]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/buffer.c
Btrfs: try not to ENOSPC on log replay
[karo-tx-linux.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91                                      bool *dirty, bool *writeback)
92 {
93         struct buffer_head *head, *bh;
94         *dirty = false;
95         *writeback = false;
96
97         BUG_ON(!PageLocked(page));
98
99         if (!page_has_buffers(page))
100                 return;
101
102         if (PageWriteback(page))
103                 *writeback = true;
104
105         head = page_buffers(page);
106         bh = head;
107         do {
108                 if (buffer_locked(bh))
109                         *writeback = true;
110
111                 if (buffer_dirty(bh))
112                         *dirty = true;
113
114                 bh = bh->b_this_page;
115         } while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133         ClearPagePrivate(page);
134         set_page_private(page, 0);
135         page_cache_release(page);
136 }
137
138
139 static int quiet_error(struct buffer_head *bh)
140 {
141         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142                 return 0;
143         return 1;
144 }
145
146
147 static void buffer_io_error(struct buffer_head *bh)
148 {
149         char b[BDEVNAME_SIZE];
150         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151                         bdevname(bh->b_bdev, b),
152                         (unsigned long long)bh->b_blocknr);
153 }
154
155 /*
156  * End-of-IO handler helper function which does not touch the bh after
157  * unlocking it.
158  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159  * a race there is benign: unlock_buffer() only use the bh's address for
160  * hashing after unlocking the buffer, so it doesn't actually touch the bh
161  * itself.
162  */
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
164 {
165         if (uptodate) {
166                 set_buffer_uptodate(bh);
167         } else {
168                 /* This happens, due to failed READA attempts. */
169                 clear_buffer_uptodate(bh);
170         }
171         unlock_buffer(bh);
172 }
173
174 /*
175  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
176  * unlock the buffer. This is what ll_rw_block uses too.
177  */
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179 {
180         __end_buffer_read_notouch(bh, uptodate);
181         put_bh(bh);
182 }
183 EXPORT_SYMBOL(end_buffer_read_sync);
184
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186 {
187         char b[BDEVNAME_SIZE];
188
189         if (uptodate) {
190                 set_buffer_uptodate(bh);
191         } else {
192                 if (!quiet_error(bh)) {
193                         buffer_io_error(bh);
194                         printk(KERN_WARNING "lost page write due to "
195                                         "I/O error on %s\n",
196                                        bdevname(bh->b_bdev, b));
197                 }
198                 set_buffer_write_io_error(bh);
199                 clear_buffer_uptodate(bh);
200         }
201         unlock_buffer(bh);
202         put_bh(bh);
203 }
204 EXPORT_SYMBOL(end_buffer_write_sync);
205
206 /*
207  * Various filesystems appear to want __find_get_block to be non-blocking.
208  * But it's the page lock which protects the buffers.  To get around this,
209  * we get exclusion from try_to_free_buffers with the blockdev mapping's
210  * private_lock.
211  *
212  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213  * may be quite high.  This code could TryLock the page, and if that
214  * succeeds, there is no need to take private_lock. (But if
215  * private_lock is contended then so is mapping->tree_lock).
216  */
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
219 {
220         struct inode *bd_inode = bdev->bd_inode;
221         struct address_space *bd_mapping = bd_inode->i_mapping;
222         struct buffer_head *ret = NULL;
223         pgoff_t index;
224         struct buffer_head *bh;
225         struct buffer_head *head;
226         struct page *page;
227         int all_mapped = 1;
228
229         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230         page = find_get_page(bd_mapping, index);
231         if (!page)
232                 goto out;
233
234         spin_lock(&bd_mapping->private_lock);
235         if (!page_has_buffers(page))
236                 goto out_unlock;
237         head = page_buffers(page);
238         bh = head;
239         do {
240                 if (!buffer_mapped(bh))
241                         all_mapped = 0;
242                 else if (bh->b_blocknr == block) {
243                         ret = bh;
244                         get_bh(bh);
245                         goto out_unlock;
246                 }
247                 bh = bh->b_this_page;
248         } while (bh != head);
249
250         /* we might be here because some of the buffers on this page are
251          * not mapped.  This is due to various races between
252          * file io on the block device and getblk.  It gets dealt with
253          * elsewhere, don't buffer_error if we had some unmapped buffers
254          */
255         if (all_mapped) {
256                 char b[BDEVNAME_SIZE];
257
258                 printk("__find_get_block_slow() failed. "
259                         "block=%llu, b_blocknr=%llu\n",
260                         (unsigned long long)block,
261                         (unsigned long long)bh->b_blocknr);
262                 printk("b_state=0x%08lx, b_size=%zu\n",
263                         bh->b_state, bh->b_size);
264                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
265                         1 << bd_inode->i_blkbits);
266         }
267 out_unlock:
268         spin_unlock(&bd_mapping->private_lock);
269         page_cache_release(page);
270 out:
271         return ret;
272 }
273
274 /*
275  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
276  */
277 static void free_more_memory(void)
278 {
279         struct zone *zone;
280         int nid;
281
282         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283         yield();
284
285         for_each_online_node(nid) {
286                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287                                                 gfp_zone(GFP_NOFS), NULL,
288                                                 &zone);
289                 if (zone)
290                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291                                                 GFP_NOFS, NULL);
292         }
293 }
294
295 /*
296  * I/O completion handler for block_read_full_page() - pages
297  * which come unlocked at the end of I/O.
298  */
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300 {
301         unsigned long flags;
302         struct buffer_head *first;
303         struct buffer_head *tmp;
304         struct page *page;
305         int page_uptodate = 1;
306
307         BUG_ON(!buffer_async_read(bh));
308
309         page = bh->b_page;
310         if (uptodate) {
311                 set_buffer_uptodate(bh);
312         } else {
313                 clear_buffer_uptodate(bh);
314                 if (!quiet_error(bh))
315                         buffer_io_error(bh);
316                 SetPageError(page);
317         }
318
319         /*
320          * Be _very_ careful from here on. Bad things can happen if
321          * two buffer heads end IO at almost the same time and both
322          * decide that the page is now completely done.
323          */
324         first = page_buffers(page);
325         local_irq_save(flags);
326         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327         clear_buffer_async_read(bh);
328         unlock_buffer(bh);
329         tmp = bh;
330         do {
331                 if (!buffer_uptodate(tmp))
332                         page_uptodate = 0;
333                 if (buffer_async_read(tmp)) {
334                         BUG_ON(!buffer_locked(tmp));
335                         goto still_busy;
336                 }
337                 tmp = tmp->b_this_page;
338         } while (tmp != bh);
339         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340         local_irq_restore(flags);
341
342         /*
343          * If none of the buffers had errors and they are all
344          * uptodate then we can set the page uptodate.
345          */
346         if (page_uptodate && !PageError(page))
347                 SetPageUptodate(page);
348         unlock_page(page);
349         return;
350
351 still_busy:
352         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353         local_irq_restore(flags);
354         return;
355 }
356
357 /*
358  * Completion handler for block_write_full_page() - pages which are unlocked
359  * during I/O, and which have PageWriteback cleared upon I/O completion.
360  */
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
362 {
363         char b[BDEVNAME_SIZE];
364         unsigned long flags;
365         struct buffer_head *first;
366         struct buffer_head *tmp;
367         struct page *page;
368
369         BUG_ON(!buffer_async_write(bh));
370
371         page = bh->b_page;
372         if (uptodate) {
373                 set_buffer_uptodate(bh);
374         } else {
375                 if (!quiet_error(bh)) {
376                         buffer_io_error(bh);
377                         printk(KERN_WARNING "lost page write due to "
378                                         "I/O error on %s\n",
379                                bdevname(bh->b_bdev, b));
380                 }
381                 set_bit(AS_EIO, &page->mapping->flags);
382                 set_buffer_write_io_error(bh);
383                 clear_buffer_uptodate(bh);
384                 SetPageError(page);
385         }
386
387         first = page_buffers(page);
388         local_irq_save(flags);
389         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390
391         clear_buffer_async_write(bh);
392         unlock_buffer(bh);
393         tmp = bh->b_this_page;
394         while (tmp != bh) {
395                 if (buffer_async_write(tmp)) {
396                         BUG_ON(!buffer_locked(tmp));
397                         goto still_busy;
398                 }
399                 tmp = tmp->b_this_page;
400         }
401         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402         local_irq_restore(flags);
403         end_page_writeback(page);
404         return;
405
406 still_busy:
407         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408         local_irq_restore(flags);
409         return;
410 }
411 EXPORT_SYMBOL(end_buffer_async_write);
412
413 /*
414  * If a page's buffers are under async readin (end_buffer_async_read
415  * completion) then there is a possibility that another thread of
416  * control could lock one of the buffers after it has completed
417  * but while some of the other buffers have not completed.  This
418  * locked buffer would confuse end_buffer_async_read() into not unlocking
419  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
420  * that this buffer is not under async I/O.
421  *
422  * The page comes unlocked when it has no locked buffer_async buffers
423  * left.
424  *
425  * PageLocked prevents anyone starting new async I/O reads any of
426  * the buffers.
427  *
428  * PageWriteback is used to prevent simultaneous writeout of the same
429  * page.
430  *
431  * PageLocked prevents anyone from starting writeback of a page which is
432  * under read I/O (PageWriteback is only ever set against a locked page).
433  */
434 static void mark_buffer_async_read(struct buffer_head *bh)
435 {
436         bh->b_end_io = end_buffer_async_read;
437         set_buffer_async_read(bh);
438 }
439
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441                                           bh_end_io_t *handler)
442 {
443         bh->b_end_io = handler;
444         set_buffer_async_write(bh);
445 }
446
447 void mark_buffer_async_write(struct buffer_head *bh)
448 {
449         mark_buffer_async_write_endio(bh, end_buffer_async_write);
450 }
451 EXPORT_SYMBOL(mark_buffer_async_write);
452
453
454 /*
455  * fs/buffer.c contains helper functions for buffer-backed address space's
456  * fsync functions.  A common requirement for buffer-based filesystems is
457  * that certain data from the backing blockdev needs to be written out for
458  * a successful fsync().  For example, ext2 indirect blocks need to be
459  * written back and waited upon before fsync() returns.
460  *
461  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463  * management of a list of dependent buffers at ->i_mapping->private_list.
464  *
465  * Locking is a little subtle: try_to_free_buffers() will remove buffers
466  * from their controlling inode's queue when they are being freed.  But
467  * try_to_free_buffers() will be operating against the *blockdev* mapping
468  * at the time, not against the S_ISREG file which depends on those buffers.
469  * So the locking for private_list is via the private_lock in the address_space
470  * which backs the buffers.  Which is different from the address_space 
471  * against which the buffers are listed.  So for a particular address_space,
472  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
473  * mapping->private_list will always be protected by the backing blockdev's
474  * ->private_lock.
475  *
476  * Which introduces a requirement: all buffers on an address_space's
477  * ->private_list must be from the same address_space: the blockdev's.
478  *
479  * address_spaces which do not place buffers at ->private_list via these
480  * utility functions are free to use private_lock and private_list for
481  * whatever they want.  The only requirement is that list_empty(private_list)
482  * be true at clear_inode() time.
483  *
484  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
485  * filesystems should do that.  invalidate_inode_buffers() should just go
486  * BUG_ON(!list_empty).
487  *
488  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
489  * take an address_space, not an inode.  And it should be called
490  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491  * queued up.
492  *
493  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494  * list if it is already on a list.  Because if the buffer is on a list,
495  * it *must* already be on the right one.  If not, the filesystem is being
496  * silly.  This will save a ton of locking.  But first we have to ensure
497  * that buffers are taken *off* the old inode's list when they are freed
498  * (presumably in truncate).  That requires careful auditing of all
499  * filesystems (do it inside bforget()).  It could also be done by bringing
500  * b_inode back.
501  */
502
503 /*
504  * The buffer's backing address_space's private_lock must be held
505  */
506 static void __remove_assoc_queue(struct buffer_head *bh)
507 {
508         list_del_init(&bh->b_assoc_buffers);
509         WARN_ON(!bh->b_assoc_map);
510         if (buffer_write_io_error(bh))
511                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
512         bh->b_assoc_map = NULL;
513 }
514
515 int inode_has_buffers(struct inode *inode)
516 {
517         return !list_empty(&inode->i_data.private_list);
518 }
519
520 /*
521  * osync is designed to support O_SYNC io.  It waits synchronously for
522  * all already-submitted IO to complete, but does not queue any new
523  * writes to the disk.
524  *
525  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526  * you dirty the buffers, and then use osync_inode_buffers to wait for
527  * completion.  Any other dirty buffers which are not yet queued for
528  * write will not be flushed to disk by the osync.
