]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/buffer.c
sky2: align IP header on Rx if possible
[mv-sheeva.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         __inc_bdi_stat(mapping->backing_dev_info,
714                                         BDI_RECLAIMABLE);
715                         task_io_account_write(PAGE_CACHE_SIZE);
716                 }
717                 radix_tree_tag_set(&mapping->page_tree,
718                                 page_index(page), PAGECACHE_TAG_DIRTY);
719         }
720         write_unlock_irq(&mapping->tree_lock);
721         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722
723         return 1;
724 }
725
726 /*
727  * Add a page to the dirty page list.
728  *
729  * It is a sad fact of life that this function is called from several places
730  * deeply under spinlocking.  It may not sleep.
731  *
732  * If the page has buffers, the uptodate buffers are set dirty, to preserve
733  * dirty-state coherency between the page and the buffers.  It the page does
734  * not have buffers then when they are later attached they will all be set
735  * dirty.
736  *
737  * The buffers are dirtied before the page is dirtied.  There's a small race
738  * window in which a writepage caller may see the page cleanness but not the
739  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
740  * before the buffers, a concurrent writepage caller could clear the page dirty
741  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742  * page on the dirty page list.
743  *
744  * We use private_lock to lock against try_to_free_buffers while using the
745  * page's buffer list.  Also use this to protect against clean buffers being
746  * added to the page after it was set dirty.
747  *
748  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
749  * address_space though.
750  */
751 int __set_page_dirty_buffers(struct page *page)
752 {
753         struct address_space *mapping = page_mapping(page);
754
755         if (unlikely(!mapping))
756                 return !TestSetPageDirty(page);
757
758         spin_lock(&mapping->private_lock);
759         if (page_has_buffers(page)) {
760                 struct buffer_head *head = page_buffers(page);
761                 struct buffer_head *bh = head;
762
763                 do {
764                         set_buffer_dirty(bh);
765                         bh = bh->b_this_page;
766                 } while (bh != head);
767         }
768         spin_unlock(&mapping->private_lock);
769
770         return __set_page_dirty(page, mapping, 1);
771 }
772 EXPORT_SYMBOL(__set_page_dirty_buffers);
773
774 /*
775  * Write out and wait upon a list of buffers.
776  *
777  * We have conflicting pressures: we want to make sure that all
778  * initially dirty buffers get waited on, but that any subsequently
779  * dirtied buffers don't.  After all, we don't want fsync to last
780  * forever if somebody is actively writing to the file.
781  *
782  * Do this in two main stages: first we copy dirty buffers to a
783  * temporary inode list, queueing the writes as we go.  Then we clean
784  * up, waiting for those writes to complete.
785  * 
786  * During this second stage, any subsequent updates to the file may end
787  * up refiling the buffer on the original inode's dirty list again, so
788  * there is a chance we will end up with a buffer queued for write but
789  * not yet completed on that list.  So, as a final cleanup we go through
790  * the osync code to catch these locked, dirty buffers without requeuing
791  * any newly dirty buffers for write.
792  */
793 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794 {
795         struct buffer_head *bh;
796         struct list_head tmp;
797         int err = 0, err2;
798
799         INIT_LIST_HEAD(&tmp);
800
801         spin_lock(lock);
802         while (!list_empty(list)) {
803                 bh = BH_ENTRY(list->next);
804                 __remove_assoc_queue(bh);
805                 if (buffer_dirty(bh) || buffer_locked(bh)) {
806                         list_add(&bh->b_assoc_buffers, &tmp);
807                         if (buffer_dirty(bh)) {
808                                 get_bh(bh);
809                                 spin_unlock(lock);
810                                 /*
811                                  * Ensure any pending I/O completes so that
812                                  * ll_rw_block() actually writes the current
813                                  * contents - it is a noop if I/O is still in
814                                  * flight on potentially older contents.
815                                  */
816                                 ll_rw_block(SWRITE, 1, &bh);
817                                 brelse(bh);
818                                 spin_lock(lock);
819                         }
820                 }
821         }
822
823         while (!list_empty(&tmp)) {
824                 bh = BH_ENTRY(tmp.prev);
825                 list_del_init(&bh->b_assoc_buffers);
826                 get_bh(bh);
827                 spin_unlock(lock);
828                 wait_on_buffer(bh);
829                 if (!buffer_uptodate(bh))
830                         err = -EIO;
831                 brelse(bh);
832                 spin_lock(lock);
833         }
834         
835         spin_unlock(lock);
836         err2 = osync_buffers_list(lock, list);
837         if (err)
838                 return err;
839         else
840                 return err2;
841 }
842
843 /*
844  * Invalidate any and all dirty buffers on a given inode.  We are
845  * probably unmounting the fs, but that doesn't mean we have already
846  * done a sync().  Just drop the buffers from the inode list.
847  *
848  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
849  * assumes that all the buffers are against the blockdev.  Not true
850  * for reiserfs.
851  */
852 void invalidate_inode_buffers(struct inode *inode)
853 {
854         if (inode_has_buffers(inode)) {
855                 struct address_space *mapping = &inode->i_data;
856                 struct list_head *list = &mapping->private_list;
857                 struct address_space *buffer_mapping = mapping->assoc_mapping;
858
859                 spin_lock(&buffer_mapping->private_lock);
860                 while (!list_empty(list))
861                         __remove_assoc_queue(BH_ENTRY(list->next));
862                 spin_unlock(&buffer_mapping->private_lock);
863         }
864 }
865
866 /*
867  * Remove any clean buffers from the inode's buffer list.  This is called
868  * when we're trying to free the inode itself.  Those buffers can pin it.
869  *
870  * Returns true if all buffers were removed.
871  */
872 int remove_inode_buffers(struct inode *inode)
873 {
874         int ret = 1;
875
876         if (inode_has_buffers(inode)) {
877                 struct address_space *mapping = &inode->i_data;
878                 struct list_head *list = &mapping->private_list;
879                 struct address_space *buffer_mapping = mapping->assoc_mapping;
880
881                 spin_lock(&buffer_mapping->private_lock);
882                 while (!list_empty(list)) {
883                         struct buffer_head *bh = BH_ENTRY(list->next);
884                         if (buffer_dirty(bh)) {
885                                 ret = 0;
886                                 break;
887                         }
888                         __remove_assoc_queue(bh);
889                 }
890                 spin_unlock(&buffer_mapping->private_lock);
891         }
892         return ret;
893 }
894
895 /*
896  * Create the appropriate buffers when given a page for data area and
897  * the size of each buffer.. Use the bh->b_this_page linked list to
898  * follow the buffers created.  Return NULL if unable to create more
899  * buffers.
900  *
901  * The retry flag is used to differentiate async IO (paging, swapping)
902  * which may not fail from ordinary buffer allocations.
903  */
904 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905                 int retry)
906 {
907         struct buffer_head *bh, *head;
908         long offset;
909
910 try_again:
911         head = NULL;
912         offset = PAGE_SIZE;
913         while ((offset -= size) >= 0) {
914                 bh = alloc_buffer_head(GFP_NOFS);
915                 if (!bh)
916                         goto no_grow;
917
918                 bh->b_bdev = NULL;
919                 bh->b_this_page = head;
920                 bh->b_blocknr = -1;
921                 head = bh;
922
923                 bh->b_state = 0;
924                 atomic_set(&bh->b_count, 0);
925                 bh->b_private = NULL;
926                 bh->b_size = size;
927
928                 /* Link the buffer to its page */
929                 set_bh_page(bh, page, offset);
930
931                 init_buffer(bh, NULL, NULL);
932         }
933         return head;
934 /*
935  * In case anything failed, we just free everything we got.
936  */
937 no_grow:
938         if (head) {
939                 do {
940                         bh = head;
941                         head = head->b_this_page;
942                         free_buffer_head(bh);
943                 } while (head);
944         }
945
946         /*
947          * Return failure for non-async IO requests.  Async IO requests
948          * are not allowed to fail, so we have to wait until buffer heads
949          * become available.  But we don't want tasks sleeping with 
950          * partially complete buffers, so all were released above.
951          */
952         if (!retry)
953                 return NULL;
954
955         /* We're _really_ low on memory. Now we just
956          * wait for old buffer heads to become free due to
957          * finishing IO.  Since this is an async request and
958          * the reserve list is empty, we're sure there are 
959          * async buffer heads in use.
960          */
961         free_more_memory();
962         goto try_again;
963 }
964 EXPORT_SYMBOL_GPL(alloc_page_buffers);
965
966 static inline void
967 link_dev_buffers(struct page *page, struct buffer_head *head)
968 {
969         struct buffer_head *bh, *tail;
970
971         bh = head;
972         do {
973                 tail = bh;
974                 bh = bh->b_this_page;
975         } while (bh);
976         tail->b_this_page = head;
977         attach_page_buffers(page, head);
978 }
979
980 /*
981  * Initialise the state of a blockdev page's buffers.
982  */ 
983 static void
984 init_page_buffers(struct page *page, struct block_device *bdev,
985                         sector_t block, int size)
986 {
987         struct buffer_head *head = page_buffers(page);
988         struct buffer_head *bh = head;
989         int uptodate = PageUptodate(page);
990
991         do {
992                 if (!buffer_mapped(bh)) {
993                         init_buffer(bh, NULL, NULL);
994                         bh->b_bdev = bdev;
995                         bh->b_blocknr = block;
996                         if (uptodate)
997                                 set_buffer_uptodate(bh);
998                         set_buffer_mapped(bh);
999                 }
1000                 block++;
1001                 bh = bh->b_this_page;
1002         } while (bh != head);
1003 }
1004
1005 /*
1006  * Create the page-cache page that contains the requested block.
1007  *
1008  * This is user purely for blockdev mappings.
