1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6 #include <linux/smp_lock.h>
8 #include "mds_client.h"
9 #include "mon_client.h"
11 #include "messenger.h"
17 * A cluster of MDS (metadata server) daemons is responsible for
18 * managing the file system namespace (the directory hierarchy and
19 * inodes) and for coordinating shared access to storage. Metadata is
20 * partitioning hierarchically across a number of servers, and that
21 * partition varies over time as the cluster adjusts the distribution
22 * in order to balance load.
24 * The MDS client is primarily responsible to managing synchronous
25 * metadata requests for operations like open, unlink, and so forth.
26 * If there is a MDS failure, we find out about it when we (possibly
27 * request and) receive a new MDS map, and can resubmit affected
30 * For the most part, though, we take advantage of a lossless
31 * communications channel to the MDS, and do not need to worry about
32 * timing out or resubmitting requests.
34 * We maintain a stateful "session" with each MDS we interact with.
35 * Within each session, we sent periodic heartbeat messages to ensure
36 * any capabilities or leases we have been issues remain valid. If
37 * the session times out and goes stale, our leases and capabilities
38 * are no longer valid.
41 struct ceph_reconnect_state {
42 struct ceph_pagelist *pagelist;
46 static void __wake_requests(struct ceph_mds_client *mdsc,
47 struct list_head *head);
49 static const struct ceph_connection_operations mds_con_ops;
57 * parse individual inode info
59 static int parse_reply_info_in(void **p, void *end,
60 struct ceph_mds_reply_info_in *info)
65 *p += sizeof(struct ceph_mds_reply_inode) +
66 sizeof(*info->in->fragtree.splits) *
67 le32_to_cpu(info->in->fragtree.nsplits);
69 ceph_decode_32_safe(p, end, info->symlink_len, bad);
70 ceph_decode_need(p, end, info->symlink_len, bad);
72 *p += info->symlink_len;
74 ceph_decode_32_safe(p, end, info->xattr_len, bad);
75 ceph_decode_need(p, end, info->xattr_len, bad);
76 info->xattr_data = *p;
77 *p += info->xattr_len;
84 * parse a normal reply, which may contain a (dir+)dentry and/or a
87 static int parse_reply_info_trace(void **p, void *end,
88 struct ceph_mds_reply_info_parsed *info)
92 if (info->head->is_dentry) {
93 err = parse_reply_info_in(p, end, &info->diri);
97 if (unlikely(*p + sizeof(*info->dirfrag) > end))
100 *p += sizeof(*info->dirfrag) +
101 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
102 if (unlikely(*p > end))
105 ceph_decode_32_safe(p, end, info->dname_len, bad);
106 ceph_decode_need(p, end, info->dname_len, bad);
108 *p += info->dname_len;
110 *p += sizeof(*info->dlease);
113 if (info->head->is_target) {
114 err = parse_reply_info_in(p, end, &info->targeti);
119 if (unlikely(*p != end))
126 pr_err("problem parsing mds trace %d\n", err);
131 * parse readdir results
133 static int parse_reply_info_dir(void **p, void *end,
134 struct ceph_mds_reply_info_parsed *info)
140 if (*p + sizeof(*info->dir_dir) > end)
142 *p += sizeof(*info->dir_dir) +
143 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
147 ceph_decode_need(p, end, sizeof(num) + 2, bad);
148 num = ceph_decode_32(p);
149 info->dir_end = ceph_decode_8(p);
150 info->dir_complete = ceph_decode_8(p);
154 /* alloc large array */
156 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
157 sizeof(*info->dir_dname) +
158 sizeof(*info->dir_dname_len) +
159 sizeof(*info->dir_dlease),
161 if (info->dir_in == NULL) {
165 info->dir_dname = (void *)(info->dir_in + num);
166 info->dir_dname_len = (void *)(info->dir_dname + num);
167 info->dir_dlease = (void *)(info->dir_dname_len + num);
171 ceph_decode_need(p, end, sizeof(u32)*2, bad);
172 info->dir_dname_len[i] = ceph_decode_32(p);
173 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
174 info->dir_dname[i] = *p;
175 *p += info->dir_dname_len[i];
176 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
178 info->dir_dlease[i] = *p;
179 *p += sizeof(struct ceph_mds_reply_lease);
182 err = parse_reply_info_in(p, end, &info->dir_in[i]);
197 pr_err("problem parsing dir contents %d\n", err);
202 * parse entire mds reply
204 static int parse_reply_info(struct ceph_msg *msg,
205 struct ceph_mds_reply_info_parsed *info)
211 info->head = msg->front.iov_base;
212 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
213 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
216 ceph_decode_32_safe(&p, end, len, bad);
218 err = parse_reply_info_trace(&p, p+len, info);
224 ceph_decode_32_safe(&p, end, len, bad);
226 err = parse_reply_info_dir(&p, p+len, info);
232 ceph_decode_32_safe(&p, end, len, bad);
233 info->snapblob_len = len;
244 pr_err("mds parse_reply err %d\n", err);
248 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
257 static const char *session_state_name(int s)
260 case CEPH_MDS_SESSION_NEW: return "new";
261 case CEPH_MDS_SESSION_OPENING: return "opening";
262 case CEPH_MDS_SESSION_OPEN: return "open";
263 case CEPH_MDS_SESSION_HUNG: return "hung";
264 case CEPH_MDS_SESSION_CLOSING: return "closing";
265 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
266 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
267 default: return "???";
271 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
273 if (atomic_inc_not_zero(&s->s_ref)) {
274 dout("mdsc get_session %p %d -> %d\n", s,
275 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
278 dout("mdsc get_session %p 0 -- FAIL", s);
283 void ceph_put_mds_session(struct ceph_mds_session *s)
285 dout("mdsc put_session %p %d -> %d\n", s,
286 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
287 if (atomic_dec_and_test(&s->s_ref)) {
289 s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
290 s->s_mdsc->client->monc.auth, s->s_authorizer);
296 * called under mdsc->mutex
298 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
301 struct ceph_mds_session *session;
303 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
305 session = mdsc->sessions[mds];
306 dout("lookup_mds_session %p %d\n", session,
307 atomic_read(&session->s_ref));
308 get_session(session);
312 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
314 if (mds >= mdsc->max_sessions)
316 return mdsc->sessions[mds];
319 static int __verify_registered_session(struct ceph_mds_client *mdsc,
320 struct ceph_mds_session *s)
322 if (s->s_mds >= mdsc->max_sessions ||
323 mdsc->sessions[s->s_mds] != s)
329 * create+register a new session for given mds.
330 * called under mdsc->mutex.
332 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
335 struct ceph_mds_session *s;
337 s = kzalloc(sizeof(*s), GFP_NOFS);
339 return ERR_PTR(-ENOMEM);
342 s->s_state = CEPH_MDS_SESSION_NEW;
345 mutex_init(&s->s_mutex);
347 ceph_con_init(mdsc->client->msgr, &s->s_con);
348 s->s_con.private = s;
349 s->s_con.ops = &mds_con_ops;
350 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
351 s->s_con.peer_name.num = cpu_to_le64(mds);
353 spin_lock_init(&s->s_cap_lock);
356 s->s_renew_requested = 0;
358 INIT_LIST_HEAD(&s->s_caps);
361 atomic_set(&s->s_ref, 1);
362 INIT_LIST_HEAD(&s->s_waiting);
363 INIT_LIST_HEAD(&s->s_unsafe);
364 s->s_num_cap_releases = 0;
365 s->s_cap_iterator = NULL;
366 INIT_LIST_HEAD(&s->s_cap_releases);
367 INIT_LIST_HEAD(&s->s_cap_releases_done);
368 INIT_LIST_HEAD(&s->s_cap_flushing);
369 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
371 dout("register_session mds%d\n", mds);
372 if (mds >= mdsc->max_sessions) {
373 int newmax = 1 << get_count_order(mds+1);
374 struct ceph_mds_session **sa;
376 dout("register_session realloc to %d\n", newmax);
377 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
380 if (mdsc->sessions) {
381 memcpy(sa, mdsc->sessions,
382 mdsc->max_sessions * sizeof(void *));
383 kfree(mdsc->sessions);
386 mdsc->max_sessions = newmax;
388 mdsc->sessions[mds] = s;
389 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
391 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
397 return ERR_PTR(-ENOMEM);
401 * called under mdsc->mutex
403 static void __unregister_session(struct ceph_mds_client *mdsc,
404 struct ceph_mds_session *s)
406 dout("__unregister_session mds%d %p\n", s->s_mds, s);
407 BUG_ON(mdsc->sessions[s->s_mds] != s);
408 mdsc->sessions[s->s_mds] = NULL;
409 ceph_con_close(&s->s_con);
410 ceph_put_mds_session(s);
414 * drop session refs in request.
416 * should be last request ref, or hold mdsc->mutex
418 static void put_request_session(struct ceph_mds_request *req)
420 if (req->r_session) {
421 ceph_put_mds_session(req->r_session);
422 req->r_session = NULL;
426 void ceph_mdsc_release_request(struct kref *kref)
428 struct ceph_mds_request *req = container_of(kref,
429 struct ceph_mds_request,
432 ceph_msg_put(req->r_request);
434 ceph_msg_put(req->r_reply);
435 destroy_reply_info(&req->r_reply_info);
438 ceph_put_cap_refs(ceph_inode(req->r_inode),
442 if (req->r_locked_dir)
443 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
445 if (req->r_target_inode)
446 iput(req->r_target_inode);
449 if (req->r_old_dentry) {
451 ceph_inode(req->r_old_dentry->d_parent->d_inode),
453 dput(req->r_old_dentry);
457 put_request_session(req);
458 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
463 * lookup session, bump ref if found.
465 * called under mdsc->mutex.
