1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
14 #include "mds_client.h"
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
48 struct ceph_reconnect_state {
50 struct ceph_pagelist *pagelist;
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
57 static const struct ceph_connection_operations mds_con_ops;
65 * parse individual inode info
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
81 *p += info->symlink_len;
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
101 info->inline_version = CEPH_INLINE_NONE;
103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
105 ceph_decode_need(p, end, info->pool_ns_len, bad);
106 *p += info->pool_ns_len;
108 info->pool_ns_len = 0;
117 * parse a normal reply, which may contain a (dir+)dentry and/or a
120 static int parse_reply_info_trace(void **p, void *end,
121 struct ceph_mds_reply_info_parsed *info,
126 if (info->head->is_dentry) {
127 err = parse_reply_info_in(p, end, &info->diri, features);
131 if (unlikely(*p + sizeof(*info->dirfrag) > end))
134 *p += sizeof(*info->dirfrag) +
135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
136 if (unlikely(*p > end))
139 ceph_decode_32_safe(p, end, info->dname_len, bad);
140 ceph_decode_need(p, end, info->dname_len, bad);
142 *p += info->dname_len;
144 *p += sizeof(*info->dlease);
147 if (info->head->is_target) {
148 err = parse_reply_info_in(p, end, &info->targeti, features);
153 if (unlikely(*p != end))
160 pr_err("problem parsing mds trace %d\n", err);
165 * parse readdir results
167 static int parse_reply_info_dir(void **p, void *end,
168 struct ceph_mds_reply_info_parsed *info,
175 if (*p + sizeof(*info->dir_dir) > end)
177 *p += sizeof(*info->dir_dir) +
178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
182 ceph_decode_need(p, end, sizeof(num) + 2, bad);
183 num = ceph_decode_32(p);
185 u16 flags = ceph_decode_16(p);
186 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
187 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
188 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
193 BUG_ON(!info->dir_entries);
194 if ((unsigned long)(info->dir_entries + num) >
195 (unsigned long)info->dir_entries + info->dir_buf_size) {
196 pr_err("dir contents are larger than expected\n");
203 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
205 ceph_decode_need(p, end, sizeof(u32)*2, bad);
206 rde->name_len = ceph_decode_32(p);
207 ceph_decode_need(p, end, rde->name_len, bad);
210 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
212 *p += sizeof(struct ceph_mds_reply_lease);
215 err = parse_reply_info_in(p, end, &rde->inode, features);
218 /* ceph_readdir_prepopulate() will update it */
232 pr_err("problem parsing dir contents %d\n", err);
237 * parse fcntl F_GETLK results
239 static int parse_reply_info_filelock(void **p, void *end,
240 struct ceph_mds_reply_info_parsed *info,
243 if (*p + sizeof(*info->filelock_reply) > end)
246 info->filelock_reply = *p;
247 *p += sizeof(*info->filelock_reply);
249 if (unlikely(*p != end))
258 * parse create results
260 static int parse_reply_info_create(void **p, void *end,
261 struct ceph_mds_reply_info_parsed *info,
264 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
266 info->has_create_ino = false;
268 info->has_create_ino = true;
269 info->ino = ceph_decode_64(p);
273 if (unlikely(*p != end))
282 * parse extra results
284 static int parse_reply_info_extra(void **p, void *end,
285 struct ceph_mds_reply_info_parsed *info,
288 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
289 return parse_reply_info_filelock(p, end, info, features);
290 else if (info->head->op == CEPH_MDS_OP_READDIR ||
291 info->head->op == CEPH_MDS_OP_LSSNAP)
292 return parse_reply_info_dir(p, end, info, features);
293 else if (info->head->op == CEPH_MDS_OP_CREATE)
294 return parse_reply_info_create(p, end, info, features);
300 * parse entire mds reply
302 static int parse_reply_info(struct ceph_msg *msg,
303 struct ceph_mds_reply_info_parsed *info,
310 info->head = msg->front.iov_base;
311 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
312 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
315 ceph_decode_32_safe(&p, end, len, bad);
317 ceph_decode_need(&p, end, len, bad);
318 err = parse_reply_info_trace(&p, p+len, info, features);
324 ceph_decode_32_safe(&p, end, len, bad);
326 ceph_decode_need(&p, end, len, bad);
327 err = parse_reply_info_extra(&p, p+len, info, features);
333 ceph_decode_32_safe(&p, end, len, bad);
334 info->snapblob_len = len;
345 pr_err("mds parse_reply err %d\n", err);
349 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
351 if (!info->dir_entries)
353 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
360 const char *ceph_session_state_name(int s)
363 case CEPH_MDS_SESSION_NEW: return "new";
364 case CEPH_MDS_SESSION_OPENING: return "opening";
365 case CEPH_MDS_SESSION_OPEN: return "open";
366 case CEPH_MDS_SESSION_HUNG: return "hung";
367 case CEPH_MDS_SESSION_CLOSING: return "closing";
368 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
369 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
370 default: return "???";
374 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
376 if (atomic_inc_not_zero(&s->s_ref)) {
377 dout("mdsc get_session %p %d -> %d\n", s,
378 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
381 dout("mdsc get_session %p 0 -- FAIL", s);
386 void ceph_put_mds_session(struct ceph_mds_session *s)
388 dout("mdsc put_session %p %d -> %d\n", s,
389 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
390 if (atomic_dec_and_test(&s->s_ref)) {
391 if (s->s_auth.authorizer)
392 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
398 * called under mdsc->mutex
400 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
403 struct ceph_mds_session *session;
405 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
407 session = mdsc->sessions[mds];
408 dout("lookup_mds_session %p %d\n", session,
409 atomic_read(&session->s_ref));
410 get_session(session);
414 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
416 if (mds >= mdsc->max_sessions)
418 return mdsc->sessions[mds];
421 static int __verify_registered_session(struct ceph_mds_client *mdsc,
422 struct ceph_mds_session *s)
424 if (s->s_mds >= mdsc->max_sessions ||
425 mdsc->sessions[s->s_mds] != s)
431 * create+register a new session for given mds.
432 * called under mdsc->mutex.
434 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
437 struct ceph_mds_session *s;
439 if (mds >= mdsc->mdsmap->m_max_mds)
440 return ERR_PTR(-EINVAL);
442 s = kzalloc(sizeof(*s), GFP_NOFS);
444 return ERR_PTR(-ENOMEM);
447 s->s_state = CEPH_MDS_SESSION_NEW;
450 mutex_init(&s->s_mutex);
452 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
454 spin_lock_init(&s->s_gen_ttl_lock);
456 s->s_cap_ttl = jiffies - 1;
458 spin_lock_init(&s->s_cap_lock);
459 s->s_renew_requested = 0;
461 INIT_LIST_HEAD(&s->s_caps);
464 atomic_set(&s->s_ref, 1);
465 INIT_LIST_HEAD(&s->s_waiting);
466 INIT_LIST_HEAD(&s->s_unsafe);
467 s->s_num_cap_releases = 0;
468 s->s_cap_reconnect = 0;
469 s->s_cap_iterator = NULL;
470 INIT_LIST_HEAD(&s->s_cap_releases);
471 INIT_LIST_HEAD(&s->s_cap_flushing);
472 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
474 dout("register_session mds%d\n", mds);
475 if (mds >= mdsc->max_sessions) {
476 int newmax = 1 << get_count_order(mds+1);
477 struct ceph_mds_session **sa;
479 dout("register_session realloc to %d\n", newmax);
480 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
483 if (mdsc->sessions) {
484 memcpy(sa, mdsc->sessions,
485 mdsc->max_sessions * sizeof(void *));
486 kfree(mdsc->sessions);
489 mdsc->max_sessions = newmax;
491 mdsc->sessions[mds] = s;
492 atomic_inc(&mdsc->num_sessions);
493 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
495 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
496 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
502 return ERR_PTR(-ENOMEM);
506 * called under mdsc->mutex
508 static void __unregister_session(struct ceph_mds_client *mdsc,
509 struct ceph_mds_session *s)
511 dout("__unregister_session mds%d %p\n", s->s_mds, s);
512 BUG_ON(mdsc->sessions[s->s_mds] != s);
513 mdsc->sessions[s->s_mds] = NULL;
514 ceph_con_close(&s->s_con);
515 ceph_put_mds_session(s);
516 atomic_dec(&mdsc->num_sessions);
520 * drop session refs in request.
522 * should be last request ref, or hold mdsc->mutex
524 static void put_request_session(struct ceph_mds_request *req)
526 if (req->r_session) {
527 ceph_put_mds_session(req->r_session);
528 req->r_session = NULL;
532 void ceph_mdsc_release_request(struct kref *kref)
534 struct ceph_mds_request *req = container_of(kref,
535 struct ceph_mds_request,
537 destroy_reply_info(&req->r_reply_info);
539 ceph_msg_put(req->r_request);
541 ceph_msg_put(req->r_reply);
543 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
546 if (req->r_locked_dir)
547 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
548 iput(req->r_target_inode);
551 if (req->r_old_dentry)
552 dput(req->r_old_dentry);
553 if (req->r_old_dentry_dir) {
555 * track (and drop pins for) r_old_dentry_dir
556 * separately, since r_old_dentry's d_parent may have
557 * changed between the dir mutex being dropped and
558 * this request being freed.
560 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
562 iput(req->r_old_dentry_dir);
567 ceph_pagelist_release(req->r_pagelist);
568 put_request_session(req);
569 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
573 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
576 * lookup session, bump ref if found.
578 * called under mdsc->mutex.
580 static struct ceph_mds_request *
581 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
583 struct ceph_mds_request *req;
585 req = lookup_request(&mdsc->request_tree, tid);
587 ceph_mdsc_get_request(req);
593 * Register an in-flight request, and assign a tid. Link to directory
594 * are modifying (if any).
596 * Called under mdsc->mutex.
598 static void __register_request(struct ceph_mds_client *mdsc,
599 struct ceph_mds_request *req,
602 req->r_tid = ++mdsc->last_tid;
604 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
606 dout("__register_request %p tid %lld\n", req, req->r_tid);
607 ceph_mdsc_get_request(req);
608 insert_request(&mdsc->request_tree, req);
610 req->r_uid = current_fsuid();
611 req->r_gid = current_fsgid();
613 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
614 mdsc->oldest_tid = req->r_tid;
618 req->r_unsafe_dir = dir;
622 static void __unregister_request(struct ceph_mds_client *mdsc,
623 struct ceph_mds_request *req)
625 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
627 if (req->r_tid == mdsc->oldest_tid) {
628 struct rb_node *p = rb_next(&req->r_node);
629 mdsc->oldest_tid = 0;
631 struct ceph_mds_request *next_req =
632 rb_entry(p, struct ceph_mds_request, r_node);
633 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
634 mdsc->oldest_tid = next_req->r_tid;
641 erase_request(&mdsc->request_tree, req);
643 if (req->r_unsafe_dir && req->r_got_unsafe) {
644 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
645 spin_lock(&ci->i_unsafe_lock);
646 list_del_init(&req->r_unsafe_dir_item);
647 spin_unlock(&ci->i_unsafe_lock);
649 if (req->r_target_inode && req->r_got_unsafe) {
650 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
651 spin_lock(&ci->i_unsafe_lock);
652 list_del_init(&req->r_unsafe_target_item);
653 spin_unlock(&ci->i_unsafe_lock);
656 if (req->r_unsafe_dir) {
657 iput(req->r_unsafe_dir);
658 req->r_unsafe_dir = NULL;
661 complete_all(&req->r_safe_completion);
663 ceph_mdsc_put_request(req);
667 * Choose mds to send request to next. If there is a hint set in the
668 * request (e.g., due to a prior forward hint from the mds), use that.
669 * Otherwise, consult frag tree and/or caps to identify the
670 * appropriate mds. If all else fails, choose randomly.