529  */
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531 {
532         struct buffer_head *bh;
533         struct list_head *p;
534         int err = 0;
535
536         spin_lock(lock);
537 repeat:
538         list_for_each_prev(p, list) {
539                 bh = BH_ENTRY(p);
540                 if (buffer_locked(bh)) {
541                         get_bh(bh);
542                         spin_unlock(lock);
543                         wait_on_buffer(bh);
544                         if (!buffer_uptodate(bh))
545                                 err = -EIO;
546                         brelse(bh);
547                         spin_lock(lock);
548                         goto repeat;
549                 }
550         }
551         spin_unlock(lock);
552         return err;
553 }
554
555 static void do_thaw_one(struct super_block *sb, void *unused)
556 {
557         char b[BDEVNAME_SIZE];
558         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559                 printk(KERN_WARNING "Emergency Thaw on %s\n",
560                        bdevname(sb->s_bdev, b));
561 }
562
563 static void do_thaw_all(struct work_struct *work)
564 {
565         iterate_supers(do_thaw_one, NULL);
566         kfree(work);
567         printk(KERN_WARNING "Emergency Thaw complete\n");
568 }
569
570 /**
571  * emergency_thaw_all -- forcibly thaw every frozen filesystem
572  *
573  * Used for emergency unfreeze of all filesystems via SysRq
574  */
575 void emergency_thaw_all(void)
576 {
577         struct work_struct *work;
578
579         work = kmalloc(sizeof(*work), GFP_ATOMIC);
580         if (work) {
581                 INIT_WORK(work, do_thaw_all);
582                 schedule_work(work);
583         }
584 }
585
586 /**
587  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588  * @mapping: the mapping which wants those buffers written
589  *
590  * Starts I/O against the buffers at mapping->private_list, and waits upon
591  * that I/O.
592  *
593  * Basically, this is a convenience function for fsync().
594  * @mapping is a file or directory which needs those buffers to be written for
595  * a successful fsync().
596  */
597 int sync_mapping_buffers(struct address_space *mapping)
598 {
599         struct address_space *buffer_mapping = mapping->private_data;
600
601         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602                 return 0;
603
604         return fsync_buffers_list(&buffer_mapping->private_lock,
605                                         &mapping->private_list);
606 }
607 EXPORT_SYMBOL(sync_mapping_buffers);
608
609 /*
610  * Called when we've recently written block `bblock', and it is known that
611  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
612  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
613  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
614  */
615 void write_boundary_block(struct block_device *bdev,
616                         sector_t bblock, unsigned blocksize)
617 {
618         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619         if (bh) {
620                 if (buffer_dirty(bh))
621                         ll_rw_block(WRITE, 1, &bh);
622                 put_bh(bh);
623         }
624 }
625
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627 {
628         struct address_space *mapping = inode->i_mapping;
629         struct address_space *buffer_mapping = bh->b_page->mapping;
630
631         mark_buffer_dirty(bh);
632         if (!mapping->private_data) {
633                 mapping->private_data = buffer_mapping;
634         } else {
635                 BUG_ON(mapping->private_data != buffer_mapping);
636         }
637         if (!bh->b_assoc_map) {
638                 spin_lock(&buffer_mapping->private_lock);
639                 list_move_tail(&bh->b_assoc_buffers,
640                                 &mapping->private_list);
641                 bh->b_assoc_map = mapping;
642                 spin_unlock(&buffer_mapping->private_lock);
643         }
644 }
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
646
647 /*
648  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649  * dirty.
650  *
651  * If warn is true, then emit a warning if the page is not uptodate and has
652  * not been truncated.
653  */
654 static void __set_page_dirty(struct page *page,
655                 struct address_space *mapping, int warn)
656 {
657         unsigned long flags;
658
659         spin_lock_irqsave(&mapping->tree_lock, flags);
660         if (page->mapping) {    /* Race with truncate? */
661                 WARN_ON_ONCE(warn && !PageUptodate(page));
662                 account_page_dirtied(page, mapping);
663                 radix_tree_tag_set(&mapping->page_tree,
664                                 page_index(page), PAGECACHE_TAG_DIRTY);
665         }
666         spin_unlock_irqrestore(&mapping->tree_lock, flags);
667         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
668 }
669
670 /*
671  * Add a page to the dirty page list.
672  *
673  * It is a sad fact of life that this function is called from several places
674  * deeply under spinlocking.  It may not sleep.
675  *
676  * If the page has buffers, the uptodate buffers are set dirty, to preserve
677  * dirty-state coherency between the page and the buffers.  It the page does
678  * not have buffers then when they are later attached they will all be set
679  * dirty.
680  *
681  * The buffers are dirtied before the page is dirtied.  There's a small race
682  * window in which a writepage caller may see the page cleanness but not the
683  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
684  * before the buffers, a concurrent writepage caller could clear the page dirty
685  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686  * page on the dirty page list.
687  *
688  * We use private_lock to lock against try_to_free_buffers while using the
689  * page's buffer list.  Also use this to protect against clean buffers being
690  * added to the page after it was set dirty.
691  *
692  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
693  * address_space though.
694  */
695 int __set_page_dirty_buffers(struct page *page)
696 {
697         int newly_dirty;
698         struct address_space *mapping = page_mapping(page);
699
700         if (unlikely(!mapping))
701                 return !TestSetPageDirty(page);
702
703         spin_lock(&mapping->private_lock);
704         if (page_has_buffers(page)) {
705                 struct buffer_head *head = page_buffers(page);
706                 struct buffer_head *bh = head;
707
708                 do {
709                         set_buffer_dirty(bh);
710                         bh = bh->b_this_page;
711                 } while (bh != head);
712         }
713         newly_dirty = !TestSetPageDirty(page);
714         spin_unlock(&mapping->private_lock);
715
716         if (newly_dirty)
717                 __set_page_dirty(page, mapping, 1);
718         return newly_dirty;
719 }
720 EXPORT_SYMBOL(__set_page_dirty_buffers);
721
722 /*
723  * Write out and wait upon a list of buffers.
724  *
725  * We have conflicting pressures: we want to make sure that all
726  * initially dirty buffers get waited on, but that any subsequently
727  * dirtied buffers don't.  After all, we don't want fsync to last
728  * forever if somebody is actively writing to the file.
729  *
730  * Do this in two main stages: first we copy dirty buffers to a
731  * temporary inode list, queueing the writes as we go.  Then we clean
732  * up, waiting for those writes to complete.
733  * 
734  * During this second stage, any subsequent updates to the file may end
735  * up refiling the buffer on the original inode's dirty list again, so
736  * there is a chance we will end up with a buffer queued for write but
737  * not yet completed on that list.  So, as a final cleanup we go through
738  * the osync code to catch these locked, dirty buffers without requeuing
739  * any newly dirty buffers for write.
740  */
741 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
742 {
743         struct buffer_head *bh;
744         struct list_head tmp;
745         struct address_space *mapping;
746         int err = 0, err2;
747         struct blk_plug plug;
748
749         INIT_LIST_HEAD(&tmp);
750         blk_start_plug(&plug);
751
752         spin_lock(lock);
753         while (!list_empty(list)) {
754                 bh = BH_ENTRY(list->next);
755                 mapping = bh->b_assoc_map;
756                 __remove_assoc_queue(bh);
757                 /* Avoid race with mark_buffer_dirty_inode() which does
758                  * a lockless check and we rely on seeing the dirty bit */
759                 smp_mb();
760                 if (buffer_dirty(bh) || buffer_locked(bh)) {
761                         list_add(&bh->b_assoc_buffers, &tmp);
762                         bh->b_assoc_map = mapping;
763                         if (buffer_dirty(bh)) {
764                                 get_bh(bh);
765                                 spin_unlock(lock);
766                                 /*
767                                  * Ensure any pending I/O completes so that
768                                  * write_dirty_buffer() actually writes the
769                                  * current contents - it is a noop if I/O is
770                                  * still in flight on potentially older
771                                  * contents.
772                                  */
773                                 write_dirty_buffer(bh, WRITE_SYNC);
774
775                                 /*
776                                  * Kick off IO for the previous mapping. Note
777                                  * that we will not run the very last mapping,
778                                  * wait_on_buffer() will do that for us
779                                  * through sync_buffer().
780                                  */
781                                 brelse(bh);
782                                 spin_lock(lock);
783                         }
784                 }
785         }
786
787         spin_unlock(lock);
788         blk_finish_plug(&plug);
789         spin_lock(lock);
790
791         while (!list_empty(&tmp)) {
792                 bh = BH_ENTRY(tmp.prev);
793                 get_bh(bh);
794                 mapping = bh->b_assoc_map;
795                 __remove_assoc_queue(bh);
796                 /* Avoid race with mark_buffer_dirty_inode() which does
797                  * a lockless check and we rely on seeing the dirty bit */
798                 smp_mb();
799                 if (buffer_dirty(bh)) {
800                         list_add(&bh->b_assoc_buffers,
801                                  &mapping->private_list);
802                         bh->b_assoc_map = mapping;
803                 }
804                 spin_unlock(lock);
805                 wait_on_buffer(bh);
806                 if (!buffer_uptodate(bh))
807                         err = -EIO;
808                 brelse(bh);
809                 spin_lock(lock);
810         }
811         
812         spin_unlock(lock);
813         err2 = osync_buffers_list(lock, list);
814         if (err)
815                 return err;
816         else
817                 return err2;
818 }
819
820 /*
821  * Invalidate any and all dirty buffers on a given inode.  We are
822  * probably unmounting the fs, but that doesn't mean we have already
823  * done a sync().  Just drop the buffers from the inode list.
824  *
825  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
826  * assumes that all the buffers are against the blockdev.  Not true
827  * for reiserfs.
828  */
829 void invalidate_inode_buffers(struct inode *inode)
830 {
831         if (inode_has_buffers(inode)) {
832                 struct address_space *mapping = &inode->i_data;
833                 struct list_head *list = &mapping->private_list;
834                 struct address_space *buffer_mapping = mapping->private_data;
835
836                 spin_lock(&buffer_mapping->private_lock);
837                 while (!list_empty(list))
838                         __remove_assoc_queue(BH_ENTRY(list->next));
839                 spin_unlock(&buffer_mapping->private_lock);
840         }
841 }
842 EXPORT_SYMBOL(invalidate_inode_buffers);
843
844 /*
845  * Remove any clean buffers from the inode's buffer list.  This is called
846  * when we're trying to free the inode itself.  Those buffers can pin it.
847  *
848  * Returns true if all buffers were removed.
849  */
850 int remove_inode_buffers(struct inode *inode)
851 {
852         int ret = 1;
853
854         if (inode_has_buffers(inode)) {
855                 struct address_space *mapping = &inode->i_data;
856                 struct list_head *list = &mapping->private_list;
857                 struct address_space *buffer_mapping = mapping->private_data;
858
859                 spin_lock(&buffer_mapping->private_lock);
860                 while (!list_empty(list)) {
861                         struct buffer_head *bh = BH_ENTRY(list->next);
862                         if (buffer_dirty(bh)) {
863                                 ret = 0;
864                                 break;
865                         }
866                         __remove_assoc_queue(bh);
867                 }
868                 spin_unlock(&buffer_mapping->private_lock);
869         }
870         return ret;
871 }
872
873 /*
874  * Create the appropriate buffers when given a page for data area and
875  * the size of each buffer.. Use the bh->b_this_page linked list to
876  * follow the buffers created.  Return NULL if unable to create more
877  * buffers.
878  *
879  * The retry flag is used to differentiate async IO (paging, swapping)
880  * which may not fail from ordinary buffer allocations.
881  */
882 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
883                 int retry)
884 {
885         struct buffer_head *bh, *head;
886         long offset;
887
888 try_again:
889         head = NULL;
890         offset = PAGE_SIZE;
891         while ((offset -= size) >= 0) {
892                 bh = alloc_buffer_head(GFP_NOFS);
893                 if (!bh)
894                         goto no_grow;
895
896                 bh->b_this_page = head;
897                 bh->b_blocknr = -1;
898                 head = bh;
899
900                 bh->b_size = size;
901
902                 /* Link the buffer to its page */
903                 set_bh_page(bh, page, offset);
904         }
905         return head;
906 /*
907  * In case anything failed, we just free everything we got.
908  */
909 no_grow:
910         if (head) {
911                 do {
912                         bh = head;
913                         head = head->b_this_page;
914                         free_buffer_head(bh);
915                 } while (head);
916         }
917
918         /*
919          * Return failure for non-async IO requests.  Async IO requests
920          * are not allowed to fail, so we have to wait until buffer heads
921          * become available.  But we don't want tasks sleeping with 
922          * partially complete buffers, so all were released above.
923          */
924         if (!retry)
925                 return NULL;
926
927         /* We're _really_ low on memory. Now we just
928          * wait for old buffer heads to become free due to
929          * finishing IO.  Since this is an async request and
930          * the reserve list is empty, we're sure there are 
931          * async buffer heads in use.
932          */
933         free_more_memory();
934         goto try_again;
935 }
936 EXPORT_SYMBOL_GPL(alloc_page_buffers);
937
938 static inline void
939 link_dev_buffers(struct page *page, struct buffer_head *head)
940 {
941         struct buffer_head *bh, *tail;
942
943         bh = head;
944         do {
945                 tail = bh;
946                 bh = bh->b_this_page;
947         } while (bh);
948         tail->b_this_page = head;
949         attach_page_buffers(page, head);
950 }
951
952 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
953 {
954         sector_t retval = ~((sector_t)0);
955         loff_t sz = i_size_read(bdev->bd_inode);
956
957         if (sz) {
958                 unsigned int sizebits = blksize_bits(size);
959                 retval = (sz >> sizebits);
960         }
961         return retval;
962 }
963
964 /*
965  * Initialise the state of a blockdev page's buffers.