1009  */
1010 static struct page *
1011 grow_dev_page(struct block_device *bdev, sector_t block,
1012                 pgoff_t index, int size)
1013 {
1014         struct inode *inode = bdev->bd_inode;
1015         struct page *page;
1016         struct buffer_head *bh;
1017
1018         page = find_or_create_page(inode->i_mapping, index,
1019                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1020         if (!page)
1021                 return NULL;
1022
1023         BUG_ON(!PageLocked(page));
1024
1025         if (page_has_buffers(page)) {
1026                 bh = page_buffers(page);
1027                 if (bh->b_size == size) {
1028                         init_page_buffers(page, bdev, block, size);
1029                         return page;
1030                 }
1031                 if (!try_to_free_buffers(page))
1032                         goto failed;
1033         }
1034
1035         /*
1036          * Allocate some buffers for this page
1037          */
1038         bh = alloc_page_buffers(page, size, 0);
1039         if (!bh)
1040                 goto failed;
1041
1042         /*
1043          * Link the page to the buffers and initialise them.  Take the
1044          * lock to be atomic wrt __find_get_block(), which does not
1045          * run under the page lock.
1046          */
1047         spin_lock(&inode->i_mapping->private_lock);
1048         link_dev_buffers(page, bh);
1049         init_page_buffers(page, bdev, block, size);
1050         spin_unlock(&inode->i_mapping->private_lock);
1051         return page;
1052
1053 failed:
1054         BUG();
1055         unlock_page(page);
1056         page_cache_release(page);
1057         return NULL;
1058 }
1059
1060 /*
1061  * Create buffers for the specified block device block's page.  If
1062  * that page was dirty, the buffers are set dirty also.
1063  */
1064 static int
1065 grow_buffers(struct block_device *bdev, sector_t block, int size)
1066 {
1067         struct page *page;
1068         pgoff_t index;
1069         int sizebits;
1070
1071         sizebits = -1;
1072         do {
1073                 sizebits++;
1074         } while ((size << sizebits) < PAGE_SIZE);
1075
1076         index = block >> sizebits;
1077
1078         /*
1079          * Check for a block which wants to lie outside our maximum possible
1080          * pagecache index.  (this comparison is done using sector_t types).
1081          */
1082         if (unlikely(index != block >> sizebits)) {
1083                 char b[BDEVNAME_SIZE];
1084
1085                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086                         "device %s\n",
1087                         __FUNCTION__, (unsigned long long)block,
1088                         bdevname(bdev, b));
1089                 return -EIO;
1090         }
1091         block = index << sizebits;
1092         /* Create a page with the proper size buffers.. */
1093         page = grow_dev_page(bdev, block, index, size);
1094         if (!page)
1095                 return 0;
1096         unlock_page(page);
1097         page_cache_release(page);
1098         return 1;
1099 }
1100
1101 static struct buffer_head *
1102 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1103 {
1104         /* Size must be multiple of hard sectorsize */
1105         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106                         (size < 512 || size > PAGE_SIZE))) {
1107                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108                                         size);
1109                 printk(KERN_ERR "hardsect size: %d\n",
1110                                         bdev_hardsect_size(bdev));
1111
1112                 dump_stack();
1113                 return NULL;
1114         }
1115
1116         for (;;) {
1117                 struct buffer_head * bh;
1118                 int ret;
1119
1120                 bh = __find_get_block(bdev, block, size);
1121                 if (bh)
1122                         return bh;
1123
1124                 ret = grow_buffers(bdev, block, size);
1125                 if (ret < 0)
1126                         return NULL;
1127                 if (ret == 0)
1128                         free_more_memory();
1129         }
1130 }
1131
1132 /*
1133  * The relationship between dirty buffers and dirty pages:
1134  *
1135  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136  * the page is tagged dirty in its radix tree.
1137  *
1138  * At all times, the dirtiness of the buffers represents the dirtiness of
1139  * subsections of the page.  If the page has buffers, the page dirty bit is
1140  * merely a hint about the true dirty state.
1141  *
1142  * When a page is set dirty in its entirety, all its buffers are marked dirty
1143  * (if the page has buffers).
1144  *
1145  * When a buffer is marked dirty, its page is dirtied, but the page's other
1146  * buffers are not.
1147  *
1148  * Also.  When blockdev buffers are explicitly read with bread(), they
1149  * individually become uptodate.  But their backing page remains not
1150  * uptodate - even if all of its buffers are uptodate.  A subsequent
1151  * block_read_full_page() against that page will discover all the uptodate
1152  * buffers, will set the page uptodate and will perform no I/O.
1153  */
1154
1155 /**
1156  * mark_buffer_dirty - mark a buffer_head as needing writeout
1157  * @bh: the buffer_head to mark dirty
1158  *
1159  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160  * backing page dirty, then tag the page as dirty in its address_space's radix
1161  * tree and then attach the address_space's inode to its superblock's dirty
1162  * inode list.
1163  *
1164  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1165  * mapping->tree_lock and the global inode_lock.
1166  */
1167 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168 {
1169         WARN_ON_ONCE(!buffer_uptodate(bh));
1170         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1171                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1172 }
1173
1174 /*
1175  * Decrement a buffer_head's reference count.  If all buffers against a page
1176  * have zero reference count, are clean and unlocked, and if the page is clean
1177  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179  * a page but it ends up not being freed, and buffers may later be reattached).
1180  */
1181 void __brelse(struct buffer_head * buf)
1182 {
1183         if (atomic_read(&buf->b_count)) {
1184                 put_bh(buf);
1185                 return;
1186         }
1187         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188         WARN_ON(1);
1189 }
1190
1191 /*
1192  * bforget() is like brelse(), except it discards any
1193  * potentially dirty data.
1194  */
1195 void __bforget(struct buffer_head *bh)
1196 {
1197         clear_buffer_dirty(bh);
1198         if (!list_empty(&bh->b_assoc_buffers)) {
1199                 struct address_space *buffer_mapping = bh->b_page->mapping;
1200
1201                 spin_lock(&buffer_mapping->private_lock);
1202                 list_del_init(&bh->b_assoc_buffers);
1203                 bh->b_assoc_map = NULL;
1204                 spin_unlock(&buffer_mapping->private_lock);
1205         }
1206         __brelse(bh);
1207 }
1208
1209 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 {
1211         lock_buffer(bh);
1212         if (buffer_uptodate(bh)) {
1213                 unlock_buffer(bh);
1214                 return bh;
1215         } else {
1216                 get_bh(bh);
1217                 bh->b_end_io = end_buffer_read_sync;
1218                 submit_bh(READ, bh);
1219                 wait_on_buffer(bh);
1220                 if (buffer_uptodate(bh))
1221                         return bh;
1222         }
1223         brelse(bh);
1224         return NULL;
1225 }
1226
1227 /*
1228  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232  * CPU's LRUs at the same time.
1233  *
1234  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235  * sb_find_get_block().
1236  *
1237  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238  * a local interrupt disable for that.
1239  */
1240
1241 #define BH_LRU_SIZE     8
1242
1243 struct bh_lru {
1244         struct buffer_head *bhs[BH_LRU_SIZE];
1245 };
1246
1247 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249 #ifdef CONFIG_SMP
1250 #define bh_lru_lock()   local_irq_disable()
1251 #define bh_lru_unlock() local_irq_enable()
1252 #else
1253 #define bh_lru_lock()   preempt_disable()
1254 #define bh_lru_unlock() preempt_enable()
1255 #endif
1256
1257 static inline void check_irqs_on(void)
1258 {
1259 #ifdef irqs_disabled
1260         BUG_ON(irqs_disabled());
1261 #endif
1262 }
1263
1264 /*
1265  * The LRU management algorithm is dopey-but-simple.  Sorry.
1266  */
1267 static void bh_lru_install(struct buffer_head *bh)
1268 {
1269         struct buffer_head *evictee = NULL;
1270         struct bh_lru *lru;
1271
1272         check_irqs_on();
1273         bh_lru_lock();
1274         lru = &__get_cpu_var(bh_lrus);
1275         if (lru->bhs[0] != bh) {
1276                 struct buffer_head *bhs[BH_LRU_SIZE];
1277                 int in;
1278                 int out = 0;
1279
1280                 get_bh(bh);
1281                 bhs[out++] = bh;
1282                 for (in = 0; in < BH_LRU_SIZE; in++) {
1283                         struct buffer_head *bh2 = lru->bhs[in];
1284
1285                         if (bh2 == bh) {
1286                                 __brelse(bh2);
1287                         } else {
1288                                 if (out >= BH_LRU_SIZE) {
1289                                         BUG_ON(evictee != NULL);
1290                                         evictee = bh2;
1291                                 } else {
1292                                         bhs[out++] = bh2;
1293                                 }
1294                         }
1295                 }
1296                 while (out < BH_LRU_SIZE)
1297                         bhs[out++] = NULL;
1298                 memcpy(lru->bhs, bhs, sizeof(bhs));
1299         }
1300         bh_lru_unlock();
1301
1302         if (evictee)
1303                 __brelse(evictee);
1304 }
1305
1306 /*
1307  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1308  */
1309 static struct buffer_head *
1310 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312         struct buffer_head *ret = NULL;
1313         struct bh_lru *lru;
1314         unsigned int i;
1315
1316         check_irqs_on();
1317         bh_lru_lock();
1318         lru = &__get_cpu_var(bh_lrus);
1319         for (i = 0; i < BH_LRU_SIZE; i++) {
1320                 struct buffer_head *bh = lru->bhs[i];
1321
1322                 if (bh && bh->b_bdev == bdev &&
1323                                 bh->b_blocknr == block && bh->b_size == size) {
1324                         if (i) {
1325                                 while (i) {
1326                                         lru->bhs[i] = lru->bhs[i - 1];
1327                                         i--;
1328                                 }
1329                                 lru->bhs[0] = bh;
1330                         }
1331                         get_bh(bh);
1332                         ret = bh;
1333                         break;
1334                 }
1335         }
1336         bh_lru_unlock();
1337         return ret;
1338 }
1339
1340 /*
1341  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342  * it in the LRU and mark it as accessed.  If it is not present then return
1343  * NULL
1344  */
1345 struct buffer_head *
1346 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350         if (bh == NULL) {
1351                 bh = __find_get_block_slow(bdev, block);
1352                 if (bh)
1353                         bh_lru_install(bh);
1354         }
1355         if (bh)
1356                 touch_buffer(bh);
1357         return bh;
1358 }
1359 EXPORT_SYMBOL(__find_get_block);
1360
1361 /*
1362  * __getblk will locate (and, if necessary, create) the buffer_head
1363  * which corresponds to the passed block_device, block and size. The
1364  * returned buffer has its reference count incremented.