672 * Called under mdsc->mutex.
674 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
677 * we don't need to worry about protecting the d_parent access
678 * here because we never renaming inside the snapped namespace
679 * except to resplice to another snapdir, and either the old or new
680 * result is a valid result.
682 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
683 dentry = dentry->d_parent;
687 static int __choose_mds(struct ceph_mds_client *mdsc,
688 struct ceph_mds_request *req)
691 struct ceph_inode_info *ci;
692 struct ceph_cap *cap;
693 int mode = req->r_direct_mode;
695 u32 hash = req->r_direct_hash;
696 bool is_hash = req->r_direct_is_hash;
699 * is there a specific mds we should try? ignore hint if we have
700 * no session and the mds is not up (active or recovering).
702 if (req->r_resend_mds >= 0 &&
703 (__have_session(mdsc, req->r_resend_mds) ||
704 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
705 dout("choose_mds using resend_mds mds%d\n",
707 return req->r_resend_mds;
710 if (mode == USE_RANDOM_MDS)
715 inode = req->r_inode;
716 } else if (req->r_dentry) {
717 /* ignore race with rename; old or new d_parent is okay */
718 struct dentry *parent = req->r_dentry->d_parent;
719 struct inode *dir = d_inode(parent);
721 if (dir->i_sb != mdsc->fsc->sb) {
723 inode = d_inode(req->r_dentry);
724 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
725 /* direct snapped/virtual snapdir requests
726 * based on parent dir inode */
727 struct dentry *dn = get_nonsnap_parent(parent);
729 dout("__choose_mds using nonsnap parent %p\n", inode);
732 inode = d_inode(req->r_dentry);
733 if (!inode || mode == USE_AUTH_MDS) {
736 hash = ceph_dentry_hash(dir, req->r_dentry);
742 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
746 ci = ceph_inode(inode);
748 if (is_hash && S_ISDIR(inode->i_mode)) {
749 struct ceph_inode_frag frag;
752 ceph_choose_frag(ci, hash, &frag, &found);
754 if (mode == USE_ANY_MDS && frag.ndist > 0) {
757 /* choose a random replica */
758 get_random_bytes(&r, 1);
761 dout("choose_mds %p %llx.%llx "
762 "frag %u mds%d (%d/%d)\n",
763 inode, ceph_vinop(inode),
766 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
767 CEPH_MDS_STATE_ACTIVE)
771 /* since this file/dir wasn't known to be
772 * replicated, then we want to look for the
773 * authoritative mds. */
776 /* choose auth mds */
778 dout("choose_mds %p %llx.%llx "
779 "frag %u mds%d (auth)\n",
780 inode, ceph_vinop(inode), frag.frag, mds);
781 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
782 CEPH_MDS_STATE_ACTIVE)
788 spin_lock(&ci->i_ceph_lock);
790 if (mode == USE_AUTH_MDS)
791 cap = ci->i_auth_cap;
792 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
793 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
795 spin_unlock(&ci->i_ceph_lock);
798 mds = cap->session->s_mds;
799 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
800 inode, ceph_vinop(inode), mds,
801 cap == ci->i_auth_cap ? "auth " : "", cap);
802 spin_unlock(&ci->i_ceph_lock);
806 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
807 dout("choose_mds chose random mds%d\n", mds);
815 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
817 struct ceph_msg *msg;
818 struct ceph_mds_session_head *h;
820 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
823 pr_err("create_session_msg ENOMEM creating msg\n");
826 h = msg->front.iov_base;
827 h->op = cpu_to_le32(op);
828 h->seq = cpu_to_le64(seq);
834 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
835 * to include additional client metadata fields.
837 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
839 struct ceph_msg *msg;
840 struct ceph_mds_session_head *h;
842 int metadata_bytes = 0;
843 int metadata_key_count = 0;
844 struct ceph_options *opt = mdsc->fsc->client->options;
845 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
848 const char* metadata[][2] = {
849 {"hostname", utsname()->nodename},
850 {"kernel_version", utsname()->release},
851 {"entity_id", opt->name ? : ""},
852 {"root", fsopt->server_path ? : "/"},
856 /* Calculate serialized length of metadata */
857 metadata_bytes = 4; /* map length */
858 for (i = 0; metadata[i][0] != NULL; ++i) {
859 metadata_bytes += 8 + strlen(metadata[i][0]) +
860 strlen(metadata[i][1]);
861 metadata_key_count++;
864 /* Allocate the message */
865 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
868 pr_err("create_session_msg ENOMEM creating msg\n");
871 h = msg->front.iov_base;
872 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
873 h->seq = cpu_to_le64(seq);
876 * Serialize client metadata into waiting buffer space, using
877 * the format that userspace expects for map<string, string>
879 * ClientSession messages with metadata are v2
881 msg->hdr.version = cpu_to_le16(2);
882 msg->hdr.compat_version = cpu_to_le16(1);
884 /* The write pointer, following the session_head structure */
885 p = msg->front.iov_base + sizeof(*h);
887 /* Number of entries in the map */
888 ceph_encode_32(&p, metadata_key_count);
890 /* Two length-prefixed strings for each entry in the map */
891 for (i = 0; metadata[i][0] != NULL; ++i) {
892 size_t const key_len = strlen(metadata[i][0]);
893 size_t const val_len = strlen(metadata[i][1]);
895 ceph_encode_32(&p, key_len);
896 memcpy(p, metadata[i][0], key_len);
898 ceph_encode_32(&p, val_len);
899 memcpy(p, metadata[i][1], val_len);
907 * send session open request.
909 * called under mdsc->mutex
911 static int __open_session(struct ceph_mds_client *mdsc,
912 struct ceph_mds_session *session)
914 struct ceph_msg *msg;
916 int mds = session->s_mds;
918 /* wait for mds to go active? */
919 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
920 dout("open_session to mds%d (%s)\n", mds,
921 ceph_mds_state_name(mstate));
922 session->s_state = CEPH_MDS_SESSION_OPENING;
923 session->s_renew_requested = jiffies;
925 /* send connect message */
926 msg = create_session_open_msg(mdsc, session->s_seq);
929 ceph_con_send(&session->s_con, msg);
934 * open sessions for any export targets for the given mds
936 * called under mdsc->mutex
938 static struct ceph_mds_session *
939 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
941 struct ceph_mds_session *session;
943 session = __ceph_lookup_mds_session(mdsc, target);
945 session = register_session(mdsc, target);
949 if (session->s_state == CEPH_MDS_SESSION_NEW ||
950 session->s_state == CEPH_MDS_SESSION_CLOSING)
951 __open_session(mdsc, session);
956 struct ceph_mds_session *
957 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
959 struct ceph_mds_session *session;
961 dout("open_export_target_session to mds%d\n", target);
963 mutex_lock(&mdsc->mutex);
964 session = __open_export_target_session(mdsc, target);
965 mutex_unlock(&mdsc->mutex);
970 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
971 struct ceph_mds_session *session)
973 struct ceph_mds_info *mi;
974 struct ceph_mds_session *ts;
975 int i, mds = session->s_mds;
977 if (mds >= mdsc->mdsmap->m_max_mds)
980 mi = &mdsc->mdsmap->m_info[mds];
981 dout("open_export_target_sessions for mds%d (%d targets)\n",
982 session->s_mds, mi->num_export_targets);
984 for (i = 0; i < mi->num_export_targets; i++) {
985 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
987 ceph_put_mds_session(ts);
991 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
992 struct ceph_mds_session *session)
994 mutex_lock(&mdsc->mutex);
995 __open_export_target_sessions(mdsc, session);
996 mutex_unlock(&mdsc->mutex);
1003 /* caller holds s_cap_lock, we drop it */
1004 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1005 struct ceph_mds_session *session)
1006 __releases(session->s_cap_lock)
1008 LIST_HEAD(tmp_list);
1009 list_splice_init(&session->s_cap_releases, &tmp_list);
1010 session->s_num_cap_releases = 0;
1011 spin_unlock(&session->s_cap_lock);
1013 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1014 while (!list_empty(&tmp_list)) {
1015 struct ceph_cap *cap;
1016 /* zero out the in-progress message */
1017 cap = list_first_entry(&tmp_list,
1018 struct ceph_cap, session_caps);
1019 list_del(&cap->session_caps);
1020 ceph_put_cap(mdsc, cap);
1024 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1025 struct ceph_mds_session *session)
1027 struct ceph_mds_request *req;
1030 dout("cleanup_session_requests mds%d\n", session->s_mds);
1031 mutex_lock(&mdsc->mutex);
1032 while (!list_empty(&session->s_unsafe)) {
1033 req = list_first_entry(&session->s_unsafe,
1034 struct ceph_mds_request, r_unsafe_item);
1035 list_del_init(&req->r_unsafe_item);
1036 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1038 __unregister_request(mdsc, req);
1040 /* zero r_attempts, so kick_requests() will re-send requests */
1041 p = rb_first(&mdsc->request_tree);
1043 req = rb_entry(p, struct ceph_mds_request, r_node);
1045 if (req->r_session &&
1046 req->r_session->s_mds == session->s_mds)
1047 req->r_attempts = 0;
1049 mutex_unlock(&mdsc->mutex);
1053 * Helper to safely iterate over all caps associated with a session, with
1054 * special care taken to handle a racing __ceph_remove_cap().
1056 * Caller must hold session s_mutex.
1058 static int iterate_session_caps(struct ceph_mds_session *session,
1059 int (*cb)(struct inode *, struct ceph_cap *,
1062 struct list_head *p;
1063 struct ceph_cap *cap;
1064 struct inode *inode, *last_inode = NULL;
1065 struct ceph_cap *old_cap = NULL;
1068 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1069 spin_lock(&session->s_cap_lock);
1070 p = session->s_caps.next;
1071 while (p != &session->s_caps) {
1072 cap = list_entry(p, struct ceph_cap, session_caps);
1073 inode = igrab(&cap->ci->vfs_inode);
1078 session->s_cap_iterator = cap;
1079 spin_unlock(&session->s_cap_lock);
1086 ceph_put_cap(session->s_mdsc, old_cap);
1090 ret = cb(inode, cap, arg);
1093 spin_lock(&session->s_cap_lock);
1095 if (cap->ci == NULL) {
1096 dout("iterate_session_caps finishing cap %p removal\n",
1098 BUG_ON(cap->session != session);
1099 cap->session = NULL;
1100 list_del_init(&cap->session_caps);
1101 session->s_nr_caps--;
1102 if (cap->queue_release) {
1103 list_add_tail(&cap->session_caps,
1104 &session->s_cap_releases);
1105 session->s_num_cap_releases++;
1107 old_cap = cap; /* put_cap it w/o locks held */
1115 session->s_cap_iterator = NULL;
1116 spin_unlock(&session->s_cap_lock);
1120 ceph_put_cap(session->s_mdsc, old_cap);
1125 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1128 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1129 struct ceph_inode_info *ci = ceph_inode(inode);
1130 LIST_HEAD(to_remove);
1132 bool invalidate = false;
1134 dout("removing cap %p, ci is %p, inode is %p\n",
1135 cap, ci, &ci->vfs_inode);
1136 spin_lock(&ci->i_ceph_lock);
1137 __ceph_remove_cap(cap, false);
1138 if (!ci->i_auth_cap) {
1139 struct ceph_cap_flush *cf;
1140 struct ceph_mds_client *mdsc = fsc->mdsc;
1142 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1144 if (ci->i_wrbuffer_ref > 0 &&
1145 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1149 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1152 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1153 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1154 list_add(&cf->list, &to_remove);
1157 spin_lock(&mdsc->cap_dirty_lock);
1159 list_for_each_entry(cf, &to_remove, list)
1160 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1162 if (!list_empty(&ci->i_dirty_item)) {
1163 pr_warn_ratelimited(
1164 " dropping dirty %s state for %p %lld\n",
1165 ceph_cap_string(ci->i_dirty_caps),
1166 inode, ceph_ino(inode));
1167 ci->i_dirty_caps = 0;
1168 list_del_init(&ci->i_dirty_item);
1171 if (!list_empty(&ci->i_flushing_item)) {
1172 pr_warn_ratelimited(
1173 " dropping dirty+flushing %s state for %p %lld\n",
1174 ceph_cap_string(ci->i_flushing_caps),
1175 inode, ceph_ino(inode));
1176 ci->i_flushing_caps = 0;
1177 list_del_init(&ci->i_flushing_item);
1178 mdsc->num_cap_flushing--;
1181 spin_unlock(&mdsc->cap_dirty_lock);
1183 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1184 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1185 ci->i_prealloc_cap_flush = NULL;
1188 spin_unlock(&ci->i_ceph_lock);
1189 while (!list_empty(&to_remove)) {
1190 struct ceph_cap_flush *cf;
1191 cf = list_first_entry(&to_remove,
1192 struct ceph_cap_flush, list);
1193 list_del(&cf->list);
1194 ceph_free_cap_flush(cf);
1197 wake_up_all(&ci->i_cap_wq);
1199 ceph_queue_invalidate(inode);
1206 * caller must hold session s_mutex
1208 static void remove_session_caps(struct ceph_mds_session *session)
1210 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1211 struct super_block *sb = fsc->sb;
1212 dout("remove_session_caps on %p\n", session);
1213 iterate_session_caps(session, remove_session_caps_cb, fsc);
1215 spin_lock(&session->s_cap_lock);
1216 if (session->s_nr_caps > 0) {
1217 struct inode *inode;
1218 struct ceph_cap *cap, *prev = NULL;
1219 struct ceph_vino vino;
1221 * iterate_session_caps() skips inodes that are being
1222 * deleted, we need to wait until deletions are complete.
