocation code actually frees the device extent
2129  */
2130 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2131 {
2132         struct btrfs_trans_handle *trans;
2133         struct btrfs_root *root = device->dev_root;
2134         struct btrfs_dev_extent *dev_extent = NULL;
2135         struct btrfs_path *path;
2136         u64 length;
2137         u64 chunk_tree;
2138         u64 chunk_objectid;
2139         u64 chunk_offset;
2140         int ret;
2141         int slot;
2142         int failed = 0;
2143         bool retried = false;
2144         struct extent_buffer *l;
2145         struct btrfs_key key;
2146         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2147         u64 old_total = btrfs_super_total_bytes(super_copy);
2148         u64 old_size = device->total_bytes;
2149         u64 diff = device->total_bytes - new_size;
2150
2151         if (new_size >= device->total_bytes)
2152                 return -EINVAL;
2153
2154         path = btrfs_alloc_path();
2155         if (!path)
2156                 return -ENOMEM;
2157
2158         path->reada = 2;
2159
2160         lock_chunks(root);
2161
2162         device->total_bytes = new_size;
2163         if (device->writeable)
2164                 device->fs_devices->total_rw_bytes -= diff;
2165         unlock_chunks(root);
2166
2167 again:
2168         key.objectid = device->devid;
2169         key.offset = (u64)-1;
2170         key.type = BTRFS_DEV_EXTENT_KEY;
2171
2172         while (1) {
2173                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2174                 if (ret < 0)
2175                         goto done;
2176
2177                 ret = btrfs_previous_item(root, path, 0, key.type);
2178                 if (ret < 0)
2179                         goto done;
2180                 if (ret) {
2181                         ret = 0;
2182                         btrfs_release_path(root, path);
2183                         break;
2184                 }
2185
2186                 l = path->nodes[0];
2187                 slot = path->slots[0];
2188                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2189
2190                 if (key.objectid != device->devid) {
2191                         btrfs_release_path(root, path);
2192                         break;
2193                 }
2194
2195                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2196                 length = btrfs_dev_extent_length(l, dev_extent);
2197
2198                 if (key.offset + length <= new_size) {
2199                         btrfs_release_path(root, path);
2200                         break;
2201                 }
2202
2203                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2204                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2205                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2206                 btrfs_release_path(root, path);
2207
2208                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2209                                            chunk_offset);
2210                 if (ret && ret != -ENOSPC)
2211                         goto done;
2212                 if (ret == -ENOSPC)
2213                         failed++;
2214                 key.offset -= 1;
2215         }
2216
2217         if (failed && !retried) {
2218                 failed = 0;
2219                 retried = true;
2220                 goto again;
2221         } else if (failed && retried) {
2222                 ret = -ENOSPC;
2223                 lock_chunks(root);
2224
2225                 device->total_bytes = old_size;
2226                 if (device->writeable)
2227                         device->fs_devices->total_rw_bytes += diff;
2228                 unlock_chunks(root);
2229                 goto done;
2230         }
2231
2232         /* Shrinking succeeded, else we would be at "done". */
2233         trans = btrfs_start_transaction(root, 0);
2234         if (IS_ERR(trans)) {
2235                 ret = PTR_ERR(trans);
2236                 goto done;
2237         }
2238
2239         lock_chunks(root);
2240
2241         device->disk_total_bytes = new_size;
2242         /* Now btrfs_update_device() will change the on-disk size. */
2243         ret = btrfs_update_device(trans, device);
2244         if (ret) {
2245                 unlock_chunks(root);
2246                 btrfs_end_transaction(trans, root);
2247                 goto done;
2248         }
2249         WARN_ON(diff > old_total);
2250         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2251         unlock_chunks(root);
2252         btrfs_end_transaction(trans, root);
2253 done:
2254         btrfs_free_path(path);
2255         return ret;
2256 }
2257
2258 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2259                            struct btrfs_root *root,
2260                            struct btrfs_key *key,
2261                            struct btrfs_chunk *chunk, int item_size)
2262 {
2263         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2264         struct btrfs_disk_key disk_key;
2265         u32 array_size;
2266         u8 *ptr;
2267
2268         array_size = btrfs_super_sys_array_size(super_copy);
2269         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2270                 return -EFBIG;
2271
2272         ptr = super_copy->sys_chunk_array + array_size;
2273         btrfs_cpu_key_to_disk(&disk_key, key);
2274         memcpy(ptr, &disk_key, sizeof(disk_key));
2275         ptr += sizeof(disk_key);
2276         memcpy(ptr, chunk, item_size);
2277         item_size += sizeof(disk_key);
2278         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2279         return 0;
2280 }
2281
2282 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2283                                         int num_stripes, int sub_stripes)
2284 {
2285         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2286                 return calc_size;
2287         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2288                 return calc_size * (num_stripes / sub_stripes);
2289         else
2290                 return calc_size * num_stripes;
2291 }
2292
2293 /* Used to sort the devices by max_avail(descending sort) */
2294 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2295 {
2296         if (((struct btrfs_device_info *)dev_info1)->max_avail >
2297             ((struct btrfs_device_info *)dev_info2)->max_avail)
2298                 return -1;
2299         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2300                  ((struct btrfs_device_info *)dev_info2)->max_avail)
2301                 return 1;
2302         else
2303                 return 0;
2304 }
2305
2306 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2307                                  int *num_stripes, int *min_stripes,
2308                                  int *sub_stripes)
2309 {
2310         *num_stripes = 1;
2311         *min_stripes = 1;
2312         *sub_stripes = 0;
2313
2314         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2315                 *num_stripes = fs_devices->rw_devices;
2316                 *min_stripes = 2;
2317         }
2318         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2319                 *num_stripes = 2;
2320                 *min_stripes = 2;
2321         }
2322         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2323                 if (fs_devices->rw_devices < 2)
2324                         return -ENOSPC;
2325                 *num_stripes = 2;
2326                 *min_stripes = 2;
2327         }
2328         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2329                 *num_stripes = fs_devices->rw_devices;
2330                 if (*num_stripes < 4)
2331                         return -ENOSPC;
2332                 *num_stripes &= ~(u32)1;
2333                 *sub_stripes = 2;
2334                 *min_stripes = 4;
2335         }
2336
2337         return 0;
2338 }
2339
2340 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2341                                     u64 proposed_size, u64 type,
2342                                     int num_stripes, int small_stripe)
2343 {
2344         int min_stripe_size = 1 * 1024 * 1024;
2345         u64 calc_size = proposed_size;
2346         u64 max_chunk_size = calc_size;
2347         int ncopies = 1;
2348
2349         if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2350                     BTRFS_BLOCK_GROUP_DUP |
2351                     BTRFS_BLOCK_GROUP_RAID10))
2352                 ncopies = 2;
2353
2354         if (type & BTRFS_BLOCK_GROUP_DATA) {
2355                 max_chunk_size = 10 * calc_size;