966  */ 
967 static sector_t
968 init_page_buffers(struct page *page, struct block_device *bdev,
969                         sector_t block, int size)
970 {
971         struct buffer_head *head = page_buffers(page);
972         struct buffer_head *bh = head;
973         int uptodate = PageUptodate(page);
974         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
975
976         do {
977                 if (!buffer_mapped(bh)) {
978                         init_buffer(bh, NULL, NULL);
979                         bh->b_bdev = bdev;
980                         bh->b_blocknr = block;
981                         if (uptodate)
982                                 set_buffer_uptodate(bh);
983                         if (block < end_block)
984                                 set_buffer_mapped(bh);
985                 }
986                 block++;
987                 bh = bh->b_this_page;
988         } while (bh != head);
989
990         /*
991          * Caller needs to validate requested block against end of device.
992          */
993         return end_block;
994 }
995
996 /*
997  * Create the page-cache page that contains the requested block.
998  *
999  * This is used purely for blockdev mappings.
1000  */
1001 static int
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003                 pgoff_t index, int size, int sizebits)
1004 {
1005         struct inode *inode = bdev->bd_inode;
1006         struct page *page;
1007         struct buffer_head *bh;
1008         sector_t end_block;
1009         int ret = 0;            /* Will call free_more_memory() */
1010         gfp_t gfp_mask;
1011
1012         gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013         gfp_mask |= __GFP_MOVABLE;
1014         /*
1015          * XXX: __getblk_slow() can not really deal with failure and
1016          * will endlessly loop on improvised global reclaim.  Prefer
1017          * looping in the allocator rather than here, at least that
1018          * code knows what it's doing.
1019          */
1020         gfp_mask |= __GFP_NOFAIL;
1021
1022         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023         if (!page)
1024                 return ret;
1025
1026         BUG_ON(!PageLocked(page));
1027
1028         if (page_has_buffers(page)) {
1029                 bh = page_buffers(page);
1030                 if (bh->b_size == size) {
1031                         end_block = init_page_buffers(page, bdev,
1032                                                 (sector_t)index << sizebits,
1033                                                 size);
1034                         goto done;
1035                 }
1036                 if (!try_to_free_buffers(page))
1037                         goto failed;
1038         }
1039
1040         /*
1041          * Allocate some buffers for this page
1042          */
1043         bh = alloc_page_buffers(page, size, 0);
1044         if (!bh)
1045                 goto failed;
1046
1047         /*
1048          * Link the page to the buffers and initialise them.  Take the
1049          * lock to be atomic wrt __find_get_block(), which does not
1050          * run under the page lock.
1051          */
1052         spin_lock(&inode->i_mapping->private_lock);
1053         link_dev_buffers(page, bh);
1054         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1055                         size);
1056         spin_unlock(&inode->i_mapping->private_lock);
1057 done:
1058         ret = (block < end_block) ? 1 : -ENXIO;
1059 failed:
1060         unlock_page(page);
1061         page_cache_release(page);
1062         return ret;
1063 }
1064
1065 /*
1066  * Create buffers for the specified block device block's page.  If
1067  * that page was dirty, the buffers are set dirty also.
1068  */
1069 static int
1070 grow_buffers(struct block_device *bdev, sector_t block, int size)
1071 {
1072         pgoff_t index;
1073         int sizebits;
1074
1075         sizebits = -1;
1076         do {
1077                 sizebits++;
1078         } while ((size << sizebits) < PAGE_SIZE);
1079
1080         index = block >> sizebits;
1081
1082         /*
1083          * Check for a block which wants to lie outside our maximum possible
1084          * pagecache index.  (this comparison is done using sector_t types).
1085          */
1086         if (unlikely(index != block >> sizebits)) {
1087                 char b[BDEVNAME_SIZE];
1088
1089                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1090                         "device %s\n",
1091                         __func__, (unsigned long long)block,
1092                         bdevname(bdev, b));
1093                 return -EIO;
1094         }
1095
1096         /* Create a page with the proper size buffers.. */
1097         return grow_dev_page(bdev, block, index, size, sizebits);
1098 }
1099
1100 static struct buffer_head *
1101 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1102 {
1103         /* Size must be multiple of hard sectorsize */
1104         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1105                         (size < 512 || size > PAGE_SIZE))) {
1106                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1107                                         size);
1108                 printk(KERN_ERR "logical block size: %d\n",
1109                                         bdev_logical_block_size(bdev));
1110
1111                 dump_stack();
1112                 return NULL;
1113         }
1114
1115         for (;;) {
1116                 struct buffer_head *bh;
1117                 int ret;
1118
1119                 bh = __find_get_block(bdev, block, size);
1120                 if (bh)
1121                         return bh;
1122
1123                 ret = grow_buffers(bdev, block, size);
1124                 if (ret < 0)
1125                         return NULL;
1126                 if (ret == 0)
1127                         free_more_memory();
1128         }
1129 }
1130
1131 /*
1132  * The relationship between dirty buffers and dirty pages:
1133  *
1134  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1135  * the page is tagged dirty in its radix tree.
1136  *
1137  * At all times, the dirtiness of the buffers represents the dirtiness of
1138  * subsections of the page.  If the page has buffers, the page dirty bit is
1139  * merely a hint about the true dirty state.
1140  *
1141  * When a page is set dirty in its entirety, all its buffers are marked dirty
1142  * (if the page has buffers).
1143  *
1144  * When a buffer is marked dirty, its page is dirtied, but the page's other
1145  * buffers are not.
1146  *
1147  * Also.  When blockdev buffers are explicitly read with bread(), they
1148  * individually become uptodate.  But their backing page remains not
1149  * uptodate - even if all of its buffers are uptodate.  A subsequent
1150  * block_read_full_page() against that page will discover all the uptodate
1151  * buffers, will set the page uptodate and will perform no I/O.
1152  */
1153
1154 /**
1155  * mark_buffer_dirty - mark a buffer_head as needing writeout
1156  * @bh: the buffer_head to mark dirty
1157  *
1158  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1159  * backing page dirty, then tag the page as dirty in its address_space's radix
1160  * tree and then attach the address_space's inode to its superblock's dirty
1161  * inode list.
1162  *
1163  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1164  * mapping->tree_lock and mapping->host->i_lock.
1165  */
1166 void mark_buffer_dirty(struct buffer_head *bh)
1167 {
1168         WARN_ON_ONCE(!buffer_uptodate(bh));
1169
1170         trace_block_dirty_buffer(bh);
1171
1172         /*
1173          * Very *carefully* optimize the it-is-already-dirty case.
1174          *
1175          * Don't let the final "is it dirty" escape to before we
1176          * perhaps modified the buffer.
1177          */
1178         if (buffer_dirty(bh)) {
1179                 smp_mb();
1180                 if (buffer_dirty(bh))
1181                         return;
1182         }
1183
1184         if (!test_set_buffer_dirty(bh)) {
1185                 struct page *page = bh->b_page;
1186                 if (!TestSetPageDirty(page)) {
1187                         struct address_space *mapping = page_mapping(page);
1188                         if (mapping)
1189                                 __set_page_dirty(page, mapping, 0);
1190                 }
1191         }
1192 }
1193 EXPORT_SYMBOL(mark_buffer_dirty);
1194
1195 /*
1196  * Decrement a buffer_head's reference count.  If all buffers against a page
1197  * have zero reference count, are clean and unlocked, and if the page is clean
1198  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1199  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1200  * a page but it ends up not being freed, and buffers may later be reattached).
1201  */
1202 void __brelse(struct buffer_head * buf)
1203 {
1204         if (atomic_read(&buf->b_count)) {
1205                 put_bh(buf);
1206                 return;
1207         }
1208         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1209 }
1210 EXPORT_SYMBOL(__brelse);
1211
1212 /*
1213  * bforget() is like brelse(), except it discards any
1214  * potentially dirty data.
1215  */
1216 void __bforget(struct buffer_head *bh)
1217 {
1218         clear_buffer_dirty(bh);
1219         if (bh->b_assoc_map) {
1220                 struct address_space *buffer_mapping = bh->b_page->mapping;
1221
1222                 spin_lock(&buffer_mapping->private_lock);
1223                 list_del_init(&bh->b_assoc_buffers);
1224                 bh->b_assoc_map = NULL;
1225                 spin_unlock(&buffer_mapping->private_lock);
1226         }
1227         __brelse(bh);
1228 }
1229 EXPORT_SYMBOL(__bforget);
1230
1231 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1232 {
1233         lock_buffer(bh);
1234         if (buffer_uptodate(bh)) {
1235                 unlock_buffer(bh);
1236                 return bh;
1237         } else {
1238                 get_bh(bh);
1239                 bh->b_end_io = end_buffer_read_sync;
1240                 submit_bh(READ, bh);
1241                 wait_on_buffer(bh);
1242                 if (buffer_uptodate(bh))
1243                         return bh;
1244         }
1245         brelse(bh);
1246         return NULL;
1247 }
1248
1249 /*
1250  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1251  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1252  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1253  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1254  * CPU's LRUs at the same time.
1255  *
1256  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1257  * sb_find_get_block().
1258  *
1259  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1260  * a local interrupt disable for that.
1261  */
1262
1263 #define BH_LRU_SIZE     8
1264
1265 struct bh_lru {
1266         struct buffer_head *bhs[BH_LRU_SIZE];
1267 };
1268
1269 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1270
1271 #ifdef CONFIG_SMP
1272 #define bh_lru_lock()   local_irq_disable()
1273 #define bh_lru_unlock() local_irq_enable()
1274 #else
1275 #define bh_lru_lock()   preempt_disable()
1276 #define bh_lru_unlock() preempt_enable()
1277 #endif
1278
1279 static inline void check_irqs_on(void)
1280 {
1281 #ifdef irqs_disabled
1282         BUG_ON(irqs_disabled());
1283 #endif
1284 }
1285
1286 /*
1287  * The LRU management algorithm is dopey-but-simple.  Sorry.
1288  */
1289 static void bh_lru_install(struct buffer_head *bh)
1290 {
1291         struct buffer_head *evictee = NULL;
1292
1293         check_irqs_on();
1294         bh_lru_lock();
1295         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1296                 struct buffer_head *bhs[BH_LRU_SIZE];
1297                 int in;
1298                 int out = 0;
1299
1300                 get_bh(bh);
1301                 bhs[out++] = bh;
1302                 for (in = 0; in < BH_LRU_SIZE; in++) {
1303                         struct buffer_head *bh2 =
1304                                 __this_cpu_read(bh_lrus.bhs[in]);
1305
1306                         if (bh2 == bh) {
1307                                 __brelse(bh2);
1308                         } else {
1309                                 if (out >= BH_LRU_SIZE) {
1310                                         BUG_ON(evictee != NULL);
1311                                         evictee = bh2;
1312                                 } else {
1313                                         bhs[out++] = bh2;
1314                                 }
1315                         }
1316                 }
1317                 while (out < BH_LRU_SIZE)
1318                         bhs[out++] = NULL;
1319                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1320         }
1321         bh_lru_unlock();
1322
1323         if (evictee)
1324                 __brelse(evictee);
1325 }
1326
1327 /*
1328  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1329  */
1330 static struct buffer_head *
1331 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333         struct buffer_head *ret = NULL;
1334         unsigned int i;
1335
1336         check_irqs_on();
1337         bh_lru_lock();
1338         for (i = 0; i < BH_LRU_SIZE; i++) {
1339                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1340
1341                 if (bh && bh->b_bdev == bdev &&
1342                                 bh->b_blocknr == block && bh->b_size == size) {
1343                         if (i) {
1344                                 while (i) {
1345                                         __this_cpu_write(bh_lrus.bhs[i],
1346                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1347                                         i--;
1348                                 }
1349                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1350                         }
1351                         get_bh(bh);
1352                         ret = bh;
1353                         break;
1354                 }
1355         }
1356         bh_lru_unlock();
1357         return ret;
1358 }
1359
1360 /*
1361  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1362  * it in the LRU and mark it as accessed.  If it is not present then return
1363  * NULL
1364  */
1365 struct buffer_head *
1366 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1367 {
1368         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1369
1370         if (bh == NULL) {
1371                 bh = __find_get_block_slow(bdev, block);
1372                 if (bh)
1373                         bh_lru_install(bh);
1374         }
1375         if (bh)
1376                 touch_buffer(bh);
1377         return bh;
1378 }
1379 EXPORT_SYMBOL(__find_get_block);
1380
1381 /*
1382  * __getblk will locate (and, if necessary, create) the buffer_head
1383  * which corresponds to the passed block_device, block and size. The
1384  * returned buffer has its reference count incremented.
1385  *
1386  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1387  * attempt is failing.  FIXME, perhaps?
1388  */
1389 struct buffer_head *
1390 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392         struct buffer_head *bh = __find_get_block(bdev, block, size);
1393
1394         might_sleep();
1395         if (bh == NULL)
1396                 bh = __getblk_slow(bdev, block, size);
1397         return bh;
1398 }
1399 EXPORT_SYMBOL(__getblk);
1400
1401 /*
1402  * Do async read-ahead on a buffer..