1365  *
1366  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367  * illegal block number, __getblk() will happily return a buffer_head
1368  * which represents the non-existent block.  Very weird.
1369  *
1370  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371  * attempt is failing.  FIXME, perhaps?
1372  */
1373 struct buffer_head *
1374 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1375 {
1376         struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378         might_sleep();
1379         if (bh == NULL)
1380                 bh = __getblk_slow(bdev, block, size);
1381         return bh;
1382 }
1383 EXPORT_SYMBOL(__getblk);
1384
1385 /*
1386  * Do async read-ahead on a buffer..
1387  */
1388 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390         struct buffer_head *bh = __getblk(bdev, block, size);
1391         if (likely(bh)) {
1392                 ll_rw_block(READA, 1, &bh);
1393                 brelse(bh);
1394         }
1395 }
1396 EXPORT_SYMBOL(__breadahead);
1397
1398 /**
1399  *  __bread() - reads a specified block and returns the bh
1400  *  @bdev: the block_device to read from
1401  *  @block: number of block
1402  *  @size: size (in bytes) to read
1403  * 
1404  *  Reads a specified block, and returns buffer head that contains it.
1405  *  It returns NULL if the block was unreadable.
1406  */
1407 struct buffer_head *
1408 __bread(struct block_device *bdev, sector_t block, unsigned size)
1409 {
1410         struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412         if (likely(bh) && !buffer_uptodate(bh))
1413                 bh = __bread_slow(bh);
1414         return bh;
1415 }
1416 EXPORT_SYMBOL(__bread);
1417
1418 /*
1419  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420  * This doesn't race because it runs in each cpu either in irq
1421  * or with preempt disabled.
1422  */
1423 static void invalidate_bh_lru(void *arg)
1424 {
1425         struct bh_lru *b = &get_cpu_var(bh_lrus);
1426         int i;
1427
1428         for (i = 0; i < BH_LRU_SIZE; i++) {
1429                 brelse(b->bhs[i]);
1430                 b->bhs[i] = NULL;
1431         }
1432         put_cpu_var(bh_lrus);
1433 }
1434         
1435 void invalidate_bh_lrus(void)
1436 {
1437         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438 }
1439
1440 void set_bh_page(struct buffer_head *bh,
1441                 struct page *page, unsigned long offset)
1442 {
1443         bh->b_page = page;
1444         BUG_ON(offset >= PAGE_SIZE);
1445         if (PageHighMem(page))
1446                 /*
1447                  * This catches illegal uses and preserves the offset:
1448                  */
1449                 bh->b_data = (char *)(0 + offset);
1450         else
1451                 bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460         lock_buffer(bh);
1461         clear_buffer_dirty(bh);
1462         bh->b_bdev = NULL;
1463         clear_buffer_mapped(bh);
1464         clear_buffer_req(bh);
1465         clear_buffer_new(bh);
1466         clear_buffer_delay(bh);
1467         clear_buffer_unwritten(bh);
1468         unlock_buffer(bh);
1469 }
1470
1471 /**
1472  * block_invalidatepage - invalidate part of all of a buffer-backed page
1473  *
1474  * @page: the page which is affected
1475  * @offset: the index of the truncation point
1476  *
1477  * block_invalidatepage() is called when all or part of the page has become
1478  * invalidatedby a truncate operation.
1479  *
1480  * block_invalidatepage() does not have to release all buffers, but it must
1481  * ensure that no dirty buffer is left outside @offset and that no I/O
1482  * is underway against any of the blocks which are outside the truncation
1483  * point.  Because the caller is about to free (and possibly reuse) those
1484  * blocks on-disk.
1485  */
1486 void block_invalidatepage(struct page *page, unsigned long offset)
1487 {
1488         struct buffer_head *head, *bh, *next;
1489         unsigned int curr_off = 0;
1490
1491         BUG_ON(!PageLocked(page));
1492         if (!page_has_buffers(page))
1493                 goto out;
1494
1495         head = page_buffers(page);
1496         bh = head;
1497         do {
1498                 unsigned int next_off = curr_off + bh->b_size;
1499                 next = bh->b_this_page;
1500
1501                 /*
1502                  * is this block fully invalidated?
1503                  */
1504                 if (offset <= curr_off)
1505                         discard_buffer(bh);
1506                 curr_off = next_off;
1507                 bh = next;
1508         } while (bh != head);
1509
1510         /*
1511          * We release buffers only if the entire page is being invalidated.
1512          * The get_block cached value has been unconditionally invalidated,
1513          * so real IO is not possible anymore.
1514          */
1515         if (offset == 0)
1516                 try_to_release_page(page, 0);
1517 out:
1518         return;
1519 }
1520 EXPORT_SYMBOL(block_invalidatepage);
1521
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528                         unsigned long blocksize, unsigned long b_state)
1529 {
1530         struct buffer_head *bh, *head, *tail;
1531
1532         head = alloc_page_buffers(page, blocksize, 1);
1533         bh = head;
1534         do {
1535                 bh->b_state |= b_state;
1536                 tail = bh;
1537                 bh = bh->b_this_page;
1538         } while (bh);
1539         tail->b_this_page = head;
1540
1541         spin_lock(&page->mapping->private_lock);
1542         if (PageUptodate(page) || PageDirty(page)) {
1543                 bh = head;
1544                 do {
1545                         if (PageDirty(page))
1546                                 set_buffer_dirty(bh);
1547                         if (PageUptodate(page))
1548                                 set_buffer_uptodate(bh);
1549                         bh = bh->b_this_page;
1550                 } while (bh != head);
1551         }
1552         attach_page_buffers(page, head);
1553         spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556
1557 /*
1558  * We are taking a block for data and we don't want any output from any
1559  * buffer-cache aliases starting from return from that function and
1560  * until the moment when something will explicitly mark the buffer
1561  * dirty (hopefully that will not happen until we will free that block ;-)
1562  * We don't even need to mark it not-uptodate - nobody can expect
1563  * anything from a newly allocated buffer anyway. We used to used
1564  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565  * don't want to mark the alias unmapped, for example - it would confuse
1566  * anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1569  * be writeout I/O going on against recently-freed buffers.  We don't
1570  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571  * only if we really need to.  That happens here.
1572  */
1573 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574 {
1575         struct buffer_head *old_bh;
1576
1577         might_sleep();
1578
1579         old_bh = __find_get_block_slow(bdev, block);
1580         if (old_bh) {
1581                 clear_buffer_dirty(old_bh);
1582                 wait_on_buffer(old_bh);
1583                 clear_buffer_req(old_bh);
1584                 __brelse(old_bh);
1585         }
1586 }
1587 EXPORT_SYMBOL(unmap_underlying_metadata);
1588
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *      Mapped  Uptodate        Meaning
1593  *
1594  *      No      No              "unknown" - must do get_block()
1595  *      No      Yes             "hole" - zero-filled
1596  *      Yes     No              "allocated" - allocated on disk, not read in
1597  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  */
1614 static int __block_write_full_page(struct inode *inode, struct page *page,
1615                         get_block_t *get_block, struct writeback_control *wbc)
1616 {
1617         int err;
1618         sector_t block;
1619         sector_t last_block;
1620         struct buffer_head *bh, *head;
1621         const unsigned blocksize = 1 << inode->i_blkbits;
1622         int nr_underway = 0;
1623
1624         BUG_ON(!PageLocked(page));
1625
1626         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627
1628         if (!page_has_buffers(page)) {
1629                 create_empty_buffers(page, blocksize,
1630                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1631         }
1632
1633         /*
1634          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1635          * here, and the (potentially unmapped) buffers may become dirty at
1636          * any time.  If a buffer becomes dirty here after we've inspected it
1637          * then we just miss that fact, and the page stays dirty.
1638          *
1639          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640          * handle that here by just cleaning them.
1641          */
1642
1643         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644         head = page_buffers(page);
1645         bh = head;
1646
1647         /*
1648          * Get all the dirty buffers mapped to disk addresses and
1649          * handle any aliases from the underlying blockdev's mapping.
1650          */
1651         do {
1652                 if (block > last_block) {
1653                         /*
1654                          * mapped buffers outside i_size will occur, because
1655                          * this page can be outside i_size when there is a
1656                          * truncate in progress.
1657                          */
1658                         /*
1659                          * The buffer was zeroed by block_write_full_page()
1660                          */
1661                         clear_buffer_dirty(bh);
1662                         set_buffer_uptodate(bh);
1663                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1664                         WARN_ON(bh->b_size != blocksize);
1665                         err = get_block(inode, block, bh, 1);
1666                         if (err)
1667                                 goto recover;
1668                         if (buffer_new(bh)) {
1669                                 /* blockdev mappings never come here */
1670                                 clear_buffer_new(bh);
1671                                 unmap_underlying_metadata(bh->b_bdev,
1672                                                         bh->b_blocknr);
1673                         }
1674                 }
1675                 bh = bh->b_this_page;
1676                 block++;
1677         } while (bh != head);
1678
1679         do {
1680                 if (!buffer_mapped(bh))
1681                         continue;
1682                 /*
1683                  * If it's a fully non-blocking write attempt and we cannot
1684                  * lock the buffer then redirty the page.  Note that this can
1685                  * potentially cause a busy-wait loop from pdflush and kswapd
1686                  * activity, but those code paths have their own higher-level
1687                  * throttling.
1688                  */
1689                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690                         lock_buffer(bh);
1691                 } else if (test_set_buffer_locked(bh)) {
1692                         redirty_page_for_writepage(wbc, page);
1693                         continue;
1694                 }
1695                 if (test_clear_buffer_dirty(bh)) {
1696                         mark_buffer_async_write(bh);
1697                 } else {
1698                         unlock_buffer(bh);
1699                 }
1700         } while ((bh = bh->b_this_page) != head);
1701
1702         /*
1703          * The page and its buffers are protected by PageWriteback(), so we can
1704          * drop the bh refcounts early.
1705          */
1706         BUG_ON(PageWriteback(page));
1707         set_page_writeback(page);
1708
1709         do {
1710                 struct buffer_head *next = bh->b_this_page;
1711                 if (buffer_async_write(bh)) {
1712                         submit_bh(WRITE, bh);
1713                         nr_underway++;
1714                 }
1715                 bh = next;
1716         } while (bh != head);
1717         unlock_page(page);
1718
1719         err = 0;
1720 done:
1721         if (nr_underway == 0) {
1722                 /*
1723                  * The page was marked dirty, but the buffers were
1724                  * clean.  Someone wrote them back by hand with
1725                  * ll_rw_block/submit_bh.  A rare case.