2356                 min_stripe_size = 64 * 1024 * 1024;
2357         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2358                 max_chunk_size = 256 * 1024 * 1024;
2359                 min_stripe_size = 32 * 1024 * 1024;
2360         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2361                 calc_size = 8 * 1024 * 1024;
2362                 max_chunk_size = calc_size * 2;
2363                 min_stripe_size = 1 * 1024 * 1024;
2364         }
2365
2366         /* we don't want a chunk larger than 10% of writeable space */
2367         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2368                              max_chunk_size);
2369
2370         if (calc_size * num_stripes > max_chunk_size * ncopies) {
2371                 calc_size = max_chunk_size * ncopies;
2372                 do_div(calc_size, num_stripes);
2373                 do_div(calc_size, BTRFS_STRIPE_LEN);
2374                 calc_size *= BTRFS_STRIPE_LEN;
2375         }
2376
2377         /* we don't want tiny stripes */
2378         if (!small_stripe)
2379                 calc_size = max_t(u64, min_stripe_size, calc_size);
2380
2381         /*
2382          * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2383          * we end up with something bigger than a stripe
2384          */
2385         calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2386
2387         do_div(calc_size, BTRFS_STRIPE_LEN);
2388         calc_size *= BTRFS_STRIPE_LEN;
2389
2390         return calc_size;
2391 }
2392
2393 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2394                                                       int num_stripes)
2395 {
2396         struct map_lookup *new;
2397         size_t len = map_lookup_size(num_stripes);
2398
2399         BUG_ON(map->num_stripes < num_stripes);
2400
2401         if (map->num_stripes == num_stripes)
2402                 return map;
2403
2404         new = kmalloc(len, GFP_NOFS);
2405         if (!new) {
2406                 /* just change map->num_stripes */
2407                 map->num_stripes = num_stripes;
2408                 return map;
2409         }
2410
2411         memcpy(new, map, len);
2412         new->num_stripes = num_stripes;
2413         kfree(map);
2414         return new;
2415 }
2416
2417 /*
2418  * helper to allocate device space from btrfs_device_info, in which we stored
2419  * max free space information of every device. It is used when we can not
2420  * allocate chunks by default size.
2421  *
2422  * By this helper, we can allocate a new chunk as larger as possible.
2423  */
2424 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2425                                     struct btrfs_fs_devices *fs_devices,
2426                                     struct btrfs_device_info *devices,
2427                                     int nr_device, u64 type,
2428                                     struct map_lookup **map_lookup,
2429                                     int min_stripes, u64 *stripe_size)
2430 {
2431         int i, index, sort_again = 0;
2432         int min_devices = min_stripes;
2433         u64 max_avail, min_free;
2434         struct map_lookup *map = *map_lookup;
2435         int ret;
2436
2437         if (nr_device < min_stripes)
2438                 return -ENOSPC;
2439
2440         btrfs_descending_sort_devices(devices, nr_device);
2441
2442         max_avail = devices[0].max_avail;
2443         if (!max_avail)
2444                 return -ENOSPC;
2445
2446         for (i = 0; i < nr_device; i++) {
2447                 /*
2448                  * if dev_offset = 0, it means the free space of this device
2449                  * is less than what we need, and we didn't search max avail
2450                  * extent on this device, so do it now.
2451                  */
2452                 if (!devices[i].dev_offset) {
2453                         ret = find_free_dev_extent(trans, devices[i].dev,
2454                                                    max_avail,
2455                                                    &devices[i].dev_offset,
2456                                                    &devices[i].max_avail);
2457                         if (ret != 0 && ret != -ENOSPC)
2458                                 return ret;
2459                         sort_again = 1;
2460                 }
2461         }
2462
2463         /* we update the max avail free extent of each devices, sort again */
2464         if (sort_again)
2465                 btrfs_descending_sort_devices(devices, nr_device);
2466
2467         if (type & BTRFS_BLOCK_GROUP_DUP)
2468                 min_devices = 1;
2469
2470         if (!devices[min_devices - 1].max_avail)
2471                 return -ENOSPC;
2472
2473         max_avail = devices[min_devices - 1].max_avail;
2474         if (type & BTRFS_BLOCK_GROUP_DUP)
2475                 do_div(max_avail, 2);
2476
2477         max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2478                                              min_stripes, 1);
2479         if (type & BTRFS_BLOCK_GROUP_DUP)
2480                 min_free = max_avail * 2;
2481         else
2482                 min_free = max_avail;
2483
2484         if (min_free > devices[min_devices - 1].max_avail)
2485                 return -ENOSPC;
2486
2487         map = __shrink_map_lookup_stripes(map, min_stripes);
2488         *stripe_size = max_avail;
2489
2490         index = 0;
2491         for (i = 0; i < min_stripes; i++) {
2492                 map->stripes[i].dev = devices[index].dev;
2493                 map->stripes[i].physical = devices[index].dev_offset;
2494                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2495                         i++;
2496                         map->stripes[i].dev = devices[index].dev;
2497                         map->stripes[i].physical = devices[index].dev_offset +
2498                                                    max_avail;
2499                 }
2500                 index++;
2501         }
2502         *map_lookup = map;
2503
2504         return 0;
2505 }
2506
2507 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2508                                struct btrfs_root *extent_root,
2509                                struct map_lookup **map_ret,
2510                                u64 *num_bytes, u64 *stripe_size,
2511                                u64 start, u64 type)
2512 {
2513         struct btrfs_fs_info *info = extent_root->fs_info;
2514         struct btrfs_device *device = NULL;
2515         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2516         struct list_head *cur;
2517         struct map_lookup *map;
2518         struct extent_map_tree *em_tree;
2519         struct extent_map *em;
2520         struct btrfs_device_info *devices_info;
2521         struct list_head private_devs;
2522         u64 calc_size = 1024 * 1024 * 1024;
2523         u64 min_free;
2524         u64 avail;
2525         u64 dev_offset;
2526         int num_stripes;
2527         int min_stripes;
2528         int sub_stripes;
2529         int min_devices;        /* the min number of devices we need */
2530         int i;
2531         int ret;
2532         int index;
2533
2534         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2535             (type & BTRFS_BLOCK_GROUP_DUP)) {
2536                 WARN_ON(1);
2537                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2538         }
2539         if (list_empty(&fs_devices->alloc_list))
2540                 return -ENOSPC;
2541
2542         ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2543                                     &min_stripes, &sub_stripes);
2544         if (ret)
2545                 return ret;
2546
2547         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2548                                GFP_NOFS);
2549         if (!devices_info)
2550                 return -ENOMEM;
2551
2552         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2553         if (!map) {
2554                 ret = -ENOMEM;
2555                 goto error;
2556         }
2557         map->num_stripes = num_stripes;
2558
2559         cur = fs_devices->alloc_list.next;
2560         index = 0;
2561         i = 0;
2562
2563         calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2564                                              num_stripes, 0);
2565
2566         if (type & BTRFS_BLOCK_GROUP_DUP) {
2567                 min_free = calc_size * 2;
2568                 min_devices = 1;
2569         } else {
2570                 min_free = calc_size;
2571                 min_devices = min_stripes;
2572         }
2573