1223 * __wait_on_freeing_inode() is designed for the job,
1224 * but it is not exported, so use lookup inode function
1227 while (!list_empty(&session->s_caps)) {
1228 cap = list_entry(session->s_caps.next,
1229 struct ceph_cap, session_caps);
1233 vino = cap->ci->i_vino;
1234 spin_unlock(&session->s_cap_lock);
1236 inode = ceph_find_inode(sb, vino);
1239 spin_lock(&session->s_cap_lock);
1243 // drop cap expires and unlock s_cap_lock
1244 cleanup_cap_releases(session->s_mdsc, session);
1246 BUG_ON(session->s_nr_caps > 0);
1247 BUG_ON(!list_empty(&session->s_cap_flushing));
1251 * wake up any threads waiting on this session's caps. if the cap is
1252 * old (didn't get renewed on the client reconnect), remove it now.
1254 * caller must hold s_mutex.
1256 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1259 struct ceph_inode_info *ci = ceph_inode(inode);
1262 spin_lock(&ci->i_ceph_lock);
1263 ci->i_wanted_max_size = 0;
1264 ci->i_requested_max_size = 0;
1265 spin_unlock(&ci->i_ceph_lock);
1267 wake_up_all(&ci->i_cap_wq);
1271 static void wake_up_session_caps(struct ceph_mds_session *session,
1274 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1275 iterate_session_caps(session, wake_up_session_cb,
1276 (void *)(unsigned long)reconnect);
1280 * Send periodic message to MDS renewing all currently held caps. The
1281 * ack will reset the expiration for all caps from this session.
1283 * caller holds s_mutex
1285 static int send_renew_caps(struct ceph_mds_client *mdsc,
1286 struct ceph_mds_session *session)
1288 struct ceph_msg *msg;
1291 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1292 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1293 pr_info("mds%d caps stale\n", session->s_mds);
1294 session->s_renew_requested = jiffies;
1296 /* do not try to renew caps until a recovering mds has reconnected
1297 * with its clients. */
1298 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1299 if (state < CEPH_MDS_STATE_RECONNECT) {
1300 dout("send_renew_caps ignoring mds%d (%s)\n",
1301 session->s_mds, ceph_mds_state_name(state));
1305 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1306 ceph_mds_state_name(state));
1307 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1308 ++session->s_renew_seq);
1311 ceph_con_send(&session->s_con, msg);
1315 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1316 struct ceph_mds_session *session, u64 seq)
1318 struct ceph_msg *msg;
1320 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1321 session->s_mds, ceph_session_state_name(session->s_state), seq);
1322 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1325 ceph_con_send(&session->s_con, msg);
1331 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1333 * Called under session->s_mutex
1335 static void renewed_caps(struct ceph_mds_client *mdsc,
1336 struct ceph_mds_session *session, int is_renew)
1341 spin_lock(&session->s_cap_lock);
1342 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1344 session->s_cap_ttl = session->s_renew_requested +
1345 mdsc->mdsmap->m_session_timeout*HZ;
1348 if (time_before(jiffies, session->s_cap_ttl)) {
1349 pr_info("mds%d caps renewed\n", session->s_mds);
1352 pr_info("mds%d caps still stale\n", session->s_mds);
1355 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1356 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1357 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1358 spin_unlock(&session->s_cap_lock);
1361 wake_up_session_caps(session, 0);
1365 * send a session close request
1367 static int request_close_session(struct ceph_mds_client *mdsc,
1368 struct ceph_mds_session *session)
1370 struct ceph_msg *msg;
1372 dout("request_close_session mds%d state %s seq %lld\n",
1373 session->s_mds, ceph_session_state_name(session->s_state),
1375 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1378 ceph_con_send(&session->s_con, msg);
1383 * Called with s_mutex held.
1385 static int __close_session(struct ceph_mds_client *mdsc,
1386 struct ceph_mds_session *session)
1388 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1390 session->s_state = CEPH_MDS_SESSION_CLOSING;
1391 return request_close_session(mdsc, session);
1395 * Trim old(er) caps.
1397 * Because we can't cache an inode without one or more caps, we do
1398 * this indirectly: if a cap is unused, we prune its aliases, at which
1399 * point the inode will hopefully get dropped to.
1401 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1402 * memory pressure from the MDS, though, so it needn't be perfect.
1404 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1406 struct ceph_mds_session *session = arg;
1407 struct ceph_inode_info *ci = ceph_inode(inode);
1408 int used, wanted, oissued, mine;
1410 if (session->s_trim_caps <= 0)
1413 spin_lock(&ci->i_ceph_lock);
1414 mine = cap->issued | cap->implemented;
1415 used = __ceph_caps_used(ci);
1416 wanted = __ceph_caps_file_wanted(ci);
1417 oissued = __ceph_caps_issued_other(ci, cap);
1419 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1420 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1421 ceph_cap_string(used), ceph_cap_string(wanted));
1422 if (cap == ci->i_auth_cap) {
1423 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1424 !list_empty(&ci->i_cap_snaps))
1426 if ((used | wanted) & CEPH_CAP_ANY_WR)
1429 /* The inode has cached pages, but it's no longer used.
1430 * we can safely drop it */
1431 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1432 !(oissued & CEPH_CAP_FILE_CACHE)) {
1436 if ((used | wanted) & ~oissued & mine)
1437 goto out; /* we need these caps */
1439 session->s_trim_caps--;
1441 /* we aren't the only cap.. just remove us */
1442 __ceph_remove_cap(cap, true);
1444 /* try dropping referring dentries */
1445 spin_unlock(&ci->i_ceph_lock);
1446 d_prune_aliases(inode);
1447 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1448 inode, cap, atomic_read(&inode->i_count));
1453 spin_unlock(&ci->i_ceph_lock);
1458 * Trim session cap count down to some max number.
1460 static int trim_caps(struct ceph_mds_client *mdsc,
1461 struct ceph_mds_session *session,
1464 int trim_caps = session->s_nr_caps - max_caps;
1466 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1467 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1468 if (trim_caps > 0) {
1469 session->s_trim_caps = trim_caps;
1470 iterate_session_caps(session, trim_caps_cb, session);
1471 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1472 session->s_mds, session->s_nr_caps, max_caps,
1473 trim_caps - session->s_trim_caps);
1474 session->s_trim_caps = 0;
1477 ceph_send_cap_releases(mdsc, session);
1481 static int check_capsnap_flush(struct ceph_inode_info *ci,
1485 spin_lock(&ci->i_ceph_lock);
1486 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1487 struct ceph_cap_snap *capsnap =
1488 list_first_entry(&ci->i_cap_snaps,
1489 struct ceph_cap_snap, ci_item);
1490 ret = capsnap->follows >= want_snap_seq;
1492 spin_unlock(&ci->i_ceph_lock);
1496 static int check_caps_flush(struct ceph_mds_client *mdsc,
1500 struct ceph_cap_flush *cf;
1503 spin_lock(&mdsc->cap_dirty_lock);
1504 n = rb_first(&mdsc->cap_flush_tree);
1505 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1506 if (cf && cf->tid <= want_flush_tid) {
1507 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1508 cf->tid, want_flush_tid);
1511 spin_unlock(&mdsc->cap_dirty_lock);
1516 * flush all dirty inode data to disk.
1518 * returns true if we've flushed through want_flush_tid
1520 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1521 u64 want_flush_tid, u64 want_snap_seq)
1525 dout("check_caps_flush want %llu snap want %llu\n",
1526 want_flush_tid, want_snap_seq);
1527 mutex_lock(&mdsc->mutex);
1528 for (mds = 0; mds < mdsc->max_sessions; ) {
1529 struct ceph_mds_session *session = mdsc->sessions[mds];
1530 struct inode *inode = NULL;
1536 get_session(session);
1537 mutex_unlock(&mdsc->mutex);
1539 mutex_lock(&session->s_mutex);
1540 if (!list_empty(&session->s_cap_snaps_flushing)) {
1541 struct ceph_cap_snap *capsnap =
1542 list_first_entry(&session->s_cap_snaps_flushing,
1543 struct ceph_cap_snap,
1545 struct ceph_inode_info *ci = capsnap->ci;
1546 if (!check_capsnap_flush(ci, want_snap_seq)) {
1547 dout("check_cap_flush still flushing snap %p "
1548 "follows %lld <= %lld to mds%d\n",
1549 &ci->vfs_inode, capsnap->follows,
1550 want_snap_seq, mds);
1551 inode = igrab(&ci->vfs_inode);
1554 mutex_unlock(&session->s_mutex);
1555 ceph_put_mds_session(session);
1558 wait_event(mdsc->cap_flushing_wq,
1559 check_capsnap_flush(ceph_inode(inode),
1566 mutex_lock(&mdsc->mutex);
1568 mutex_unlock(&mdsc->mutex);
1570 wait_event(mdsc->cap_flushing_wq,
1571 check_caps_flush(mdsc, want_flush_tid));
1573 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1577 * called under s_mutex
1579 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1580 struct ceph_mds_session *session)
1582 struct ceph_msg *msg = NULL;
1583 struct ceph_mds_cap_release *head;
1584 struct ceph_mds_cap_item *item;
1585 struct ceph_cap *cap;
1586 LIST_HEAD(tmp_list);
1587 int num_cap_releases;
1589 spin_lock(&session->s_cap_lock);
1591 list_splice_init(&session->s_cap_releases, &tmp_list);
1592 num_cap_releases = session->s_num_cap_releases;
1593 session->s_num_cap_releases = 0;
1594 spin_unlock(&session->s_cap_lock);
1596 while (!list_empty(&tmp_list)) {
1598 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1599 PAGE_SIZE, GFP_NOFS, false);
1602 head = msg->front.iov_base;
1603 head->num = cpu_to_le32(0);
1604 msg->front.iov_len = sizeof(*head);
1606 cap = list_first_entry(&tmp_list, struct ceph_cap,
1608 list_del(&cap->session_caps);
1611 head = msg->front.iov_base;
1612 le32_add_cpu(&head->num, 1);
1613 item = msg->front.iov_base + msg->front.iov_len;
1614 item->ino = cpu_to_le64(cap->cap_ino);
1615 item->cap_id = cpu_to_le64(cap->cap_id);
1616 item->migrate_seq = cpu_to_le32(cap->mseq);
1617 item->seq = cpu_to_le32(cap->issue_seq);
1618 msg->front.iov_len += sizeof(*item);
1620 ceph_put_cap(mdsc, cap);
1622 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1623 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1624 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1625 ceph_con_send(&session->s_con, msg);
1630 BUG_ON(num_cap_releases != 0);
1632 spin_lock(&session->s_cap_lock);
1633 if (!list_empty(&session->s_cap_releases))
1635 spin_unlock(&session->s_cap_lock);
1638 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1639 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1640 ceph_con_send(&session->s_con, msg);
1644 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1646 spin_lock(&session->s_cap_lock);
1647 list_splice(&tmp_list, &session->s_cap_releases);
1648 session->s_num_cap_releases += num_cap_releases;
1649 spin_unlock(&session->s_cap_lock);
1656 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1659 struct ceph_inode_info *ci = ceph_inode(dir);
1660 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1661 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1662 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1663 int order, num_entries;
1665 spin_lock(&ci->i_ceph_lock);
1666 num_entries = ci->i_files + ci->i_subdirs;
1667 spin_unlock(&ci->i_ceph_lock);
1668 num_entries = max(num_entries, 1);
1669 num_entries = min(num_entries, opt->max_readdir);
1671 order = get_order(size * num_entries);
1672 while (order >= 0) {
1673 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1676 if (rinfo->dir_entries)
1680 if (!rinfo->dir_entries)
1683 num_entries = (PAGE_SIZE << order) / size;
1684 num_entries = min(num_entries, opt->max_readdir);
1686 rinfo->dir_buf_size = PAGE_SIZE << order;
1687 req->r_num_caps = num_entries + 1;
1688 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1689 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1694 * Create an mds request.