467 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
470 struct ceph_mds_request *req;
471 struct rb_node *n = mdsc->request_tree.rb_node;
474 req = rb_entry(n, struct ceph_mds_request, r_node);
475 if (tid < req->r_tid)
477 else if (tid > req->r_tid)
480 ceph_mdsc_get_request(req);
487 static void __insert_request(struct ceph_mds_client *mdsc,
488 struct ceph_mds_request *new)
490 struct rb_node **p = &mdsc->request_tree.rb_node;
491 struct rb_node *parent = NULL;
492 struct ceph_mds_request *req = NULL;
496 req = rb_entry(parent, struct ceph_mds_request, r_node);
497 if (new->r_tid < req->r_tid)
499 else if (new->r_tid > req->r_tid)
505 rb_link_node(&new->r_node, parent, p);
506 rb_insert_color(&new->r_node, &mdsc->request_tree);
510 * Register an in-flight request, and assign a tid. Link to directory
511 * are modifying (if any).
513 * Called under mdsc->mutex.
515 static void __register_request(struct ceph_mds_client *mdsc,
516 struct ceph_mds_request *req,
519 req->r_tid = ++mdsc->last_tid;
521 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
523 dout("__register_request %p tid %lld\n", req, req->r_tid);
524 ceph_mdsc_get_request(req);
525 __insert_request(mdsc, req);
528 struct ceph_inode_info *ci = ceph_inode(dir);
530 spin_lock(&ci->i_unsafe_lock);
531 req->r_unsafe_dir = dir;
532 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
533 spin_unlock(&ci->i_unsafe_lock);
537 static void __unregister_request(struct ceph_mds_client *mdsc,
538 struct ceph_mds_request *req)
540 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
541 rb_erase(&req->r_node, &mdsc->request_tree);
542 RB_CLEAR_NODE(&req->r_node);
544 if (req->r_unsafe_dir) {
545 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
547 spin_lock(&ci->i_unsafe_lock);
548 list_del_init(&req->r_unsafe_dir_item);
549 spin_unlock(&ci->i_unsafe_lock);
552 ceph_mdsc_put_request(req);
556 * Choose mds to send request to next. If there is a hint set in the
557 * request (e.g., due to a prior forward hint from the mds), use that.
558 * Otherwise, consult frag tree and/or caps to identify the
559 * appropriate mds. If all else fails, choose randomly.
561 * Called under mdsc->mutex.
563 struct dentry *get_nonsnap_parent(struct dentry *dentry)
565 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
566 dentry = dentry->d_parent;
570 static int __choose_mds(struct ceph_mds_client *mdsc,
571 struct ceph_mds_request *req)
574 struct ceph_inode_info *ci;
575 struct ceph_cap *cap;
576 int mode = req->r_direct_mode;
578 u32 hash = req->r_direct_hash;
579 bool is_hash = req->r_direct_is_hash;
582 * is there a specific mds we should try? ignore hint if we have
583 * no session and the mds is not up (active or recovering).
585 if (req->r_resend_mds >= 0 &&
586 (__have_session(mdsc, req->r_resend_mds) ||
587 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
588 dout("choose_mds using resend_mds mds%d\n",
590 return req->r_resend_mds;
593 if (mode == USE_RANDOM_MDS)
598 inode = req->r_inode;
599 } else if (req->r_dentry) {
600 struct inode *dir = req->r_dentry->d_parent->d_inode;
602 if (dir->i_sb != mdsc->client->sb) {
604 inode = req->r_dentry->d_inode;
605 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
606 /* direct snapped/virtual snapdir requests
607 * based on parent dir inode */
609 get_nonsnap_parent(req->r_dentry->d_parent);
611 dout("__choose_mds using nonsnap parent %p\n", inode);
612 } else if (req->r_dentry->d_inode) {
614 inode = req->r_dentry->d_inode;
618 hash = req->r_dentry->d_name.hash;
623 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
627 ci = ceph_inode(inode);
629 if (is_hash && S_ISDIR(inode->i_mode)) {
630 struct ceph_inode_frag frag;
633 ceph_choose_frag(ci, hash, &frag, &found);
635 if (mode == USE_ANY_MDS && frag.ndist > 0) {
638 /* choose a random replica */
639 get_random_bytes(&r, 1);
642 dout("choose_mds %p %llx.%llx "
643 "frag %u mds%d (%d/%d)\n",
644 inode, ceph_vinop(inode),
650 /* since this file/dir wasn't known to be
651 * replicated, then we want to look for the
652 * authoritative mds. */
655 /* choose auth mds */
657 dout("choose_mds %p %llx.%llx "
658 "frag %u mds%d (auth)\n",
659 inode, ceph_vinop(inode), frag.frag, mds);
665 spin_lock(&inode->i_lock);
667 if (mode == USE_AUTH_MDS)
668 cap = ci->i_auth_cap;
669 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
670 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
672 spin_unlock(&inode->i_lock);
675 mds = cap->session->s_mds;
676 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
677 inode, ceph_vinop(inode), mds,
678 cap == ci->i_auth_cap ? "auth " : "", cap);
679 spin_unlock(&inode->i_lock);
683 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
684 dout("choose_mds chose random mds%d\n", mds);
692 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
694 struct ceph_msg *msg;
695 struct ceph_mds_session_head *h;
697 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
699 pr_err("create_session_msg ENOMEM creating msg\n");
702 h = msg->front.iov_base;
703 h->op = cpu_to_le32(op);
704 h->seq = cpu_to_le64(seq);
709 * send session open request.
711 * called under mdsc->mutex
713 static int __open_session(struct ceph_mds_client *mdsc,
714 struct ceph_mds_session *session)
716 struct ceph_msg *msg;
718 int mds = session->s_mds;
720 /* wait for mds to go active? */
721 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
722 dout("open_session to mds%d (%s)\n", mds,
723 ceph_mds_state_name(mstate));
724 session->s_state = CEPH_MDS_SESSION_OPENING;
725 session->s_renew_requested = jiffies;
727 /* send connect message */
728 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
731 ceph_con_send(&session->s_con, msg);
736 * open sessions for any export targets for the given mds
738 * called under mdsc->mutex
740 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
741 struct ceph_mds_session *session)
743 struct ceph_mds_info *mi;
744 struct ceph_mds_session *ts;
745 int i, mds = session->s_mds;
748 if (mds >= mdsc->mdsmap->m_max_mds)
750 mi = &mdsc->mdsmap->m_info[mds];
751 dout("open_export_target_sessions for mds%d (%d targets)\n",
752 session->s_mds, mi->num_export_targets);
754 for (i = 0; i < mi->num_export_targets; i++) {
755 target = mi->export_targets[i];
756 ts = __ceph_lookup_mds_session(mdsc, target);
758 ts = register_session(mdsc, target);
762 if (session->s_state == CEPH_MDS_SESSION_NEW ||
763 session->s_state == CEPH_MDS_SESSION_CLOSING)
764 __open_session(mdsc, session);
766 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
767 i, ts, session_state_name(ts->s_state));
768 ceph_put_mds_session(ts);
772 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
773 struct ceph_mds_session *session)
775 mutex_lock(&mdsc->mutex);
776 __open_export_target_sessions(mdsc, session);
777 mutex_unlock(&mdsc->mutex);
785 * Free preallocated cap messages assigned to this session
787 static void cleanup_cap_releases(struct ceph_mds_session *session)
789 struct ceph_msg *msg;
791 spin_lock(&session->s_cap_lock);
792 while (!list_empty(&session->s_cap_releases)) {
793 msg = list_first_entry(&session->s_cap_releases,
794 struct ceph_msg, list_head);
795 list_del_init(&msg->list_head);
798 while (!list_empty(&session->s_cap_releases_done)) {
799 msg = list_first_entry(&session->s_cap_releases_done,
800 struct ceph_msg, list_head);
801 list_del_init(&msg->list_head);
804 spin_unlock(&session->s_cap_lock);
808 * Helper to safely iterate over all caps associated with a session, with
809 * special care taken to handle a racing __ceph_remove_cap().
811 * Caller must hold session s_mutex.
813 static int iterate_session_caps(struct ceph_mds_session *session,
814 int (*cb)(struct inode *, struct ceph_cap *,
818 struct ceph_cap *cap;
819 struct inode *inode, *last_inode = NULL;
820 struct ceph_cap *old_cap = NULL;
823 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
824 spin_lock(&session->s_cap_lock);
825 p = session->s_caps.next;
826 while (p != &session->s_caps) {
827 cap = list_entry(p, struct ceph_cap, session_caps);
828 inode = igrab(&cap->ci->vfs_inode);
833 session->s_cap_iterator = cap;
834 spin_unlock(&session->s_cap_lock);
841 ceph_put_cap(session->s_mdsc, old_cap);
845 ret = cb(inode, cap, arg);
848 spin_lock(&session->s_cap_lock);
850 if (cap->ci == NULL) {
851 dout("iterate_session_caps finishing cap %p removal\n",
853 BUG_ON(cap->session != session);
854 list_del_init(&cap->session_caps);
855 session->s_nr_caps--;
857 old_cap = cap; /* put_cap it w/o locks held */
864 session->s_cap_iterator = NULL;
865 spin_unlock(&session->s_cap_lock);
870 ceph_put_cap(session->s_mdsc, old_cap);
875 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
878 struct ceph_inode_info *ci = ceph_inode(inode);
881 dout("removing cap %p, ci is %p, inode is %p\n",
882 cap, ci, &ci->vfs_inode);
883 spin_lock(&inode->i_lock);
884 __ceph_remove_cap(cap);
885 if (!__ceph_is_any_real_caps(ci)) {
886 struct ceph_mds_client *mdsc =
887 &ceph_sb_to_client(inode->i_sb)->mdsc;
889 spin_lock(&mdsc->cap_dirty_lock);
890 if (!list_empty(&ci->i_dirty_item)) {
891 pr_info(" dropping dirty %s state for %p %lld\n",
892 ceph_cap_string(ci->i_dirty_caps),
893 inode, ceph_ino(inode));
894 ci->i_dirty_caps = 0;
895 list_del_init(&ci->i_dirty_item);
898 if (!list_empty(&ci->i_flushing_item)) {
899 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
900 ceph_cap_string(ci->i_flushing_caps),
901 inode, ceph_ino(inode));
902 ci->i_flushing_caps = 0;
903 list_del_init(&ci->i_flushing_item);
904 mdsc->num_cap_flushing--;
907 if (drop && ci->i_wrbuffer_ref) {
908 pr_info(" dropping dirty data for %p %lld\n",
909 inode, ceph_ino(inode));
910 ci->i_wrbuffer_ref = 0;
911 ci->i_wrbuffer_ref_head = 0;
914 spin_unlock(&mdsc->cap_dirty_lock);
916 spin_unlock(&inode->i_lock);
923 * caller must hold session s_mutex
925 static void remove_session_caps(struct ceph_mds_session *session)
927 dout("remove_session_caps on %p\n", session);
928 iterate_session_caps(session, remove_session_caps_cb, NULL);
929 BUG_ON(session->s_nr_caps > 0);
930 BUG_ON(!list_empty(&session->s_cap_flushing));
931 cleanup_cap_releases(session);
935 * wake up any threads waiting on this session's caps. if the cap is
936 * old (didn't get renewed on the client reconnect), remove it now.