1403  */
1404 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1405 {
1406         struct buffer_head *bh = __getblk(bdev, block, size);
1407         if (likely(bh)) {
1408                 ll_rw_block(READA, 1, &bh);
1409                 brelse(bh);
1410         }
1411 }
1412 EXPORT_SYMBOL(__breadahead);
1413
1414 /**
1415  *  __bread() - reads a specified block and returns the bh
1416  *  @bdev: the block_device to read from
1417  *  @block: number of block
1418  *  @size: size (in bytes) to read
1419  * 
1420  *  Reads a specified block, and returns buffer head that contains it.
1421  *  It returns NULL if the block was unreadable.
1422  */
1423 struct buffer_head *
1424 __bread(struct block_device *bdev, sector_t block, unsigned size)
1425 {
1426         struct buffer_head *bh = __getblk(bdev, block, size);
1427
1428         if (likely(bh) && !buffer_uptodate(bh))
1429                 bh = __bread_slow(bh);
1430         return bh;
1431 }
1432 EXPORT_SYMBOL(__bread);
1433
1434 /*
1435  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1436  * This doesn't race because it runs in each cpu either in irq
1437  * or with preempt disabled.
1438  */
1439 static void invalidate_bh_lru(void *arg)
1440 {
1441         struct bh_lru *b = &get_cpu_var(bh_lrus);
1442         int i;
1443
1444         for (i = 0; i < BH_LRU_SIZE; i++) {
1445                 brelse(b->bhs[i]);
1446                 b->bhs[i] = NULL;
1447         }
1448         put_cpu_var(bh_lrus);
1449 }
1450
1451 static bool has_bh_in_lru(int cpu, void *dummy)
1452 {
1453         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1454         int i;
1455         
1456         for (i = 0; i < BH_LRU_SIZE; i++) {
1457                 if (b->bhs[i])
1458                         return 1;
1459         }
1460
1461         return 0;
1462 }
1463
1464 void invalidate_bh_lrus(void)
1465 {
1466         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1467 }
1468 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1469
1470 void set_bh_page(struct buffer_head *bh,
1471                 struct page *page, unsigned long offset)
1472 {
1473         bh->b_page = page;
1474         BUG_ON(offset >= PAGE_SIZE);
1475         if (PageHighMem(page))
1476                 /*
1477                  * This catches illegal uses and preserves the offset:
1478                  */
1479                 bh->b_data = (char *)(0 + offset);
1480         else
1481                 bh->b_data = page_address(page) + offset;
1482 }
1483 EXPORT_SYMBOL(set_bh_page);
1484
1485 /*
1486  * Called when truncating a buffer on a page completely.
1487  */
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490         lock_buffer(bh);
1491         clear_buffer_dirty(bh);
1492         bh->b_bdev = NULL;
1493         clear_buffer_mapped(bh);
1494         clear_buffer_req(bh);
1495         clear_buffer_new(bh);
1496         clear_buffer_delay(bh);
1497         clear_buffer_unwritten(bh);
1498         unlock_buffer(bh);
1499 }
1500
1501 /**
1502  * block_invalidatepage - invalidate part or all of a buffer-backed page
1503  *
1504  * @page: the page which is affected
1505  * @offset: start of the range to invalidate
1506  * @length: length of the range to invalidate
1507  *
1508  * block_invalidatepage() is called when all or part of the page has become
1509  * invalidated by a truncate operation.
1510  *
1511  * block_invalidatepage() does not have to release all buffers, but it must
1512  * ensure that no dirty buffer is left outside @offset and that no I/O
1513  * is underway against any of the blocks which are outside the truncation
1514  * point.  Because the caller is about to free (and possibly reuse) those
1515  * blocks on-disk.
1516  */
1517 void block_invalidatepage(struct page *page, unsigned int offset,
1518                           unsigned int length)
1519 {
1520         struct buffer_head *head, *bh, *next;
1521         unsigned int curr_off = 0;
1522         unsigned int stop = length + offset;
1523
1524         BUG_ON(!PageLocked(page));
1525         if (!page_has_buffers(page))
1526                 goto out;
1527
1528         /*
1529          * Check for overflow
1530          */
1531         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1532
1533         head = page_buffers(page);
1534         bh = head;
1535         do {
1536                 unsigned int next_off = curr_off + bh->b_size;
1537                 next = bh->b_this_page;
1538
1539                 /*
1540                  * Are we still fully in range ?
1541                  */
1542                 if (next_off > stop)
1543                         goto out;
1544
1545                 /*
1546                  * is this block fully invalidated?
1547                  */
1548                 if (offset <= curr_off)
1549                         discard_buffer(bh);
1550                 curr_off = next_off;
1551                 bh = next;
1552         } while (bh != head);
1553
1554         /*
1555          * We release buffers only if the entire page is being invalidated.
1556          * The get_block cached value has been unconditionally invalidated,
1557          * so real IO is not possible anymore.
1558          */
1559         if (offset == 0)
1560                 try_to_release_page(page, 0);
1561 out:
1562         return;
1563 }
1564 EXPORT_SYMBOL(block_invalidatepage);
1565
1566
1567 /*
1568  * We attach and possibly dirty the buffers atomically wrt
1569  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1570  * is already excluded via the page lock.
1571  */
1572 void create_empty_buffers(struct page *page,
1573                         unsigned long blocksize, unsigned long b_state)
1574 {
1575         struct buffer_head *bh, *head, *tail;
1576
1577         head = alloc_page_buffers(page, blocksize, 1);
1578         bh = head;
1579         do {
1580                 bh->b_state |= b_state;
1581                 tail = bh;
1582                 bh = bh->b_this_page;
1583         } while (bh);
1584         tail->b_this_page = head;
1585
1586         spin_lock(&page->mapping->private_lock);
1587         if (PageUptodate(page) || PageDirty(page)) {
1588                 bh = head;
1589                 do {
1590                         if (PageDirty(page))
1591                                 set_buffer_dirty(bh);
1592                         if (PageUptodate(page))
1593                                 set_buffer_uptodate(bh);
1594                         bh = bh->b_this_page;
1595                 } while (bh != head);
1596         }
1597         attach_page_buffers(page, head);
1598         spin_unlock(&page->mapping->private_lock);
1599 }
1600 EXPORT_SYMBOL(create_empty_buffers);
1601
1602 /*
1603  * We are taking a block for data and we don't want any output from any
1604  * buffer-cache aliases starting from return from that function and
1605  * until the moment when something will explicitly mark the buffer
1606  * dirty (hopefully that will not happen until we will free that block ;-)
1607  * We don't even need to mark it not-uptodate - nobody can expect
1608  * anything from a newly allocated buffer anyway. We used to used
1609  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1610  * don't want to mark the alias unmapped, for example - it would confuse
1611  * anyone who might pick it with bread() afterwards...
1612  *
1613  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1614  * be writeout I/O going on against recently-freed buffers.  We don't
1615  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1616  * only if we really need to.  That happens here.
1617  */
1618 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1619 {
1620         struct buffer_head *old_bh;
1621
1622         might_sleep();
1623
1624         old_bh = __find_get_block_slow(bdev, block);
1625         if (old_bh) {
1626                 clear_buffer_dirty(old_bh);
1627                 wait_on_buffer(old_bh);
1628                 clear_buffer_req(old_bh);
1629                 __brelse(old_bh);
1630         }
1631 }
1632 EXPORT_SYMBOL(unmap_underlying_metadata);
1633
1634 /*
1635  * Size is a power-of-two in the range 512..PAGE_SIZE,
1636  * and the case we care about most is PAGE_SIZE.
1637  *
1638  * So this *could* possibly be written with those
1639  * constraints in mind (relevant mostly if some
1640  * architecture has a slow bit-scan instruction)
1641  */
1642 static inline int block_size_bits(unsigned int blocksize)
1643 {
1644         return ilog2(blocksize);
1645 }
1646
1647 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1648 {
1649         BUG_ON(!PageLocked(page));
1650
1651         if (!page_has_buffers(page))
1652                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1653         return page_buffers(page);
1654 }
1655
1656 /*
1657  * NOTE! All mapped/uptodate combinations are valid:
1658  *
1659  *      Mapped  Uptodate        Meaning
1660  *
1661  *      No      No              "unknown" - must do get_block()
1662  *      No      Yes             "hole" - zero-filled
1663  *      Yes     No              "allocated" - allocated on disk, not read in
1664  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1665  *
1666  * "Dirty" is valid only with the last case (mapped+uptodate).
1667  */
1668
1669 /*
1670  * While block_write_full_page is writing back the dirty buffers under
1671  * the page lock, whoever dirtied the buffers may decide to clean them
1672  * again at any time.  We handle that by only looking at the buffer
1673  * state inside lock_buffer().
1674  *
1675  * If block_write_full_page() is called for regular writeback
1676  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1677  * locked buffer.   This only can happen if someone has written the buffer
1678  * directly, with submit_bh().  At the address_space level PageWriteback
1679  * prevents this contention from occurring.
1680  *
1681  * If block_write_full_page() is called with wbc->sync_mode ==
1682  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1683  * causes the writes to be flagged as synchronous writes.
1684  */
1685 static int __block_write_full_page(struct inode *inode, struct page *page,
1686                         get_block_t *get_block, struct writeback_control *wbc,
1687                         bh_end_io_t *handler)
1688 {
1689         int err;
1690         sector_t block;
1691         sector_t last_block;
1692         struct buffer_head *bh, *head;
1693         unsigned int blocksize, bbits;
1694         int nr_underway = 0;
1695         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1696                         WRITE_SYNC : WRITE);
1697
1698         head = create_page_buffers(page, inode,
1699                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1700
1701         /*
1702          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1703          * here, and the (potentially unmapped) buffers may become dirty at
1704          * any time.  If a buffer becomes dirty here after we've inspected it
1705          * then we just miss that fact, and the page stays dirty.
1706          *
1707          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1708          * handle that here by just cleaning them.
1709          */
1710
1711         bh = head;
1712         blocksize = bh->b_size;
1713         bbits = block_size_bits(blocksize);
1714
1715         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1716         last_block = (i_size_read(inode) - 1) >> bbits;
1717
1718         /*
1719          * Get all the dirty buffers mapped to disk addresses and
1720          * handle any aliases from the underlying blockdev's mapping.
1721          */
1722         do {
1723                 if (block > last_block) {
1724                         /*
1725                          * mapped buffers outside i_size will occur, because
1726                          * this page can be outside i_size when there is a
1727                          * truncate in progress.
1728                          */
1729                         /*
1730                          * The buffer was zeroed by block_write_full_page()
1731                          */
1732                         clear_buffer_dirty(bh);
1733                         set_buffer_uptodate(bh);
1734                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1735                            buffer_dirty(bh)) {
1736                         WARN_ON(bh->b_size != blocksize);
1737                         err = get_block(inode, block, bh, 1);
1738                         if (err)
1739                                 goto recover;
1740                         clear_buffer_delay(bh);
1741                         if (buffer_new(bh)) {
1742                                 /* blockdev mappings never come here */
1743                                 clear_buffer_new(bh);
1744                                 unmap_underlying_metadata(bh->b_bdev,
1745                                                         bh->b_blocknr);
1746                         }
1747                 }
1748                 bh = bh->b_this_page;
1749                 block++;
1750         } while (bh != head);
1751
1752         do {
1753                 if (!buffer_mapped(bh))
1754                         continue;
1755                 /*
1756                  * If it's a fully non-blocking write attempt and we cannot
1757                  * lock the buffer then redirty the page.  Note that this can
1758                  * potentially cause a busy-wait loop from writeback threads
1759                  * and kswapd activity, but those code paths have their own
1760                  * higher-level throttling.
1761                  */
1762                 if (wbc->sync_mode != WB_SYNC_NONE) {
1763                         lock_buffer(bh);
1764                 } else if (!trylock_buffer(bh)) {
1765                         redirty_page_for_writepage(wbc, page);
1766                         continue;
1767                 }
1768                 if (test_clear_buffer_dirty(bh)) {
1769                         mark_buffer_async_write_endio(bh, handler);
1770                 } else {
1771                         unlock_buffer(bh);
1772                 }
1773         } while ((bh = bh->b_this_page) != head);
1774
1775         /*
1776          * The page and its buffers are protected by PageWriteback(), so we can
1777          * drop the bh refcounts early.
1778          */
1779         BUG_ON(PageWriteback(page));
1780         set_page_writeback(page);
1781
1782         do {
1783                 struct buffer_head *next = bh->b_this_page;
1784                 if (buffer_async_write(bh)) {
1785                         submit_bh(write_op, bh);
1786                         nr_underway++;
1787                 }
1788                 bh = next;
1789         } while (bh != head);
1790         unlock_page(page);
1791
1792         err = 0;
1793 done:
1794         if (nr_underway == 0) {
1795                 /*
1796                  * The page was marked dirty, but the buffers were
1797                  * clean.  Someone wrote them back by hand with
1798                  * ll_rw_block/submit_bh.  A rare case.
1799                  */
1800                 end_page_writeback(page);
1801
1802                 /*
1803                  * The page and buffer_heads can be released at any time from
1804                  * here on.