1726                  */
1727                 end_page_writeback(page);
1728
1729                 /*
1730                  * The page and buffer_heads can be released at any time from
1731                  * here on.
1732                  */
1733         }
1734         return err;
1735
1736 recover:
1737         /*
1738          * ENOSPC, or some other error.  We may already have added some
1739          * blocks to the file, so we need to write these out to avoid
1740          * exposing stale data.
1741          * The page is currently locked and not marked for writeback
1742          */
1743         bh = head;
1744         /* Recovery: lock and submit the mapped buffers */
1745         do {
1746                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1747                         lock_buffer(bh);
1748                         mark_buffer_async_write(bh);
1749                 } else {
1750                         /*
1751                          * The buffer may have been set dirty during
1752                          * attachment to a dirty page.
1753                          */
1754                         clear_buffer_dirty(bh);
1755                 }
1756         } while ((bh = bh->b_this_page) != head);
1757         SetPageError(page);
1758         BUG_ON(PageWriteback(page));
1759         mapping_set_error(page->mapping, err);
1760         set_page_writeback(page);
1761         do {
1762                 struct buffer_head *next = bh->b_this_page;
1763                 if (buffer_async_write(bh)) {
1764                         clear_buffer_dirty(bh);
1765                         submit_bh(WRITE, bh);
1766                         nr_underway++;
1767                 }
1768                 bh = next;
1769         } while (bh != head);
1770         unlock_page(page);
1771         goto done;
1772 }
1773
1774 /*
1775  * If a page has any new buffers, zero them out here, and mark them uptodate
1776  * and dirty so they'll be written out (in order to prevent uninitialised
1777  * block data from leaking). And clear the new bit.
1778  */
1779 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780 {
1781         unsigned int block_start, block_end;
1782         struct buffer_head *head, *bh;
1783
1784         BUG_ON(!PageLocked(page));
1785         if (!page_has_buffers(page))
1786                 return;
1787
1788         bh = head = page_buffers(page);
1789         block_start = 0;
1790         do {
1791                 block_end = block_start + bh->b_size;
1792
1793                 if (buffer_new(bh)) {
1794                         if (block_end > from && block_start < to) {
1795                                 if (!PageUptodate(page)) {
1796                                         unsigned start, size;
1797
1798                                         start = max(from, block_start);
1799                                         size = min(to, block_end) - start;
1800
1801                                         zero_user_page(page, start, size, KM_USER0);
1802                                         set_buffer_uptodate(bh);
1803                                 }
1804
1805                                 clear_buffer_new(bh);
1806                                 mark_buffer_dirty(bh);
1807                         }
1808                 }
1809
1810                 block_start = block_end;
1811                 bh = bh->b_this_page;
1812         } while (bh != head);
1813 }
1814 EXPORT_SYMBOL(page_zero_new_buffers);
1815
1816 static int __block_prepare_write(struct inode *inode, struct page *page,
1817                 unsigned from, unsigned to, get_block_t *get_block)
1818 {
1819         unsigned block_start, block_end;
1820         sector_t block;
1821         int err = 0;
1822         unsigned blocksize, bbits;
1823         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1824
1825         BUG_ON(!PageLocked(page));
1826         BUG_ON(from > PAGE_CACHE_SIZE);
1827         BUG_ON(to > PAGE_CACHE_SIZE);
1828         BUG_ON(from > to);
1829
1830         blocksize = 1 << inode->i_blkbits;
1831         if (!page_has_buffers(page))
1832                 create_empty_buffers(page, blocksize, 0);
1833         head = page_buffers(page);
1834
1835         bbits = inode->i_blkbits;
1836         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1837
1838         for(bh = head, block_start = 0; bh != head || !block_start;
1839             block++, block_start=block_end, bh = bh->b_this_page) {
1840                 block_end = block_start + blocksize;
1841                 if (block_end <= from || block_start >= to) {
1842                         if (PageUptodate(page)) {
1843                                 if (!buffer_uptodate(bh))
1844                                         set_buffer_uptodate(bh);
1845                         }
1846                         continue;
1847                 }
1848                 if (buffer_new(bh))
1849                         clear_buffer_new(bh);
1850                 if (!buffer_mapped(bh)) {
1851                         WARN_ON(bh->b_size != blocksize);
1852                         err = get_block(inode, block, bh, 1);
1853                         if (err)
1854                                 break;
1855                         if (buffer_new(bh)) {
1856                                 unmap_underlying_metadata(bh->b_bdev,
1857                                                         bh->b_blocknr);
1858                                 if (PageUptodate(page)) {
1859                                         clear_buffer_new(bh);
1860                                         set_buffer_uptodate(bh);
1861                                         mark_buffer_dirty(bh);
1862                                         continue;
1863                                 }
1864                                 if (block_end > to || block_start < from) {
1865                                         void *kaddr;
1866
1867                                         kaddr = kmap_atomic(page, KM_USER0);
1868                                         if (block_end > to)
1869                                                 memset(kaddr+to, 0,
1870                                                         block_end-to);
1871                                         if (block_start < from)
1872                                                 memset(kaddr+block_start,
1873                                                         0, from-block_start);
1874                                         flush_dcache_page(page);
1875                                         kunmap_atomic(kaddr, KM_USER0);
1876                                 }
1877                                 continue;
1878                         }
1879                 }
1880                 if (PageUptodate(page)) {
1881                         if (!buffer_uptodate(bh))
1882                                 set_buffer_uptodate(bh);
1883                         continue; 
1884                 }
1885                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1886                     !buffer_unwritten(bh) &&
1887                      (block_start < from || block_end > to)) {
1888                         ll_rw_block(READ, 1, &bh);
1889                         *wait_bh++=bh;
1890                 }
1891         }
1892         /*
1893          * If we issued read requests - let them complete.
1894          */
1895         while(wait_bh > wait) {
1896                 wait_on_buffer(*--wait_bh);
1897                 if (!buffer_uptodate(*wait_bh))
1898                         err = -EIO;
1899         }
1900         if (unlikely(err))
1901                 page_zero_new_buffers(page, from, to);
1902         return err;
1903 }
1904
1905 static int __block_commit_write(struct inode *inode, struct page *page,
1906                 unsigned from, unsigned to)
1907 {
1908         unsigned block_start, block_end;
1909         int partial = 0;
1910         unsigned blocksize;
1911         struct buffer_head *bh, *head;
1912
1913         blocksize = 1 << inode->i_blkbits;
1914
1915         for(bh = head = page_buffers(page), block_start = 0;
1916             bh != head || !block_start;
1917             block_start=block_end, bh = bh->b_this_page) {
1918                 block_end = block_start + blocksize;
1919                 if (block_end <= from || block_start >= to) {
1920                         if (!buffer_uptodate(bh))
1921                                 partial = 1;
1922                 } else {
1923                         set_buffer_uptodate(bh);
1924                         mark_buffer_dirty(bh);
1925                 }
1926                 clear_buffer_new(bh);
1927         }
1928
1929         /*
1930          * If this is a partial write which happened to make all buffers
1931          * uptodate then we can optimize away a bogus readpage() for
1932          * the next read(). Here we 'discover' whether the page went
1933          * uptodate as a result of this (potentially partial) write.
1934          */
1935         if (!partial)
1936                 SetPageUptodate(page);
1937         return 0;
1938 }
1939
1940 /*
1941  * block_write_begin takes care of the basic task of block allocation and
1942  * bringing partial write blocks uptodate first.
1943  *
1944  * If *pagep is not NULL, then block_write_begin uses the locked page
1945  * at *pagep rather than allocating its own. In this case, the page will
1946  * not be unlocked or deallocated on failure.
1947  */
1948 int block_write_begin(struct file *file, struct address_space *mapping,
1949                         loff_t pos, unsigned len, unsigned flags,
1950                         struct page **pagep, void **fsdata,
1951                         get_block_t *get_block)
1952 {
1953         struct inode *inode = mapping->host;
1954         int status = 0;
1955         struct page *page;
1956         pgoff_t index;
1957         unsigned start, end;
1958         int ownpage = 0;
1959
1960         index = pos >> PAGE_CACHE_SHIFT;
1961         start = pos & (PAGE_CACHE_SIZE - 1);
1962         end = start + len;
1963
1964         page = *pagep;
1965         if (page == NULL) {
1966                 ownpage = 1;
1967                 page = __grab_cache_page(mapping, index);
1968                 if (!page) {
1969                         status = -ENOMEM;
1970                         goto out;
1971                 }
1972                 *pagep = page;
1973         } else
1974                 BUG_ON(!PageLocked(page));
1975
1976         status = __block_prepare_write(inode, page, start, end, get_block);
1977         if (unlikely(status)) {
1978                 ClearPageUptodate(page);
1979
1980                 if (ownpage) {
1981                         unlock_page(page);
1982                         page_cache_release(page);
1983                         *pagep = NULL;
1984
1985                         /*
1986                          * prepare_write() may have instantiated a few blocks
1987                          * outside i_size.  Trim these off again. Don't need
1988                          * i_size_read because we hold i_mutex.
1989                          */
1990                         if (pos + len > inode->i_size)
1991                                 vmtruncate(inode, inode->i_size);
1992                 }
1993                 goto out;
1994         }
1995
1996 out:
1997         return status;
1998 }
1999 EXPORT_SYMBOL(block_write_begin);
2000
2001 int block_write_end(struct file *file, struct address_space *mapping,
2002                         loff_t pos, unsigned len, unsigned copied,
2003                         struct page *page, void *fsdata)
2004 {
2005         struct inode *inode = mapping->host;
2006         unsigned start;
2007
2008         start = pos & (PAGE_CACHE_SIZE - 1);
2009
2010         if (unlikely(copied < len)) {
2011                 /*
2012                  * The buffers that were written will now be uptodate, so we
2013                  * don't have to worry about a readpage reading them and
2014                  * overwriting a partial write. However if we have encountered
2015                  * a short write and only partially written into a buffer, it
2016                  * will not be marked uptodate, so a readpage might come in and
2017                  * destroy our partial write.