938 * caller must hold s_mutex.
940 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
943 struct ceph_inode_info *ci = ceph_inode(inode);
945 wake_up_all(&ci->i_cap_wq);
947 spin_lock(&inode->i_lock);
948 ci->i_wanted_max_size = 0;
949 ci->i_requested_max_size = 0;
950 spin_unlock(&inode->i_lock);
955 static void wake_up_session_caps(struct ceph_mds_session *session,
958 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
959 iterate_session_caps(session, wake_up_session_cb,
960 (void *)(unsigned long)reconnect);
964 * Send periodic message to MDS renewing all currently held caps. The
965 * ack will reset the expiration for all caps from this session.
967 * caller holds s_mutex
969 static int send_renew_caps(struct ceph_mds_client *mdsc,
970 struct ceph_mds_session *session)
972 struct ceph_msg *msg;
975 if (time_after_eq(jiffies, session->s_cap_ttl) &&
976 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
977 pr_info("mds%d caps stale\n", session->s_mds);
978 session->s_renew_requested = jiffies;
980 /* do not try to renew caps until a recovering mds has reconnected
981 * with its clients. */
982 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
983 if (state < CEPH_MDS_STATE_RECONNECT) {
984 dout("send_renew_caps ignoring mds%d (%s)\n",
985 session->s_mds, ceph_mds_state_name(state));
989 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
990 ceph_mds_state_name(state));
991 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
992 ++session->s_renew_seq);
995 ceph_con_send(&session->s_con, msg);
1000 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1002 * Called under session->s_mutex
1004 static void renewed_caps(struct ceph_mds_client *mdsc,
1005 struct ceph_mds_session *session, int is_renew)
1010 spin_lock(&session->s_cap_lock);
1011 was_stale = is_renew && (session->s_cap_ttl == 0 ||
1012 time_after_eq(jiffies, session->s_cap_ttl));
1014 session->s_cap_ttl = session->s_renew_requested +
1015 mdsc->mdsmap->m_session_timeout*HZ;
1018 if (time_before(jiffies, session->s_cap_ttl)) {
1019 pr_info("mds%d caps renewed\n", session->s_mds);
1022 pr_info("mds%d caps still stale\n", session->s_mds);
1025 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1026 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1027 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1028 spin_unlock(&session->s_cap_lock);
1031 wake_up_session_caps(session, 0);
1035 * send a session close request
1037 static int request_close_session(struct ceph_mds_client *mdsc,
1038 struct ceph_mds_session *session)
1040 struct ceph_msg *msg;
1042 dout("request_close_session mds%d state %s seq %lld\n",
1043 session->s_mds, session_state_name(session->s_state),
1045 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1048 ceph_con_send(&session->s_con, msg);
1053 * Called with s_mutex held.
1055 static int __close_session(struct ceph_mds_client *mdsc,
1056 struct ceph_mds_session *session)
1058 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1060 session->s_state = CEPH_MDS_SESSION_CLOSING;
1061 return request_close_session(mdsc, session);
1065 * Trim old(er) caps.
1067 * Because we can't cache an inode without one or more caps, we do
1068 * this indirectly: if a cap is unused, we prune its aliases, at which
1069 * point the inode will hopefully get dropped to.
1071 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1072 * memory pressure from the MDS, though, so it needn't be perfect.
1074 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1076 struct ceph_mds_session *session = arg;
1077 struct ceph_inode_info *ci = ceph_inode(inode);
1078 int used, oissued, mine;
1080 if (session->s_trim_caps <= 0)
1083 spin_lock(&inode->i_lock);
1084 mine = cap->issued | cap->implemented;
1085 used = __ceph_caps_used(ci);
1086 oissued = __ceph_caps_issued_other(ci, cap);
1088 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1089 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1090 ceph_cap_string(used));
1091 if (ci->i_dirty_caps)
1092 goto out; /* dirty caps */
1093 if ((used & ~oissued) & mine)
1094 goto out; /* we need these caps */
1096 session->s_trim_caps--;
1098 /* we aren't the only cap.. just remove us */
1099 __ceph_remove_cap(cap);
1101 /* try to drop referring dentries */
1102 spin_unlock(&inode->i_lock);
1103 d_prune_aliases(inode);
1104 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1105 inode, cap, atomic_read(&inode->i_count));
1110 spin_unlock(&inode->i_lock);
1115 * Trim session cap count down to some max number.
1117 static int trim_caps(struct ceph_mds_client *mdsc,
1118 struct ceph_mds_session *session,
1121 int trim_caps = session->s_nr_caps - max_caps;
1123 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1124 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1125 if (trim_caps > 0) {
1126 session->s_trim_caps = trim_caps;
1127 iterate_session_caps(session, trim_caps_cb, session);
1128 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1129 session->s_mds, session->s_nr_caps, max_caps,
1130 trim_caps - session->s_trim_caps);
1131 session->s_trim_caps = 0;
1137 * Allocate cap_release messages. If there is a partially full message
1138 * in the queue, try to allocate enough to cover it's remainder, so that
1139 * we can send it immediately.
1141 * Called under s_mutex.
1143 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1144 struct ceph_mds_session *session)
1146 struct ceph_msg *msg, *partial = NULL;
1147 struct ceph_mds_cap_release *head;
1149 int extra = mdsc->client->mount_args->cap_release_safety;
1152 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1155 spin_lock(&session->s_cap_lock);
1157 if (!list_empty(&session->s_cap_releases)) {
1158 msg = list_first_entry(&session->s_cap_releases,
1161 head = msg->front.iov_base;
1162 num = le32_to_cpu(head->num);
1164 dout(" partial %p with (%d/%d)\n", msg, num,
1165 (int)CEPH_CAPS_PER_RELEASE);
1166 extra += CEPH_CAPS_PER_RELEASE - num;
1170 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1171 spin_unlock(&session->s_cap_lock);
1172 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1176 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1177 (int)msg->front.iov_len);
1178 head = msg->front.iov_base;
1179 head->num = cpu_to_le32(0);
1180 msg->front.iov_len = sizeof(*head);
1181 spin_lock(&session->s_cap_lock);
1182 list_add(&msg->list_head, &session->s_cap_releases);
1183 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1187 head = partial->front.iov_base;
1188 num = le32_to_cpu(head->num);
1189 dout(" queueing partial %p with %d/%d\n", partial, num,
1190 (int)CEPH_CAPS_PER_RELEASE);
1191 list_move_tail(&partial->list_head,
1192 &session->s_cap_releases_done);
1193 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1196 spin_unlock(&session->s_cap_lock);
1202 * flush all dirty inode data to disk.
1204 * returns true if we've flushed through want_flush_seq
1206 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1210 dout("check_cap_flush want %lld\n", want_flush_seq);
1211 mutex_lock(&mdsc->mutex);
1212 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1213 struct ceph_mds_session *session = mdsc->sessions[mds];
1217 get_session(session);
1218 mutex_unlock(&mdsc->mutex);
1220 mutex_lock(&session->s_mutex);
1221 if (!list_empty(&session->s_cap_flushing)) {
1222 struct ceph_inode_info *ci =
1223 list_entry(session->s_cap_flushing.next,
1224 struct ceph_inode_info,
1226 struct inode *inode = &ci->vfs_inode;
1228 spin_lock(&inode->i_lock);
1229 if (ci->i_cap_flush_seq <= want_flush_seq) {
1230 dout("check_cap_flush still flushing %p "
1231 "seq %lld <= %lld to mds%d\n", inode,
1232 ci->i_cap_flush_seq, want_flush_seq,
1236 spin_unlock(&inode->i_lock);
1238 mutex_unlock(&session->s_mutex);
1239 ceph_put_mds_session(session);
1243 mutex_lock(&mdsc->mutex);
1246 mutex_unlock(&mdsc->mutex);
1247 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1252 * called under s_mutex
1254 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1255 struct ceph_mds_session *session)
1257 struct ceph_msg *msg;
1259 dout("send_cap_releases mds%d\n", session->s_mds);
1260 spin_lock(&session->s_cap_lock);
1261 while (!list_empty(&session->s_cap_releases_done)) {
1262 msg = list_first_entry(&session->s_cap_releases_done,
1263 struct ceph_msg, list_head);
1264 list_del_init(&msg->list_head);
1265 spin_unlock(&session->s_cap_lock);
1266 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1267 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1268 ceph_con_send(&session->s_con, msg);
1269 spin_lock(&session->s_cap_lock);
1271 spin_unlock(&session->s_cap_lock);
1274 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1275 struct ceph_mds_session *session)
1277 struct ceph_msg *msg;
1278 struct ceph_mds_cap_release *head;
1281 dout("discard_cap_releases mds%d\n", session->s_mds);
1282 spin_lock(&session->s_cap_lock);
1284 /* zero out the in-progress message */
1285 msg = list_first_entry(&session->s_cap_releases,
1286 struct ceph_msg, list_head);
1287 head = msg->front.iov_base;
1288 num = le32_to_cpu(head->num);
1289 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1290 head->num = cpu_to_le32(0);
1291 session->s_num_cap_releases += num;
1293 /* requeue completed messages */
1294 while (!list_empty(&session->s_cap_releases_done)) {
1295 msg = list_first_entry(&session->s_cap_releases_done,
1296 struct ceph_msg, list_head);
1297 list_del_init(&msg->list_head);
1299 head = msg->front.iov_base;
1300 num = le32_to_cpu(head->num);
1301 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1303 session->s_num_cap_releases += num;
1304 head->num = cpu_to_le32(0);
1305 msg->front.iov_len = sizeof(*head);
1306 list_add(&msg->list_head, &session->s_cap_releases);
1309 spin_unlock(&session->s_cap_lock);
1317 * Create an mds request.