2574         INIT_LIST_HEAD(&private_devs);
2575         while (index < num_stripes) {
2576                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2577                 BUG_ON(!device->writeable);
2578                 if (device->total_bytes > device->bytes_used)
2579                         avail = device->total_bytes - device->bytes_used;
2580                 else
2581                         avail = 0;
2582                 cur = cur->next;
2583
2584                 if (device->in_fs_metadata && avail >= min_free) {
2585                         ret = find_free_dev_extent(trans, device, min_free,
2586                                                    &devices_info[i].dev_offset,
2587                                                    &devices_info[i].max_avail);
2588                         if (ret == 0) {
2589                                 list_move_tail(&device->dev_alloc_list,
2590                                                &private_devs);
2591                                 map->stripes[index].dev = device;
2592                                 map->stripes[index].physical =
2593                                                 devices_info[i].dev_offset;
2594                                 index++;
2595                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2596                                         map->stripes[index].dev = device;
2597                                         map->stripes[index].physical =
2598                                                 devices_info[i].dev_offset +
2599                                                 calc_size;
2600                                         index++;
2601                                 }
2602                         } else if (ret != -ENOSPC)
2603                                 goto error;
2604
2605                         devices_info[i].dev = device;
2606                         i++;
2607                 } else if (device->in_fs_metadata &&
2608                            avail >= BTRFS_STRIPE_LEN) {
2609                         devices_info[i].dev = device;
2610                         devices_info[i].max_avail = avail;
2611                         i++;
2612                 }
2613
2614                 if (cur == &fs_devices->alloc_list)
2615                         break;
2616         }
2617
2618         list_splice(&private_devs, &fs_devices->alloc_list);
2619         if (index < num_stripes) {
2620                 if (index >= min_stripes) {
2621                         num_stripes = index;
2622                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2623                                 num_stripes /= sub_stripes;
2624                                 num_stripes *= sub_stripes;
2625                         }
2626
2627                         map = __shrink_map_lookup_stripes(map, num_stripes);
2628                 } else if (i >= min_devices) {
2629                         ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2630                                                        devices_info, i, type,
2631                                                        &map, min_stripes,
2632                                                        &calc_size);
2633                         if (ret)
2634                                 goto error;
2635                 } else {
2636                         ret = -ENOSPC;
2637                         goto error;
2638                 }
2639         }
2640         map->sector_size = extent_root->sectorsize;
2641         map->stripe_len = BTRFS_STRIPE_LEN;
2642         map->io_align = BTRFS_STRIPE_LEN;
2643         map->io_width = BTRFS_STRIPE_LEN;
2644         map->type = type;
2645         map->sub_stripes = sub_stripes;
2646
2647         *map_ret = map;
2648         *stripe_size = calc_size;
2649         *num_bytes = chunk_bytes_by_type(type, calc_size,
2650                                          map->num_stripes, sub_stripes);
2651
2652         em = alloc_extent_map(GFP_NOFS);
2653         if (!em) {
2654                 ret = -ENOMEM;
2655                 goto error;
2656         }
2657         em->bdev = (struct block_device *)map;
2658         em->start = start;
2659         em->len = *num_bytes;
2660         em->block_start = 0;
2661         em->block_len = em->len;
2662
2663         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2664         write_lock(&em_tree->lock);
2665         ret = add_extent_mapping(em_tree, em);
2666         write_unlock(&em_tree->lock);
2667         BUG_ON(ret);
2668         free_extent_map(em);
2669
2670         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2671                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2672                                      start, *num_bytes);
2673         BUG_ON(ret);
2674
2675         index = 0;
2676         while (index < map->num_stripes) {
2677                 device = map->stripes[index].dev;
2678                 dev_offset = map->stripes[index].physical;
2679
2680                 ret = btrfs_alloc_dev_extent(trans, device,
2681                                 info->chunk_root->root_key.objectid,
2682                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2683                                 start, dev_offset, calc_size);
2684                 BUG_ON(ret);
2685                 index++;
2686         }
2687
2688         kfree(devices_info);
2689         return 0;
2690
2691 error:
2692         kfree(map);
2693         kfree(devices_info);
2694         return ret;
2695 }
2696
2697 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2698                                 struct btrfs_root *extent_root,
2699                                 struct map_lookup *map, u64 chunk_offset,
2700                                 u64 chunk_size, u64 stripe_size)
2701 {
2702         u64 dev_offset;
2703         struct btrfs_key key;
2704         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2705         struct btrfs_device *device;
2706         struct btrfs_chunk *chunk;
2707         struct btrfs_stripe *stripe;
2708         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2709         int index = 0;
2710         int ret;
2711
2712         chunk = kzalloc(item_size, GFP_NOFS);
2713         if (!chunk)
2714                 return -ENOMEM;
2715
2716         index = 0;
2717         while (index < map->num_stripes) {
2718                 device = map->stripes[index].dev;
2719                 device->bytes_used += stripe_size;
2720                 ret = btrfs_update_device(trans, device);
2721                 BUG_ON(ret);
2722                 index++;
2723         }
2724
2725         index = 0;
2726         stripe = &chunk->stripe;
2727         while (index < map->num_stripes) {
2728                 device = map->stripes[index].dev;
2729                 dev_offset = map->stripes[index].physical;
2730
2731                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2732                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2733                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2734                 stripe++;
2735                 index++;
2736         }
2737
2738         btrfs_set_stack_chunk_length(chunk, chunk_size);
2739         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2740         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2741         btrfs_set_stack_chunk_type(chunk, map->type);
2742         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2743         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2744         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2745         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2746         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2747
2748         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2749         key.type = BTRFS_CHUNK_ITEM_KEY;
2750         key.offset = chunk_offset;
2751
2752         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2753         BUG_ON(ret);
2754
2755         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2756                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2757                                              item_size);
2758                 BUG_ON(ret);
2759         }
2760         kfree(chunk);
2761         return 0;
2762 }
2763
2764 /*
2765  * Chunk allocation falls into two parts. The first part does works
2766  * that make the new allocated chunk useable, but not do any operation
2767  * that modifies the chunk tree. The second part does the works that
2768  * require modifying the chunk tree. This division is important for the
2769  * bootstrap process of adding storage to a seed btrfs.