1696 struct ceph_mds_request *
1697 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1699 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1702 return ERR_PTR(-ENOMEM);
1704 mutex_init(&req->r_fill_mutex);
1706 req->r_started = jiffies;
1707 req->r_resend_mds = -1;
1708 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1709 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1711 kref_init(&req->r_kref);
1712 RB_CLEAR_NODE(&req->r_node);
1713 INIT_LIST_HEAD(&req->r_wait);
1714 init_completion(&req->r_completion);
1715 init_completion(&req->r_safe_completion);
1716 INIT_LIST_HEAD(&req->r_unsafe_item);
1718 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1721 req->r_direct_mode = mode;
1726 * return oldest (lowest) request, tid in request tree, 0 if none.
1728 * called under mdsc->mutex.
1730 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1732 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1734 return rb_entry(rb_first(&mdsc->request_tree),
1735 struct ceph_mds_request, r_node);
1738 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1740 return mdsc->oldest_tid;
1744 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1745 * on build_path_from_dentry in fs/cifs/dir.c.
1747 * If @stop_on_nosnap, generate path relative to the first non-snapped
1750 * Encode hidden .snap dirs as a double /, i.e.
1751 * foo/.snap/bar -> foo//bar
1753 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1756 struct dentry *temp;
1762 return ERR_PTR(-EINVAL);
1766 seq = read_seqbegin(&rename_lock);
1768 for (temp = dentry; !IS_ROOT(temp);) {
1769 struct inode *inode = d_inode(temp);
1770 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1771 len++; /* slash only */
1772 else if (stop_on_nosnap && inode &&
1773 ceph_snap(inode) == CEPH_NOSNAP)
1776 len += 1 + temp->d_name.len;
1777 temp = temp->d_parent;
1781 len--; /* no leading '/' */
1783 path = kmalloc(len+1, GFP_NOFS);
1785 return ERR_PTR(-ENOMEM);
1787 path[pos] = 0; /* trailing null */
1789 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1790 struct inode *inode;
1792 spin_lock(&temp->d_lock);
1793 inode = d_inode(temp);
1794 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1795 dout("build_path path+%d: %p SNAPDIR\n",
1797 } else if (stop_on_nosnap && inode &&
1798 ceph_snap(inode) == CEPH_NOSNAP) {
1799 spin_unlock(&temp->d_lock);
1802 pos -= temp->d_name.len;
1804 spin_unlock(&temp->d_lock);
1807 strncpy(path + pos, temp->d_name.name,
1810 spin_unlock(&temp->d_lock);
1813 temp = temp->d_parent;
1816 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1817 pr_err("build_path did not end path lookup where "
1818 "expected, namelen is %d, pos is %d\n", len, pos);
1819 /* presumably this is only possible if racing with a
1820 rename of one of the parent directories (we can not
1821 lock the dentries above us to prevent this, but
1822 retrying should be harmless) */
1827 *base = ceph_ino(d_inode(temp));
1829 dout("build_path on %p %d built %llx '%.*s'\n",
1830 dentry, d_count(dentry), *base, len, path);
1834 static int build_dentry_path(struct dentry *dentry,
1835 const char **ppath, int *ppathlen, u64 *pino,
1840 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1841 *pino = ceph_ino(d_inode(dentry->d_parent));
1842 *ppath = dentry->d_name.name;
1843 *ppathlen = dentry->d_name.len;
1846 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1848 return PTR_ERR(path);
1854 static int build_inode_path(struct inode *inode,
1855 const char **ppath, int *ppathlen, u64 *pino,
1858 struct dentry *dentry;
1861 if (ceph_snap(inode) == CEPH_NOSNAP) {
1862 *pino = ceph_ino(inode);
1866 dentry = d_find_alias(inode);
1867 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1870 return PTR_ERR(path);
1877 * request arguments may be specified via an inode *, a dentry *, or
1878 * an explicit ino+path.
1880 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1881 const char *rpath, u64 rino,
1882 const char **ppath, int *pathlen,
1883 u64 *ino, int *freepath)
1888 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1889 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1891 } else if (rdentry) {
1892 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1893 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1895 } else if (rpath || rino) {
1898 *pathlen = rpath ? strlen(rpath) : 0;
1899 dout(" path %.*s\n", *pathlen, rpath);
1906 * called under mdsc->mutex
1908 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1909 struct ceph_mds_request *req,
1910 int mds, bool drop_cap_releases)
1912 struct ceph_msg *msg;
1913 struct ceph_mds_request_head *head;
1914 const char *path1 = NULL;
1915 const char *path2 = NULL;
1916 u64 ino1 = 0, ino2 = 0;
1917 int pathlen1 = 0, pathlen2 = 0;
1918 int freepath1 = 0, freepath2 = 0;
1924 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1925 req->r_path1, req->r_ino1.ino,
1926 &path1, &pathlen1, &ino1, &freepath1);
1932 ret = set_request_path_attr(NULL, req->r_old_dentry,
1933 req->r_path2, req->r_ino2.ino,
1934 &path2, &pathlen2, &ino2, &freepath2);
1940 len = sizeof(*head) +
1941 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1942 sizeof(struct ceph_timespec);
1944 /* calculate (max) length for cap releases */
1945 len += sizeof(struct ceph_mds_request_release) *
1946 (!!req->r_inode_drop + !!req->r_dentry_drop +
1947 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1948 if (req->r_dentry_drop)
1949 len += req->r_dentry->d_name.len;
1950 if (req->r_old_dentry_drop)
1951 len += req->r_old_dentry->d_name.len;
1953 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1955 msg = ERR_PTR(-ENOMEM);
1959 msg->hdr.version = cpu_to_le16(2);
1960 msg->hdr.tid = cpu_to_le64(req->r_tid);
1962 head = msg->front.iov_base;
1963 p = msg->front.iov_base + sizeof(*head);
1964 end = msg->front.iov_base + msg->front.iov_len;
1966 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1967 head->op = cpu_to_le32(req->r_op);
1968 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1969 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1970 head->args = req->r_args;
1972 ceph_encode_filepath(&p, end, ino1, path1);
1973 ceph_encode_filepath(&p, end, ino2, path2);
1975 /* make note of release offset, in case we need to replay */
1976 req->r_request_release_offset = p - msg->front.iov_base;
1980 if (req->r_inode_drop)
1981 releases += ceph_encode_inode_release(&p,
1982 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1983 mds, req->r_inode_drop, req->r_inode_unless, 0);
1984 if (req->r_dentry_drop)
1985 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1986 mds, req->r_dentry_drop, req->r_dentry_unless);
1987 if (req->r_old_dentry_drop)
1988 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1989 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1990 if (req->r_old_inode_drop)
1991 releases += ceph_encode_inode_release(&p,
1992 d_inode(req->r_old_dentry),
1993 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1995 if (drop_cap_releases) {
1997 p = msg->front.iov_base + req->r_request_release_offset;
2000 head->num_releases = cpu_to_le16(releases);
2004 struct ceph_timespec ts;
2005 ceph_encode_timespec(&ts, &req->r_stamp);
2006 ceph_encode_copy(&p, &ts, sizeof(ts));
2010 msg->front.iov_len = p - msg->front.iov_base;
2011 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2013 if (req->r_pagelist) {
2014 struct ceph_pagelist *pagelist = req->r_pagelist;
2015 atomic_inc(&pagelist->refcnt);
2016 ceph_msg_data_add_pagelist(msg, pagelist);
2017 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2019 msg->hdr.data_len = 0;
2022 msg->hdr.data_off = cpu_to_le16(0);
2026 kfree((char *)path2);
2029 kfree((char *)path1);
2035 * called under mdsc->mutex if error, under no mutex if
2038 static void complete_request(struct ceph_mds_client *mdsc,
2039 struct ceph_mds_request *req)
2041 if (req->r_callback)
2042 req->r_callback(mdsc, req);
2044 complete_all(&req->r_completion);
2048 * called under mdsc->mutex
2050 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2051 struct ceph_mds_request *req,
2052 int mds, bool drop_cap_releases)
2054 struct ceph_mds_request_head *rhead;
2055 struct ceph_msg *msg;
2060 struct ceph_cap *cap =
2061 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2064 req->r_sent_on_mseq = cap->mseq;
2066 req->r_sent_on_mseq = -1;
2068 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2069 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2071 if (req->r_got_unsafe) {
2074 * Replay. Do not regenerate message (and rebuild
2075 * paths, etc.); just use the original message.
2076 * Rebuilding paths will break for renames because
2077 * d_move mangles the src name.
2079 msg = req->r_request;
2080 rhead = msg->front.iov_base;
2082 flags = le32_to_cpu(rhead->flags);
2083 flags |= CEPH_MDS_FLAG_REPLAY;
2084 rhead->flags = cpu_to_le32(flags);
2086 if (req->r_target_inode)
2087 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2089 rhead->num_retry = req->r_attempts - 1;
2091 /* remove cap/dentry releases from message */
2092 rhead->num_releases = 0;
2095 p = msg->front.iov_base + req->r_request_release_offset;
2097 struct ceph_timespec ts;
2098 ceph_encode_timespec(&ts, &req->r_stamp);
2099 ceph_encode_copy(&p, &ts, sizeof(ts));
2102 msg->front.iov_len = p - msg->front.iov_base;
2103 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2107 if (req->r_request) {
2108 ceph_msg_put(req->r_request);
2109 req->r_request = NULL;
2111 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2113 req->r_err = PTR_ERR(msg);
2114 return PTR_ERR(msg);
2116 req->r_request = msg;
2118 rhead = msg->front.iov_base;
2119 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2120 if (req->r_got_unsafe)
2121 flags |= CEPH_MDS_FLAG_REPLAY;
2122 if (req->r_locked_dir)
2123 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2124 rhead->flags = cpu_to_le32(flags);
2125 rhead->num_fwd = req->r_num_fwd;
2126 rhead->num_retry = req->r_attempts - 1;
2129 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2134 * send request, or put it on the appropriate wait list.