2018                  *
2019                  * Do the simplest thing, and just treat any short write to a
2020                  * non uptodate page as a zero-length write, and force the
2021                  * caller to redo the whole thing.
2022                  */
2023                 if (!PageUptodate(page))
2024                         copied = 0;
2025
2026                 page_zero_new_buffers(page, start+copied, start+len);
2027         }
2028         flush_dcache_page(page);
2029
2030         /* This could be a short (even 0-length) commit */
2031         __block_commit_write(inode, page, start, start+copied);
2032
2033         return copied;
2034 }
2035 EXPORT_SYMBOL(block_write_end);
2036
2037 int generic_write_end(struct file *file, struct address_space *mapping,
2038                         loff_t pos, unsigned len, unsigned copied,
2039                         struct page *page, void *fsdata)
2040 {
2041         struct inode *inode = mapping->host;
2042
2043         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2044
2045         /*
2046          * No need to use i_size_read() here, the i_size
2047          * cannot change under us because we hold i_mutex.
2048          *
2049          * But it's important to update i_size while still holding page lock:
2050          * page writeout could otherwise come in and zero beyond i_size.
2051          */
2052         if (pos+copied > inode->i_size) {
2053                 i_size_write(inode, pos+copied);
2054                 mark_inode_dirty(inode);
2055         }
2056
2057         unlock_page(page);
2058         page_cache_release(page);
2059
2060         return copied;
2061 }
2062 EXPORT_SYMBOL(generic_write_end);
2063
2064 /*
2065  * Generic "read page" function for block devices that have the normal
2066  * get_block functionality. This is most of the block device filesystems.
2067  * Reads the page asynchronously --- the unlock_buffer() and
2068  * set/clear_buffer_uptodate() functions propagate buffer state into the
2069  * page struct once IO has completed.
2070  */
2071 int block_read_full_page(struct page *page, get_block_t *get_block)
2072 {
2073         struct inode *inode = page->mapping->host;
2074         sector_t iblock, lblock;
2075         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2076         unsigned int blocksize;
2077         int nr, i;
2078         int fully_mapped = 1;
2079
2080         BUG_ON(!PageLocked(page));
2081         blocksize = 1 << inode->i_blkbits;
2082         if (!page_has_buffers(page))
2083                 create_empty_buffers(page, blocksize, 0);
2084         head = page_buffers(page);
2085
2086         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2087         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2088         bh = head;
2089         nr = 0;
2090         i = 0;
2091
2092         do {
2093                 if (buffer_uptodate(bh))
2094                         continue;
2095
2096                 if (!buffer_mapped(bh)) {
2097                         int err = 0;
2098
2099                         fully_mapped = 0;
2100                         if (iblock < lblock) {
2101                                 WARN_ON(bh->b_size != blocksize);
2102                                 err = get_block(inode, iblock, bh, 0);
2103                                 if (err)
2104                                         SetPageError(page);
2105                         }
2106                         if (!buffer_mapped(bh)) {
2107                                 zero_user_page(page, i * blocksize, blocksize,
2108                                                 KM_USER0);
2109                                 if (!err)
2110                                         set_buffer_uptodate(bh);
2111                                 continue;
2112                         }
2113                         /*
2114                          * get_block() might have updated the buffer
2115                          * synchronously
2116                          */
2117                         if (buffer_uptodate(bh))
2118                                 continue;
2119                 }
2120                 arr[nr++] = bh;
2121         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2122
2123         if (fully_mapped)
2124                 SetPageMappedToDisk(page);
2125
2126         if (!nr) {
2127                 /*
2128                  * All buffers are uptodate - we can set the page uptodate
2129                  * as well. But not if get_block() returned an error.
2130                  */
2131                 if (!PageError(page))
2132                         SetPageUptodate(page);
2133                 unlock_page(page);
2134                 return 0;
2135         }
2136
2137         /* Stage two: lock the buffers */
2138         for (i = 0; i < nr; i++) {
2139                 bh = arr[i];
2140                 lock_buffer(bh);
2141                 mark_buffer_async_read(bh);
2142         }
2143
2144         /*
2145          * Stage 3: start the IO.  Check for uptodateness
2146          * inside the buffer lock in case another process reading
2147          * the underlying blockdev brought it uptodate (the sct fix).
2148          */
2149         for (i = 0; i < nr; i++) {
2150                 bh = arr[i];
2151                 if (buffer_uptodate(bh))
2152                         end_buffer_async_read(bh, 1);
2153                 else
2154                         submit_bh(READ, bh);
2155         }
2156         return 0;
2157 }
2158
2159 /* utility function for filesystems that need to do work on expanding
2160  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2161  * deal with the hole.  
2162  */
2163 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2164 {
2165         struct address_space *mapping = inode->i_mapping;
2166         struct page *page;
2167         void *fsdata;
2168         unsigned long limit;
2169         int err;
2170
2171         err = -EFBIG;
2172         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2173         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2174                 send_sig(SIGXFSZ, current, 0);
2175                 goto out;
2176         }
2177         if (size > inode->i_sb->s_maxbytes)
2178                 goto out;
2179
2180         err = pagecache_write_begin(NULL, mapping, size, 0,
2181                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2182                                 &page, &fsdata);
2183         if (err)
2184                 goto out;
2185
2186         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2187         BUG_ON(err > 0);
2188
2189 out:
2190         return err;
2191 }
2192
2193 int cont_expand_zero(struct file *file, struct address_space *mapping,
2194                         loff_t pos, loff_t *bytes)
2195 {
2196         struct inode *inode = mapping->host;
2197         unsigned blocksize = 1 << inode->i_blkbits;
2198         struct page *page;
2199         void *fsdata;
2200         pgoff_t index, curidx;
2201         loff_t curpos;
2202         unsigned zerofrom, offset, len;
2203         int err = 0;
2204
2205         index = pos >> PAGE_CACHE_SHIFT;
2206         offset = pos & ~PAGE_CACHE_MASK;
2207
2208         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2209                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2210                 if (zerofrom & (blocksize-1)) {
2211                         *bytes |= (blocksize-1);
2212                         (*bytes)++;
2213                 }
2214                 len = PAGE_CACHE_SIZE - zerofrom;
2215
2216                 err = pagecache_write_begin(file, mapping, curpos, len,
2217                                                 AOP_FLAG_UNINTERRUPTIBLE,
2218                                                 &page, &fsdata);
2219                 if (err)
2220                         goto out;
2221                 zero_user_page(page, zerofrom, len, KM_USER0);
2222                 err = pagecache_write_end(file, mapping, curpos, len, len,
2223                                                 page, fsdata);
2224                 if (err < 0)
2225                         goto out;
2226                 BUG_ON(err != len);
2227                 err = 0;
2228         }
2229
2230         /* page covers the boundary, find the boundary offset */
2231         if (index == curidx) {
2232                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2233                 /* if we will expand the thing last block will be filled */
2234                 if (offset <= zerofrom) {
2235                         goto out;
2236                 }
2237                 if (zerofrom & (blocksize-1)) {
2238                         *bytes |= (blocksize-1);
2239                         (*bytes)++;
2240                 }
2241                 len = offset - zerofrom;
2242
2243                 err = pagecache_write_begin(file, mapping, curpos, len,
2244                                                 AOP_FLAG_UNINTERRUPTIBLE,
2245                                                 &page, &fsdata);
2246                 if (err)
2247                         goto out;
2248                 zero_user_page(page, zerofrom, len, KM_USER0);
2249                 err = pagecache_write_end(file, mapping, curpos, len, len,
2250                                                 page, fsdata);
2251                 if (err < 0)
2252                         goto out;
2253                 BUG_ON(err != len);
2254                 err = 0;
2255         }
2256 out:
2257         return err;
2258 }
2259
2260 /*
2261  * For moronic filesystems that do not allow holes in file.
2262  * We may have to extend the file.
2263  */
2264 int cont_write_begin(struct file *file, struct address_space *mapping,
2265                         loff_t pos, unsigned len, unsigned flags,
2266                         struct page **pagep, void **fsdata,
2267                         get_block_t *get_block, loff_t *bytes)
2268 {
2269         struct inode *inode = mapping->host;
2270         unsigned blocksize = 1 << inode->i_blkbits;
2271         unsigned zerofrom;
2272         int err;
2273
2274         err = cont_expand_zero(file, mapping, pos, bytes);
2275         if (err)
2276                 goto out;
2277
2278         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2279         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2280                 *bytes |= (blocksize-1);
2281                 (*bytes)++;
2282         }
2283
2284         *pagep = NULL;
2285         err = block_write_begin(file, mapping, pos, len,
2286                                 flags, pagep, fsdata, get_block);
2287 out:
2288         return err;
2289 }
2290
2291 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2292                         get_block_t *get_block)
2293 {
2294         struct inode *inode = page->mapping->host;
2295         int err = __block_prepare_write(inode, page, from, to, get_block);
2296         if (err)
2297                 ClearPageUptodate(page);
2298         return err;
2299 }
2300
2301 int block_commit_write(struct page *page, unsigned from, unsigned to)
2302 {
2303         struct inode *inode = page->mapping->host;
2304         __block_commit_write(inode,page,from,to);
2305         return 0;
2306 }
2307
2308 int generic_commit_write(struct file *file, struct page *page,
2309                 unsigned from, unsigned to)
2310 {
2311         struct inode *inode = page->mapping->host;
2312         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2313         __block_commit_write(inode,page,from,to);
2314         /*
2315          * No need to use i_size_read() here, the i_size
2316          * cannot change under us because we hold i_mutex.
2317          */
2318         if (pos > inode->i_size) {
2319                 i_size_write(inode, pos);
2320                 mark_inode_dirty(inode);
2321         }
2322         return 0;
2323 }
2324
2325 /*
2326  * block_page_mkwrite() is not allowed to change the file size as it gets
2327  * called from a page fault handler when a page is first dirtied. Hence we must
2328  * be careful to check for EOF conditions here. We set the page up correctly
2329  * for a written page which means we get ENOSPC checking when writing into
2330  * holes and correct delalloc and unwritten extent mapping on filesystems that
2331  * support these features.