2770  */
2771 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2772                       struct btrfs_root *extent_root, u64 type)
2773 {
2774         u64 chunk_offset;
2775         u64 chunk_size;
2776         u64 stripe_size;
2777         struct map_lookup *map;
2778         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2779         int ret;
2780
2781         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2782                               &chunk_offset);
2783         if (ret)
2784                 return ret;
2785
2786         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2787                                   &stripe_size, chunk_offset, type);
2788         if (ret)
2789                 return ret;
2790
2791         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2792                                    chunk_size, stripe_size);
2793         BUG_ON(ret);
2794         return 0;
2795 }
2796
2797 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2798                                          struct btrfs_root *root,
2799                                          struct btrfs_device *device)
2800 {
2801         u64 chunk_offset;
2802         u64 sys_chunk_offset;
2803         u64 chunk_size;
2804         u64 sys_chunk_size;
2805         u64 stripe_size;
2806         u64 sys_stripe_size;
2807         u64 alloc_profile;
2808         struct map_lookup *map;
2809         struct map_lookup *sys_map;
2810         struct btrfs_fs_info *fs_info = root->fs_info;
2811         struct btrfs_root *extent_root = fs_info->extent_root;
2812         int ret;
2813
2814         ret = find_next_chunk(fs_info->chunk_root,
2815                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2816         BUG_ON(ret);
2817
2818         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2819                         (fs_info->metadata_alloc_profile &
2820                          fs_info->avail_metadata_alloc_bits);
2821         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2822
2823         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2824                                   &stripe_size, chunk_offset, alloc_profile);
2825         BUG_ON(ret);
2826
2827         sys_chunk_offset = chunk_offset + chunk_size;
2828
2829         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2830                         (fs_info->system_alloc_profile &
2831                          fs_info->avail_system_alloc_bits);
2832         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2833
2834         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2835                                   &sys_chunk_size, &sys_stripe_size,
2836                                   sys_chunk_offset, alloc_profile);
2837         BUG_ON(ret);
2838
2839         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2840         BUG_ON(ret);
2841
2842         /*
2843          * Modifying chunk tree needs allocating new blocks from both
2844          * system block group and metadata block group. So we only can
2845          * do operations require modifying the chunk tree after both
2846          * block groups were created.
2847          */
2848         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2849                                    chunk_size, stripe_size);
2850         BUG_ON(ret);
2851
2852         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2853                                    sys_chunk_offset, sys_chunk_size,
2854                                    sys_stripe_size);
2855         BUG_ON(ret);
2856         return 0;
2857 }
2858
2859 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2860 {
2861         struct extent_map *em;
2862         struct map_lookup *map;
2863         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2864         int readonly = 0;
2865         int i;
2866
2867         read_lock(&map_tree->map_tree.lock);
2868         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2869         read_unlock(&map_tree->map_tree.lock);
2870         if (!em)
2871                 return 1;
2872
2873         if (btrfs_test_opt(root, DEGRADED)) {
2874                 free_extent_map(em);
2875                 return 0;
2876         }
2877
2878         map = (struct map_lookup *)em->bdev;
2879         for (i = 0; i < map->num_stripes; i++) {
2880                 if (!map->stripes[i].dev->writeable) {
2881                         readonly = 1;
2882                         break;
2883                 }
2884         }
2885         free_extent_map(em);
2886         return readonly;
2887 }
2888
2889 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2890 {
2891         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2892 }
2893
2894 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2895 {
2896         struct extent_map *em;
2897
2898         while (1) {
2899                 write_lock(&tree->map_tree.lock);
2900                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2901                 if (em)
2902                         remove_extent_mapping(&tree->map_tree, em);
2903                 write_unlock(&tree->map_tree.lock);
2904                 if (!em)
2905                         break;
2906                 kfree(em->bdev);
2907                 /* once for us */
2908                 free_extent_map(em);
2909                 /* once for the tree */
2910                 free_extent_map(em);
2911         }
2912 }
2913
2914 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2915 {
2916         struct extent_map *em;
2917         struct map_lookup *map;
2918         struct extent_map_tree *em_tree = &map_tree->map_tree;
2919         int ret;
2920
2921         read_lock(&em_tree->lock);
2922         em = lookup_extent_mapping(em_tree, logical, len);
2923         read_unlock(&em_tree->lock);
2924         BUG_ON(!em);
2925
2926         BUG_ON(em->start > logical || em->start + em->len < logical);
2927         map = (struct map_lookup *)em->bdev;
2928         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2929                 ret = map->num_stripes;
2930         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2931                 ret = map->sub_stripes;
2932         else
2933                 ret = 1;
2934         free_extent_map(em);
2935         return ret;
2936 }
2937
2938 static int find_live_mirror(struct map_lookup *map, int first, int num,
2939                             int optimal)
2940 {
2941         int i;
2942         if (map->stripes[optimal].dev->bdev)
2943                 return optimal;
2944         for (i = first; i < first + num; i++) {
2945                 if (map->stripes[i].dev->bdev)
2946                         return i;
2947         }
2948         /* we couldn't find one that doesn't fail.  Just return something
2949          * and the io error handling code will clean up eventually
2950          */
2951         return optimal;
2952 }
2953
2954 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2955                              u64 logical, u64 *length,
2956                              struct btrfs_multi_bio **multi_ret,
2957                              int mirror_num, struct page *unplug_page)
2958 {
2959         struct extent_map *em;
2960         struct map_lookup *map;
2961         struct extent_map_tree *em_tree = &map_tree->map_tree;
2962         u64 offset;
2963         u64 stripe_offset;
2964         u64 stripe_nr;
2965         int stripes_allocated = 8;
2966         int stripes_required = 1;
2967         int stripe_index;
2968         int i;
2969         int num_stripes;
2970         int max_errors = 0;
2971         struct btrfs_multi_bio *multi = NULL;
2972
2973         if (multi_ret && !(rw & REQ_WRITE))
2974                 stripes_allocated = 1;
2975 again:
2976         if (multi_ret) {
2977                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2978                                 GFP_NOFS);
2979                 if (!multi)
2980                         return -ENOMEM;
2981
2982                 atomic_set(&multi->error, 0);
2983         }
2984
2985         read_lock(&em_tree->lock);
2986         em = lookup_extent_mapping(em_tree, logical, *length);
2987         read_unlock(&em_tree->lock);
2988
2989         if (!em && unplug_page) {
2990                 kfree(multi);
2991                 return 0;
2992         }
2993
2994         if (!em) {