1805                  */
1806         }
1807         return err;
1808
1809 recover:
1810         /*
1811          * ENOSPC, or some other error.  We may already have added some
1812          * blocks to the file, so we need to write these out to avoid
1813          * exposing stale data.
1814          * The page is currently locked and not marked for writeback
1815          */
1816         bh = head;
1817         /* Recovery: lock and submit the mapped buffers */
1818         do {
1819                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1820                     !buffer_delay(bh)) {
1821                         lock_buffer(bh);
1822                         mark_buffer_async_write_endio(bh, handler);
1823                 } else {
1824                         /*
1825                          * The buffer may have been set dirty during
1826                          * attachment to a dirty page.
1827                          */
1828                         clear_buffer_dirty(bh);
1829                 }
1830         } while ((bh = bh->b_this_page) != head);
1831         SetPageError(page);
1832         BUG_ON(PageWriteback(page));
1833         mapping_set_error(page->mapping, err);
1834         set_page_writeback(page);
1835         do {
1836                 struct buffer_head *next = bh->b_this_page;
1837                 if (buffer_async_write(bh)) {
1838                         clear_buffer_dirty(bh);
1839                         submit_bh(write_op, bh);
1840                         nr_underway++;
1841                 }
1842                 bh = next;
1843         } while (bh != head);
1844         unlock_page(page);
1845         goto done;
1846 }
1847
1848 /*
1849  * If a page has any new buffers, zero them out here, and mark them uptodate
1850  * and dirty so they'll be written out (in order to prevent uninitialised
1851  * block data from leaking). And clear the new bit.
1852  */
1853 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1854 {
1855         unsigned int block_start, block_end;
1856         struct buffer_head *head, *bh;
1857
1858         BUG_ON(!PageLocked(page));
1859         if (!page_has_buffers(page))
1860                 return;
1861
1862         bh = head = page_buffers(page);
1863         block_start = 0;
1864         do {
1865                 block_end = block_start + bh->b_size;
1866
1867                 if (buffer_new(bh)) {
1868                         if (block_end > from && block_start < to) {
1869                                 if (!PageUptodate(page)) {
1870                                         unsigned start, size;
1871
1872                                         start = max(from, block_start);
1873                                         size = min(to, block_end) - start;
1874
1875                                         zero_user(page, start, size);
1876                                         set_buffer_uptodate(bh);
1877                                 }
1878
1879                                 clear_buffer_new(bh);
1880                                 mark_buffer_dirty(bh);
1881                         }
1882                 }
1883
1884                 block_start = block_end;
1885                 bh = bh->b_this_page;
1886         } while (bh != head);
1887 }
1888 EXPORT_SYMBOL(page_zero_new_buffers);
1889
1890 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1891                 get_block_t *get_block)
1892 {
1893         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1894         unsigned to = from + len;
1895         struct inode *inode = page->mapping->host;
1896         unsigned block_start, block_end;
1897         sector_t block;
1898         int err = 0;
1899         unsigned blocksize, bbits;
1900         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1901
1902         BUG_ON(!PageLocked(page));
1903         BUG_ON(from > PAGE_CACHE_SIZE);
1904         BUG_ON(to > PAGE_CACHE_SIZE);
1905         BUG_ON(from > to);
1906
1907         head = create_page_buffers(page, inode, 0);
1908         blocksize = head->b_size;
1909         bbits = block_size_bits(blocksize);
1910
1911         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1912
1913         for(bh = head, block_start = 0; bh != head || !block_start;
1914             block++, block_start=block_end, bh = bh->b_this_page) {
1915                 block_end = block_start + blocksize;
1916                 if (block_end <= from || block_start >= to) {
1917                         if (PageUptodate(page)) {
1918                                 if (!buffer_uptodate(bh))
1919                                         set_buffer_uptodate(bh);
1920                         }
1921                         continue;
1922                 }
1923                 if (buffer_new(bh))
1924                         clear_buffer_new(bh);
1925                 if (!buffer_mapped(bh)) {
1926                         WARN_ON(bh->b_size != blocksize);
1927                         err = get_block(inode, block, bh, 1);
1928                         if (err)
1929                                 break;
1930                         if (buffer_new(bh)) {
1931                                 unmap_underlying_metadata(bh->b_bdev,
1932                                                         bh->b_blocknr);
1933                                 if (PageUptodate(page)) {
1934                                         clear_buffer_new(bh);
1935                                         set_buffer_uptodate(bh);
1936                                         mark_buffer_dirty(bh);
1937                                         continue;
1938                                 }
1939                                 if (block_end > to || block_start < from)
1940                                         zero_user_segments(page,
1941                                                 to, block_end,
1942                                                 block_start, from);
1943                                 continue;
1944                         }
1945                 }
1946                 if (PageUptodate(page)) {
1947                         if (!buffer_uptodate(bh))
1948                                 set_buffer_uptodate(bh);
1949                         continue; 
1950                 }
1951                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1952                     !buffer_unwritten(bh) &&
1953                      (block_start < from || block_end > to)) {
1954                         ll_rw_block(READ, 1, &bh);
1955                         *wait_bh++=bh;
1956                 }
1957         }
1958         /*
1959          * If we issued read requests - let them complete.
1960          */
1961         while(wait_bh > wait) {
1962                 wait_on_buffer(*--wait_bh);
1963                 if (!buffer_uptodate(*wait_bh))
1964                         err = -EIO;
1965         }
1966         if (unlikely(err))
1967                 page_zero_new_buffers(page, from, to);
1968         return err;
1969 }
1970 EXPORT_SYMBOL(__block_write_begin);
1971
1972 static int __block_commit_write(struct inode *inode, struct page *page,
1973                 unsigned from, unsigned to)
1974 {
1975         unsigned block_start, block_end;
1976         int partial = 0;
1977         unsigned blocksize;
1978         struct buffer_head *bh, *head;
1979
1980         bh = head = page_buffers(page);
1981         blocksize = bh->b_size;
1982
1983         block_start = 0;
1984         do {
1985                 block_end = block_start + blocksize;
1986                 if (block_end <= from || block_start >= to) {
1987                         if (!buffer_uptodate(bh))
1988                                 partial = 1;
1989                 } else {
1990                         set_buffer_uptodate(bh);
1991                         mark_buffer_dirty(bh);
1992                 }
1993                 clear_buffer_new(bh);
1994
1995                 block_start = block_end;
1996                 bh = bh->b_this_page;
1997         } while (bh != head);
1998
1999         /*
2000          * If this is a partial write which happened to make all buffers
2001          * uptodate then we can optimize away a bogus readpage() for
2002          * the next read(). Here we 'discover' whether the page went
2003          * uptodate as a result of this (potentially partial) write.
2004          */
2005         if (!partial)
2006                 SetPageUptodate(page);
2007         return 0;
2008 }
2009
2010 /*
2011  * block_write_begin takes care of the basic task of block allocation and
2012  * bringing partial write blocks uptodate first.
2013  *
2014  * The filesystem needs to handle block truncation upon failure.
2015  */
2016 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2017                 unsigned flags, struct page **pagep, get_block_t *get_block)
2018 {
2019         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2020         struct page *page;
2021         int status;
2022
2023         page = grab_cache_page_write_begin(mapping, index, flags);
2024         if (!page)
2025                 return -ENOMEM;
2026
2027         status = __block_write_begin(page, pos, len, get_block);
2028         if (unlikely(status)) {
2029                 unlock_page(page);
2030                 page_cache_release(page);
2031                 page = NULL;
2032         }
2033
2034         *pagep = page;
2035         return status;
2036 }
2037 EXPORT_SYMBOL(block_write_begin);
2038
2039 int block_write_end(struct file *file, struct address_space *mapping,
2040                         loff_t pos, unsigned len, unsigned copied,
2041                         struct page *page, void *fsdata)
2042 {
2043         struct inode *inode = mapping->host;
2044         unsigned start;
2045
2046         start = pos & (PAGE_CACHE_SIZE - 1);
2047
2048         if (unlikely(copied < len)) {
2049                 /*
2050                  * The buffers that were written will now be uptodate, so we
2051                  * don't have to worry about a readpage reading them and
2052                  * overwriting a partial write. However if we have encountered
2053                  * a short write and only partially written into a buffer, it
2054                  * will not be marked uptodate, so a readpage might come in and
2055                  * destroy our partial write.
2056                  *
2057                  * Do the simplest thing, and just treat any short write to a
2058                  * non uptodate page as a zero-length write, and force the
2059                  * caller to redo the whole thing.
2060                  */
2061                 if (!PageUptodate(page))
2062                         copied = 0;
2063
2064                 page_zero_new_buffers(page, start+copied, start+len);
2065         }
2066         flush_dcache_page(page);
2067
2068         /* This could be a short (even 0-length) commit */
2069         __block_commit_write(inode, page, start, start+copied);
2070
2071         return copied;
2072 }
2073 EXPORT_SYMBOL(block_write_end);
2074
2075 int generic_write_end(struct file *file, struct address_space *mapping,
2076                         loff_t pos, unsigned len, unsigned copied,
2077                         struct page *page, void *fsdata)
2078 {
2079         struct inode *inode = mapping->host;
2080         int i_size_changed = 0;
2081
2082         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2083
2084         /*
2085          * No need to use i_size_read() here, the i_size
2086          * cannot change under us because we hold i_mutex.
2087          *
2088          * But it's important to update i_size while still holding page lock:
2089          * page writeout could otherwise come in and zero beyond i_size.
2090          */
2091         if (pos+copied > inode->i_size) {
2092                 i_size_write(inode, pos+copied);
2093                 i_size_changed = 1;
2094         }
2095
2096         unlock_page(page);
2097         page_cache_release(page);
2098
2099         /*
2100          * Don't mark the inode dirty under page lock. First, it unnecessarily
2101          * makes the holding time of page lock longer. Second, it forces lock
2102          * ordering of page lock and transaction start for journaling
2103          * filesystems.
2104          */
2105         if (i_size_changed)
2106                 mark_inode_dirty(inode);
2107
2108         return copied;
2109 }
2110 EXPORT_SYMBOL(generic_write_end);
2111
2112 /*
2113  * block_is_partially_uptodate checks whether buffers within a page are
2114  * uptodate or not.
2115  *
2116  * Returns true if all buffers which correspond to a file portion
2117  * we want to read are uptodate.
2118  */
2119 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2120                                         unsigned long from)
2121 {
2122         unsigned block_start, block_end, blocksize;
2123         unsigned to;
2124         struct buffer_head *bh, *head;
2125         int ret = 1;
2126
2127         if (!page_has_buffers(page))
2128                 return 0;
2129
2130         head = page_buffers(page);
2131         blocksize = head->b_size;
2132         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2133         to = from + to;
2134         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2135                 return 0;
2136
2137         bh = head;
2138         block_start = 0;
2139         do {
2140                 block_end = block_start + blocksize;
2141                 if (block_end > from && block_start < to) {
2142                         if (!buffer_uptodate(bh)) {
2143                                 ret = 0;
2144                                 break;
2145                         }
2146                         if (block_end >= to)
2147                                 break;
2148                 }
2149                 block_start = block_end;
2150                 bh = bh->b_this_page;
2151         } while (bh != head);
2152
2153         return ret;
2154 }
2155 EXPORT_SYMBOL(block_is_partially_uptodate);
2156
2157 /*
2158  * Generic "read page" function for block devices that have the normal
2159  * get_block functionality. This is most of the block device filesystems.
2160  * Reads the page asynchronously --- the unlock_buffer() and
2161  * set/clear_buffer_uptodate() functions propagate buffer state into the
2162  * page struct once IO has completed.
2163  */
2164 int block_read_full_page(struct page *page, get_block_t *get_block)
2165 {
2166         struct inode *inode = page->mapping->host;
2167         sector_t iblock, lblock;
2168         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2169         unsigned int blocksize, bbits;
2170         int nr, i;
2171         int fully_mapped = 1;
2172
2173         head = create_page_buffers(page, inode, 0);
2174         blocksize = head->b_size;
2175         bbits = block_size_bits(blocksize);
2176
2177         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2178         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2179         bh = head;
2180         nr = 0;
2181         i = 0;
2182
2183         do {
2184                 if (buffer_uptodate(bh))
2185                         continue;
2186
2187                 if (!buffer_mapped(bh)) {
2188                         int err = 0;
2189
2190                         fully_mapped = 0;
2191                         if (iblock < lblock) {
2192                                 WARN_ON(bh->b_size != blocksize);
2193                                 err = get_block(inode, iblock, bh, 0);
2194                                 if (err)
2195                                         SetPageError(page);
2196                         }
2197                         if (!buffer_mapped(bh)) {
2198                                 zero_user(page, i * blocksize, blocksize);
2199                                 if (!err)
2200                                         set_buffer_uptodate(bh);
2201                                 continue;
2202                         }
2203                         /*
2204                          * get_block() might have updated the buffer
2205                          * synchronously
2206                          */
2207                         if (buffer_uptodate(bh))
2208                                 continue;
2209                 }
2210                 arr[nr++] = bh;
2211         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2212
2213         if (fully_mapped)
2214                 SetPageMappedToDisk(page);
2215
2216         if (!nr) {
2217                 /*
2218                  * All buffers are uptodate - we can set the page uptodate
2219                  * as well. But not if get_block() returned an error.