2332  *
2333  * We are not allowed to take the i_mutex here so we have to play games to
2334  * protect against truncate races as the page could now be beyond EOF.  Because
2335  * vmtruncate() writes the inode size before removing pages, once we have the
2336  * page lock we can determine safely if the page is beyond EOF. If it is not
2337  * beyond EOF, then the page is guaranteed safe against truncation until we
2338  * unlock the page.
2339  */
2340 int
2341 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2342                    get_block_t get_block)
2343 {
2344         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2345         unsigned long end;
2346         loff_t size;
2347         int ret = -EINVAL;
2348
2349         lock_page(page);
2350         size = i_size_read(inode);
2351         if ((page->mapping != inode->i_mapping) ||
2352             (page_offset(page) > size)) {
2353                 /* page got truncated out from underneath us */
2354                 goto out_unlock;
2355         }
2356
2357         /* page is wholly or partially inside EOF */
2358         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359                 end = size & ~PAGE_CACHE_MASK;
2360         else
2361                 end = PAGE_CACHE_SIZE;
2362
2363         ret = block_prepare_write(page, 0, end, get_block);
2364         if (!ret)
2365                 ret = block_commit_write(page, 0, end);
2366
2367 out_unlock:
2368         unlock_page(page);
2369         return ret;
2370 }
2371
2372 /*
2373  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2374  * immediately, while under the page lock.  So it needs a special end_io
2375  * handler which does not touch the bh after unlocking it.
2376  */
2377 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378 {
2379         __end_buffer_read_notouch(bh, uptodate);
2380 }
2381
2382 /*
2383  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384  * the page (converting it to circular linked list and taking care of page
2385  * dirty races).
2386  */
2387 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2388 {
2389         struct buffer_head *bh;
2390
2391         BUG_ON(!PageLocked(page));
2392
2393         spin_lock(&page->mapping->private_lock);
2394         bh = head;
2395         do {
2396                 if (PageDirty(page))
2397                         set_buffer_dirty(bh);
2398                 if (!bh->b_this_page)
2399                         bh->b_this_page = head;
2400                 bh = bh->b_this_page;
2401         } while (bh != head);
2402         attach_page_buffers(page, head);
2403         spin_unlock(&page->mapping->private_lock);
2404 }
2405
2406 /*
2407  * On entry, the page is fully not uptodate.
2408  * On exit the page is fully uptodate in the areas outside (from,to)
2409  */
2410 int nobh_write_begin(struct file *file, struct address_space *mapping,
2411                         loff_t pos, unsigned len, unsigned flags,
2412                         struct page **pagep, void **fsdata,
2413                         get_block_t *get_block)
2414 {
2415         struct inode *inode = mapping->host;
2416         const unsigned blkbits = inode->i_blkbits;
2417         const unsigned blocksize = 1 << blkbits;
2418         struct buffer_head *head, *bh;
2419         struct page *page;
2420         pgoff_t index;
2421         unsigned from, to;
2422         unsigned block_in_page;
2423         unsigned block_start, block_end;
2424         sector_t block_in_file;
2425         char *kaddr;
2426         int nr_reads = 0;
2427         int ret = 0;
2428         int is_mapped_to_disk = 1;
2429
2430         index = pos >> PAGE_CACHE_SHIFT;
2431         from = pos & (PAGE_CACHE_SIZE - 1);
2432         to = from + len;
2433
2434         page = __grab_cache_page(mapping, index);
2435         if (!page)
2436                 return -ENOMEM;
2437         *pagep = page;
2438         *fsdata = NULL;
2439
2440         if (page_has_buffers(page)) {
2441                 unlock_page(page);
2442                 page_cache_release(page);
2443                 *pagep = NULL;
2444                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2445                                         fsdata, get_block);
2446         }
2447
2448         if (PageMappedToDisk(page))
2449                 return 0;
2450
2451         /*
2452          * Allocate buffers so that we can keep track of state, and potentially
2453          * attach them to the page if an error occurs. In the common case of
2454          * no error, they will just be freed again without ever being attached
2455          * to the page (which is all OK, because we're under the page lock).
2456          *
2457          * Be careful: the buffer linked list is a NULL terminated one, rather
2458          * than the circular one we're used to.
2459          */
2460         head = alloc_page_buffers(page, blocksize, 0);
2461         if (!head) {
2462                 ret = -ENOMEM;
2463                 goto out_release;
2464         }
2465
2466         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2467
2468         /*
2469          * We loop across all blocks in the page, whether or not they are
2470          * part of the affected region.  This is so we can discover if the
2471          * page is fully mapped-to-disk.
2472          */
2473         for (block_start = 0, block_in_page = 0, bh = head;
2474                   block_start < PAGE_CACHE_SIZE;
2475                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2476                 int create;
2477
2478                 block_end = block_start + blocksize;
2479                 bh->b_state = 0;
2480                 create = 1;
2481                 if (block_start >= to)
2482                         create = 0;
2483                 ret = get_block(inode, block_in_file + block_in_page,
2484                                         bh, create);
2485                 if (ret)
2486                         goto failed;
2487                 if (!buffer_mapped(bh))
2488                         is_mapped_to_disk = 0;
2489                 if (buffer_new(bh))
2490                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2491                 if (PageUptodate(page)) {
2492                         set_buffer_uptodate(bh);
2493                         continue;
2494                 }
2495                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2496                         kaddr = kmap_atomic(page, KM_USER0);
2497                         if (block_start < from)
2498                                 memset(kaddr+block_start, 0, from-block_start);
2499                         if (block_end > to)
2500                                 memset(kaddr + to, 0, block_end - to);
2501                         flush_dcache_page(page);
2502                         kunmap_atomic(kaddr, KM_USER0);
2503                         continue;
2504                 }
2505                 if (buffer_uptodate(bh))
2506                         continue;       /* reiserfs does this */
2507                 if (block_start < from || block_end > to) {
2508                         lock_buffer(bh);
2509                         bh->b_end_io = end_buffer_read_nobh;
2510                         submit_bh(READ, bh);
2511                         nr_reads++;
2512                 }
2513         }
2514
2515         if (nr_reads) {
2516                 /*
2517                  * The page is locked, so these buffers are protected from
2518                  * any VM or truncate activity.  Hence we don't need to care
2519                  * for the buffer_head refcounts.
2520                  */
2521                 for (bh = head; bh; bh = bh->b_this_page) {
2522                         wait_on_buffer(bh);
2523                         if (!buffer_uptodate(bh))
2524                                 ret = -EIO;
2525                 }
2526                 if (ret)
2527                         goto failed;
2528         }
2529
2530         if (is_mapped_to_disk)
2531                 SetPageMappedToDisk(page);
2532
2533         *fsdata = head; /* to be released by nobh_write_end */
2534
2535         return 0;
2536
2537 failed:
2538         BUG_ON(!ret);
2539         /*
2540          * Error recovery is a bit difficult. We need to zero out blocks that
2541          * were newly allocated, and dirty them to ensure they get written out.
2542          * Buffers need to be attached to the page at this point, otherwise
2543          * the handling of potential IO errors during writeout would be hard
2544          * (could try doing synchronous writeout, but what if that fails too?)
2545          */
2546         attach_nobh_buffers(page, head);
2547         page_zero_new_buffers(page, from, to);
2548
2549 out_release:
2550         unlock_page(page);
2551         page_cache_release(page);
2552         *pagep = NULL;
2553
2554         if (pos + len > inode->i_size)
2555                 vmtruncate(inode, inode->i_size);
2556
2557         return ret;
2558 }
2559 EXPORT_SYMBOL(nobh_write_begin);
2560
2561 int nobh_write_end(struct file *file, struct address_space *mapping,
2562                         loff_t pos, unsigned len, unsigned copied,
2563                         struct page *page, void *fsdata)
2564 {
2565         struct inode *inode = page->mapping->host;
2566         struct buffer_head *head = fsdata;
2567         struct buffer_head *bh;
2568
2569         if (!PageMappedToDisk(page)) {
2570                 if (unlikely(copied < len) && !page_has_buffers(page))
2571                         attach_nobh_buffers(page, head);
2572                 if (page_has_buffers(page))
2573                         return generic_write_end(file, mapping, pos, len,
2574                                                 copied, page, fsdata);
2575         }
2576
2577         SetPageUptodate(page);
2578         set_page_dirty(page);
2579         if (pos+copied > inode->i_size) {
2580                 i_size_write(inode, pos+copied);
2581                 mark_inode_dirty(inode);
2582         }
2583
2584         unlock_page(page);
2585         page_cache_release(page);
2586
2587         while (head) {
2588                 bh = head;
2589                 head = head->b_this_page;
2590                 free_buffer_head(bh);
2591         }
2592
2593         return copied;
2594 }
2595 EXPORT_SYMBOL(nobh_write_end);
2596
2597 /*
2598  * nobh_writepage() - based on block_full_write_page() except
2599  * that it tries to operate without attaching bufferheads to
2600  * the page.
2601  */
2602 int nobh_writepage(struct page *page, get_block_t *get_block,
2603                         struct writeback_control *wbc)
2604 {
2605         struct inode * const inode = page->mapping->host;
2606         loff_t i_size = i_size_read(inode);
2607         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2608         unsigned offset;
2609         int ret;
2610
2611         /* Is the page fully inside i_size? */
2612         if (page->index < end_index)
2613                 goto out;
2614
2615         /* Is the page fully outside i_size? (truncate in progress) */
2616         offset = i_size & (PAGE_CACHE_SIZE-1);
2617         if (page->index >= end_index+1 || !offset) {
2618                 /*
2619                  * The page may have dirty, unmapped buffers.  For example,
2620                  * they may have been added in ext3_writepage().  Make them
2621                  * freeable here, so the page does not leak.
2622                  */
2623 #if 0
2624                 /* Not really sure about this  - do we need this ? */
2625                 if (page->mapping->a_ops->invalidatepage)
2626                         page->mapping->a_ops->invalidatepage(page, offset);
2627 #endif
2628                 unlock_page(page);
2629                 return 0; /* don't care */
2630         }
2631
2632         /*
2633          * The page straddles i_size.  It must be zeroed out on each and every
2634          * writepage invocation because it may be mmapped.  "A file is mapped
2635          * in multiples of the page size.  For a file that is not a multiple of
2636          * the  page size, the remaining memory is zeroed when mapped, and
2637          * writes to that region are not written out to the file."