2995                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2996                        (unsigned long long)logical,
2997                        (unsigned long long)*length);
2998                 BUG();
2999         }
3000
3001         BUG_ON(em->start > logical || em->start + em->len < logical);
3002         map = (struct map_lookup *)em->bdev;
3003         offset = logical - em->start;
3004
3005         if (mirror_num > map->num_stripes)
3006                 mirror_num = 0;
3007
3008         /* if our multi bio struct is too small, back off and try again */
3009         if (rw & REQ_WRITE) {
3010                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3011                                  BTRFS_BLOCK_GROUP_DUP)) {
3012                         stripes_required = map->num_stripes;
3013                         max_errors = 1;
3014                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3015                         stripes_required = map->sub_stripes;
3016                         max_errors = 1;
3017                 }
3018         }
3019         if (multi_ret && (rw & REQ_WRITE) &&
3020             stripes_allocated < stripes_required) {
3021                 stripes_allocated = map->num_stripes;
3022                 free_extent_map(em);
3023                 kfree(multi);
3024                 goto again;
3025         }
3026         stripe_nr = offset;
3027         /*
3028          * stripe_nr counts the total number of stripes we have to stride
3029          * to get to this block
3030          */
3031         do_div(stripe_nr, map->stripe_len);
3032
3033         stripe_offset = stripe_nr * map->stripe_len;
3034         BUG_ON(offset < stripe_offset);
3035
3036         /* stripe_offset is the offset of this block in its stripe*/
3037         stripe_offset = offset - stripe_offset;
3038
3039         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3040                          BTRFS_BLOCK_GROUP_RAID10 |
3041                          BTRFS_BLOCK_GROUP_DUP)) {
3042                 /* we limit the length of each bio to what fits in a stripe */
3043                 *length = min_t(u64, em->len - offset,
3044                               map->stripe_len - stripe_offset);
3045         } else {
3046                 *length = em->len - offset;
3047         }
3048
3049         if (!multi_ret && !unplug_page)
3050                 goto out;
3051
3052         num_stripes = 1;
3053         stripe_index = 0;
3054         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3055                 if (unplug_page || (rw & REQ_WRITE))
3056                         num_stripes = map->num_stripes;
3057                 else if (mirror_num)
3058                         stripe_index = mirror_num - 1;
3059                 else {
3060                         stripe_index = find_live_mirror(map, 0,
3061                                             map->num_stripes,
3062                                             current->pid % map->num_stripes);
3063                 }
3064
3065         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3066                 if (rw & REQ_WRITE)
3067                         num_stripes = map->num_stripes;
3068                 else if (mirror_num)
3069                         stripe_index = mirror_num - 1;
3070
3071         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3072                 int factor = map->num_stripes / map->sub_stripes;
3073
3074                 stripe_index = do_div(stripe_nr, factor);
3075                 stripe_index *= map->sub_stripes;
3076
3077                 if (unplug_page || (rw & REQ_WRITE))
3078                         num_stripes = map->sub_stripes;
3079                 else if (mirror_num)
3080                         stripe_index += mirror_num - 1;
3081                 else {
3082                         stripe_index = find_live_mirror(map, stripe_index,
3083                                               map->sub_stripes, stripe_index +
3084                                               current->pid % map->sub_stripes);
3085                 }
3086         } else {
3087                 /*
3088                  * after this do_div call, stripe_nr is the number of stripes
3089                  * on this device we have to walk to find the data, and
3090                  * stripe_index is the number of our device in the stripe array
3091                  */
3092                 stripe_index = do_div(stripe_nr, map->num_stripes);
3093         }
3094         BUG_ON(stripe_index >= map->num_stripes);
3095
3096         for (i = 0; i < num_stripes; i++) {
3097                 if (unplug_page) {
3098                         struct btrfs_device *device;
3099                         struct backing_dev_info *bdi;
3100
3101                         device = map->stripes[stripe_index].dev;
3102                         if (device->bdev) {
3103                                 bdi = blk_get_backing_dev_info(device->bdev);
3104                                 if (bdi->unplug_io_fn)
3105                                         bdi->unplug_io_fn(bdi, unplug_page);
3106                         }
3107                 } else {
3108                         multi->stripes[i].physical =
3109                                 map->stripes[stripe_index].physical +
3110                                 stripe_offset + stripe_nr * map->stripe_len;
3111                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
3112                 }
3113                 stripe_index++;
3114         }
3115         if (multi_ret) {
3116                 *multi_ret = multi;
3117                 multi->num_stripes = num_stripes;
3118                 multi->max_errors = max_errors;
3119         }
3120 out:
3121         free_extent_map(em);
3122         return 0;
3123 }
3124
3125 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3126                       u64 logical, u64 *length,
3127                       struct btrfs_multi_bio **multi_ret, int mirror_num)
3128 {
3129         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3130                                  mirror_num, NULL);
3131 }
3132
3133 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3134                      u64 chunk_start, u64 physical, u64 devid,
3135                      u64 **logical, int *naddrs, int *stripe_len)
3136 {
3137         struct extent_map_tree *em_tree = &map_tree->map_tree;
3138         struct extent_map *em;
3139         struct map_lookup *map;
3140         u64 *buf;
3141         u64 bytenr;
3142         u64 length;
3143         u64 stripe_nr;
3144         int i, j, nr = 0;
3145
3146         read_lock(&em_tree->lock);
3147         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3148         read_unlock(&em_tree->lock);
3149
3150         BUG_ON(!em || em->start != chunk_start);
3151         map = (struct map_lookup *)em->bdev;
3152
3153         length = em->len;
3154         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3155                 do_div(length, map->num_stripes / map->sub_stripes);
3156         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3157                 do_div(length, map->num_stripes);
3158
3159         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3160         BUG_ON(!buf);
3161
3162         for (i = 0; i < map->num_stripes; i++) {
3163                 if (devid && map->stripes[i].dev->devid != devid)
3164                         continue;
3165                 if (map->stripes[i].physical > physical ||
3166                     map->stripes[i].physical + length <= physical)
3167                         continue;
3168
3169                 stripe_nr = physical - map->stripes[i].physical;
3170                 do_div(stripe_nr, map->stripe_len);
3171
3172                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3173                         stripe_nr = stripe_nr * map->num_stripes + i;
3174                         do_div(stripe_nr, map->sub_stripes);
3175                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3176                         stripe_nr = stripe_nr * map->num_stripes + i;
3177                 }
3178                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3179                 WARN_ON(nr >= map->num_stripes);
3180                 for (j = 0; j < nr; j++) {
3181                         if (buf[j] == bytenr)
3182                                 break;
3183                 }
3184                 if (j == nr) {