2220                  */
2221                 if (!PageError(page))
2222                         SetPageUptodate(page);
2223                 unlock_page(page);
2224                 return 0;
2225         }
2226
2227         /* Stage two: lock the buffers */
2228         for (i = 0; i < nr; i++) {
2229                 bh = arr[i];
2230                 lock_buffer(bh);
2231                 mark_buffer_async_read(bh);
2232         }
2233
2234         /*
2235          * Stage 3: start the IO.  Check for uptodateness
2236          * inside the buffer lock in case another process reading
2237          * the underlying blockdev brought it uptodate (the sct fix).
2238          */
2239         for (i = 0; i < nr; i++) {
2240                 bh = arr[i];
2241                 if (buffer_uptodate(bh))
2242                         end_buffer_async_read(bh, 1);
2243                 else
2244                         submit_bh(READ, bh);
2245         }
2246         return 0;
2247 }
2248 EXPORT_SYMBOL(block_read_full_page);
2249
2250 /* utility function for filesystems that need to do work on expanding
2251  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2252  * deal with the hole.  
2253  */
2254 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2255 {
2256         struct address_space *mapping = inode->i_mapping;
2257         struct page *page;
2258         void *fsdata;
2259         int err;
2260
2261         err = inode_newsize_ok(inode, size);
2262         if (err)
2263                 goto out;
2264
2265         err = pagecache_write_begin(NULL, mapping, size, 0,
2266                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2267                                 &page, &fsdata);
2268         if (err)
2269                 goto out;
2270
2271         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2272         BUG_ON(err > 0);
2273
2274 out:
2275         return err;
2276 }
2277 EXPORT_SYMBOL(generic_cont_expand_simple);
2278
2279 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2280                             loff_t pos, loff_t *bytes)
2281 {
2282         struct inode *inode = mapping->host;
2283         unsigned blocksize = 1 << inode->i_blkbits;
2284         struct page *page;
2285         void *fsdata;
2286         pgoff_t index, curidx;
2287         loff_t curpos;
2288         unsigned zerofrom, offset, len;
2289         int err = 0;
2290
2291         index = pos >> PAGE_CACHE_SHIFT;
2292         offset = pos & ~PAGE_CACHE_MASK;
2293
2294         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2295                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2296                 if (zerofrom & (blocksize-1)) {
2297                         *bytes |= (blocksize-1);
2298                         (*bytes)++;
2299                 }
2300                 len = PAGE_CACHE_SIZE - zerofrom;
2301
2302                 err = pagecache_write_begin(file, mapping, curpos, len,
2303                                                 AOP_FLAG_UNINTERRUPTIBLE,
2304                                                 &page, &fsdata);
2305                 if (err)
2306                         goto out;
2307                 zero_user(page, zerofrom, len);
2308                 err = pagecache_write_end(file, mapping, curpos, len, len,
2309                                                 page, fsdata);
2310                 if (err < 0)
2311                         goto out;
2312                 BUG_ON(err != len);
2313                 err = 0;
2314
2315                 balance_dirty_pages_ratelimited(mapping);
2316         }
2317
2318         /* page covers the boundary, find the boundary offset */
2319         if (index == curidx) {
2320                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2321                 /* if we will expand the thing last block will be filled */
2322                 if (offset <= zerofrom) {
2323                         goto out;
2324                 }
2325                 if (zerofrom & (blocksize-1)) {
2326                         *bytes |= (blocksize-1);
2327                         (*bytes)++;
2328                 }
2329                 len = offset - zerofrom;
2330
2331                 err = pagecache_write_begin(file, mapping, curpos, len,
2332                                                 AOP_FLAG_UNINTERRUPTIBLE,
2333                                                 &page, &fsdata);
2334                 if (err)
2335                         goto out;
2336                 zero_user(page, zerofrom, len);
2337                 err = pagecache_write_end(file, mapping, curpos, len, len,
2338                                                 page, fsdata);
2339                 if (err < 0)
2340                         goto out;
2341                 BUG_ON(err != len);
2342                 err = 0;
2343         }
2344 out:
2345         return err;
2346 }
2347
2348 /*
2349  * For moronic filesystems that do not allow holes in file.
2350  * We may have to extend the file.
2351  */
2352 int cont_write_begin(struct file *file, struct address_space *mapping,
2353                         loff_t pos, unsigned len, unsigned flags,
2354                         struct page **pagep, void **fsdata,
2355                         get_block_t *get_block, loff_t *bytes)
2356 {
2357         struct inode *inode = mapping->host;
2358         unsigned blocksize = 1 << inode->i_blkbits;
2359         unsigned zerofrom;
2360         int err;
2361
2362         err = cont_expand_zero(file, mapping, pos, bytes);
2363         if (err)
2364                 return err;
2365
2366         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2367         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2368                 *bytes |= (blocksize-1);
2369                 (*bytes)++;
2370         }
2371
2372         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2373 }
2374 EXPORT_SYMBOL(cont_write_begin);
2375
2376 int block_commit_write(struct page *page, unsigned from, unsigned to)
2377 {
2378         struct inode *inode = page->mapping->host;
2379         __block_commit_write(inode,page,from,to);
2380         return 0;
2381 }
2382 EXPORT_SYMBOL(block_commit_write);
2383
2384 /*
2385  * block_page_mkwrite() is not allowed to change the file size as it gets
2386  * called from a page fault handler when a page is first dirtied. Hence we must
2387  * be careful to check for EOF conditions here. We set the page up correctly
2388  * for a written page which means we get ENOSPC checking when writing into
2389  * holes and correct delalloc and unwritten extent mapping on filesystems that
2390  * support these features.
2391  *
2392  * We are not allowed to take the i_mutex here so we have to play games to
2393  * protect against truncate races as the page could now be beyond EOF.  Because
2394  * truncate writes the inode size before removing pages, once we have the
2395  * page lock we can determine safely if the page is beyond EOF. If it is not
2396  * beyond EOF, then the page is guaranteed safe against truncation until we
2397  * unlock the page.
2398  *
2399  * Direct callers of this function should protect against filesystem freezing
2400  * using sb_start_write() - sb_end_write() functions.
2401  */
2402 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2403                          get_block_t get_block)
2404 {
2405         struct page *page = vmf->page;
2406         struct inode *inode = file_inode(vma->vm_file);
2407         unsigned long end;
2408         loff_t size;
2409         int ret;
2410
2411         lock_page(page);
2412         size = i_size_read(inode);
2413         if ((page->mapping != inode->i_mapping) ||
2414             (page_offset(page) > size)) {
2415                 /* We overload EFAULT to mean page got truncated */
2416                 ret = -EFAULT;
2417                 goto out_unlock;
2418         }
2419
2420         /* page is wholly or partially inside EOF */
2421         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2422                 end = size & ~PAGE_CACHE_MASK;
2423         else
2424                 end = PAGE_CACHE_SIZE;
2425
2426         ret = __block_write_begin(page, 0, end, get_block);
2427         if (!ret)
2428                 ret = block_commit_write(page, 0, end);
2429
2430         if (unlikely(ret < 0))
2431                 goto out_unlock;
2432         set_page_dirty(page);
2433         wait_for_stable_page(page);
2434         return 0;
2435 out_unlock:
2436         unlock_page(page);
2437         return ret;
2438 }
2439 EXPORT_SYMBOL(__block_page_mkwrite);
2440
2441 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2442                    get_block_t get_block)
2443 {
2444         int ret;
2445         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2446
2447         sb_start_pagefault(sb);
2448
2449         /*
2450          * Update file times before taking page lock. We may end up failing the
2451          * fault so this update may be superfluous but who really cares...
2452          */
2453         file_update_time(vma->vm_file);
2454
2455         ret = __block_page_mkwrite(vma, vmf, get_block);
2456         sb_end_pagefault(sb);
2457         return block_page_mkwrite_return(ret);
2458 }
2459 EXPORT_SYMBOL(block_page_mkwrite);
2460
2461 /*
2462  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2463  * immediately, while under the page lock.  So it needs a special end_io
2464  * handler which does not touch the bh after unlocking it.
2465  */
2466 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2467 {
2468         __end_buffer_read_notouch(bh, uptodate);
2469 }
2470
2471 /*
2472  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2473  * the page (converting it to circular linked list and taking care of page
2474  * dirty races).
2475  */
2476 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2477 {
2478         struct buffer_head *bh;
2479
2480         BUG_ON(!PageLocked(page));
2481
2482         spin_lock(&page->mapping->private_lock);
2483         bh = head;
2484         do {
2485                 if (PageDirty(page))
2486                         set_buffer_dirty(bh);
2487                 if (!bh->b_this_page)
2488                         bh->b_this_page = head;
2489                 bh = bh->b_this_page;
2490         } while (bh != head);
2491         attach_page_buffers(page, head);
2492         spin_unlock(&page->mapping->private_lock);
2493 }
2494
2495 /*
2496  * On entry, the page is fully not uptodate.
2497  * On exit the page is fully uptodate in the areas outside (from,to)
2498  * The filesystem needs to handle block truncation upon failure.
2499  */
2500 int nobh_write_begin(struct address_space *mapping,
2501                         loff_t pos, unsigned len, unsigned flags,
2502                         struct page **pagep, void **fsdata,
2503                         get_block_t *get_block)
2504 {
2505         struct inode *inode = mapping->host;
2506         const unsigned blkbits = inode->i_blkbits;
2507         const unsigned blocksize = 1 << blkbits;
2508         struct buffer_head *head, *bh;
2509         struct page *page;
2510         pgoff_t index;
2511         unsigned from, to;
2512         unsigned block_in_page;
2513         unsigned block_start, block_end;
2514         sector_t block_in_file;
2515         int nr_reads = 0;
2516         int ret = 0;
2517         int is_mapped_to_disk = 1;
2518
2519         index = pos >> PAGE_CACHE_SHIFT;
2520         from = pos & (PAGE_CACHE_SIZE - 1);
2521         to = from + len;
2522
2523         page = grab_cache_page_write_begin(mapping, index, flags);
2524         if (!page)
2525                 return -ENOMEM;
2526         *pagep = page;
2527         *fsdata = NULL;
2528
2529         if (page_has_buffers(page)) {
2530                 ret = __block_write_begin(page, pos, len, get_block);
2531                 if (unlikely(ret))
2532                         goto out_release;
2533                 return ret;
2534         }
2535
2536         if (PageMappedToDisk(page))
2537                 return 0;
2538
2539         /*
2540          * Allocate buffers so that we can keep track of state, and potentially
2541          * attach them to the page if an error occurs. In the common case of
2542          * no error, they will just be freed again without ever being attached
2543          * to the page (which is all OK, because we're under the page lock).
2544          *
2545          * Be careful: the buffer linked list is a NULL terminated one, rather
2546          * than the circular one we're used to.
2547          */
2548         head = alloc_page_buffers(page, blocksize, 0);
2549         if (!head) {
2550                 ret = -ENOMEM;
2551                 goto out_release;
2552         }
2553
2554         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2555
2556         /*
2557          * We loop across all blocks in the page, whether or not they are
2558          * part of the affected region.  This is so we can discover if the
2559          * page is fully mapped-to-disk.
2560          */
2561         for (block_start = 0, block_in_page = 0, bh = head;
2562                   block_start < PAGE_CACHE_SIZE;
2563                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2564                 int create;
2565
2566                 block_end = block_start + blocksize;
2567                 bh->b_state = 0;
2568                 create = 1;
2569                 if (block_start >= to)
2570                         create = 0;
2571                 ret = get_block(inode, block_in_file + block_in_page,
2572                                         bh, create);
2573                 if (ret)
2574                         goto failed;
2575                 if (!buffer_mapped(bh))
2576                         is_mapped_to_disk = 0;
2577                 if (buffer_new(bh))
2578                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2579                 if (PageUptodate(page)) {
2580                         set_buffer_uptodate(bh);
2581                         continue;
2582                 }
2583                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2584                         zero_user_segments(page, block_start, from,
2585                                                         to, block_end);
2586                         continue;
2587                 }
2588                 if (buffer_uptodate(bh))
2589                         continue;       /* reiserfs does this */
2590                 if (block_start < from || block_end > to) {
2591                         lock_buffer(bh);
2592                         bh->b_end_io = end_buffer_read_nobh;
2593                         submit_bh(READ, bh);
2594                         nr_reads++;
2595                 }
2596         }
2597
2598         if (nr_reads) {
2599                 /*
2600                  * The page is locked, so these buffers are protected from
2601                  * any VM or truncate activity.  Hence we don't need to care
2602                  * for the buffer_head refcounts.
2603                  */
2604                 for (bh = head; bh; bh = bh->b_this_page) {
2605                         wait_on_buffer(bh);
2606                         if (!buffer_uptodate(bh))
2607                                 ret = -EIO;
2608                 }
2609                 if (ret)
2610                         goto failed;
2611         }
2612
2613         if (is_mapped_to_disk)
2614                 SetPageMappedToDisk(page);
2615
2616         *fsdata = head; /* to be released by nobh_write_end */
2617
2618         return 0;
2619
2620 failed:
2621         BUG_ON(!ret);
2622         /*
2623          * Error recovery is a bit difficult. We need to zero out blocks that
2624          * were newly allocated, and dirty them to ensure they get written out.