2136 static int __do_request(struct ceph_mds_client *mdsc,
2137 struct ceph_mds_request *req)
2139 struct ceph_mds_session *session = NULL;
2143 if (req->r_err || req->r_got_result) {
2145 __unregister_request(mdsc, req);
2149 if (req->r_timeout &&
2150 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2151 dout("do_request timed out\n");
2155 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2156 dout("do_request forced umount\n");
2161 put_request_session(req);
2163 mds = __choose_mds(mdsc, req);
2165 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2166 dout("do_request no mds or not active, waiting for map\n");
2167 list_add(&req->r_wait, &mdsc->waiting_for_map);
2171 /* get, open session */
2172 session = __ceph_lookup_mds_session(mdsc, mds);
2174 session = register_session(mdsc, mds);
2175 if (IS_ERR(session)) {
2176 err = PTR_ERR(session);
2180 req->r_session = get_session(session);
2182 dout("do_request mds%d session %p state %s\n", mds, session,
2183 ceph_session_state_name(session->s_state));
2184 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2185 session->s_state != CEPH_MDS_SESSION_HUNG) {
2186 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2187 session->s_state == CEPH_MDS_SESSION_CLOSING)
2188 __open_session(mdsc, session);
2189 list_add(&req->r_wait, &session->s_waiting);
2194 req->r_resend_mds = -1; /* forget any previous mds hint */
2196 if (req->r_request_started == 0) /* note request start time */
2197 req->r_request_started = jiffies;
2199 err = __prepare_send_request(mdsc, req, mds, false);
2201 ceph_msg_get(req->r_request);
2202 ceph_con_send(&session->s_con, req->r_request);
2206 ceph_put_mds_session(session);
2209 dout("__do_request early error %d\n", err);
2211 complete_request(mdsc, req);
2212 __unregister_request(mdsc, req);
2219 * called under mdsc->mutex
2221 static void __wake_requests(struct ceph_mds_client *mdsc,
2222 struct list_head *head)
2224 struct ceph_mds_request *req;
2225 LIST_HEAD(tmp_list);
2227 list_splice_init(head, &tmp_list);
2229 while (!list_empty(&tmp_list)) {
2230 req = list_entry(tmp_list.next,
2231 struct ceph_mds_request, r_wait);
2232 list_del_init(&req->r_wait);
2233 dout(" wake request %p tid %llu\n", req, req->r_tid);
2234 __do_request(mdsc, req);
2239 * Wake up threads with requests pending for @mds, so that they can
2240 * resubmit their requests to a possibly different mds.
2242 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2244 struct ceph_mds_request *req;
2245 struct rb_node *p = rb_first(&mdsc->request_tree);
2247 dout("kick_requests mds%d\n", mds);
2249 req = rb_entry(p, struct ceph_mds_request, r_node);
2251 if (req->r_got_unsafe)
2253 if (req->r_attempts > 0)
2254 continue; /* only new requests */
2255 if (req->r_session &&
2256 req->r_session->s_mds == mds) {
2257 dout(" kicking tid %llu\n", req->r_tid);
2258 list_del_init(&req->r_wait);
2259 __do_request(mdsc, req);
2264 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2265 struct ceph_mds_request *req)
2267 dout("submit_request on %p\n", req);
2268 mutex_lock(&mdsc->mutex);
2269 __register_request(mdsc, req, NULL);
2270 __do_request(mdsc, req);
2271 mutex_unlock(&mdsc->mutex);
2275 * Synchrously perform an mds request. Take care of all of the
2276 * session setup, forwarding, retry details.
2278 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2280 struct ceph_mds_request *req)
2284 dout("do_request on %p\n", req);
2286 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2288 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2289 if (req->r_locked_dir)
2290 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2291 if (req->r_old_dentry_dir)
2292 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2295 /* deny access to directories with pool_ns layouts */
2296 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) &&
2297 ceph_inode(req->r_inode)->i_pool_ns_len)
2299 if (req->r_locked_dir &&
2300 ceph_inode(req->r_locked_dir)->i_pool_ns_len)
2304 mutex_lock(&mdsc->mutex);
2305 __register_request(mdsc, req, dir);
2306 __do_request(mdsc, req);
2314 mutex_unlock(&mdsc->mutex);
2315 dout("do_request waiting\n");
2316 if (!req->r_timeout && req->r_wait_for_completion) {
2317 err = req->r_wait_for_completion(mdsc, req);
2319 long timeleft = wait_for_completion_killable_timeout(
2321 ceph_timeout_jiffies(req->r_timeout));
2325 err = -EIO; /* timed out */
2327 err = timeleft; /* killed */
2329 dout("do_request waited, got %d\n", err);
2330 mutex_lock(&mdsc->mutex);
2332 /* only abort if we didn't race with a real reply */
2333 if (req->r_got_result) {
2334 err = le32_to_cpu(req->r_reply_info.head->result);
2335 } else if (err < 0) {
2336 dout("aborted request %lld with %d\n", req->r_tid, err);
2339 * ensure we aren't running concurrently with
2340 * ceph_fill_trace or ceph_readdir_prepopulate, which
2341 * rely on locks (dir mutex) held by our caller.
2343 mutex_lock(&req->r_fill_mutex);
2345 req->r_aborted = true;
2346 mutex_unlock(&req->r_fill_mutex);
2348 if (req->r_locked_dir &&
2349 (req->r_op & CEPH_MDS_OP_WRITE))
2350 ceph_invalidate_dir_request(req);
2356 mutex_unlock(&mdsc->mutex);
2357 dout("do_request %p done, result %d\n", req, err);
2362 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2363 * namespace request.
2365 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2367 struct inode *inode = req->r_locked_dir;
2369 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2371 ceph_dir_clear_complete(inode);
2373 ceph_invalidate_dentry_lease(req->r_dentry);
2374 if (req->r_old_dentry)
2375 ceph_invalidate_dentry_lease(req->r_old_dentry);
2381 * We take the session mutex and parse and process the reply immediately.
2382 * This preserves the logical ordering of replies, capabilities, etc., sent
2383 * by the MDS as they are applied to our local cache.
2385 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2387 struct ceph_mds_client *mdsc = session->s_mdsc;
2388 struct ceph_mds_request *req;
2389 struct ceph_mds_reply_head *head = msg->front.iov_base;
2390 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2391 struct ceph_snap_realm *realm;
2394 int mds = session->s_mds;
2396 if (msg->front.iov_len < sizeof(*head)) {
2397 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2402 /* get request, session */
2403 tid = le64_to_cpu(msg->hdr.tid);
2404 mutex_lock(&mdsc->mutex);
2405 req = lookup_get_request(mdsc, tid);
2407 dout("handle_reply on unknown tid %llu\n", tid);
2408 mutex_unlock(&mdsc->mutex);
2411 dout("handle_reply %p\n", req);
2413 /* correct session? */
2414 if (req->r_session != session) {
2415 pr_err("mdsc_handle_reply got %llu on session mds%d"
2416 " not mds%d\n", tid, session->s_mds,
2417 req->r_session ? req->r_session->s_mds : -1);
2418 mutex_unlock(&mdsc->mutex);
2423 if ((req->r_got_unsafe && !head->safe) ||
2424 (req->r_got_safe && head->safe)) {
2425 pr_warn("got a dup %s reply on %llu from mds%d\n",
2426 head->safe ? "safe" : "unsafe", tid, mds);
2427 mutex_unlock(&mdsc->mutex);
2430 if (req->r_got_safe) {
2431 pr_warn("got unsafe after safe on %llu from mds%d\n",
2433 mutex_unlock(&mdsc->mutex);
2437 result = le32_to_cpu(head->result);
2441 * if we're not talking to the authority, send to them
2442 * if the authority has changed while we weren't looking,
2443 * send to new authority
2444 * Otherwise we just have to return an ESTALE
2446 if (result == -ESTALE) {
2447 dout("got ESTALE on request %llu", req->r_tid);
2448 req->r_resend_mds = -1;
2449 if (req->r_direct_mode != USE_AUTH_MDS) {
2450 dout("not using auth, setting for that now");
2451 req->r_direct_mode = USE_AUTH_MDS;
2452 __do_request(mdsc, req);
2453 mutex_unlock(&mdsc->mutex);
2456 int mds = __choose_mds(mdsc, req);
2457 if (mds >= 0 && mds != req->r_session->s_mds) {
2458 dout("but auth changed, so resending");
2459 __do_request(mdsc, req);
2460 mutex_unlock(&mdsc->mutex);
2464 dout("have to return ESTALE on request %llu", req->r_tid);
2469 req->r_got_safe = true;
2470 __unregister_request(mdsc, req);
2472 if (req->r_got_unsafe) {
2474 * We already handled the unsafe response, now do the
2475 * cleanup. No need to examine the response; the MDS
2476 * doesn't include any result info in the safe
2477 * response. And even if it did, there is nothing
2478 * useful we could do with a revised return value.
2480 dout("got safe reply %llu, mds%d\n", tid, mds);
2481 list_del_init(&req->r_unsafe_item);
2483 /* last unsafe request during umount? */
2484 if (mdsc->stopping && !__get_oldest_req(mdsc))
2485 complete_all(&mdsc->safe_umount_waiters);
2486 mutex_unlock(&mdsc->mutex);
2490 req->r_got_unsafe = true;
2491 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2492 if (req->r_unsafe_dir) {
2493 struct ceph_inode_info *ci =
2494 ceph_inode(req->r_unsafe_dir);
2495 spin_lock(&ci->i_unsafe_lock);
2496 list_add_tail(&req->r_unsafe_dir_item,
2497 &ci->i_unsafe_dirops);
2498 spin_unlock(&ci->i_unsafe_lock);
2502 dout("handle_reply tid %lld result %d\n", tid, result);
2503 rinfo = &req->r_reply_info;
2504 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2505 mutex_unlock(&mdsc->mutex);
2507 mutex_lock(&session->s_mutex);
2509 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2516 if (rinfo->snapblob_len) {
2517 down_write(&mdsc->snap_rwsem);
2518 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2519 rinfo->snapblob + rinfo->snapblob_len,
2520 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2522 downgrade_write(&mdsc->snap_rwsem);
2524 down_read(&mdsc->snap_rwsem);
2527 /* insert trace into our cache */
2528 mutex_lock(&req->r_fill_mutex);
2529 current->journal_info = req;
2530 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2532 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2533 req->r_op == CEPH_MDS_OP_LSSNAP))
2534 ceph_readdir_prepopulate(req, req->r_session);
2535 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2537 current->journal_info = NULL;
2538 mutex_unlock(&req->r_fill_mutex);
2540 up_read(&mdsc->snap_rwsem);
2542 ceph_put_snap_realm(mdsc, realm);
2544 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2545 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2546 spin_lock(&ci->i_unsafe_lock);
2547 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2548 spin_unlock(&ci->i_unsafe_lock);
2551 mutex_lock(&mdsc->mutex);
2552 if (!req->r_aborted) {
2556 req->r_reply = ceph_msg_get(msg);
2557 req->r_got_result = true;
2560 dout("reply arrived after request %lld was aborted\n", tid);
2562 mutex_unlock(&mdsc->mutex);
2564 mutex_unlock(&session->s_mutex);
2566 /* kick calling process */
2567 complete_request(mdsc, req);
2569 ceph_mdsc_put_request(req);
2576 * handle mds notification that our request has been forwarded.