3185                         WARN_ON(nr >= map->num_stripes);
3186                         buf[nr++] = bytenr;
3187                 }
3188         }
3189
3190         *logical = buf;
3191         *naddrs = nr;
3192         *stripe_len = map->stripe_len;
3193
3194         free_extent_map(em);
3195         return 0;
3196 }
3197
3198 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3199                       u64 logical, struct page *page)
3200 {
3201         u64 length = PAGE_CACHE_SIZE;
3202         return __btrfs_map_block(map_tree, READ, logical, &length,
3203                                  NULL, 0, page);
3204 }
3205
3206 static void end_bio_multi_stripe(struct bio *bio, int err)
3207 {
3208         struct btrfs_multi_bio *multi = bio->bi_private;
3209         int is_orig_bio = 0;
3210
3211         if (err)
3212                 atomic_inc(&multi->error);
3213
3214         if (bio == multi->orig_bio)
3215                 is_orig_bio = 1;
3216
3217         if (atomic_dec_and_test(&multi->stripes_pending)) {
3218                 if (!is_orig_bio) {
3219                         bio_put(bio);
3220                         bio = multi->orig_bio;
3221                 }
3222                 bio->bi_private = multi->private;
3223                 bio->bi_end_io = multi->end_io;
3224                 /* only send an error to the higher layers if it is
3225                  * beyond the tolerance of the multi-bio
3226                  */
3227                 if (atomic_read(&multi->error) > multi->max_errors) {
3228                         err = -EIO;
3229                 } else if (err) {
3230                         /*
3231                          * this bio is actually up to date, we didn't
3232                          * go over the max number of errors
3233                          */
3234                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3235                         err = 0;
3236                 }
3237                 kfree(multi);
3238
3239                 bio_endio(bio, err);
3240         } else if (!is_orig_bio) {
3241                 bio_put(bio);
3242         }
3243 }
3244
3245 struct async_sched {
3246         struct bio *bio;
3247         int rw;
3248         struct btrfs_fs_info *info;
3249         struct btrfs_work work;
3250 };
3251
3252 /*
3253  * see run_scheduled_bios for a description of why bios are collected for
3254  * async submit.
3255  *
3256  * This will add one bio to the pending list for a device and make sure
3257  * the work struct is scheduled.
3258  */
3259 static noinline int schedule_bio(struct btrfs_root *root,
3260                                  struct btrfs_device *device,
3261                                  int rw, struct bio *bio)
3262 {
3263         int should_queue = 1;
3264         struct btrfs_pending_bios *pending_bios;
3265
3266         /* don't bother with additional async steps for reads, right now */
3267         if (!(rw & REQ_WRITE)) {
3268                 bio_get(bio);
3269                 submit_bio(rw, bio);
3270                 bio_put(bio);
3271                 return 0;
3272         }
3273
3274         /*
3275          * nr_async_bios allows us to reliably return congestion to the
3276          * higher layers.  Otherwise, the async bio makes it appear we have
3277          * made progress against dirty pages when we've really just put it
3278          * on a queue for later
3279          */
3280         atomic_inc(&root->fs_info->nr_async_bios);
3281         WARN_ON(bio->bi_next);
3282         bio->bi_next = NULL;
3283         bio->bi_rw |= rw;
3284
3285         spin_lock(&device->io_lock);
3286         if (bio->bi_rw & REQ_SYNC)
3287                 pending_bios = &device->pending_sync_bios;
3288         else
3289                 pending_bios = &device->pending_bios;
3290
3291         if (pending_bios->tail)
3292                 pending_bios->tail->bi_next = bio;
3293
3294         pending_bios->tail = bio;
3295         if (!pending_bios->head)
3296                 pending_bios->head = bio;
3297         if (device->running_pending)
3298                 should_queue = 0;
3299
3300         spin_unlock(&device->io_lock);
3301
3302         if (should_queue)
3303                 btrfs_queue_worker(&root->fs_info->submit_workers,
3304                                    &device->work);
3305         return 0;
3306 }
3307
3308 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3309                   int mirror_num, int async_submit)
3310 {
3311         struct btrfs_mapping_tree *map_tree;
3312         struct btrfs_device *dev;
3313         struct bio *first_bio = bio;
3314         u64 logical = (u64)bio->bi_sector << 9;
3315         u64 length = 0;
3316         u64 map_length;
3317         struct btrfs_multi_bio *multi = NULL;
3318         int ret;
3319         int dev_nr = 0;
3320         int total_devs = 1;
3321
3322         length = bio->bi_size;
3323         map_tree = &root->fs_info->mapping_tree;
3324         map_length = length;
3325
3326         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3327                               mirror_num);
3328         BUG_ON(ret);
3329
3330         total_devs = multi->num_stripes;
3331         if (map_length < length) {
3332                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3333                        "len %llu\n", (unsigned long long)logical,
3334                        (unsigned long long)length,
3335                        (unsigned long long)map_length);
3336                 BUG();
3337         }
3338         multi->end_io = first_bio->bi_end_io;
3339         multi->private = first_bio->bi_private;
3340         multi->orig_bio = first_bio;
3341         atomic_set(&multi->stripes_pending, multi->num_stripes);
3342
3343         while (dev_nr < total_devs) {
3344                 if (total_devs > 1) {
3345                         if (dev_nr < total_devs - 1) {
3346                                 bio = bio_clone(first_bio, GFP_NOFS);
3347                                 BUG_ON(!bio);
3348                         } else {
3349                                 bio = first_bio;
3350                         }
3351                         bio->bi_private = multi;
3352                         bio->bi_end_io = end_bio_multi_stripe;
3353                 }
3354                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3355                 dev = multi->stripes[dev_nr].dev;
3356                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3357                         bio->bi_bdev = dev->bdev;
3358                         if (async_submit)
3359                                 schedule_bio(root, dev, rw, bio);
3360                         else
3361                                 submit_bio(rw, bio);
3362                 } else {
3363                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3364                         bio->bi_sector = logical >> 9;
3365                         bio_endio(bio, -EIO);
3366                 }
3367                 dev_nr++;
3368         }
3369         if (total_devs == 1)
3370                 kfree(multi);
3371         return 0;
3372 }
3373
3374 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3375                                        u8 *uuid, u8 *fsid)
3376 {
3377         struct btrfs_device *device;
3378         struct btrfs_fs_devices *cur_devices;
3379
3380         cur_devices = root->fs_info->fs_devices;
3381         while (cur_devices) {
3382                 if (!fsid ||
3383                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3384                         device = __find_device(&cur_devices->devices,
3385                                                devid, uuid);
3386                         if (device)
3387                                 return device;
3388                 }
3389                 cur_devices = cur_devices->seed;
3390         }
3391         return NULL;
3392 }
3393
3394 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3395                                             u64 devid, u8 *dev_uuid)
3396 {
3397         struct btrfs_device *device;
3398         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3399
3400         device = kzalloc(sizeof(*device), GFP_NOFS);
3401         if (!device)
3402                 return NULL;
3403         list_add(&device->dev_list,
3404                  &fs_devices->devices);
3405         device->barriers = 1;