1319 struct ceph_mds_request *
1320 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1322 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1325 return ERR_PTR(-ENOMEM);
1327 mutex_init(&req->r_fill_mutex);
1329 req->r_started = jiffies;
1330 req->r_resend_mds = -1;
1331 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1333 kref_init(&req->r_kref);
1334 INIT_LIST_HEAD(&req->r_wait);
1335 init_completion(&req->r_completion);
1336 init_completion(&req->r_safe_completion);
1337 INIT_LIST_HEAD(&req->r_unsafe_item);
1340 req->r_direct_mode = mode;
1345 * return oldest (lowest) request, tid in request tree, 0 if none.
1347 * called under mdsc->mutex.
1349 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1351 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1353 return rb_entry(rb_first(&mdsc->request_tree),
1354 struct ceph_mds_request, r_node);
1357 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1359 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1367 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1368 * on build_path_from_dentry in fs/cifs/dir.c.
1370 * If @stop_on_nosnap, generate path relative to the first non-snapped
1373 * Encode hidden .snap dirs as a double /, i.e.
1374 * foo/.snap/bar -> foo//bar
1376 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1379 struct dentry *temp;
1384 return ERR_PTR(-EINVAL);
1388 for (temp = dentry; !IS_ROOT(temp);) {
1389 struct inode *inode = temp->d_inode;
1390 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1391 len++; /* slash only */
1392 else if (stop_on_nosnap && inode &&
1393 ceph_snap(inode) == CEPH_NOSNAP)
1396 len += 1 + temp->d_name.len;
1397 temp = temp->d_parent;
1399 pr_err("build_path corrupt dentry %p\n", dentry);
1400 return ERR_PTR(-EINVAL);
1404 len--; /* no leading '/' */
1406 path = kmalloc(len+1, GFP_NOFS);
1408 return ERR_PTR(-ENOMEM);
1410 path[pos] = 0; /* trailing null */
1411 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1412 struct inode *inode = temp->d_inode;
1414 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1415 dout("build_path path+%d: %p SNAPDIR\n",
1417 } else if (stop_on_nosnap && inode &&
1418 ceph_snap(inode) == CEPH_NOSNAP) {
1421 pos -= temp->d_name.len;
1424 strncpy(path + pos, temp->d_name.name,
1429 temp = temp->d_parent;
1431 pr_err("build_path corrupt dentry\n");
1433 return ERR_PTR(-EINVAL);
1437 pr_err("build_path did not end path lookup where "
1438 "expected, namelen is %d, pos is %d\n", len, pos);
1439 /* presumably this is only possible if racing with a
1440 rename of one of the parent directories (we can not
1441 lock the dentries above us to prevent this, but
1442 retrying should be harmless) */
1447 *base = ceph_ino(temp->d_inode);
1449 dout("build_path on %p %d built %llx '%.*s'\n",
1450 dentry, atomic_read(&dentry->d_count), *base, len, path);
1454 static int build_dentry_path(struct dentry *dentry,
1455 const char **ppath, int *ppathlen, u64 *pino,
1460 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1461 *pino = ceph_ino(dentry->d_parent->d_inode);
1462 *ppath = dentry->d_name.name;
1463 *ppathlen = dentry->d_name.len;
1466 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1468 return PTR_ERR(path);
1474 static int build_inode_path(struct inode *inode,
1475 const char **ppath, int *ppathlen, u64 *pino,
1478 struct dentry *dentry;
1481 if (ceph_snap(inode) == CEPH_NOSNAP) {
1482 *pino = ceph_ino(inode);
1486 dentry = d_find_alias(inode);
1487 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1490 return PTR_ERR(path);
1497 * request arguments may be specified via an inode *, a dentry *, or
1498 * an explicit ino+path.
1500 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1501 const char *rpath, u64 rino,
1502 const char **ppath, int *pathlen,
1503 u64 *ino, int *freepath)
1508 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1509 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1511 } else if (rdentry) {
1512 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1513 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1518 *pathlen = strlen(rpath);
1519 dout(" path %.*s\n", *pathlen, rpath);
1526 * called under mdsc->mutex
1528 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1529 struct ceph_mds_request *req,
1532 struct ceph_msg *msg;
1533 struct ceph_mds_request_head *head;
1534 const char *path1 = NULL;
1535 const char *path2 = NULL;
1536 u64 ino1 = 0, ino2 = 0;
1537 int pathlen1 = 0, pathlen2 = 0;
1538 int freepath1 = 0, freepath2 = 0;
1544 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1545 req->r_path1, req->r_ino1.ino,
1546 &path1, &pathlen1, &ino1, &freepath1);
1552 ret = set_request_path_attr(NULL, req->r_old_dentry,
1553 req->r_path2, req->r_ino2.ino,
1554 &path2, &pathlen2, &ino2, &freepath2);
1560 len = sizeof(*head) +
1561 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1563 /* calculate (max) length for cap releases */
1564 len += sizeof(struct ceph_mds_request_release) *
1565 (!!req->r_inode_drop + !!req->r_dentry_drop +
1566 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1567 if (req->r_dentry_drop)
1568 len += req->r_dentry->d_name.len;
1569 if (req->r_old_dentry_drop)
1570 len += req->r_old_dentry->d_name.len;
1572 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1574 msg = ERR_PTR(-ENOMEM);
1578 msg->hdr.tid = cpu_to_le64(req->r_tid);
1580 head = msg->front.iov_base;
1581 p = msg->front.iov_base + sizeof(*head);
1582 end = msg->front.iov_base + msg->front.iov_len;
1584 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1585 head->op = cpu_to_le32(req->r_op);
1586 head->caller_uid = cpu_to_le32(current_fsuid());
1587 head->caller_gid = cpu_to_le32(current_fsgid());
1588 head->args = req->r_args;
1590 ceph_encode_filepath(&p, end, ino1, path1);
1591 ceph_encode_filepath(&p, end, ino2, path2);
1593 /* make note of release offset, in case we need to replay */
1594 req->r_request_release_offset = p - msg->front.iov_base;
1598 if (req->r_inode_drop)
1599 releases += ceph_encode_inode_release(&p,
1600 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1601 mds, req->r_inode_drop, req->r_inode_unless, 0);
1602 if (req->r_dentry_drop)
1603 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1604 mds, req->r_dentry_drop, req->r_dentry_unless);
1605 if (req->r_old_dentry_drop)
1606 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1607 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1608 if (req->r_old_inode_drop)
1609 releases += ceph_encode_inode_release(&p,
1610 req->r_old_dentry->d_inode,
1611 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1612 head->num_releases = cpu_to_le16(releases);
1615 msg->front.iov_len = p - msg->front.iov_base;
1616 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1618 msg->pages = req->r_pages;
1619 msg->nr_pages = req->r_num_pages;
1620 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1621 msg->hdr.data_off = cpu_to_le16(0);
1625 kfree((char *)path2);
1628 kfree((char *)path1);
1634 * called under mdsc->mutex if error, under no mutex if
1637 static void complete_request(struct ceph_mds_client *mdsc,
1638 struct ceph_mds_request *req)
1640 if (req->r_callback)
1641 req->r_callback(mdsc, req);
1643 complete_all(&req->r_completion);
1647 * called under mdsc->mutex
1649 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1650 struct ceph_mds_request *req,
1653 struct ceph_mds_request_head *rhead;
1654 struct ceph_msg *msg;
1660 struct ceph_cap *cap =
1661 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1664 req->r_sent_on_mseq = cap->mseq;
1666 req->r_sent_on_mseq = -1;
1668 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1669 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1671 if (req->r_got_unsafe) {
1673 * Replay. Do not regenerate message (and rebuild
1674 * paths, etc.); just use the original message.
1675 * Rebuilding paths will break for renames because
1676 * d_move mangles the src name.
1678 msg = req->r_request;
1679 rhead = msg->front.iov_base;
1681 flags = le32_to_cpu(rhead->flags);
1682 flags |= CEPH_MDS_FLAG_REPLAY;
1683 rhead->flags = cpu_to_le32(flags);
1685 if (req->r_target_inode)
1686 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1688 rhead->num_retry = req->r_attempts - 1;
1690 /* remove cap/dentry releases from message */
1691 rhead->num_releases = 0;
1692 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1693 msg->front.iov_len = req->r_request_release_offset;
1697 if (req->r_request) {
1698 ceph_msg_put(req->r_request);
1699 req->r_request = NULL;
1701 msg = create_request_message(mdsc, req, mds);
1703 req->r_err = PTR_ERR(msg);
1704 complete_request(mdsc, req);
1705 return PTR_ERR(msg);
1707 req->r_request = msg;
1709 rhead = msg->front.iov_base;
1710 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1711 if (req->r_got_unsafe)
1712 flags |= CEPH_MDS_FLAG_REPLAY;
1713 if (req->r_locked_dir)
1714 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1715 rhead->flags = cpu_to_le32(flags);
1716 rhead->num_fwd = req->r_num_fwd;
1717 rhead->num_retry = req->r_attempts - 1;
1720 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1725 * send request, or put it on the appropriate wait list.