2578 static void handle_forward(struct ceph_mds_client *mdsc,
2579 struct ceph_mds_session *session,
2580 struct ceph_msg *msg)
2582 struct ceph_mds_request *req;
2583 u64 tid = le64_to_cpu(msg->hdr.tid);
2587 void *p = msg->front.iov_base;
2588 void *end = p + msg->front.iov_len;
2590 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2591 next_mds = ceph_decode_32(&p);
2592 fwd_seq = ceph_decode_32(&p);
2594 mutex_lock(&mdsc->mutex);
2595 req = lookup_get_request(mdsc, tid);
2597 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2598 goto out; /* dup reply? */
2601 if (req->r_aborted) {
2602 dout("forward tid %llu aborted, unregistering\n", tid);
2603 __unregister_request(mdsc, req);
2604 } else if (fwd_seq <= req->r_num_fwd) {
2605 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2606 tid, next_mds, req->r_num_fwd, fwd_seq);
2608 /* resend. forward race not possible; mds would drop */
2609 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2611 BUG_ON(req->r_got_result);
2612 req->r_attempts = 0;
2613 req->r_num_fwd = fwd_seq;
2614 req->r_resend_mds = next_mds;
2615 put_request_session(req);
2616 __do_request(mdsc, req);
2618 ceph_mdsc_put_request(req);
2620 mutex_unlock(&mdsc->mutex);
2624 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2628 * handle a mds session control message
2630 static void handle_session(struct ceph_mds_session *session,
2631 struct ceph_msg *msg)
2633 struct ceph_mds_client *mdsc = session->s_mdsc;
2636 int mds = session->s_mds;
2637 struct ceph_mds_session_head *h = msg->front.iov_base;
2641 if (msg->front.iov_len != sizeof(*h))
2643 op = le32_to_cpu(h->op);
2644 seq = le64_to_cpu(h->seq);
2646 mutex_lock(&mdsc->mutex);
2647 if (op == CEPH_SESSION_CLOSE)
2648 __unregister_session(mdsc, session);
2649 /* FIXME: this ttl calculation is generous */
2650 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2651 mutex_unlock(&mdsc->mutex);
2653 mutex_lock(&session->s_mutex);
2655 dout("handle_session mds%d %s %p state %s seq %llu\n",
2656 mds, ceph_session_op_name(op), session,
2657 ceph_session_state_name(session->s_state), seq);
2659 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2660 session->s_state = CEPH_MDS_SESSION_OPEN;
2661 pr_info("mds%d came back\n", session->s_mds);
2665 case CEPH_SESSION_OPEN:
2666 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2667 pr_info("mds%d reconnect success\n", session->s_mds);
2668 session->s_state = CEPH_MDS_SESSION_OPEN;
2669 renewed_caps(mdsc, session, 0);
2672 __close_session(mdsc, session);
2675 case CEPH_SESSION_RENEWCAPS:
2676 if (session->s_renew_seq == seq)
2677 renewed_caps(mdsc, session, 1);
2680 case CEPH_SESSION_CLOSE:
2681 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2682 pr_info("mds%d reconnect denied\n", session->s_mds);
2683 cleanup_session_requests(mdsc, session);
2684 remove_session_caps(session);
2685 wake = 2; /* for good measure */
2686 wake_up_all(&mdsc->session_close_wq);
2689 case CEPH_SESSION_STALE:
2690 pr_info("mds%d caps went stale, renewing\n",
2692 spin_lock(&session->s_gen_ttl_lock);
2693 session->s_cap_gen++;
2694 session->s_cap_ttl = jiffies - 1;
2695 spin_unlock(&session->s_gen_ttl_lock);
2696 send_renew_caps(mdsc, session);
2699 case CEPH_SESSION_RECALL_STATE:
2700 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2703 case CEPH_SESSION_FLUSHMSG:
2704 send_flushmsg_ack(mdsc, session, seq);
2707 case CEPH_SESSION_FORCE_RO:
2708 dout("force_session_readonly %p\n", session);
2709 spin_lock(&session->s_cap_lock);
2710 session->s_readonly = true;
2711 spin_unlock(&session->s_cap_lock);
2712 wake_up_session_caps(session, 0);
2716 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2720 mutex_unlock(&session->s_mutex);
2722 mutex_lock(&mdsc->mutex);
2723 __wake_requests(mdsc, &session->s_waiting);
2725 kick_requests(mdsc, mds);
2726 mutex_unlock(&mdsc->mutex);
2731 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2732 (int)msg->front.iov_len);
2739 * called under session->mutex.
2741 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2742 struct ceph_mds_session *session)
2744 struct ceph_mds_request *req, *nreq;
2748 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2750 mutex_lock(&mdsc->mutex);
2751 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2752 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2754 ceph_msg_get(req->r_request);
2755 ceph_con_send(&session->s_con, req->r_request);
2760 * also re-send old requests when MDS enters reconnect stage. So that MDS
2761 * can process completed request in clientreplay stage.
2763 p = rb_first(&mdsc->request_tree);
2765 req = rb_entry(p, struct ceph_mds_request, r_node);
2767 if (req->r_got_unsafe)
2769 if (req->r_attempts == 0)
2770 continue; /* only old requests */
2771 if (req->r_session &&
2772 req->r_session->s_mds == session->s_mds) {
2773 err = __prepare_send_request(mdsc, req,
2774 session->s_mds, true);
2776 ceph_msg_get(req->r_request);
2777 ceph_con_send(&session->s_con, req->r_request);
2781 mutex_unlock(&mdsc->mutex);
2785 * Encode information about a cap for a reconnect with the MDS.
2787 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2791 struct ceph_mds_cap_reconnect v2;
2792 struct ceph_mds_cap_reconnect_v1 v1;
2795 struct ceph_inode_info *ci;
2796 struct ceph_reconnect_state *recon_state = arg;
2797 struct ceph_pagelist *pagelist = recon_state->pagelist;
2801 struct dentry *dentry;
2805 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2806 inode, ceph_vinop(inode), cap, cap->cap_id,
2807 ceph_cap_string(cap->issued));
2808 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2812 dentry = d_find_alias(inode);
2814 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2816 err = PTR_ERR(path);
2823 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2827 spin_lock(&ci->i_ceph_lock);
2828 cap->seq = 0; /* reset cap seq */
2829 cap->issue_seq = 0; /* and issue_seq */
2830 cap->mseq = 0; /* and migrate_seq */
2831 cap->cap_gen = cap->session->s_cap_gen;
2833 if (recon_state->flock) {
2834 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2835 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2836 rec.v2.issued = cpu_to_le32(cap->issued);
2837 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2838 rec.v2.pathbase = cpu_to_le64(pathbase);
2839 rec.v2.flock_len = 0;
2840 reclen = sizeof(rec.v2);
2842 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2843 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2844 rec.v1.issued = cpu_to_le32(cap->issued);
2845 rec.v1.size = cpu_to_le64(inode->i_size);
2846 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2847 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2848 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2849 rec.v1.pathbase = cpu_to_le64(pathbase);
2850 reclen = sizeof(rec.v1);
2852 spin_unlock(&ci->i_ceph_lock);
2854 if (recon_state->flock) {
2855 int num_fcntl_locks, num_flock_locks;
2856 struct ceph_filelock *flocks;
2859 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2860 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2861 sizeof(struct ceph_filelock), GFP_NOFS);
2866 err = ceph_encode_locks_to_buffer(inode, flocks,
2876 * number of encoded locks is stable, so copy to pagelist
2878 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2879 (num_fcntl_locks+num_flock_locks) *
2880 sizeof(struct ceph_filelock));
2881 err = ceph_pagelist_append(pagelist, &rec, reclen);
2883 err = ceph_locks_to_pagelist(flocks, pagelist,
2888 err = ceph_pagelist_append(pagelist, &rec, reclen);
2891 recon_state->nr_caps++;
2901 * If an MDS fails and recovers, clients need to reconnect in order to
2902 * reestablish shared state. This includes all caps issued through
2903 * this session _and_ the snap_realm hierarchy. Because it's not
2904 * clear which snap realms the mds cares about, we send everything we
2905 * know about.. that ensures we'll then get any new info the
2906 * recovering MDS might have.
2908 * This is a relatively heavyweight operation, but it's rare.
2910 * called with mdsc->mutex held.
2912 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2913 struct ceph_mds_session *session)
2915 struct ceph_msg *reply;
2917 int mds = session->s_mds;
2920 struct ceph_pagelist *pagelist;
2921 struct ceph_reconnect_state recon_state;
2923 pr_info("mds%d reconnect start\n", mds);
2925 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2927 goto fail_nopagelist;
2928 ceph_pagelist_init(pagelist);
2930 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2934 mutex_lock(&session->s_mutex);
2935 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2938 dout("session %p state %s\n", session,
2939 ceph_session_state_name(session->s_state));
2941 spin_lock(&session->s_gen_ttl_lock);
2942 session->s_cap_gen++;
2943 spin_unlock(&session->s_gen_ttl_lock);
2945 spin_lock(&session->s_cap_lock);
2946 /* don't know if session is readonly */
2947 session->s_readonly = 0;
2949 * notify __ceph_remove_cap() that we are composing cap reconnect.
2950 * If a cap get released before being added to the cap reconnect,
2951 * __ceph_remove_cap() should skip queuing cap release.
2953 session->s_cap_reconnect = 1;
2954 /* drop old cap expires; we're about to reestablish that state */
2955 cleanup_cap_releases(mdsc, session);
2957 /* trim unused caps to reduce MDS's cache rejoin time */
2958 if (mdsc->fsc->sb->s_root)
2959 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2961 ceph_con_close(&session->s_con);
2962 ceph_con_open(&session->s_con,
2963 CEPH_ENTITY_TYPE_MDS, mds,
2964 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2966 /* replay unsafe requests */
2967 replay_unsafe_requests(mdsc, session);
2969 down_read(&mdsc->snap_rwsem);
2971 /* traverse this session's caps */
2972 s_nr_caps = session->s_nr_caps;
2973 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2977 recon_state.nr_caps = 0;
2978 recon_state.pagelist = pagelist;
2979 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2980 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2984 spin_lock(&session->s_cap_lock);
2985 session->s_cap_reconnect = 0;
2986 spin_unlock(&session->s_cap_lock);
2989 * snaprealms. we provide mds with the ino, seq (version), and
2990 * parent for all of our realms. If the mds has any newer info,
2993 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2994 struct ceph_snap_realm *realm =
2995 rb_entry(p, struct ceph_snap_realm, node);
2996 struct ceph_mds_snaprealm_reconnect sr_rec;
2998 dout(" adding snap realm %llx seq %lld parent %llx\n",
2999 realm->ino, realm->seq, realm->parent_ino);
3000 sr_rec.ino = cpu_to_le64(realm->ino);
3001 sr_rec.seq = cpu_to_le64(realm->seq);
3002 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3003 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3008 if (recon_state.flock)
3009 reply->hdr.version = cpu_to_le16(2);
3011 /* raced with cap release? */
3012 if (s_nr_caps != recon_state.nr_caps) {
3013 struct page *page = list_first_entry(&pagelist->head,
3015 __le32 *addr = kmap_atomic(page);
3016 *addr = cpu_to_le32(recon_state.nr_caps);
3017 kunmap_atomic(addr);
3020 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3021 ceph_msg_data_add_pagelist(reply, pagelist);
3023 ceph_early_kick_flushing_caps(mdsc, session);
3025 ceph_con_send(&session->s_con, reply);
3027 mutex_unlock(&session->s_mutex);
3029 mutex_lock(&mdsc->mutex);
3030 __wake_requests(mdsc, &session->s_waiting);
3031 mutex_unlock(&mdsc->mutex);
3033 up_read(&mdsc->snap_rwsem);
3037 ceph_msg_put(reply);
3038 up_read(&mdsc->snap_rwsem);
3039 mutex_unlock(&session->s_mutex);
3041 ceph_pagelist_release(pagelist);
3043 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3049 * compare old and new mdsmaps, kicking requests
3050 * and closing out old connections as necessary
3052 * called under mdsc->mutex.