2625          * Buffers need to be attached to the page at this point, otherwise
2626          * the handling of potential IO errors during writeout would be hard
2627          * (could try doing synchronous writeout, but what if that fails too?)
2628          */
2629         attach_nobh_buffers(page, head);
2630         page_zero_new_buffers(page, from, to);
2631
2632 out_release:
2633         unlock_page(page);
2634         page_cache_release(page);
2635         *pagep = NULL;
2636
2637         return ret;
2638 }
2639 EXPORT_SYMBOL(nobh_write_begin);
2640
2641 int nobh_write_end(struct file *file, struct address_space *mapping,
2642                         loff_t pos, unsigned len, unsigned copied,
2643                         struct page *page, void *fsdata)
2644 {
2645         struct inode *inode = page->mapping->host;
2646         struct buffer_head *head = fsdata;
2647         struct buffer_head *bh;
2648         BUG_ON(fsdata != NULL && page_has_buffers(page));
2649
2650         if (unlikely(copied < len) && head)
2651                 attach_nobh_buffers(page, head);
2652         if (page_has_buffers(page))
2653                 return generic_write_end(file, mapping, pos, len,
2654                                         copied, page, fsdata);
2655
2656         SetPageUptodate(page);
2657         set_page_dirty(page);
2658         if (pos+copied > inode->i_size) {
2659                 i_size_write(inode, pos+copied);
2660                 mark_inode_dirty(inode);
2661         }
2662
2663         unlock_page(page);
2664         page_cache_release(page);
2665
2666         while (head) {
2667                 bh = head;
2668                 head = head->b_this_page;
2669                 free_buffer_head(bh);
2670         }
2671
2672         return copied;
2673 }
2674 EXPORT_SYMBOL(nobh_write_end);
2675
2676 /*
2677  * nobh_writepage() - based on block_full_write_page() except
2678  * that it tries to operate without attaching bufferheads to
2679  * the page.
2680  */
2681 int nobh_writepage(struct page *page, get_block_t *get_block,
2682                         struct writeback_control *wbc)
2683 {
2684         struct inode * const inode = page->mapping->host;
2685         loff_t i_size = i_size_read(inode);
2686         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2687         unsigned offset;
2688         int ret;
2689
2690         /* Is the page fully inside i_size? */
2691         if (page->index < end_index)
2692                 goto out;
2693
2694         /* Is the page fully outside i_size? (truncate in progress) */
2695         offset = i_size & (PAGE_CACHE_SIZE-1);
2696         if (page->index >= end_index+1 || !offset) {
2697                 /*
2698                  * The page may have dirty, unmapped buffers.  For example,
2699                  * they may have been added in ext3_writepage().  Make them
2700                  * freeable here, so the page does not leak.
2701                  */
2702 #if 0
2703                 /* Not really sure about this  - do we need this ? */
2704                 if (page->mapping->a_ops->invalidatepage)
2705                         page->mapping->a_ops->invalidatepage(page, offset);
2706 #endif
2707                 unlock_page(page);
2708                 return 0; /* don't care */
2709         }
2710
2711         /*
2712          * The page straddles i_size.  It must be zeroed out on each and every
2713          * writepage invocation because it may be mmapped.  "A file is mapped
2714          * in multiples of the page size.  For a file that is not a multiple of
2715          * the  page size, the remaining memory is zeroed when mapped, and
2716          * writes to that region are not written out to the file."
2717          */
2718         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2719 out:
2720         ret = mpage_writepage(page, get_block, wbc);
2721         if (ret == -EAGAIN)
2722                 ret = __block_write_full_page(inode, page, get_block, wbc,
2723                                               end_buffer_async_write);
2724         return ret;
2725 }
2726 EXPORT_SYMBOL(nobh_writepage);
2727
2728 int nobh_truncate_page(struct address_space *mapping,
2729                         loff_t from, get_block_t *get_block)
2730 {
2731         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2732         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2733         unsigned blocksize;
2734         sector_t iblock;
2735         unsigned length, pos;
2736         struct inode *inode = mapping->host;
2737         struct page *page;
2738         struct buffer_head map_bh;
2739         int err;
2740
2741         blocksize = 1 << inode->i_blkbits;
2742         length = offset & (blocksize - 1);
2743
2744         /* Block boundary? Nothing to do */
2745         if (!length)
2746                 return 0;
2747
2748         length = blocksize - length;
2749         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2750
2751         page = grab_cache_page(mapping, index);
2752         err = -ENOMEM;
2753         if (!page)
2754                 goto out;
2755
2756         if (page_has_buffers(page)) {
2757 has_buffers:
2758                 unlock_page(page);
2759                 page_cache_release(page);
2760                 return block_truncate_page(mapping, from, get_block);
2761         }
2762
2763         /* Find the buffer that contains "offset" */
2764         pos = blocksize;
2765         while (offset >= pos) {
2766                 iblock++;
2767                 pos += blocksize;
2768         }
2769
2770         map_bh.b_size = blocksize;
2771         map_bh.b_state = 0;
2772         err = get_block(inode, iblock, &map_bh, 0);
2773         if (err)
2774                 goto unlock;
2775         /* unmapped? It's a hole - nothing to do */
2776         if (!buffer_mapped(&map_bh))
2777                 goto unlock;
2778
2779         /* Ok, it's mapped. Make sure it's up-to-date */
2780         if (!PageUptodate(page)) {
2781                 err = mapping->a_ops->readpage(NULL, page);
2782                 if (err) {
2783                         page_cache_release(page);
2784                         goto out;
2785                 }
2786                 lock_page(page);
2787                 if (!PageUptodate(page)) {
2788                         err = -EIO;
2789                         goto unlock;
2790                 }
2791                 if (page_has_buffers(page))
2792                         goto has_buffers;
2793         }
2794         zero_user(page, offset, length);
2795         set_page_dirty(page);
2796         err = 0;
2797
2798 unlock:
2799         unlock_page(page);
2800         page_cache_release(page);
2801 out:
2802         return err;
2803 }
2804 EXPORT_SYMBOL(nobh_truncate_page);
2805
2806 int block_truncate_page(struct address_space *mapping,
2807                         loff_t from, get_block_t *get_block)
2808 {
2809         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2810         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2811         unsigned blocksize;
2812         sector_t iblock;
2813         unsigned length, pos;
2814         struct inode *inode = mapping->host;
2815         struct page *page;
2816         struct buffer_head *bh;
2817         int err;
2818
2819         blocksize = 1 << inode->i_blkbits;
2820         length = offset & (blocksize - 1);
2821
2822         /* Block boundary? Nothing to do */
2823         if (!length)
2824                 return 0;
2825
2826         length = blocksize - length;
2827         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2828         
2829         page = grab_cache_page(mapping, index);
2830         err = -ENOMEM;
2831         if (!page)
2832                 goto out;
2833
2834         if (!page_has_buffers(page))
2835                 create_empty_buffers(page, blocksize, 0);
2836
2837         /* Find the buffer that contains "offset" */
2838         bh = page_buffers(page);
2839         pos = blocksize;
2840         while (offset >= pos) {
2841                 bh = bh->b_this_page;
2842                 iblock++;
2843                 pos += blocksize;
2844         }
2845
2846         err = 0;
2847         if (!buffer_mapped(bh)) {
2848                 WARN_ON(bh->b_size != blocksize);
2849                 err = get_block(inode, iblock, bh, 0);
2850                 if (err)
2851                         goto unlock;
2852                 /* unmapped? It's a hole - nothing to do */
2853                 if (!buffer_mapped(bh))
2854                         goto unlock;
2855         }
2856
2857         /* Ok, it's mapped. Make sure it's up-to-date */
2858         if (PageUptodate(page))
2859                 set_buffer_uptodate(bh);
2860
2861         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2862                 err = -EIO;
2863                 ll_rw_block(READ, 1, &bh);
2864                 wait_on_buffer(bh);
2865                 /* Uhhuh. Read error. Complain and punt. */
2866                 if (!buffer_uptodate(bh))
2867                         goto unlock;
2868         }
2869
2870         zero_user(page, offset, length);
2871         mark_buffer_dirty(bh);
2872         err = 0;
2873
2874 unlock:
2875         unlock_page(page);
2876         page_cache_release(page);
2877 out:
2878         return err;
2879 }
2880 EXPORT_SYMBOL(block_truncate_page);
2881
2882 /*
2883  * The generic ->writepage function for buffer-backed address_spaces
2884  * this form passes in the end_io handler used to finish the IO.
2885  */
2886 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2887                         struct writeback_control *wbc, bh_end_io_t *handler)
2888 {
2889         struct inode * const inode = page->mapping->host;
2890         loff_t i_size = i_size_read(inode);
2891         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2892         unsigned offset;
2893
2894         /* Is the page fully inside i_size? */
2895         if (page->index < end_index)
2896                 return __block_write_full_page(inode, page, get_block, wbc,
2897                                                handler);
2898
2899         /* Is the page fully outside i_size? (truncate in progress) */
2900         offset = i_size & (PAGE_CACHE_SIZE-1);
2901         if (page->index >= end_index+1 || !offset) {
2902                 /*
2903                  * The page may have dirty, unmapped buffers.  For example,
2904                  * they may have been added in ext3_writepage().  Make them
2905                  * freeable here, so the page does not leak.
2906                  */
2907                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2908                 unlock_page(page);
2909                 return 0; /* don't care */
2910         }
2911
2912         /*
2913          * The page straddles i_size.  It must be zeroed out on each and every
2914          * writepage invocation because it may be mmapped.  "A file is mapped
2915          * in multiples of the page size.  For a file that is not a multiple of
2916          * the  page size, the remaining memory is zeroed when mapped, and
2917          * writes to that region are not written out to the file."
2918          */
2919         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2920         return __block_write_full_page(inode, page, get_block, wbc, handler);
2921 }
2922 EXPORT_SYMBOL(block_write_full_page_endio);
2923
2924 /*
2925  * The generic ->writepage function for buffer-backed address_spaces
2926  */
2927 int block_write_full_page(struct page *page, get_block_t *get_block,
2928                         struct writeback_control *wbc)
2929 {
2930         return block_write_full_page_endio(page, get_block, wbc,
2931                                            end_buffer_async_write);
2932 }
2933 EXPORT_SYMBOL(block_write_full_page);
2934
2935 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2936                             get_block_t *get_block)
2937 {
2938         struct buffer_head tmp;
2939         struct inode *inode = mapping->host;
2940         tmp.b_state = 0;
2941         tmp.b_blocknr = 0;
2942         tmp.b_size = 1 << inode->i_blkbits;
2943         get_block(inode, block, &tmp, 0);
2944         return tmp.b_blocknr;
2945 }
2946 EXPORT_SYMBOL(generic_block_bmap);
2947
2948 static void end_bio_bh_io_sync(struct bio *bio, int err)
2949 {
2950         struct buffer_head *bh = bio->bi_private;
2951
2952         if (err == -EOPNOTSUPP) {
2953                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2954         }
2955
2956         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2957                 set_bit(BH_Quiet, &bh->b_state);
2958
2959         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2960         bio_put(bio);
2961 }
2962
2963 /*
2964  * This allows us to do IO even on the odd last sectors
2965  * of a device, even if the bh block size is some multiple
2966  * of the physical sector size.
2967  *
2968  * We'll just truncate the bio to the size of the device,
2969  * and clear the end of the buffer head manually.
2970  *
2971  * Truly out-of-range accesses will turn into actual IO
2972  * errors, this only handles the "we need to be able to
2973  * do IO at the final sector" case.
2974  */
2975 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2976 {
2977         sector_t maxsector;
2978         unsigned bytes;
2979
2980         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2981         if (!maxsector)
2982                 return;
2983
2984         /*
2985          * If the *whole* IO is past the end of the device,
2986          * let it through, and the IO layer will turn it into
2987          * an EIO.