1727 static int __do_request(struct ceph_mds_client *mdsc,
1728 struct ceph_mds_request *req)
1730 struct ceph_mds_session *session = NULL;
1734 if (req->r_err || req->r_got_result)
1737 if (req->r_timeout &&
1738 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1739 dout("do_request timed out\n");
1744 mds = __choose_mds(mdsc, req);
1746 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1747 dout("do_request no mds or not active, waiting for map\n");
1748 list_add(&req->r_wait, &mdsc->waiting_for_map);
1752 /* get, open session */
1753 session = __ceph_lookup_mds_session(mdsc, mds);
1755 session = register_session(mdsc, mds);
1756 if (IS_ERR(session)) {
1757 err = PTR_ERR(session);
1761 dout("do_request mds%d session %p state %s\n", mds, session,
1762 session_state_name(session->s_state));
1763 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1764 session->s_state != CEPH_MDS_SESSION_HUNG) {
1765 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1766 session->s_state == CEPH_MDS_SESSION_CLOSING)
1767 __open_session(mdsc, session);
1768 list_add(&req->r_wait, &session->s_waiting);
1773 req->r_session = get_session(session);
1774 req->r_resend_mds = -1; /* forget any previous mds hint */
1776 if (req->r_request_started == 0) /* note request start time */
1777 req->r_request_started = jiffies;
1779 err = __prepare_send_request(mdsc, req, mds);
1781 ceph_msg_get(req->r_request);
1782 ceph_con_send(&session->s_con, req->r_request);
1786 ceph_put_mds_session(session);
1792 complete_request(mdsc, req);
1797 * called under mdsc->mutex
1799 static void __wake_requests(struct ceph_mds_client *mdsc,
1800 struct list_head *head)
1802 struct ceph_mds_request *req, *nreq;
1804 list_for_each_entry_safe(req, nreq, head, r_wait) {
1805 list_del_init(&req->r_wait);
1806 __do_request(mdsc, req);
1811 * Wake up threads with requests pending for @mds, so that they can
1812 * resubmit their requests to a possibly different mds.
1814 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1816 struct ceph_mds_request *req;
1819 dout("kick_requests mds%d\n", mds);
1820 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1821 req = rb_entry(p, struct ceph_mds_request, r_node);
1822 if (req->r_got_unsafe)
1824 if (req->r_session &&
1825 req->r_session->s_mds == mds) {
1826 dout(" kicking tid %llu\n", req->r_tid);
1827 put_request_session(req);
1828 __do_request(mdsc, req);
1833 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1834 struct ceph_mds_request *req)
1836 dout("submit_request on %p\n", req);
1837 mutex_lock(&mdsc->mutex);
1838 __register_request(mdsc, req, NULL);
1839 __do_request(mdsc, req);
1840 mutex_unlock(&mdsc->mutex);
1844 * Synchrously perform an mds request. Take care of all of the
1845 * session setup, forwarding, retry details.
1847 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1849 struct ceph_mds_request *req)
1853 dout("do_request on %p\n", req);
1855 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1857 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1858 if (req->r_locked_dir)
1859 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1860 if (req->r_old_dentry)
1862 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1866 mutex_lock(&mdsc->mutex);
1867 __register_request(mdsc, req, dir);
1868 __do_request(mdsc, req);
1872 __unregister_request(mdsc, req);
1873 dout("do_request early error %d\n", err);
1878 mutex_unlock(&mdsc->mutex);
1879 dout("do_request waiting\n");
1880 if (req->r_timeout) {
1881 err = (long)wait_for_completion_killable_timeout(
1882 &req->r_completion, req->r_timeout);
1886 err = wait_for_completion_killable(&req->r_completion);
1888 dout("do_request waited, got %d\n", err);
1889 mutex_lock(&mdsc->mutex);
1891 /* only abort if we didn't race with a real reply */
1892 if (req->r_got_result) {
1893 err = le32_to_cpu(req->r_reply_info.head->result);
1894 } else if (err < 0) {
1895 dout("aborted request %lld with %d\n", req->r_tid, err);
1898 * ensure we aren't running concurrently with
1899 * ceph_fill_trace or ceph_readdir_prepopulate, which
1900 * rely on locks (dir mutex) held by our caller.
1902 mutex_lock(&req->r_fill_mutex);
1904 req->r_aborted = true;
1905 mutex_unlock(&req->r_fill_mutex);
1907 if (req->r_locked_dir &&
1908 (req->r_op & CEPH_MDS_OP_WRITE))
1909 ceph_invalidate_dir_request(req);
1915 mutex_unlock(&mdsc->mutex);
1916 dout("do_request %p done, result %d\n", req, err);
1921 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1922 * namespace request.
1924 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1926 struct inode *inode = req->r_locked_dir;
1927 struct ceph_inode_info *ci = ceph_inode(inode);
1929 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1930 spin_lock(&inode->i_lock);
1931 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1932 ci->i_release_count++;
1933 spin_unlock(&inode->i_lock);
1936 ceph_invalidate_dentry_lease(req->r_dentry);
1937 if (req->r_old_dentry)
1938 ceph_invalidate_dentry_lease(req->r_old_dentry);
1944 * We take the session mutex and parse and process the reply immediately.
1945 * This preserves the logical ordering of replies, capabilities, etc., sent
1946 * by the MDS as they are applied to our local cache.
1948 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1950 struct ceph_mds_client *mdsc = session->s_mdsc;
1951 struct ceph_mds_request *req;
1952 struct ceph_mds_reply_head *head = msg->front.iov_base;
1953 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
1956 int mds = session->s_mds;
1958 if (msg->front.iov_len < sizeof(*head)) {
1959 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1964 /* get request, session */
1965 tid = le64_to_cpu(msg->hdr.tid);
1966 mutex_lock(&mdsc->mutex);
1967 req = __lookup_request(mdsc, tid);
1969 dout("handle_reply on unknown tid %llu\n", tid);
1970 mutex_unlock(&mdsc->mutex);
1973 dout("handle_reply %p\n", req);
1975 /* correct session? */
1976 if (req->r_session != session) {
1977 pr_err("mdsc_handle_reply got %llu on session mds%d"
1978 " not mds%d\n", tid, session->s_mds,
1979 req->r_session ? req->r_session->s_mds : -1);
1980 mutex_unlock(&mdsc->mutex);
1985 if ((req->r_got_unsafe && !head->safe) ||
1986 (req->r_got_safe && head->safe)) {
1987 pr_warning("got a dup %s reply on %llu from mds%d\n",
1988 head->safe ? "safe" : "unsafe", tid, mds);
1989 mutex_unlock(&mdsc->mutex);
1992 if (req->r_got_safe && !head->safe) {
1993 pr_warning("got unsafe after safe on %llu from mds%d\n",
1995 mutex_unlock(&mdsc->mutex);
1999 result = le32_to_cpu(head->result);
2003 * if we're not talking to the authority, send to them
2004 * if the authority has changed while we weren't looking,
2005 * send to new authority
2006 * Otherwise we just have to return an ESTALE
2008 if (result == -ESTALE) {
2009 dout("got ESTALE on request %llu", req->r_tid);
2010 if (!req->r_inode) {
2011 /* do nothing; not an authority problem */
2012 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2013 dout("not using auth, setting for that now");
2014 req->r_direct_mode = USE_AUTH_MDS;
2015 __do_request(mdsc, req);
2016 mutex_unlock(&mdsc->mutex);
2019 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2020 struct ceph_cap *cap =
2021 ceph_get_cap_for_mds(ci, req->r_mds);;
2023 dout("already using auth");
2024 if ((!cap || cap != ci->i_auth_cap) ||
2025 (cap->mseq != req->r_sent_on_mseq)) {
2026 dout("but cap changed, so resending");
2027 __do_request(mdsc, req);
2028 mutex_unlock(&mdsc->mutex);
2032 dout("have to return ESTALE on request %llu", req->r_tid);
2037 req->r_got_safe = true;
2038 __unregister_request(mdsc, req);
2039 complete_all(&req->r_safe_completion);
2041 if (req->r_got_unsafe) {
2043 * We already handled the unsafe response, now do the
2044 * cleanup. No need to examine the response; the MDS
2045 * doesn't include any result info in the safe
2046 * response. And even if it did, there is nothing
2047 * useful we could do with a revised return value.
2049 dout("got safe reply %llu, mds%d\n", tid, mds);
2050 list_del_init(&req->r_unsafe_item);
2052 /* last unsafe request during umount? */
2053 if (mdsc->stopping && !__get_oldest_req(mdsc))
2054 complete_all(&mdsc->safe_umount_waiters);
2055 mutex_unlock(&mdsc->mutex);
2059 req->r_got_unsafe = true;
2060 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2063 dout("handle_reply tid %lld result %d\n", tid, result);
2064 rinfo = &req->r_reply_info;
2065 err = parse_reply_info(msg, rinfo);
2066 mutex_unlock(&mdsc->mutex);
2068 mutex_lock(&session->s_mutex);
2070 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
2076 if (rinfo->snapblob_len) {
2077 down_write(&mdsc->snap_rwsem);
2078 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2079 rinfo->snapblob + rinfo->snapblob_len,
2080 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2081 downgrade_write(&mdsc->snap_rwsem);
2083 down_read(&mdsc->snap_rwsem);
2086 /* insert trace into our cache */
2087 mutex_lock(&req->r_fill_mutex);
2088 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
2090 if (result == 0 && rinfo->dir_nr)
2091 ceph_readdir_prepopulate(req, req->r_session);
2092 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2094 mutex_unlock(&req->r_fill_mutex);
2096 up_read(&mdsc->snap_rwsem);
2098 mutex_lock(&mdsc->mutex);
2099 if (!req->r_aborted) {
2105 req->r_got_result = true;
2108 dout("reply arrived after request %lld was aborted\n", tid);
2110 mutex_unlock(&mdsc->mutex);
2112 ceph_add_cap_releases(mdsc, req->r_session);
2113 mutex_unlock(&session->s_mutex);
2115 /* kick calling process */
2116 complete_request(mdsc, req);
2118 ceph_mdsc_put_request(req);
2125 * handle mds notification that our request has been forwarded.