3054 static void check_new_map(struct ceph_mds_client *mdsc,
3055 struct ceph_mdsmap *newmap,
3056 struct ceph_mdsmap *oldmap)
3059 int oldstate, newstate;
3060 struct ceph_mds_session *s;
3062 dout("check_new_map new %u old %u\n",
3063 newmap->m_epoch, oldmap->m_epoch);
3065 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3066 if (mdsc->sessions[i] == NULL)
3068 s = mdsc->sessions[i];
3069 oldstate = ceph_mdsmap_get_state(oldmap, i);
3070 newstate = ceph_mdsmap_get_state(newmap, i);
3072 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3073 i, ceph_mds_state_name(oldstate),
3074 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3075 ceph_mds_state_name(newstate),
3076 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3077 ceph_session_state_name(s->s_state));
3079 if (i >= newmap->m_max_mds ||
3080 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3081 ceph_mdsmap_get_addr(newmap, i),
3082 sizeof(struct ceph_entity_addr))) {
3083 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3084 /* the session never opened, just close it
3086 __wake_requests(mdsc, &s->s_waiting);
3087 __unregister_session(mdsc, s);
3090 mutex_unlock(&mdsc->mutex);
3091 mutex_lock(&s->s_mutex);
3092 mutex_lock(&mdsc->mutex);
3093 ceph_con_close(&s->s_con);
3094 mutex_unlock(&s->s_mutex);
3095 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3097 } else if (oldstate == newstate) {
3098 continue; /* nothing new with this mds */
3104 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3105 newstate >= CEPH_MDS_STATE_RECONNECT) {
3106 mutex_unlock(&mdsc->mutex);
3107 send_mds_reconnect(mdsc, s);
3108 mutex_lock(&mdsc->mutex);
3112 * kick request on any mds that has gone active.
3114 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3115 newstate >= CEPH_MDS_STATE_ACTIVE) {
3116 if (oldstate != CEPH_MDS_STATE_CREATING &&
3117 oldstate != CEPH_MDS_STATE_STARTING)
3118 pr_info("mds%d recovery completed\n", s->s_mds);
3119 kick_requests(mdsc, i);
3120 ceph_kick_flushing_caps(mdsc, s);
3121 wake_up_session_caps(s, 1);
3125 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3126 s = mdsc->sessions[i];
3129 if (!ceph_mdsmap_is_laggy(newmap, i))
3131 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3132 s->s_state == CEPH_MDS_SESSION_HUNG ||
3133 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3134 dout(" connecting to export targets of laggy mds%d\n",
3136 __open_export_target_sessions(mdsc, s);
3148 * caller must hold session s_mutex, dentry->d_lock
3150 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3152 struct ceph_dentry_info *di = ceph_dentry(dentry);
3154 ceph_put_mds_session(di->lease_session);
3155 di->lease_session = NULL;
3158 static void handle_lease(struct ceph_mds_client *mdsc,
3159 struct ceph_mds_session *session,
3160 struct ceph_msg *msg)
3162 struct super_block *sb = mdsc->fsc->sb;
3163 struct inode *inode;
3164 struct dentry *parent, *dentry;
3165 struct ceph_dentry_info *di;
3166 int mds = session->s_mds;
3167 struct ceph_mds_lease *h = msg->front.iov_base;
3169 struct ceph_vino vino;
3173 dout("handle_lease from mds%d\n", mds);
3176 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3178 vino.ino = le64_to_cpu(h->ino);
3179 vino.snap = CEPH_NOSNAP;
3180 seq = le32_to_cpu(h->seq);
3181 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3182 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3183 if (dname.len != get_unaligned_le32(h+1))
3187 inode = ceph_find_inode(sb, vino);
3188 dout("handle_lease %s, ino %llx %p %.*s\n",
3189 ceph_lease_op_name(h->action), vino.ino, inode,
3190 dname.len, dname.name);
3192 mutex_lock(&session->s_mutex);
3195 if (inode == NULL) {
3196 dout("handle_lease no inode %llx\n", vino.ino);
3201 parent = d_find_alias(inode);
3203 dout("no parent dentry on inode %p\n", inode);
3205 goto release; /* hrm... */
3207 dname.hash = full_name_hash(dname.name, dname.len);
3208 dentry = d_lookup(parent, &dname);
3213 spin_lock(&dentry->d_lock);
3214 di = ceph_dentry(dentry);
3215 switch (h->action) {
3216 case CEPH_MDS_LEASE_REVOKE:
3217 if (di->lease_session == session) {
3218 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3219 h->seq = cpu_to_le32(di->lease_seq);
3220 __ceph_mdsc_drop_dentry_lease(dentry);
3225 case CEPH_MDS_LEASE_RENEW:
3226 if (di->lease_session == session &&
3227 di->lease_gen == session->s_cap_gen &&
3228 di->lease_renew_from &&
3229 di->lease_renew_after == 0) {
3230 unsigned long duration =
3231 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3233 di->lease_seq = seq;
3234 dentry->d_time = di->lease_renew_from + duration;
3235 di->lease_renew_after = di->lease_renew_from +
3237 di->lease_renew_from = 0;
3241 spin_unlock(&dentry->d_lock);
3248 /* let's just reuse the same message */
3249 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3251 ceph_con_send(&session->s_con, msg);
3255 mutex_unlock(&session->s_mutex);
3259 pr_err("corrupt lease message\n");
3263 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3264 struct inode *inode,
3265 struct dentry *dentry, char action,
3268 struct ceph_msg *msg;
3269 struct ceph_mds_lease *lease;
3270 int len = sizeof(*lease) + sizeof(u32);
3273 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3274 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3275 dnamelen = dentry->d_name.len;
3278 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3281 lease = msg->front.iov_base;
3282 lease->action = action;
3283 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3284 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3285 lease->seq = cpu_to_le32(seq);
3286 put_unaligned_le32(dnamelen, lease + 1);
3287 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3290 * if this is a preemptive lease RELEASE, no need to
3291 * flush request stream, since the actual request will
3294 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3296 ceph_con_send(&session->s_con, msg);
3300 * Preemptively release a lease we expect to invalidate anyway.
3301 * Pass @inode always, @dentry is optional.
3303 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3304 struct dentry *dentry)
3306 struct ceph_dentry_info *di;
3307 struct ceph_mds_session *session;
3310 BUG_ON(inode == NULL);
3311 BUG_ON(dentry == NULL);
3313 /* is dentry lease valid? */
3314 spin_lock(&dentry->d_lock);
3315 di = ceph_dentry(dentry);
3316 if (!di || !di->lease_session ||
3317 di->lease_session->s_mds < 0 ||
3318 di->lease_gen != di->lease_session->s_cap_gen ||
3319 !time_before(jiffies, dentry->d_time)) {
3320 dout("lease_release inode %p dentry %p -- "
3323 spin_unlock(&dentry->d_lock);
3327 /* we do have a lease on this dentry; note mds and seq */
3328 session = ceph_get_mds_session(di->lease_session);
3329 seq = di->lease_seq;
3330 __ceph_mdsc_drop_dentry_lease(dentry);
3331 spin_unlock(&dentry->d_lock);
3333 dout("lease_release inode %p dentry %p to mds%d\n",
3334 inode, dentry, session->s_mds);
3335 ceph_mdsc_lease_send_msg(session, inode, dentry,
3336 CEPH_MDS_LEASE_RELEASE, seq);
3337 ceph_put_mds_session(session);
3341 * drop all leases (and dentry refs) in preparation for umount
3343 static void drop_leases(struct ceph_mds_client *mdsc)
3347 dout("drop_leases\n");
3348 mutex_lock(&mdsc->mutex);
3349 for (i = 0; i < mdsc->max_sessions; i++) {
3350 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3353 mutex_unlock(&mdsc->mutex);
3354 mutex_lock(&s->s_mutex);
3355 mutex_unlock(&s->s_mutex);
3356 ceph_put_mds_session(s);
3357 mutex_lock(&mdsc->mutex);
3359 mutex_unlock(&mdsc->mutex);
3365 * delayed work -- periodically trim expired leases, renew caps with mds
3367 static void schedule_delayed(struct ceph_mds_client *mdsc)
3370 unsigned hz = round_jiffies_relative(HZ * delay);
3371 schedule_delayed_work(&mdsc->delayed_work, hz);
3374 static void delayed_work(struct work_struct *work)
3377 struct ceph_mds_client *mdsc =
3378 container_of(work, struct ceph_mds_client, delayed_work.work);
3382 dout("mdsc delayed_work\n");
3383 ceph_check_delayed_caps(mdsc);
3385 mutex_lock(&mdsc->mutex);
3386 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3387 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3388 mdsc->last_renew_caps);
3390 mdsc->last_renew_caps = jiffies;
3392 for (i = 0; i < mdsc->max_sessions; i++) {
3393 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3396 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3397 dout("resending session close request for mds%d\n",
3399 request_close_session(mdsc, s);
3400 ceph_put_mds_session(s);
3403 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3404 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3405 s->s_state = CEPH_MDS_SESSION_HUNG;
3406 pr_info("mds%d hung\n", s->s_mds);
3409 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3410 /* this mds is failed or recovering, just wait */
3411 ceph_put_mds_session(s);
3414 mutex_unlock(&mdsc->mutex);
3416 mutex_lock(&s->s_mutex);
3418 send_renew_caps(mdsc, s);
3420 ceph_con_keepalive(&s->s_con);
3421 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3422 s->s_state == CEPH_MDS_SESSION_HUNG)
3423 ceph_send_cap_releases(mdsc, s);
3424 mutex_unlock(&s->s_mutex);
3425 ceph_put_mds_session(s);
3427 mutex_lock(&mdsc->mutex);
3429 mutex_unlock(&mdsc->mutex);
3431 schedule_delayed(mdsc);
3434 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3437 struct ceph_mds_client *mdsc;
3439 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3444 mutex_init(&mdsc->mutex);
3445 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3446 if (mdsc->mdsmap == NULL) {
3451 init_completion(&mdsc->safe_umount_waiters);
3452 init_waitqueue_head(&mdsc->session_close_wq);
3453 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3454 mdsc->sessions = NULL;
3455 atomic_set(&mdsc->num_sessions, 0);
3456 mdsc->max_sessions = 0;
3458 mdsc->last_snap_seq = 0;
3459 init_rwsem(&mdsc->snap_rwsem);
3460 mdsc->snap_realms = RB_ROOT;
3461 INIT_LIST_HEAD(&mdsc->snap_empty);
3462 spin_lock_init(&mdsc->snap_empty_lock);
3464 mdsc->oldest_tid = 0;
3465 mdsc->request_tree = RB_ROOT;
3466 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3467 mdsc->last_renew_caps = jiffies;
3468 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3469 spin_lock_init(&mdsc->cap_delay_lock);
3470 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3471 spin_lock_init(&mdsc->snap_flush_lock);
3472 mdsc->last_cap_flush_tid = 1;
3473 mdsc->cap_flush_tree = RB_ROOT;
3474 INIT_LIST_HEAD(&mdsc->cap_dirty);
3475 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3476 mdsc->num_cap_flushing = 0;
3477 spin_lock_init(&mdsc->cap_dirty_lock);
3478 init_waitqueue_head(&mdsc->cap_flushing_wq);
3479 spin_lock_init(&mdsc->dentry_lru_lock);
3480 INIT_LIST_HEAD(&mdsc->dentry_lru);
3482 ceph_caps_init(mdsc);
3483 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3485 init_rwsem(&mdsc->pool_perm_rwsem);
3486 mdsc->pool_perm_tree = RB_ROOT;
3492 * Wait for safe replies on open mds requests. If we time out, drop
3493 * all requests from the tree to avoid dangling dentry refs.