3406         device->dev_root = root->fs_info->dev_root;
3407         device->devid = devid;
3408         device->work.func = pending_bios_fn;
3409         device->fs_devices = fs_devices;
3410         device->missing = 1;
3411         fs_devices->num_devices++;
3412         fs_devices->missing_devices++;
3413         spin_lock_init(&device->io_lock);
3414         INIT_LIST_HEAD(&device->dev_alloc_list);
3415         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3416         return device;
3417 }
3418
3419 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3420                           struct extent_buffer *leaf,
3421                           struct btrfs_chunk *chunk)
3422 {
3423         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3424         struct map_lookup *map;
3425         struct extent_map *em;
3426         u64 logical;
3427         u64 length;
3428         u64 devid;
3429         u8 uuid[BTRFS_UUID_SIZE];
3430         int num_stripes;
3431         int ret;
3432         int i;
3433
3434         logical = key->offset;
3435         length = btrfs_chunk_length(leaf, chunk);
3436
3437         read_lock(&map_tree->map_tree.lock);
3438         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3439         read_unlock(&map_tree->map_tree.lock);
3440
3441         /* already mapped? */
3442         if (em && em->start <= logical && em->start + em->len > logical) {
3443                 free_extent_map(em);
3444                 return 0;
3445         } else if (em) {
3446                 free_extent_map(em);
3447         }
3448
3449         em = alloc_extent_map(GFP_NOFS);
3450         if (!em)
3451                 return -ENOMEM;
3452         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3453         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3454         if (!map) {
3455                 free_extent_map(em);
3456                 return -ENOMEM;
3457         }
3458
3459         em->bdev = (struct block_device *)map;
3460         em->start = logical;
3461         em->len = length;
3462         em->block_start = 0;
3463         em->block_len = em->len;
3464
3465         map->num_stripes = num_stripes;
3466         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3467         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3468         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3469         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3470         map->type = btrfs_chunk_type(leaf, chunk);
3471         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3472         for (i = 0; i < num_stripes; i++) {
3473                 map->stripes[i].physical =
3474                         btrfs_stripe_offset_nr(leaf, chunk, i);
3475                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3476                 read_extent_buffer(leaf, uuid, (unsigned long)
3477                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3478                                    BTRFS_UUID_SIZE);
3479                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3480                                                         NULL);
3481                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3482                         kfree(map);
3483                         free_extent_map(em);
3484                         return -EIO;
3485                 }
3486                 if (!map->stripes[i].dev) {
3487                         map->stripes[i].dev =
3488                                 add_missing_dev(root, devid, uuid);
3489                         if (!map->stripes[i].dev) {
3490                                 kfree(map);
3491                                 free_extent_map(em);
3492                                 return -EIO;
3493                         }
3494                 }
3495                 map->stripes[i].dev->in_fs_metadata = 1;
3496         }
3497
3498         write_lock(&map_tree->map_tree.lock);
3499         ret = add_extent_mapping(&map_tree->map_tree, em);
3500         write_unlock(&map_tree->map_tree.lock);
3501         BUG_ON(ret);
3502         free_extent_map(em);
3503
3504         return 0;
3505 }
3506
3507 static int fill_device_from_item(struct extent_buffer *leaf,
3508                                  struct btrfs_dev_item *dev_item,
3509                                  struct btrfs_device *device)
3510 {
3511         unsigned long ptr;
3512
3513         device->devid = btrfs_device_id(leaf, dev_item);
3514         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3515         device->total_bytes = device->disk_total_bytes;
3516         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3517         device->type = btrfs_device_type(leaf, dev_item);
3518         device->io_align = btrfs_device_io_align(leaf, dev_item);
3519         device->io_width = btrfs_device_io_width(leaf, dev_item);
3520         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3521
3522         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3523         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3524
3525         return 0;
3526 }
3527
3528 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3529 {
3530         struct btrfs_fs_devices *fs_devices;
3531         int ret;
3532
3533         mutex_lock(&uuid_mutex);
3534
3535         fs_devices = root->fs_info->fs_devices->seed;
3536         while (fs_devices) {
3537                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3538                         ret = 0;
3539                         goto out;
3540                 }
3541                 fs_devices = fs_devices->seed;
3542         }
3543
3544         fs_devices = find_fsid(fsid);
3545         if (!fs_devices) {
3546                 ret = -ENOENT;
3547                 goto out;
3548         }
3549
3550         fs_devices = clone_fs_devices(fs_devices);
3551         if (IS_ERR(fs_devices)) {
3552                 ret = PTR_ERR(fs_devices);
3553                 goto out;
3554         }
3555
3556         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3557                                    root->fs_info->bdev_holder);
3558         if (ret)
3559                 goto out;
3560
3561         if (!fs_devices->seeding) {
3562                 __btrfs_close_devices(fs_devices);
3563                 free_fs_devices(fs_devices);
3564                 ret = -EINVAL;
3565                 goto out;
3566         }
3567
3568         fs_devices->seed = root->fs_info->fs_devices->seed;
3569         root->fs_info->fs_devices->seed = fs_devices;
3570 out:
3571         mutex_unlock(&uuid_mutex);
3572         return ret;
3573 }
3574
3575 static int read_one_dev(struct btrfs_root *root,
3576                         struct extent_buffer *leaf,
3577                         struct btrfs_dev_item *dev_item)
3578 {
3579         struct btrfs_device *device;
3580         u64 devid;
3581         int ret;
3582         u8 fs_uuid[BTRFS_UUID_SIZE];
3583         u8 dev_uuid[BTRFS_UUID_SIZE];
3584
3585         devid = btrfs_device_id(leaf, dev_item);
3586         read_extent_buffer(leaf, dev_uuid,
3587                            (unsigned long)btrfs_device_uuid(dev_item),
3588                            BTRFS_UUID_SIZE);
3589         read_extent_buffer(leaf, fs_uuid,
3590                            (unsigned long)btrfs_device_fsid(dev_item),
3591                            BTRFS_UUID_SIZE);
3592
3593         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3594                 ret = open_seed_devices(root, fs_uuid);
3595                 if (ret && !btrfs_test_opt(root, DEGRADED))
3596                         return ret;
3597         }
3598
3599         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3600         if (!device || !device->bdev) {
3601                 if (!btrfs_test_opt(root, DEGRADED))
3602                         return -EIO;
3603
3604                 if (!device) {
3605                         printk(KERN_WARNING "warning devid %llu missing\n",
3606                                (unsigned long long)devid);
3607                         device = add_missing_dev(root, devid, dev_uuid);
3608                         if (!device)
3609                                 return -ENOMEM;
3610                 } else if (!device->missing) {
3611                         /*
3612                          * this happens when a device that was properly setup
3613                          * in the device info lists suddenly goes bad.