2127 static void handle_forward(struct ceph_mds_client *mdsc,
2128 struct ceph_mds_session *session,
2129 struct ceph_msg *msg)
2131 struct ceph_mds_request *req;
2132 u64 tid = le64_to_cpu(msg->hdr.tid);
2136 void *p = msg->front.iov_base;
2137 void *end = p + msg->front.iov_len;
2139 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2140 next_mds = ceph_decode_32(&p);
2141 fwd_seq = ceph_decode_32(&p);
2143 mutex_lock(&mdsc->mutex);
2144 req = __lookup_request(mdsc, tid);
2146 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2147 goto out; /* dup reply? */
2150 if (req->r_aborted) {
2151 dout("forward tid %llu aborted, unregistering\n", tid);
2152 __unregister_request(mdsc, req);
2153 } else if (fwd_seq <= req->r_num_fwd) {
2154 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2155 tid, next_mds, req->r_num_fwd, fwd_seq);
2157 /* resend. forward race not possible; mds would drop */
2158 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2160 BUG_ON(req->r_got_result);
2161 req->r_num_fwd = fwd_seq;
2162 req->r_resend_mds = next_mds;
2163 put_request_session(req);
2164 __do_request(mdsc, req);
2166 ceph_mdsc_put_request(req);
2168 mutex_unlock(&mdsc->mutex);
2172 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2176 * handle a mds session control message
2178 static void handle_session(struct ceph_mds_session *session,
2179 struct ceph_msg *msg)
2181 struct ceph_mds_client *mdsc = session->s_mdsc;
2184 int mds = session->s_mds;
2185 struct ceph_mds_session_head *h = msg->front.iov_base;
2189 if (msg->front.iov_len != sizeof(*h))
2191 op = le32_to_cpu(h->op);
2192 seq = le64_to_cpu(h->seq);
2194 mutex_lock(&mdsc->mutex);
2195 if (op == CEPH_SESSION_CLOSE)
2196 __unregister_session(mdsc, session);
2197 /* FIXME: this ttl calculation is generous */
2198 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2199 mutex_unlock(&mdsc->mutex);
2201 mutex_lock(&session->s_mutex);
2203 dout("handle_session mds%d %s %p state %s seq %llu\n",
2204 mds, ceph_session_op_name(op), session,
2205 session_state_name(session->s_state), seq);
2207 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2208 session->s_state = CEPH_MDS_SESSION_OPEN;
2209 pr_info("mds%d came back\n", session->s_mds);
2213 case CEPH_SESSION_OPEN:
2214 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2215 pr_info("mds%d reconnect success\n", session->s_mds);
2216 session->s_state = CEPH_MDS_SESSION_OPEN;
2217 renewed_caps(mdsc, session, 0);
2220 __close_session(mdsc, session);
2223 case CEPH_SESSION_RENEWCAPS:
2224 if (session->s_renew_seq == seq)
2225 renewed_caps(mdsc, session, 1);
2228 case CEPH_SESSION_CLOSE:
2229 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2230 pr_info("mds%d reconnect denied\n", session->s_mds);
2231 remove_session_caps(session);
2232 wake = 1; /* for good measure */
2233 wake_up_all(&mdsc->session_close_wq);
2234 kick_requests(mdsc, mds);
2237 case CEPH_SESSION_STALE:
2238 pr_info("mds%d caps went stale, renewing\n",
2240 spin_lock(&session->s_cap_lock);
2241 session->s_cap_gen++;
2242 session->s_cap_ttl = 0;
2243 spin_unlock(&session->s_cap_lock);
2244 send_renew_caps(mdsc, session);
2247 case CEPH_SESSION_RECALL_STATE:
2248 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2252 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2256 mutex_unlock(&session->s_mutex);
2258 mutex_lock(&mdsc->mutex);
2259 __wake_requests(mdsc, &session->s_waiting);
2260 mutex_unlock(&mdsc->mutex);
2265 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2266 (int)msg->front.iov_len);
2273 * called under session->mutex.
2275 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2276 struct ceph_mds_session *session)
2278 struct ceph_mds_request *req, *nreq;
2281 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2283 mutex_lock(&mdsc->mutex);
2284 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2285 err = __prepare_send_request(mdsc, req, session->s_mds);
2287 ceph_msg_get(req->r_request);
2288 ceph_con_send(&session->s_con, req->r_request);
2291 mutex_unlock(&mdsc->mutex);
2295 * Encode information about a cap for a reconnect with the MDS.
2297 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2301 struct ceph_mds_cap_reconnect v2;
2302 struct ceph_mds_cap_reconnect_v1 v1;
2305 struct ceph_inode_info *ci;
2306 struct ceph_reconnect_state *recon_state = arg;
2307 struct ceph_pagelist *pagelist = recon_state->pagelist;
2311 struct dentry *dentry;
2315 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2316 inode, ceph_vinop(inode), cap, cap->cap_id,
2317 ceph_cap_string(cap->issued));
2318 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2322 dentry = d_find_alias(inode);
2324 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2326 err = PTR_ERR(path);
2333 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2337 spin_lock(&inode->i_lock);
2338 cap->seq = 0; /* reset cap seq */
2339 cap->issue_seq = 0; /* and issue_seq */
2341 if (recon_state->flock) {
2342 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2343 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2344 rec.v2.issued = cpu_to_le32(cap->issued);
2345 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2346 rec.v2.pathbase = cpu_to_le64(pathbase);
2347 rec.v2.flock_len = 0;
2348 reclen = sizeof(rec.v2);
2350 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2351 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2352 rec.v1.issued = cpu_to_le32(cap->issued);
2353 rec.v1.size = cpu_to_le64(inode->i_size);
2354 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2355 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2356 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2357 rec.v1.pathbase = cpu_to_le64(pathbase);
2358 reclen = sizeof(rec.v1);
2360 spin_unlock(&inode->i_lock);
2362 if (recon_state->flock) {
2363 int num_fcntl_locks, num_flock_locks;
2366 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2367 rec.v2.flock_len = (2*sizeof(u32) +
2368 (num_fcntl_locks+num_flock_locks) *
2369 sizeof(struct ceph_filelock));
2371 err = ceph_pagelist_append(pagelist, &rec, reclen);
2373 err = ceph_encode_locks(inode, pagelist,
2388 * If an MDS fails and recovers, clients need to reconnect in order to
2389 * reestablish shared state. This includes all caps issued through
2390 * this session _and_ the snap_realm hierarchy. Because it's not
2391 * clear which snap realms the mds cares about, we send everything we
2392 * know about.. that ensures we'll then get any new info the
2393 * recovering MDS might have.
2395 * This is a relatively heavyweight operation, but it's rare.
2397 * called with mdsc->mutex held.
2399 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2400 struct ceph_mds_session *session)
2402 struct ceph_msg *reply;
2404 int mds = session->s_mds;
2406 struct ceph_pagelist *pagelist;
2407 struct ceph_reconnect_state recon_state;
2409 pr_info("mds%d reconnect start\n", mds);
2411 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2413 goto fail_nopagelist;
2414 ceph_pagelist_init(pagelist);
2416 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2420 mutex_lock(&session->s_mutex);
2421 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2424 ceph_con_open(&session->s_con,
2425 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2427 /* replay unsafe requests */
2428 replay_unsafe_requests(mdsc, session);
2430 down_read(&mdsc->snap_rwsem);
2432 dout("session %p state %s\n", session,
2433 session_state_name(session->s_state));
2435 /* drop old cap expires; we're about to reestablish that state */
2436 discard_cap_releases(mdsc, session);
2438 /* traverse this session's caps */
2439 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2443 recon_state.pagelist = pagelist;
2444 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2445 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2450 * snaprealms. we provide mds with the ino, seq (version), and
2451 * parent for all of our realms. If the mds has any newer info,
2454 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2455 struct ceph_snap_realm *realm =
2456 rb_entry(p, struct ceph_snap_realm, node);
2457 struct ceph_mds_snaprealm_reconnect sr_rec;
2459 dout(" adding snap realm %llx seq %lld parent %llx\n",
2460 realm->ino, realm->seq, realm->parent_ino);
2461 sr_rec.ino = cpu_to_le64(realm->ino);
2462 sr_rec.seq = cpu_to_le64(realm->seq);
2463 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2464 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2469 reply->pagelist = pagelist;
2470 if (recon_state.flock)
2471 reply->hdr.version = cpu_to_le16(2);
2472 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2473 reply->nr_pages = calc_pages_for(0, pagelist->length);
2474 ceph_con_send(&session->s_con, reply);
2476 mutex_unlock(&session->s_mutex);
2478 mutex_lock(&mdsc->mutex);
2479 __wake_requests(mdsc, &session->s_waiting);
2480 mutex_unlock(&mdsc->mutex);
2482 up_read(&mdsc->snap_rwsem);
2486 ceph_msg_put(reply);
2487 up_read(&mdsc->snap_rwsem);
2488 mutex_unlock(&session->s_mutex);
2490 ceph_pagelist_release(pagelist);
2493 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2499 * compare old and new mdsmaps, kicking requests
2500 * and closing out old connections as necessary
2502 * called under mdsc->mutex.
2504 static void check_new_map(struct ceph_mds_client *mdsc,
2505 struct ceph_mdsmap *newmap,
2506 struct ceph_mdsmap *oldmap)
2509 int oldstate, newstate;
2510 struct ceph_mds_session *s;
2512 dout("check_new_map new %u old %u\n",
2513 newmap->m_epoch, oldmap->m_epoch);
2515 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2516 if (mdsc->sessions[i] == NULL)
2518 s = mdsc->sessions[i];
2519 oldstate = ceph_mdsmap_get_state(oldmap, i);
2520 newstate = ceph_mdsmap_get_state(newmap, i);
2522 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2523 i, ceph_mds_state_name(oldstate),
2524 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2525 ceph_mds_state_name(newstate),
2526 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2527 session_state_name(s->s_state));
2529 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2530 ceph_mdsmap_get_addr(newmap, i),
2531 sizeof(struct ceph_entity_addr))) {
2532 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2533 /* the session never opened, just close it
2535 __wake_requests(mdsc, &s->s_waiting);
2536 __unregister_session(mdsc, s);
2539 mutex_unlock(&mdsc->mutex);
2540 mutex_lock(&s->s_mutex);
2541 mutex_lock(&mdsc->mutex);
2542 ceph_con_close(&s->s_con);
2543 mutex_unlock(&s->s_mutex);
2544 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2547 /* kick any requests waiting on the recovering mds */
2548 kick_requests(mdsc, i);
2549 } else if (oldstate == newstate) {
2550 continue; /* nothing new with this mds */
2556 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2557 newstate >= CEPH_MDS_STATE_RECONNECT) {
2558 mutex_unlock(&mdsc->mutex);
2559 send_mds_reconnect(mdsc, s);
2560 mutex_lock(&mdsc->mutex);
2564 * kick request on any mds that has gone active.