2988          */
2989         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2990                 return;
2991
2992         maxsector -= bio->bi_iter.bi_sector;
2993         bytes = bio->bi_iter.bi_size;
2994         if (likely((bytes >> 9) <= maxsector))
2995                 return;
2996
2997         /* Uhhuh. We've got a bh that straddles the device size! */
2998         bytes = maxsector << 9;
2999
3000         /* Truncate the bio.. */
3001         bio->bi_iter.bi_size = bytes;
3002         bio->bi_io_vec[0].bv_len = bytes;
3003
3004         /* ..and clear the end of the buffer for reads */
3005         if ((rw & RW_MASK) == READ) {
3006                 void *kaddr = kmap_atomic(bh->b_page);
3007                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3008                 kunmap_atomic(kaddr);
3009                 flush_dcache_page(bh->b_page);
3010         }
3011 }
3012
3013 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3014 {
3015         struct bio *bio;
3016         int ret = 0;
3017
3018         BUG_ON(!buffer_locked(bh));
3019         BUG_ON(!buffer_mapped(bh));
3020         BUG_ON(!bh->b_end_io);
3021         BUG_ON(buffer_delay(bh));
3022         BUG_ON(buffer_unwritten(bh));
3023
3024         /*
3025          * Only clear out a write error when rewriting
3026          */
3027         if (test_set_buffer_req(bh) && (rw & WRITE))
3028                 clear_buffer_write_io_error(bh);
3029
3030         /*
3031          * from here on down, it's all bio -- do the initial mapping,
3032          * submit_bio -> generic_make_request may further map this bio around
3033          */
3034         bio = bio_alloc(GFP_NOIO, 1);
3035
3036         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3037         bio->bi_bdev = bh->b_bdev;
3038         bio->bi_io_vec[0].bv_page = bh->b_page;
3039         bio->bi_io_vec[0].bv_len = bh->b_size;
3040         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3041
3042         bio->bi_vcnt = 1;
3043         bio->bi_iter.bi_size = bh->b_size;
3044
3045         bio->bi_end_io = end_bio_bh_io_sync;
3046         bio->bi_private = bh;
3047         bio->bi_flags |= bio_flags;
3048
3049         /* Take care of bh's that straddle the end of the device */
3050         guard_bh_eod(rw, bio, bh);
3051
3052         if (buffer_meta(bh))
3053                 rw |= REQ_META;
3054         if (buffer_prio(bh))
3055                 rw |= REQ_PRIO;
3056
3057         bio_get(bio);
3058         submit_bio(rw, bio);
3059
3060         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3061                 ret = -EOPNOTSUPP;
3062
3063         bio_put(bio);
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(_submit_bh);
3067
3068 int submit_bh(int rw, struct buffer_head *bh)
3069 {
3070         return _submit_bh(rw, bh, 0);
3071 }
3072 EXPORT_SYMBOL(submit_bh);
3073
3074 /**
3075  * ll_rw_block: low-level access to block devices (DEPRECATED)
3076  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3077  * @nr: number of &struct buffer_heads in the array
3078  * @bhs: array of pointers to &struct buffer_head
3079  *
3080  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3081  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3082  * %READA option is described in the documentation for generic_make_request()
3083  * which ll_rw_block() calls.
3084  *
3085  * This function drops any buffer that it cannot get a lock on (with the
3086  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3087  * request, and any buffer that appears to be up-to-date when doing read
3088  * request.  Further it marks as clean buffers that are processed for
3089  * writing (the buffer cache won't assume that they are actually clean
3090  * until the buffer gets unlocked).
3091  *
3092  * ll_rw_block sets b_end_io to simple completion handler that marks
3093  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3094  * any waiters. 
3095  *
3096  * All of the buffers must be for the same device, and must also be a
3097  * multiple of the current approved size for the device.
3098  */
3099 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3100 {
3101         int i;
3102
3103         for (i = 0; i < nr; i++) {
3104                 struct buffer_head *bh = bhs[i];
3105
3106                 if (!trylock_buffer(bh))
3107                         continue;
3108                 if (rw == WRITE) {
3109                         if (test_clear_buffer_dirty(bh)) {
3110                                 bh->b_end_io = end_buffer_write_sync;
3111                                 get_bh(bh);
3112                                 submit_bh(WRITE, bh);
3113                                 continue;
3114                         }
3115                 } else {
3116                         if (!buffer_uptodate(bh)) {
3117                                 bh->b_end_io = end_buffer_read_sync;
3118                                 get_bh(bh);
3119                                 submit_bh(rw, bh);
3120                                 continue;
3121                         }
3122                 }
3123                 unlock_buffer(bh);
3124         }
3125 }
3126 EXPORT_SYMBOL(ll_rw_block);
3127
3128 void write_dirty_buffer(struct buffer_head *bh, int rw)
3129 {
3130         lock_buffer(bh);
3131         if (!test_clear_buffer_dirty(bh)) {
3132                 unlock_buffer(bh);
3133                 return;
3134         }
3135         bh->b_end_io = end_buffer_write_sync;
3136         get_bh(bh);
3137         submit_bh(rw, bh);
3138 }
3139 EXPORT_SYMBOL(write_dirty_buffer);
3140
3141 /*
3142  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3143  * and then start new I/O and then wait upon it.  The caller must have a ref on
3144  * the buffer_head.
3145  */
3146 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3147 {
3148         int ret = 0;
3149
3150         WARN_ON(atomic_read(&bh->b_count) < 1);
3151         lock_buffer(bh);
3152         if (test_clear_buffer_dirty(bh)) {
3153                 get_bh(bh);
3154                 bh->b_end_io = end_buffer_write_sync;
3155                 ret = submit_bh(rw, bh);
3156                 wait_on_buffer(bh);
3157                 if (!ret && !buffer_uptodate(bh))
3158                         ret = -EIO;
3159         } else {
3160                 unlock_buffer(bh);
3161         }
3162         return ret;
3163 }
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3165
3166 int sync_dirty_buffer(struct buffer_head *bh)
3167 {
3168         return __sync_dirty_buffer(bh, WRITE_SYNC);
3169 }
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3171
3172 /*
3173  * try_to_free_buffers() checks if all the buffers on this particular page
3174  * are unused, and releases them if so.
3175  *
3176  * Exclusion against try_to_free_buffers may be obtained by either
3177  * locking the page or by holding its mapping's private_lock.
3178  *
3179  * If the page is dirty but all the buffers are clean then we need to
3180  * be sure to mark the page clean as well.  This is because the page
3181  * may be against a block device, and a later reattachment of buffers
3182  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3183  * filesystem data on the same device.
3184  *
3185  * The same applies to regular filesystem pages: if all the buffers are
3186  * clean then we set the page clean and proceed.  To do that, we require
3187  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3188  * private_lock.
3189  *
3190  * try_to_free_buffers() is non-blocking.
3191  */
3192 static inline int buffer_busy(struct buffer_head *bh)
3193 {
3194         return atomic_read(&bh->b_count) |
3195                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 }
3197
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3200 {
3201         struct buffer_head *head = page_buffers(page);
3202         struct buffer_head *bh;
3203
3204         bh = head;
3205         do {
3206                 if (buffer_write_io_error(bh) && page->mapping)
3207                         set_bit(AS_EIO, &page->mapping->flags);
3208                 if (buffer_busy(bh))
3209                         goto failed;
3210                 bh = bh->b_this_page;
3211         } while (bh != head);
3212
3213         do {
3214                 struct buffer_head *next = bh->b_this_page;
3215
3216                 if (bh->b_assoc_map)
3217                         __remove_assoc_queue(bh);
3218                 bh = next;
3219         } while (bh != head);
3220         *buffers_to_free = head;
3221         __clear_page_buffers(page);
3222         return 1;
3223 failed:
3224         return 0;
3225 }
3226
3227 int try_to_free_buffers(struct page *page)
3228 {
3229         struct address_space * const mapping = page->mapping;
3230         struct buffer_head *buffers_to_free = NULL;
3231         int ret = 0;
3232
3233         BUG_ON(!PageLocked(page));
3234         if (PageWriteback(page))
3235                 return 0;
3236
3237         if (mapping == NULL) {          /* can this still happen? */
3238                 ret = drop_buffers(page, &buffers_to_free);
3239                 goto out;
3240         }
3241
3242         spin_lock(&mapping->private_lock);
3243         ret = drop_buffers(page, &buffers_to_free);
3244
3245         /*
3246          * If the filesystem writes its buffers by hand (eg ext3)
3247          * then we can have clean buffers against a dirty page.  We
3248          * clean the page here; otherwise the VM will never notice
3249          * that the filesystem did any IO at all.
3250          *
3251          * Also, during truncate, discard_buffer will have marked all
3252          * the page's buffers clean.  We discover that here and clean
3253          * the page also.
3254          *
3255          * private_lock must be held over this entire operation in order
3256          * to synchronise against __set_page_dirty_buffers and prevent the
3257          * dirty bit from being lost.
3258          */
3259         if (ret)
3260                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3261         spin_unlock(&mapping->private_lock);
3262 out:
3263         if (buffers_to_free) {
3264                 struct buffer_head *bh = buffers_to_free;
3265
3266                 do {
3267                         struct buffer_head *next = bh->b_this_page;
3268                         free_buffer_head(bh);
3269                         bh = next;
3270                 } while (bh != buffers_to_free);
3271         }
3272         return ret;
3273 }
3274 EXPORT_SYMBOL(try_to_free_buffers);
3275
3276 /*
3277  * There are no bdflush tunables left.  But distributions are
3278  * still running obsolete flush daemons, so we terminate them here.
3279  *
3280  * Use of bdflush() is deprecated and will be removed in a future kernel.
3281  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3282  */
3283 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3284 {
3285         static int msg_count;
3286
3287         if (!capable(CAP_SYS_ADMIN))
3288                 return -EPERM;
3289
3290         if (msg_count < 5) {
3291                 msg_count++;
3292                 printk(KERN_INFO
3293                         "warning: process `%s' used the obsolete bdflush"
3294                         " system call\n", current->comm);
3295                 printk(KERN_INFO "Fix your initscripts?\n");
3296         }
3297
3298         if (func == 1)
3299                 do_exit(0);
3300         return 0;
3301 }
3302
3303 /*
3304  * Buffer-head allocation
3305  */
3306 static struct kmem_cache *bh_cachep __read_mostly;
3307
3308 /*
3309  * Once the number of bh's in the machine exceeds this level, we start
3310  * stripping them in writeback.
3311  */
3312 static unsigned long max_buffer_heads;
3313
3314 int buffer_heads_over_limit;
3315
3316 struct bh_accounting {
3317         int nr;                 /* Number of live bh's */
3318         int ratelimit;          /* Limit cacheline bouncing */
3319 };
3320
3321 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3322
3323 static void recalc_bh_state(void)
3324 {
3325         int i;
3326         int tot = 0;
3327
3328         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3329                 return;
3330         __this_cpu_write(bh_accounting.ratelimit, 0);
3331         for_each_online_cpu(i)
3332                 tot += per_cpu(bh_accounting, i).nr;
3333         buffer_heads_over_limit = (tot > max_buffer_heads);
3334 }
3335
3336 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3337 {
3338         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3339         if (ret) {
3340                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3341                 preempt_disable();
3342                 __this_cpu_inc(bh_accounting.nr);
3343                 recalc_bh_state();
3344                 preempt_enable();
3345         }
3346         return ret;
3347 }
3348 EXPORT_SYMBOL(alloc_buffer_head);
3349
3350 void free_buffer_head(struct buffer_head *bh)
3351 {
3352         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3353         kmem_cache_free(bh_cachep, bh);
3354         preempt_disable();
3355         __this_cpu_dec(bh_accounting.nr);
3356         recalc_bh_state();
3357         preempt_enable();
3358 }
3359 EXPORT_SYMBOL(free_buffer_head);
3360
3361 static void buffer_exit_cpu(int cpu)
3362 {
3363         int i;
3364         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3365
3366         for (i = 0; i < BH_LRU_SIZE; i++) {
3367                 brelse(b->bhs[i]);
3368                 b->bhs[i] = NULL;
3369         }
3370         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3371         per_cpu(bh_accounting, cpu).nr = 0;
3372 }
3373
3374 static int buffer_cpu_notify(struct notifier_block *self,
3375                               unsigned long action, void *hcpu)
3376 {
3377         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3378                 buffer_exit_cpu((unsigned long)hcpu);
3379         return NOTIFY_OK;
3380 }
3381
3382 /**
3383  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3384  * @bh: struct buffer_head
3385  *
3386  * Return true if the buffer is up-to-date and false,
3387  * with the buffer locked, if not.
3388  */
3389 int bh_uptodate_or_lock(struct buffer_head *bh)
3390 {
3391         if (!buffer_uptodate(bh)) {
3392                 lock_buffer(bh);
3393                 if (!buffer_uptodate(bh))
3394                         return 0;
3395                 unlock_buffer(bh);
3396         }
3397         return 1;
3398 }
3399 EXPORT_SYMBOL(bh_uptodate_or_lock);
3400
3401 /**
3402  * bh_submit_read - Submit a locked buffer for reading
3403  * @bh: struct buffer_head
3404  *
3405  * Returns zero on success and -EIO on error.
3406  */
3407 int bh_submit_read(struct buffer_head *bh)
3408 {
3409         BUG_ON(!buffer_locked(bh));
3410
3411         if (buffer_uptodate(bh)) {
3412                 unlock_buffer(bh);
3413                 return 0;
3414         }
3415
3416         get_bh(bh);
3417         bh->b_end_io = end_buffer_read_sync;
3418         submit_bh(READ, bh);
3419         wait_on_buffer(bh);
3420         if (buffer_uptodate(bh))
3421                 return 0;
3422         return -EIO;
3423 }
3424 EXPORT_SYMBOL(bh_submit_read);
3425
3426 void __init buffer_init(void)
3427 {
3428         unsigned long nrpages;
3429
3430         bh_cachep = kmem_cache_create("buffer_head",
3431                         sizeof(struct buffer_head), 0,
3432                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3433                                 SLAB_MEM_SPREAD),
3434                                 NULL);
3435
3436         /*
3437          * Limit the bh occupancy to 10% of ZONE_NORMAL
3438          */
3439         nrpages = (nr_free_buffer_pages() * 10) / 100;
3440         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3441         hotcpu_notifier(buffer_cpu_notify, 0);
3442 }