3495 static void wait_requests(struct ceph_mds_client *mdsc)
3497 struct ceph_options *opts = mdsc->fsc->client->options;
3498 struct ceph_mds_request *req;
3500 mutex_lock(&mdsc->mutex);
3501 if (__get_oldest_req(mdsc)) {
3502 mutex_unlock(&mdsc->mutex);
3504 dout("wait_requests waiting for requests\n");
3505 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3506 ceph_timeout_jiffies(opts->mount_timeout));
3508 /* tear down remaining requests */
3509 mutex_lock(&mdsc->mutex);
3510 while ((req = __get_oldest_req(mdsc))) {
3511 dout("wait_requests timed out on tid %llu\n",
3513 __unregister_request(mdsc, req);
3516 mutex_unlock(&mdsc->mutex);
3517 dout("wait_requests done\n");
3521 * called before mount is ro, and before dentries are torn down.
3522 * (hmm, does this still race with new lookups?)
3524 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3526 dout("pre_umount\n");
3530 ceph_flush_dirty_caps(mdsc);
3531 wait_requests(mdsc);
3534 * wait for reply handlers to drop their request refs and
3535 * their inode/dcache refs
3541 * wait for all write mds requests to flush.
3543 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3545 struct ceph_mds_request *req = NULL, *nextreq;
3548 mutex_lock(&mdsc->mutex);
3549 dout("wait_unsafe_requests want %lld\n", want_tid);
3551 req = __get_oldest_req(mdsc);
3552 while (req && req->r_tid <= want_tid) {
3553 /* find next request */
3554 n = rb_next(&req->r_node);
3556 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3559 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3560 (req->r_op & CEPH_MDS_OP_WRITE)) {
3562 ceph_mdsc_get_request(req);
3564 ceph_mdsc_get_request(nextreq);
3565 mutex_unlock(&mdsc->mutex);
3566 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3567 req->r_tid, want_tid);
3568 wait_for_completion(&req->r_safe_completion);
3569 mutex_lock(&mdsc->mutex);
3570 ceph_mdsc_put_request(req);
3572 break; /* next dne before, so we're done! */
3573 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3574 /* next request was removed from tree */
3575 ceph_mdsc_put_request(nextreq);
3578 ceph_mdsc_put_request(nextreq); /* won't go away */
3582 mutex_unlock(&mdsc->mutex);
3583 dout("wait_unsafe_requests done\n");
3586 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3588 u64 want_tid, want_flush, want_snap;
3590 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3594 mutex_lock(&mdsc->mutex);
3595 want_tid = mdsc->last_tid;
3596 mutex_unlock(&mdsc->mutex);
3598 ceph_flush_dirty_caps(mdsc);
3599 spin_lock(&mdsc->cap_dirty_lock);
3600 want_flush = mdsc->last_cap_flush_tid;
3601 spin_unlock(&mdsc->cap_dirty_lock);
3603 down_read(&mdsc->snap_rwsem);
3604 want_snap = mdsc->last_snap_seq;
3605 up_read(&mdsc->snap_rwsem);
3607 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3608 want_tid, want_flush, want_snap);
3610 wait_unsafe_requests(mdsc, want_tid);
3611 wait_caps_flush(mdsc, want_flush, want_snap);
3615 * true if all sessions are closed, or we force unmount
3617 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3619 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3621 return atomic_read(&mdsc->num_sessions) == 0;
3625 * called after sb is ro.
3627 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3629 struct ceph_options *opts = mdsc->fsc->client->options;
3630 struct ceph_mds_session *session;
3633 dout("close_sessions\n");
3635 /* close sessions */
3636 mutex_lock(&mdsc->mutex);
3637 for (i = 0; i < mdsc->max_sessions; i++) {
3638 session = __ceph_lookup_mds_session(mdsc, i);
3641 mutex_unlock(&mdsc->mutex);
3642 mutex_lock(&session->s_mutex);
3643 __close_session(mdsc, session);
3644 mutex_unlock(&session->s_mutex);
3645 ceph_put_mds_session(session);
3646 mutex_lock(&mdsc->mutex);
3648 mutex_unlock(&mdsc->mutex);
3650 dout("waiting for sessions to close\n");
3651 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3652 ceph_timeout_jiffies(opts->mount_timeout));
3654 /* tear down remaining sessions */
3655 mutex_lock(&mdsc->mutex);
3656 for (i = 0; i < mdsc->max_sessions; i++) {
3657 if (mdsc->sessions[i]) {
3658 session = get_session(mdsc->sessions[i]);
3659 __unregister_session(mdsc, session);
3660 mutex_unlock(&mdsc->mutex);
3661 mutex_lock(&session->s_mutex);
3662 remove_session_caps(session);
3663 mutex_unlock(&session->s_mutex);
3664 ceph_put_mds_session(session);
3665 mutex_lock(&mdsc->mutex);
3668 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3669 mutex_unlock(&mdsc->mutex);
3671 ceph_cleanup_empty_realms(mdsc);
3673 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3678 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3680 struct ceph_mds_session *session;
3683 dout("force umount\n");
3685 mutex_lock(&mdsc->mutex);
3686 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3687 session = __ceph_lookup_mds_session(mdsc, mds);
3690 mutex_unlock(&mdsc->mutex);
3691 mutex_lock(&session->s_mutex);
3692 __close_session(mdsc, session);
3693 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3694 cleanup_session_requests(mdsc, session);
3695 remove_session_caps(session);
3697 mutex_unlock(&session->s_mutex);
3698 ceph_put_mds_session(session);
3699 mutex_lock(&mdsc->mutex);
3700 kick_requests(mdsc, mds);
3702 __wake_requests(mdsc, &mdsc->waiting_for_map);
3703 mutex_unlock(&mdsc->mutex);
3706 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3709 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3711 ceph_mdsmap_destroy(mdsc->mdsmap);
3712 kfree(mdsc->sessions);
3713 ceph_caps_finalize(mdsc);
3714 ceph_pool_perm_destroy(mdsc);
3717 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3719 struct ceph_mds_client *mdsc = fsc->mdsc;
3721 dout("mdsc_destroy %p\n", mdsc);
3722 ceph_mdsc_stop(mdsc);
3724 /* flush out any connection work with references to us */
3729 dout("mdsc_destroy %p done\n", mdsc);
3734 * handle mds map update.
3736 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3740 void *p = msg->front.iov_base;
3741 void *end = p + msg->front.iov_len;
3742 struct ceph_mdsmap *newmap, *oldmap;
3743 struct ceph_fsid fsid;
3746 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3747 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3748 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3750 epoch = ceph_decode_32(&p);
3751 maplen = ceph_decode_32(&p);
3752 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3754 /* do we need it? */
3755 mutex_lock(&mdsc->mutex);
3756 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3757 dout("handle_map epoch %u <= our %u\n",
3758 epoch, mdsc->mdsmap->m_epoch);
3759 mutex_unlock(&mdsc->mutex);
3763 newmap = ceph_mdsmap_decode(&p, end);
3764 if (IS_ERR(newmap)) {
3765 err = PTR_ERR(newmap);
3769 /* swap into place */
3771 oldmap = mdsc->mdsmap;
3772 mdsc->mdsmap = newmap;
3773 check_new_map(mdsc, newmap, oldmap);
3774 ceph_mdsmap_destroy(oldmap);
3776 mdsc->mdsmap = newmap; /* first mds map */
3778 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3780 __wake_requests(mdsc, &mdsc->waiting_for_map);
3781 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3782 mdsc->mdsmap->m_epoch);
3784 mutex_unlock(&mdsc->mutex);
3785 schedule_delayed(mdsc);
3789 mutex_unlock(&mdsc->mutex);
3791 pr_err("error decoding mdsmap %d\n", err);
3795 static struct ceph_connection *con_get(struct ceph_connection *con)
3797 struct ceph_mds_session *s = con->private;
3799 if (get_session(s)) {
3800 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3803 dout("mdsc con_get %p FAIL\n", s);
3807 static void con_put(struct ceph_connection *con)
3809 struct ceph_mds_session *s = con->private;
3811 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3812 ceph_put_mds_session(s);
3816 * if the client is unresponsive for long enough, the mds will kill
3817 * the session entirely.
3819 static void peer_reset(struct ceph_connection *con)
3821 struct ceph_mds_session *s = con->private;
3822 struct ceph_mds_client *mdsc = s->s_mdsc;
3824 pr_warn("mds%d closed our session\n", s->s_mds);
3825 send_mds_reconnect(mdsc, s);
3828 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3830 struct ceph_mds_session *s = con->private;
3831 struct ceph_mds_client *mdsc = s->s_mdsc;
3832 int type = le16_to_cpu(msg->hdr.type);
3834 mutex_lock(&mdsc->mutex);
3835 if (__verify_registered_session(mdsc, s) < 0) {
3836 mutex_unlock(&mdsc->mutex);
3839 mutex_unlock(&mdsc->mutex);
3842 case CEPH_MSG_MDS_MAP:
3843 ceph_mdsc_handle_map(mdsc, msg);
3845 case CEPH_MSG_CLIENT_SESSION:
3846 handle_session(s, msg);
3848 case CEPH_MSG_CLIENT_REPLY:
3849 handle_reply(s, msg);
3851 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3852 handle_forward(mdsc, s, msg);
3854 case CEPH_MSG_CLIENT_CAPS:
3855 ceph_handle_caps(s, msg);
3857 case CEPH_MSG_CLIENT_SNAP:
3858 ceph_handle_snap(mdsc, s, msg);
3860 case CEPH_MSG_CLIENT_LEASE:
3861 handle_lease(mdsc, s, msg);
3865 pr_err("received unknown message type %d %s\n", type,
3866 ceph_msg_type_name(type));
3877 * Note: returned pointer is the address of a structure that's
3878 * managed separately. Caller must *not* attempt to free it.
3880 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3881 int *proto, int force_new)
3883 struct ceph_mds_session *s = con->private;
3884 struct ceph_mds_client *mdsc = s->s_mdsc;
3885 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3886 struct ceph_auth_handshake *auth = &s->s_auth;
3888 if (force_new && auth->authorizer) {
3889 ceph_auth_destroy_authorizer(auth->authorizer);
3890 auth->authorizer = NULL;
3892 if (!auth->authorizer) {
3893 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3896 return ERR_PTR(ret);
3898 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3901 return ERR_PTR(ret);
3903 *proto = ac->protocol;
3909 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3911 struct ceph_mds_session *s = con->private;
3912 struct ceph_mds_client *mdsc = s->s_mdsc;
3913 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3915 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3918 static int invalidate_authorizer(struct ceph_connection *con)
3920 struct ceph_mds_session *s = con->private;
3921 struct ceph_mds_client *mdsc = s->s_mdsc;
3922 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3924 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3926 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3929 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3930 struct ceph_msg_header *hdr, int *skip)
3932 struct ceph_msg *msg;
3933 int type = (int) le16_to_cpu(hdr->type);
3934 int front_len = (int) le32_to_cpu(hdr->front_len);
3940 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3942 pr_err("unable to allocate msg type %d len %d\n",
3950 static int mds_sign_message(struct ceph_msg *msg)
3952 struct ceph_mds_session *s = msg->con->private;
3953 struct ceph_auth_handshake *auth = &s->s_auth;
3955 return ceph_auth_sign_message(auth, msg);
3958 static int mds_check_message_signature(struct ceph_msg *msg)
3960 struct ceph_mds_session *s = msg->con->private;
3961 struct ceph_auth_handshake *auth = &s->s_auth;
3963 return ceph_auth_check_message_signature(auth, msg);
3966 static const struct ceph_connection_operations mds_con_ops = {
3969 .dispatch = dispatch,
3970 .get_authorizer = get_authorizer,
3971 .verify_authorizer_reply = verify_authorizer_reply,
3972 .invalidate_authorizer = invalidate_authorizer,
3973 .peer_reset = peer_reset,
3974 .alloc_msg = mds_alloc_msg,
3975 .sign_message = mds_sign_message,
3976 .check_message_signature = mds_check_message_signature,