2566 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2567 newstate >= CEPH_MDS_STATE_ACTIVE) {
2568 if (oldstate != CEPH_MDS_STATE_CREATING &&
2569 oldstate != CEPH_MDS_STATE_STARTING)
2570 pr_info("mds%d recovery completed\n", s->s_mds);
2571 kick_requests(mdsc, i);
2572 ceph_kick_flushing_caps(mdsc, s);
2573 wake_up_session_caps(s, 1);
2577 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2578 s = mdsc->sessions[i];
2581 if (!ceph_mdsmap_is_laggy(newmap, i))
2583 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2584 s->s_state == CEPH_MDS_SESSION_HUNG ||
2585 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2586 dout(" connecting to export targets of laggy mds%d\n",
2588 __open_export_target_sessions(mdsc, s);
2600 * caller must hold session s_mutex, dentry->d_lock
2602 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2604 struct ceph_dentry_info *di = ceph_dentry(dentry);
2606 ceph_put_mds_session(di->lease_session);
2607 di->lease_session = NULL;
2610 static void handle_lease(struct ceph_mds_client *mdsc,
2611 struct ceph_mds_session *session,
2612 struct ceph_msg *msg)
2614 struct super_block *sb = mdsc->client->sb;
2615 struct inode *inode;
2616 struct ceph_inode_info *ci;
2617 struct dentry *parent, *dentry;
2618 struct ceph_dentry_info *di;
2619 int mds = session->s_mds;
2620 struct ceph_mds_lease *h = msg->front.iov_base;
2622 struct ceph_vino vino;
2627 dout("handle_lease from mds%d\n", mds);
2630 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2632 vino.ino = le64_to_cpu(h->ino);
2633 vino.snap = CEPH_NOSNAP;
2634 mask = le16_to_cpu(h->mask);
2635 seq = le32_to_cpu(h->seq);
2636 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2637 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2638 if (dname.len != get_unaligned_le32(h+1))
2641 mutex_lock(&session->s_mutex);
2645 inode = ceph_find_inode(sb, vino);
2646 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2647 ceph_lease_op_name(h->action), mask, vino.ino, inode,
2648 dname.len, dname.name);
2649 if (inode == NULL) {
2650 dout("handle_lease no inode %llx\n", vino.ino);
2653 ci = ceph_inode(inode);
2656 parent = d_find_alias(inode);
2658 dout("no parent dentry on inode %p\n", inode);
2660 goto release; /* hrm... */
2662 dname.hash = full_name_hash(dname.name, dname.len);
2663 dentry = d_lookup(parent, &dname);
2668 spin_lock(&dentry->d_lock);
2669 di = ceph_dentry(dentry);
2670 switch (h->action) {
2671 case CEPH_MDS_LEASE_REVOKE:
2672 if (di && di->lease_session == session) {
2673 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2674 h->seq = cpu_to_le32(di->lease_seq);
2675 __ceph_mdsc_drop_dentry_lease(dentry);
2680 case CEPH_MDS_LEASE_RENEW:
2681 if (di && di->lease_session == session &&
2682 di->lease_gen == session->s_cap_gen &&
2683 di->lease_renew_from &&
2684 di->lease_renew_after == 0) {
2685 unsigned long duration =
2686 le32_to_cpu(h->duration_ms) * HZ / 1000;
2688 di->lease_seq = seq;
2689 dentry->d_time = di->lease_renew_from + duration;
2690 di->lease_renew_after = di->lease_renew_from +
2692 di->lease_renew_from = 0;
2696 spin_unlock(&dentry->d_lock);
2703 /* let's just reuse the same message */
2704 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2706 ceph_con_send(&session->s_con, msg);
2710 mutex_unlock(&session->s_mutex);
2714 pr_err("corrupt lease message\n");
2718 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2719 struct inode *inode,
2720 struct dentry *dentry, char action,
2723 struct ceph_msg *msg;
2724 struct ceph_mds_lease *lease;
2725 int len = sizeof(*lease) + sizeof(u32);
2728 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2729 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2730 dnamelen = dentry->d_name.len;
2733 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2736 lease = msg->front.iov_base;
2737 lease->action = action;
2738 lease->mask = cpu_to_le16(1);
2739 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2740 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2741 lease->seq = cpu_to_le32(seq);
2742 put_unaligned_le32(dnamelen, lease + 1);
2743 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2746 * if this is a preemptive lease RELEASE, no need to
2747 * flush request stream, since the actual request will
2750 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2752 ceph_con_send(&session->s_con, msg);
2756 * Preemptively release a lease we expect to invalidate anyway.
2757 * Pass @inode always, @dentry is optional.
2759 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2760 struct dentry *dentry, int mask)
2762 struct ceph_dentry_info *di;
2763 struct ceph_mds_session *session;
2766 BUG_ON(inode == NULL);
2767 BUG_ON(dentry == NULL);
2770 /* is dentry lease valid? */
2771 spin_lock(&dentry->d_lock);
2772 di = ceph_dentry(dentry);
2773 if (!di || !di->lease_session ||
2774 di->lease_session->s_mds < 0 ||
2775 di->lease_gen != di->lease_session->s_cap_gen ||
2776 !time_before(jiffies, dentry->d_time)) {
2777 dout("lease_release inode %p dentry %p -- "
2779 inode, dentry, mask);
2780 spin_unlock(&dentry->d_lock);
2784 /* we do have a lease on this dentry; note mds and seq */
2785 session = ceph_get_mds_session(di->lease_session);
2786 seq = di->lease_seq;
2787 __ceph_mdsc_drop_dentry_lease(dentry);
2788 spin_unlock(&dentry->d_lock);
2790 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2791 inode, dentry, mask, session->s_mds);
2792 ceph_mdsc_lease_send_msg(session, inode, dentry,
2793 CEPH_MDS_LEASE_RELEASE, seq);
2794 ceph_put_mds_session(session);
2798 * drop all leases (and dentry refs) in preparation for umount
2800 static void drop_leases(struct ceph_mds_client *mdsc)
2804 dout("drop_leases\n");
2805 mutex_lock(&mdsc->mutex);
2806 for (i = 0; i < mdsc->max_sessions; i++) {
2807 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2810 mutex_unlock(&mdsc->mutex);
2811 mutex_lock(&s->s_mutex);
2812 mutex_unlock(&s->s_mutex);
2813 ceph_put_mds_session(s);
2814 mutex_lock(&mdsc->mutex);
2816 mutex_unlock(&mdsc->mutex);
2822 * delayed work -- periodically trim expired leases, renew caps with mds
2824 static void schedule_delayed(struct ceph_mds_client *mdsc)
2827 unsigned hz = round_jiffies_relative(HZ * delay);
2828 schedule_delayed_work(&mdsc->delayed_work, hz);
2831 static void delayed_work(struct work_struct *work)
2834 struct ceph_mds_client *mdsc =
2835 container_of(work, struct ceph_mds_client, delayed_work.work);
2839 dout("mdsc delayed_work\n");
2840 ceph_check_delayed_caps(mdsc);
2842 mutex_lock(&mdsc->mutex);
2843 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2844 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2845 mdsc->last_renew_caps);
2847 mdsc->last_renew_caps = jiffies;
2849 for (i = 0; i < mdsc->max_sessions; i++) {
2850 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2853 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2854 dout("resending session close request for mds%d\n",
2856 request_close_session(mdsc, s);
2857 ceph_put_mds_session(s);
2860 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2861 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2862 s->s_state = CEPH_MDS_SESSION_HUNG;
2863 pr_info("mds%d hung\n", s->s_mds);
2866 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2867 /* this mds is failed or recovering, just wait */
2868 ceph_put_mds_session(s);
2871 mutex_unlock(&mdsc->mutex);
2873 mutex_lock(&s->s_mutex);
2875 send_renew_caps(mdsc, s);
2877 ceph_con_keepalive(&s->s_con);
2878 ceph_add_cap_releases(mdsc, s);
2879 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2880 s->s_state == CEPH_MDS_SESSION_HUNG)
2881 ceph_send_cap_releases(mdsc, s);
2882 mutex_unlock(&s->s_mutex);
2883 ceph_put_mds_session(s);
2885 mutex_lock(&mdsc->mutex);
2887 mutex_unlock(&mdsc->mutex);
2889 schedule_delayed(mdsc);
2893 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2895 mdsc->client = client;
2896 mutex_init(&mdsc->mutex);
2897 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2898 if (mdsc->mdsmap == NULL)
2901 init_completion(&mdsc->safe_umount_waiters);
2902 init_waitqueue_head(&mdsc->session_close_wq);
2903 INIT_LIST_HEAD(&mdsc->waiting_for_map);
2904 mdsc->sessions = NULL;
2905 mdsc->max_sessions = 0;
2907 init_rwsem(&mdsc->snap_rwsem);
2908 mdsc->snap_realms = RB_ROOT;
2909 INIT_LIST_HEAD(&mdsc->snap_empty);
2910 spin_lock_init(&mdsc->snap_empty_lock);
2912 mdsc->request_tree = RB_ROOT;
2913 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2914 mdsc->last_renew_caps = jiffies;
2915 INIT_LIST_HEAD(&mdsc->cap_delay_list);
2916 spin_lock_init(&mdsc->cap_delay_lock);
2917 INIT_LIST_HEAD(&mdsc->snap_flush_list);
2918 spin_lock_init(&mdsc->snap_flush_lock);
2919 mdsc->cap_flush_seq = 0;
2920 INIT_LIST_HEAD(&mdsc->cap_dirty);
2921 mdsc->num_cap_flushing = 0;
2922 spin_lock_init(&mdsc->cap_dirty_lock);
2923 init_waitqueue_head(&mdsc->cap_flushing_wq);
2924 spin_lock_init(&mdsc->dentry_lru_lock);
2925 INIT_LIST_HEAD(&mdsc->dentry_lru);
2927 ceph_caps_init(mdsc);
2928 ceph_adjust_min_caps(mdsc, client->min_caps);
2934 * Wait for safe replies on open mds requests. If we time out, drop
2935 * all requests from the tree to avoid dangling dentry refs.