3614                          * device->bdev is NULL, and so we have to set
3615                          * device->missing to one here
3616                          */
3617                         root->fs_info->fs_devices->missing_devices++;
3618                         device->missing = 1;
3619                 }
3620         }
3621
3622         if (device->fs_devices != root->fs_info->fs_devices) {
3623                 BUG_ON(device->writeable);
3624                 if (device->generation !=
3625                     btrfs_device_generation(leaf, dev_item))
3626                         return -EINVAL;
3627         }
3628
3629         fill_device_from_item(leaf, dev_item, device);
3630         device->dev_root = root->fs_info->dev_root;
3631         device->in_fs_metadata = 1;
3632         if (device->writeable)
3633                 device->fs_devices->total_rw_bytes += device->total_bytes;
3634         ret = 0;
3635         return ret;
3636 }
3637
3638 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3639 {
3640         struct btrfs_dev_item *dev_item;
3641
3642         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3643                                                      dev_item);
3644         return read_one_dev(root, buf, dev_item);
3645 }
3646
3647 int btrfs_read_sys_array(struct btrfs_root *root)
3648 {
3649         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3650         struct extent_buffer *sb;
3651         struct btrfs_disk_key *disk_key;
3652         struct btrfs_chunk *chunk;
3653         u8 *ptr;
3654         unsigned long sb_ptr;
3655         int ret = 0;
3656         u32 num_stripes;
3657         u32 array_size;
3658         u32 len = 0;
3659         u32 cur;
3660         struct btrfs_key key;
3661
3662         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3663                                           BTRFS_SUPER_INFO_SIZE);
3664         if (!sb)
3665                 return -ENOMEM;
3666         btrfs_set_buffer_uptodate(sb);
3667         btrfs_set_buffer_lockdep_class(sb, 0);
3668
3669         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3670         array_size = btrfs_super_sys_array_size(super_copy);
3671
3672         ptr = super_copy->sys_chunk_array;
3673         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3674         cur = 0;
3675
3676         while (cur < array_size) {
3677                 disk_key = (struct btrfs_disk_key *)ptr;
3678                 btrfs_disk_key_to_cpu(&key, disk_key);
3679
3680                 len = sizeof(*disk_key); ptr += len;
3681                 sb_ptr += len;
3682                 cur += len;
3683
3684                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3685                         chunk = (struct btrfs_chunk *)sb_ptr;
3686                         ret = read_one_chunk(root, &key, sb, chunk);
3687                         if (ret)
3688                                 break;
3689                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3690                         len = btrfs_chunk_item_size(num_stripes);
3691                 } else {
3692                         ret = -EIO;
3693                         break;
3694                 }
3695                 ptr += len;
3696                 sb_ptr += len;
3697                 cur += len;
3698         }
3699         free_extent_buffer(sb);
3700         return ret;
3701 }
3702
3703 int btrfs_read_chunk_tree(struct btrfs_root *root)
3704 {
3705         struct btrfs_path *path;
3706         struct extent_buffer *leaf;
3707         struct btrfs_key key;
3708         struct btrfs_key found_key;
3709         int ret;
3710         int slot;
3711
3712         root = root->fs_info->chunk_root;
3713
3714         path = btrfs_alloc_path();
3715         if (!path)
3716                 return -ENOMEM;
3717
3718         /* first we search for all of the device items, and then we
3719          * read in all of the chunk items.  This way we can create chunk
3720          * mappings that reference all of the devices that are afound
3721          */
3722         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3723         key.offset = 0;
3724         key.type = 0;
3725 again:
3726         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3727         if (ret < 0)
3728                 goto error;
3729         while (1) {
3730                 leaf = path->nodes[0];
3731                 slot = path->slots[0];
3732                 if (slot >= btrfs_header_nritems(leaf)) {
3733                         ret = btrfs_next_leaf(root, path);
3734                         if (ret == 0)
3735                                 continue;
3736                         if (ret < 0)
3737                                 goto error;
3738                         break;
3739                 }
3740                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3741                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3742                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3743                                 break;
3744                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3745                                 struct btrfs_dev_item *dev_item;
3746                                 dev_item = btrfs_item_ptr(leaf, slot,
3747                                                   struct btrfs_dev_item);
3748                                 ret = read_one_dev(root, leaf, dev_item);
3749                                 if (ret)
3750                                         goto error;
3751                         }
3752                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3753                         struct btrfs_chunk *chunk;
3754                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3755                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3756                         if (ret)
3757                                 goto error;
3758                 }
3759                 path->slots[0]++;
3760         }
3761         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3762                 key.objectid = 0;
3763                 btrfs_release_path(root, path);
3764                 goto again;
3765         }
3766         ret = 0;
3767 error:
3768         btrfs_free_path(path);
3769         return ret;
3770 }