2638          */
2639         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2640 out:
2641         ret = mpage_writepage(page, get_block, wbc);
2642         if (ret == -EAGAIN)
2643                 ret = __block_write_full_page(inode, page, get_block, wbc);
2644         return ret;
2645 }
2646 EXPORT_SYMBOL(nobh_writepage);
2647
2648 int nobh_truncate_page(struct address_space *mapping,
2649                         loff_t from, get_block_t *get_block)
2650 {
2651         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2652         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2653         unsigned blocksize;
2654         sector_t iblock;
2655         unsigned length, pos;
2656         struct inode *inode = mapping->host;
2657         struct page *page;
2658         struct buffer_head map_bh;
2659         int err;
2660
2661         blocksize = 1 << inode->i_blkbits;
2662         length = offset & (blocksize - 1);
2663
2664         /* Block boundary? Nothing to do */
2665         if (!length)
2666                 return 0;
2667
2668         length = blocksize - length;
2669         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2670
2671         page = grab_cache_page(mapping, index);
2672         err = -ENOMEM;
2673         if (!page)
2674                 goto out;
2675
2676         if (page_has_buffers(page)) {
2677 has_buffers:
2678                 unlock_page(page);
2679                 page_cache_release(page);
2680                 return block_truncate_page(mapping, from, get_block);
2681         }
2682
2683         /* Find the buffer that contains "offset" */
2684         pos = blocksize;
2685         while (offset >= pos) {
2686                 iblock++;
2687                 pos += blocksize;
2688         }
2689
2690         err = get_block(inode, iblock, &map_bh, 0);
2691         if (err)
2692                 goto unlock;
2693         /* unmapped? It's a hole - nothing to do */
2694         if (!buffer_mapped(&map_bh))
2695                 goto unlock;
2696
2697         /* Ok, it's mapped. Make sure it's up-to-date */
2698         if (!PageUptodate(page)) {
2699                 err = mapping->a_ops->readpage(NULL, page);
2700                 if (err) {
2701                         page_cache_release(page);
2702                         goto out;
2703                 }
2704                 lock_page(page);
2705                 if (!PageUptodate(page)) {
2706                         err = -EIO;
2707                         goto unlock;
2708                 }
2709                 if (page_has_buffers(page))
2710                         goto has_buffers;
2711         }
2712         zero_user_page(page, offset, length, KM_USER0);
2713         set_page_dirty(page);
2714         err = 0;
2715
2716 unlock:
2717         unlock_page(page);
2718         page_cache_release(page);
2719 out:
2720         return err;
2721 }
2722 EXPORT_SYMBOL(nobh_truncate_page);
2723
2724 int block_truncate_page(struct address_space *mapping,
2725                         loff_t from, get_block_t *get_block)
2726 {
2727         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2728         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2729         unsigned blocksize;
2730         sector_t iblock;
2731         unsigned length, pos;
2732         struct inode *inode = mapping->host;
2733         struct page *page;
2734         struct buffer_head *bh;
2735         int err;
2736
2737         blocksize = 1 << inode->i_blkbits;
2738         length = offset & (blocksize - 1);
2739
2740         /* Block boundary? Nothing to do */
2741         if (!length)
2742                 return 0;
2743
2744         length = blocksize - length;
2745         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2746         
2747         page = grab_cache_page(mapping, index);
2748         err = -ENOMEM;
2749         if (!page)
2750                 goto out;
2751
2752         if (!page_has_buffers(page))
2753                 create_empty_buffers(page, blocksize, 0);
2754
2755         /* Find the buffer that contains "offset" */
2756         bh = page_buffers(page);
2757         pos = blocksize;
2758         while (offset >= pos) {
2759                 bh = bh->b_this_page;
2760                 iblock++;
2761                 pos += blocksize;
2762         }
2763
2764         err = 0;
2765         if (!buffer_mapped(bh)) {
2766                 WARN_ON(bh->b_size != blocksize);
2767                 err = get_block(inode, iblock, bh, 0);
2768                 if (err)
2769                         goto unlock;
2770                 /* unmapped? It's a hole - nothing to do */
2771                 if (!buffer_mapped(bh))
2772                         goto unlock;
2773         }
2774
2775         /* Ok, it's mapped. Make sure it's up-to-date */
2776         if (PageUptodate(page))
2777                 set_buffer_uptodate(bh);
2778
2779         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2780                 err = -EIO;
2781                 ll_rw_block(READ, 1, &bh);
2782                 wait_on_buffer(bh);
2783                 /* Uhhuh. Read error. Complain and punt. */
2784                 if (!buffer_uptodate(bh))
2785                         goto unlock;
2786         }
2787
2788         zero_user_page(page, offset, length, KM_USER0);
2789         mark_buffer_dirty(bh);
2790         err = 0;
2791
2792 unlock:
2793         unlock_page(page);
2794         page_cache_release(page);
2795 out:
2796         return err;
2797 }
2798
2799 /*
2800  * The generic ->writepage function for buffer-backed address_spaces
2801  */
2802 int block_write_full_page(struct page *page, get_block_t *get_block,
2803                         struct writeback_control *wbc)
2804 {
2805         struct inode * const inode = page->mapping->host;
2806         loff_t i_size = i_size_read(inode);
2807         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2808         unsigned offset;
2809
2810         /* Is the page fully inside i_size? */
2811         if (page->index < end_index)
2812                 return __block_write_full_page(inode, page, get_block, wbc);
2813
2814         /* Is the page fully outside i_size? (truncate in progress) */
2815         offset = i_size & (PAGE_CACHE_SIZE-1);
2816         if (page->index >= end_index+1 || !offset) {
2817                 /*
2818                  * The page may have dirty, unmapped buffers.  For example,
2819                  * they may have been added in ext3_writepage().  Make them
2820                  * freeable here, so the page does not leak.
2821                  */
2822                 do_invalidatepage(page, 0);
2823                 unlock_page(page);
2824                 return 0; /* don't care */
2825         }
2826
2827         /*
2828          * The page straddles i_size.  It must be zeroed out on each and every
2829          * writepage invokation because it may be mmapped.  "A file is mapped
2830          * in multiples of the page size.  For a file that is not a multiple of
2831          * the  page size, the remaining memory is zeroed when mapped, and
2832          * writes to that region are not written out to the file."
2833          */
2834         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2835         return __block_write_full_page(inode, page, get_block, wbc);
2836 }
2837
2838 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2839                             get_block_t *get_block)
2840 {
2841         struct buffer_head tmp;
2842         struct inode *inode = mapping->host;
2843         tmp.b_state = 0;
2844         tmp.b_blocknr = 0;
2845         tmp.b_size = 1 << inode->i_blkbits;
2846         get_block(inode, block, &tmp, 0);
2847         return tmp.b_blocknr;
2848 }
2849
2850 static void end_bio_bh_io_sync(struct bio *bio, int err)
2851 {
2852         struct buffer_head *bh = bio->bi_private;
2853
2854         if (err == -EOPNOTSUPP) {
2855                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856                 set_bit(BH_Eopnotsupp, &bh->b_state);
2857         }
2858
2859         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2860         bio_put(bio);
2861 }
2862
2863 int submit_bh(int rw, struct buffer_head * bh)
2864 {
2865         struct bio *bio;
2866         int ret = 0;
2867
2868         BUG_ON(!buffer_locked(bh));
2869         BUG_ON(!buffer_mapped(bh));
2870         BUG_ON(!bh->b_end_io);
2871
2872         if (buffer_ordered(bh) && (rw == WRITE))
2873                 rw = WRITE_BARRIER;
2874
2875         /*
2876          * Only clear out a write error when rewriting, should this
2877          * include WRITE_SYNC as well?
2878          */
2879         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2880                 clear_buffer_write_io_error(bh);
2881
2882         /*
2883          * from here on down, it's all bio -- do the initial mapping,
2884          * submit_bio -> generic_make_request may further map this bio around
2885          */
2886         bio = bio_alloc(GFP_NOIO, 1);
2887
2888         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2889         bio->bi_bdev = bh->b_bdev;
2890         bio->bi_io_vec[0].bv_page = bh->b_page;
2891         bio->bi_io_vec[0].bv_len = bh->b_size;
2892         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2893
2894         bio->bi_vcnt = 1;
2895         bio->bi_idx = 0;
2896         bio->bi_size = bh->b_size;
2897
2898         bio->bi_end_io = end_bio_bh_io_sync;
2899         bio->bi_private = bh;
2900
2901         bio_get(bio);
2902         submit_bio(rw, bio);
2903
2904         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2905                 ret = -EOPNOTSUPP;
2906
2907         bio_put(bio);
2908         return ret;
2909 }
2910
2911 /**
2912  * ll_rw_block: low-level access to block devices (DEPRECATED)
2913  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2914  * @nr: number of &struct buffer_heads in the array
2915  * @bhs: array of pointers to &struct buffer_head
2916  *
2917  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2918  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2919  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2920  * are sent to disk. The fourth %READA option is described in the documentation
2921  * for generic_make_request() which ll_rw_block() calls.
2922  *
2923  * This function drops any buffer that it cannot get a lock on (with the
2924  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2925  * clean when doing a write request, and any buffer that appears to be
2926  * up-to-date when doing read request.  Further it marks as clean buffers that
2927  * are processed for writing (the buffer cache won't assume that they are
2928  * actually clean until the buffer gets unlocked).
2929  *
2930  * ll_rw_block sets b_end_io to simple completion handler that marks
2931  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2932  * any waiters. 
2933  *
2934  * All of the buffers must be for the same device, and must also be a
2935  * multiple of the current approved size for the device.
2936  */
2937 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2938 {
2939         int i;
2940
2941         for (i = 0; i < nr; i++) {
2942                 struct buffer_head *bh = bhs[i];
2943
2944                 if (rw == SWRITE)
2945                         lock_buffer(bh);
2946                 else if (test_set_buffer_locked(bh))
2947                         continue;
2948
2949                 if (rw == WRITE || rw == SWRITE) {
2950                         if (test_clear_buffer_dirty(bh)) {
2951                                 bh->b_end_io = end_buffer_write_sync;
2952                                 get_bh(bh);
2953                                 submit_bh(WRITE, bh);
2954                                 continue;
2955                         }
2956                 } else {
2957                         if (!buffer_uptodate(bh)) {
2958                                 bh->b_end_io = end_buffer_read_sync;
2959                                 get_bh(bh);
2960                                 submit_bh(rw, bh);
2961                                 continue;
2962                         }
2963                 }
2964                 unlock_buffer(bh);
2965         }
2966 }
2967
2968 /*
2969  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2970  * and then start new I/O and then wait upon it.  The caller must have a ref on
2971  * the buffer_head.