2937 static void wait_requests(struct ceph_mds_client *mdsc)
2939 struct ceph_mds_request *req;
2940 struct ceph_client *client = mdsc->client;
2942 mutex_lock(&mdsc->mutex);
2943 if (__get_oldest_req(mdsc)) {
2944 mutex_unlock(&mdsc->mutex);
2946 dout("wait_requests waiting for requests\n");
2947 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2948 client->mount_args->mount_timeout * HZ);
2950 /* tear down remaining requests */
2951 mutex_lock(&mdsc->mutex);
2952 while ((req = __get_oldest_req(mdsc))) {
2953 dout("wait_requests timed out on tid %llu\n",
2955 __unregister_request(mdsc, req);
2958 mutex_unlock(&mdsc->mutex);
2959 dout("wait_requests done\n");
2963 * called before mount is ro, and before dentries are torn down.
2964 * (hmm, does this still race with new lookups?)
2966 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2968 dout("pre_umount\n");
2972 ceph_flush_dirty_caps(mdsc);
2973 wait_requests(mdsc);
2976 * wait for reply handlers to drop their request refs and
2977 * their inode/dcache refs
2983 * wait for all write mds requests to flush.
2985 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2987 struct ceph_mds_request *req = NULL, *nextreq;
2990 mutex_lock(&mdsc->mutex);
2991 dout("wait_unsafe_requests want %lld\n", want_tid);
2993 req = __get_oldest_req(mdsc);
2994 while (req && req->r_tid <= want_tid) {
2995 /* find next request */
2996 n = rb_next(&req->r_node);
2998 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3001 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3003 ceph_mdsc_get_request(req);
3005 ceph_mdsc_get_request(nextreq);
3006 mutex_unlock(&mdsc->mutex);
3007 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3008 req->r_tid, want_tid);
3009 wait_for_completion(&req->r_safe_completion);
3010 mutex_lock(&mdsc->mutex);
3011 ceph_mdsc_put_request(req);
3013 break; /* next dne before, so we're done! */
3014 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3015 /* next request was removed from tree */
3016 ceph_mdsc_put_request(nextreq);
3019 ceph_mdsc_put_request(nextreq); /* won't go away */
3023 mutex_unlock(&mdsc->mutex);
3024 dout("wait_unsafe_requests done\n");
3027 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3029 u64 want_tid, want_flush;
3031 if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3035 mutex_lock(&mdsc->mutex);
3036 want_tid = mdsc->last_tid;
3037 want_flush = mdsc->cap_flush_seq;
3038 mutex_unlock(&mdsc->mutex);
3039 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3041 ceph_flush_dirty_caps(mdsc);
3043 wait_unsafe_requests(mdsc, want_tid);
3044 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3048 * true if all sessions are closed, or we force unmount
3050 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3054 if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3057 mutex_lock(&mdsc->mutex);
3058 for (i = 0; i < mdsc->max_sessions; i++)
3059 if (mdsc->sessions[i])
3061 mutex_unlock(&mdsc->mutex);
3066 * called after sb is ro.
3068 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3070 struct ceph_mds_session *session;
3072 struct ceph_client *client = mdsc->client;
3073 unsigned long timeout = client->mount_args->mount_timeout * HZ;
3075 dout("close_sessions\n");
3077 /* close sessions */
3078 mutex_lock(&mdsc->mutex);
3079 for (i = 0; i < mdsc->max_sessions; i++) {
3080 session = __ceph_lookup_mds_session(mdsc, i);
3083 mutex_unlock(&mdsc->mutex);
3084 mutex_lock(&session->s_mutex);
3085 __close_session(mdsc, session);
3086 mutex_unlock(&session->s_mutex);
3087 ceph_put_mds_session(session);
3088 mutex_lock(&mdsc->mutex);
3090 mutex_unlock(&mdsc->mutex);
3092 dout("waiting for sessions to close\n");
3093 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3096 /* tear down remaining sessions */
3097 mutex_lock(&mdsc->mutex);
3098 for (i = 0; i < mdsc->max_sessions; i++) {
3099 if (mdsc->sessions[i]) {
3100 session = get_session(mdsc->sessions[i]);
3101 __unregister_session(mdsc, session);
3102 mutex_unlock(&mdsc->mutex);
3103 mutex_lock(&session->s_mutex);
3104 remove_session_caps(session);
3105 mutex_unlock(&session->s_mutex);
3106 ceph_put_mds_session(session);
3107 mutex_lock(&mdsc->mutex);
3110 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3111 mutex_unlock(&mdsc->mutex);
3113 ceph_cleanup_empty_realms(mdsc);
3115 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3120 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3123 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3125 ceph_mdsmap_destroy(mdsc->mdsmap);
3126 kfree(mdsc->sessions);
3127 ceph_caps_finalize(mdsc);
3132 * handle mds map update.
3134 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3138 void *p = msg->front.iov_base;
3139 void *end = p + msg->front.iov_len;
3140 struct ceph_mdsmap *newmap, *oldmap;
3141 struct ceph_fsid fsid;
3144 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3145 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3146 if (ceph_check_fsid(mdsc->client, &fsid) < 0)
3148 epoch = ceph_decode_32(&p);
3149 maplen = ceph_decode_32(&p);
3150 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3152 /* do we need it? */
3153 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
3154 mutex_lock(&mdsc->mutex);
3155 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3156 dout("handle_map epoch %u <= our %u\n",
3157 epoch, mdsc->mdsmap->m_epoch);
3158 mutex_unlock(&mdsc->mutex);
3162 newmap = ceph_mdsmap_decode(&p, end);
3163 if (IS_ERR(newmap)) {
3164 err = PTR_ERR(newmap);
3168 /* swap into place */
3170 oldmap = mdsc->mdsmap;
3171 mdsc->mdsmap = newmap;
3172 check_new_map(mdsc, newmap, oldmap);
3173 ceph_mdsmap_destroy(oldmap);
3175 mdsc->mdsmap = newmap; /* first mds map */
3177 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3179 __wake_requests(mdsc, &mdsc->waiting_for_map);
3181 mutex_unlock(&mdsc->mutex);
3182 schedule_delayed(mdsc);
3186 mutex_unlock(&mdsc->mutex);
3188 pr_err("error decoding mdsmap %d\n", err);
3192 static struct ceph_connection *con_get(struct ceph_connection *con)
3194 struct ceph_mds_session *s = con->private;
3196 if (get_session(s)) {
3197 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3200 dout("mdsc con_get %p FAIL\n", s);
3204 static void con_put(struct ceph_connection *con)
3206 struct ceph_mds_session *s = con->private;
3208 ceph_put_mds_session(s);
3209 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3213 * if the client is unresponsive for long enough, the mds will kill
3214 * the session entirely.
3216 static void peer_reset(struct ceph_connection *con)
3218 struct ceph_mds_session *s = con->private;
3219 struct ceph_mds_client *mdsc = s->s_mdsc;
3221 pr_warning("mds%d closed our session\n", s->s_mds);
3222 send_mds_reconnect(mdsc, s);
3225 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3227 struct ceph_mds_session *s = con->private;
3228 struct ceph_mds_client *mdsc = s->s_mdsc;
3229 int type = le16_to_cpu(msg->hdr.type);
3231 mutex_lock(&mdsc->mutex);
3232 if (__verify_registered_session(mdsc, s) < 0) {
3233 mutex_unlock(&mdsc->mutex);
3236 mutex_unlock(&mdsc->mutex);
3239 case CEPH_MSG_MDS_MAP:
3240 ceph_mdsc_handle_map(mdsc, msg);
3242 case CEPH_MSG_CLIENT_SESSION:
3243 handle_session(s, msg);
3245 case CEPH_MSG_CLIENT_REPLY:
3246 handle_reply(s, msg);
3248 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3249 handle_forward(mdsc, s, msg);
3251 case CEPH_MSG_CLIENT_CAPS:
3252 ceph_handle_caps(s, msg);
3254 case CEPH_MSG_CLIENT_SNAP:
3255 ceph_handle_snap(mdsc, s, msg);
3257 case CEPH_MSG_CLIENT_LEASE:
3258 handle_lease(mdsc, s, msg);
3262 pr_err("received unknown message type %d %s\n", type,
3263 ceph_msg_type_name(type));
3272 static int get_authorizer(struct ceph_connection *con,
3273 void **buf, int *len, int *proto,
3274 void **reply_buf, int *reply_len, int force_new)
3276 struct ceph_mds_session *s = con->private;
3277 struct ceph_mds_client *mdsc = s->s_mdsc;
3278 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3281 if (force_new && s->s_authorizer) {
3282 ac->ops->destroy_authorizer(ac, s->s_authorizer);
3283 s->s_authorizer = NULL;
3285 if (s->s_authorizer == NULL) {
3286 if (ac->ops->create_authorizer) {
3287 ret = ac->ops->create_authorizer(
3288 ac, CEPH_ENTITY_TYPE_MDS,
3290 &s->s_authorizer_buf,
3291 &s->s_authorizer_buf_len,
3292 &s->s_authorizer_reply_buf,
3293 &s->s_authorizer_reply_buf_len);
3299 *proto = ac->protocol;
3300 *buf = s->s_authorizer_buf;
3301 *len = s->s_authorizer_buf_len;
3302 *reply_buf = s->s_authorizer_reply_buf;
3303 *reply_len = s->s_authorizer_reply_buf_len;
3308 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3310 struct ceph_mds_session *s = con->private;
3311 struct ceph_mds_client *mdsc = s->s_mdsc;
3312 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3314 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3317 static int invalidate_authorizer(struct ceph_connection *con)
3319 struct ceph_mds_session *s = con->private;
3320 struct ceph_mds_client *mdsc = s->s_mdsc;
3321 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3323 if (ac->ops->invalidate_authorizer)
3324 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3326 return ceph_monc_validate_auth(&mdsc->client->monc);
3329 static const struct ceph_connection_operations mds_con_ops = {
3332 .dispatch = dispatch,
3333 .get_authorizer = get_authorizer,
3334 .verify_authorizer_reply = verify_authorizer_reply,
3335 .invalidate_authorizer = invalidate_authorizer,
3336 .peer_reset = peer_reset,