2972  */
2973 int sync_dirty_buffer(struct buffer_head *bh)
2974 {
2975         int ret = 0;
2976
2977         WARN_ON(atomic_read(&bh->b_count) < 1);
2978         lock_buffer(bh);
2979         if (test_clear_buffer_dirty(bh)) {
2980                 get_bh(bh);
2981                 bh->b_end_io = end_buffer_write_sync;
2982                 ret = submit_bh(WRITE, bh);
2983                 wait_on_buffer(bh);
2984                 if (buffer_eopnotsupp(bh)) {
2985                         clear_buffer_eopnotsupp(bh);
2986                         ret = -EOPNOTSUPP;
2987                 }
2988                 if (!ret && !buffer_uptodate(bh))
2989                         ret = -EIO;
2990         } else {
2991                 unlock_buffer(bh);
2992         }
2993         return ret;
2994 }
2995
2996 /*
2997  * try_to_free_buffers() checks if all the buffers on this particular page
2998  * are unused, and releases them if so.
2999  *
3000  * Exclusion against try_to_free_buffers may be obtained by either
3001  * locking the page or by holding its mapping's private_lock.
3002  *
3003  * If the page is dirty but all the buffers are clean then we need to
3004  * be sure to mark the page clean as well.  This is because the page
3005  * may be against a block device, and a later reattachment of buffers
3006  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3007  * filesystem data on the same device.
3008  *
3009  * The same applies to regular filesystem pages: if all the buffers are
3010  * clean then we set the page clean and proceed.  To do that, we require
3011  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3012  * private_lock.
3013  *
3014  * try_to_free_buffers() is non-blocking.
3015  */
3016 static inline int buffer_busy(struct buffer_head *bh)
3017 {
3018         return atomic_read(&bh->b_count) |
3019                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3020 }
3021
3022 static int
3023 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3024 {
3025         struct buffer_head *head = page_buffers(page);
3026         struct buffer_head *bh;
3027
3028         bh = head;
3029         do {
3030                 if (buffer_write_io_error(bh) && page->mapping)
3031                         set_bit(AS_EIO, &page->mapping->flags);
3032                 if (buffer_busy(bh))
3033                         goto failed;
3034                 bh = bh->b_this_page;
3035         } while (bh != head);
3036
3037         do {
3038                 struct buffer_head *next = bh->b_this_page;
3039
3040                 if (!list_empty(&bh->b_assoc_buffers))
3041                         __remove_assoc_queue(bh);
3042                 bh = next;
3043         } while (bh != head);
3044         *buffers_to_free = head;
3045         __clear_page_buffers(page);
3046         return 1;
3047 failed:
3048         return 0;
3049 }
3050
3051 int try_to_free_buffers(struct page *page)
3052 {
3053         struct address_space * const mapping = page->mapping;
3054         struct buffer_head *buffers_to_free = NULL;
3055         int ret = 0;
3056
3057         BUG_ON(!PageLocked(page));
3058         if (PageWriteback(page))
3059                 return 0;
3060
3061         if (mapping == NULL) {          /* can this still happen? */
3062                 ret = drop_buffers(page, &buffers_to_free);
3063                 goto out;
3064         }
3065
3066         spin_lock(&mapping->private_lock);
3067         ret = drop_buffers(page, &buffers_to_free);
3068
3069         /*
3070          * If the filesystem writes its buffers by hand (eg ext3)
3071          * then we can have clean buffers against a dirty page.  We
3072          * clean the page here; otherwise the VM will never notice
3073          * that the filesystem did any IO at all.
3074          *
3075          * Also, during truncate, discard_buffer will have marked all
3076          * the page's buffers clean.  We discover that here and clean
3077          * the page also.
3078          *
3079          * private_lock must be held over this entire operation in order
3080          * to synchronise against __set_page_dirty_buffers and prevent the
3081          * dirty bit from being lost.
3082          */
3083         if (ret)
3084                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3085         spin_unlock(&mapping->private_lock);
3086 out:
3087         if (buffers_to_free) {
3088                 struct buffer_head *bh = buffers_to_free;
3089
3090                 do {
3091                         struct buffer_head *next = bh->b_this_page;
3092                         free_buffer_head(bh);
3093                         bh = next;
3094                 } while (bh != buffers_to_free);
3095         }
3096         return ret;
3097 }
3098 EXPORT_SYMBOL(try_to_free_buffers);
3099
3100 void block_sync_page(struct page *page)
3101 {
3102         struct address_space *mapping;
3103
3104         smp_mb();
3105         mapping = page_mapping(page);
3106         if (mapping)
3107                 blk_run_backing_dev(mapping->backing_dev_info, page);
3108 }
3109
3110 /*
3111  * There are no bdflush tunables left.  But distributions are
3112  * still running obsolete flush daemons, so we terminate them here.
3113  *
3114  * Use of bdflush() is deprecated and will be removed in a future kernel.
3115  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3116  */
3117 asmlinkage long sys_bdflush(int func, long data)
3118 {
3119         static int msg_count;
3120
3121         if (!capable(CAP_SYS_ADMIN))
3122                 return -EPERM;
3123
3124         if (msg_count < 5) {
3125                 msg_count++;
3126                 printk(KERN_INFO
3127                         "warning: process `%s' used the obsolete bdflush"
3128                         " system call\n", current->comm);
3129                 printk(KERN_INFO "Fix your initscripts?\n");
3130         }
3131
3132         if (func == 1)
3133                 do_exit(0);
3134         return 0;
3135 }
3136
3137 /*
3138  * Buffer-head allocation
3139  */
3140 static struct kmem_cache *bh_cachep;
3141
3142 /*
3143  * Once the number of bh's in the machine exceeds this level, we start
3144  * stripping them in writeback.
3145  */
3146 static int max_buffer_heads;
3147
3148 int buffer_heads_over_limit;
3149
3150 struct bh_accounting {
3151         int nr;                 /* Number of live bh's */
3152         int ratelimit;          /* Limit cacheline bouncing */
3153 };
3154
3155 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3156
3157 static void recalc_bh_state(void)
3158 {
3159         int i;
3160         int tot = 0;
3161
3162         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3163                 return;
3164         __get_cpu_var(bh_accounting).ratelimit = 0;
3165         for_each_online_cpu(i)
3166                 tot += per_cpu(bh_accounting, i).nr;
3167         buffer_heads_over_limit = (tot > max_buffer_heads);
3168 }
3169         
3170 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3171 {
3172         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep,
3173                                 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
3174         if (ret) {
3175                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3176                 get_cpu_var(bh_accounting).nr++;
3177                 recalc_bh_state();
3178                 put_cpu_var(bh_accounting);
3179         }
3180         return ret;
3181 }
3182 EXPORT_SYMBOL(alloc_buffer_head);
3183
3184 void free_buffer_head(struct buffer_head *bh)
3185 {
3186         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3187         kmem_cache_free(bh_cachep, bh);
3188         get_cpu_var(bh_accounting).nr--;
3189         recalc_bh_state();
3190         put_cpu_var(bh_accounting);
3191 }
3192 EXPORT_SYMBOL(free_buffer_head);
3193
3194 static void buffer_exit_cpu(int cpu)
3195 {
3196         int i;
3197         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3198
3199         for (i = 0; i < BH_LRU_SIZE; i++) {
3200                 brelse(b->bhs[i]);
3201                 b->bhs[i] = NULL;
3202         }
3203         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3204         per_cpu(bh_accounting, cpu).nr = 0;
3205         put_cpu_var(bh_accounting);
3206 }
3207
3208 static int buffer_cpu_notify(struct notifier_block *self,
3209                               unsigned long action, void *hcpu)
3210 {
3211         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3212                 buffer_exit_cpu((unsigned long)hcpu);
3213         return NOTIFY_OK;
3214 }
3215
3216 void __init buffer_init(void)
3217 {
3218         int nrpages;
3219
3220         bh_cachep = KMEM_CACHE(buffer_head,
3221                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3222
3223         /*
3224          * Limit the bh occupancy to 10% of ZONE_NORMAL
3225          */
3226         nrpages = (nr_free_buffer_pages() * 10) / 100;
3227         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3228         hotcpu_notifier(buffer_cpu_notify, 0);
3229 }
3230
3231 EXPORT_SYMBOL(__bforget);
3232 EXPORT_SYMBOL(__brelse);
3233 EXPORT_SYMBOL(__wait_on_buffer);
3234 EXPORT_SYMBOL(block_commit_write);
3235 EXPORT_SYMBOL(block_prepare_write);
3236 EXPORT_SYMBOL(block_page_mkwrite);
3237 EXPORT_SYMBOL(block_read_full_page);
3238 EXPORT_SYMBOL(block_sync_page);
3239 EXPORT_SYMBOL(block_truncate_page);
3240 EXPORT_SYMBOL(block_write_full_page);
3241 EXPORT_SYMBOL(cont_write_begin);
3242 EXPORT_SYMBOL(end_buffer_read_sync);
3243 EXPORT_SYMBOL(end_buffer_write_sync);
3244 EXPORT_SYMBOL(file_fsync);
3245 EXPORT_SYMBOL(fsync_bdev);
3246 EXPORT_SYMBOL(generic_block_bmap);
3247 EXPORT_SYMBOL(generic_commit_write);
3248 EXPORT_SYMBOL(generic_cont_expand_simple);
3249 EXPORT_SYMBOL(init_buffer);
3250 EXPORT_SYMBOL(invalidate_bdev);
3251 EXPORT_SYMBOL(ll_rw_block);
3252 EXPORT_SYMBOL(mark_buffer_dirty);
3253 EXPORT_SYMBOL(submit_bh);
3254 EXPORT_SYMBOL(sync_dirty_buffer);
3255 EXPORT_SYMBOL(unlock_buffer);