]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ceph/mds_client.c
libceph: set peer name on con_open, not init
[karo-tx-linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43
44 struct ceph_reconnect_state {
45         struct ceph_pagelist *pagelist;
46         bool flock;
47 };
48
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50                             struct list_head *head);
51
52 static const struct ceph_connection_operations mds_con_ops;
53
54
55 /*
56  * mds reply parsing
57  */
58
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63                                struct ceph_mds_reply_info_in *info,
64                                int features)
65 {
66         int err = -EIO;
67
68         info->in = *p;
69         *p += sizeof(struct ceph_mds_reply_inode) +
70                 sizeof(*info->in->fragtree.splits) *
71                 le32_to_cpu(info->in->fragtree.nsplits);
72
73         ceph_decode_32_safe(p, end, info->symlink_len, bad);
74         ceph_decode_need(p, end, info->symlink_len, bad);
75         info->symlink = *p;
76         *p += info->symlink_len;
77
78         if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79                 ceph_decode_copy_safe(p, end, &info->dir_layout,
80                                       sizeof(info->dir_layout), bad);
81         else
82                 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83
84         ceph_decode_32_safe(p, end, info->xattr_len, bad);
85         ceph_decode_need(p, end, info->xattr_len, bad);
86         info->xattr_data = *p;
87         *p += info->xattr_len;
88         return 0;
89 bad:
90         return err;
91 }
92
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98                                   struct ceph_mds_reply_info_parsed *info,
99                                   int features)
100 {
101         int err;
102
103         if (info->head->is_dentry) {
104                 err = parse_reply_info_in(p, end, &info->diri, features);
105                 if (err < 0)
106                         goto out_bad;
107
108                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
109                         goto bad;
110                 info->dirfrag = *p;
111                 *p += sizeof(*info->dirfrag) +
112                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113                 if (unlikely(*p > end))
114                         goto bad;
115
116                 ceph_decode_32_safe(p, end, info->dname_len, bad);
117                 ceph_decode_need(p, end, info->dname_len, bad);
118                 info->dname = *p;
119                 *p += info->dname_len;
120                 info->dlease = *p;
121                 *p += sizeof(*info->dlease);
122         }
123
124         if (info->head->is_target) {
125                 err = parse_reply_info_in(p, end, &info->targeti, features);
126                 if (err < 0)
127                         goto out_bad;
128         }
129
130         if (unlikely(*p != end))
131                 goto bad;
132         return 0;
133
134 bad:
135         err = -EIO;
136 out_bad:
137         pr_err("problem parsing mds trace %d\n", err);
138         return err;
139 }
140
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145                                 struct ceph_mds_reply_info_parsed *info,
146                                 int features)
147 {
148         u32 num, i = 0;
149         int err;
150
151         info->dir_dir = *p;
152         if (*p + sizeof(*info->dir_dir) > end)
153                 goto bad;
154         *p += sizeof(*info->dir_dir) +
155                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156         if (*p > end)
157                 goto bad;
158
159         ceph_decode_need(p, end, sizeof(num) + 2, bad);
160         num = ceph_decode_32(p);
161         info->dir_end = ceph_decode_8(p);
162         info->dir_complete = ceph_decode_8(p);
163         if (num == 0)
164                 goto done;
165
166         /* alloc large array */
167         info->dir_nr = num;
168         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169                                sizeof(*info->dir_dname) +
170                                sizeof(*info->dir_dname_len) +
171                                sizeof(*info->dir_dlease),
172                                GFP_NOFS);
173         if (info->dir_in == NULL) {
174                 err = -ENOMEM;
175                 goto out_bad;
176         }
177         info->dir_dname = (void *)(info->dir_in + num);
178         info->dir_dname_len = (void *)(info->dir_dname + num);
179         info->dir_dlease = (void *)(info->dir_dname_len + num);
180
181         while (num) {
182                 /* dentry */
183                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
184                 info->dir_dname_len[i] = ceph_decode_32(p);
185                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186                 info->dir_dname[i] = *p;
187                 *p += info->dir_dname_len[i];
188                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189                      info->dir_dname[i]);
190                 info->dir_dlease[i] = *p;
191                 *p += sizeof(struct ceph_mds_reply_lease);
192
193                 /* inode */
194                 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195                 if (err < 0)
196                         goto out_bad;
197                 i++;
198                 num--;
199         }
200
201 done:
202         if (*p != end)
203                 goto bad;
204         return 0;
205
206 bad:
207         err = -EIO;
208 out_bad:
209         pr_err("problem parsing dir contents %d\n", err);
210         return err;
211 }
212
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217                                      struct ceph_mds_reply_info_parsed *info,
218                                      int features)
219 {
220         if (*p + sizeof(*info->filelock_reply) > end)
221                 goto bad;
222
223         info->filelock_reply = *p;
224         *p += sizeof(*info->filelock_reply);
225
226         if (unlikely(*p != end))
227                 goto bad;
228         return 0;
229
230 bad:
231         return -EIO;
232 }
233
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238                                   struct ceph_mds_reply_info_parsed *info,
239                                   int features)
240 {
241         if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242                 return parse_reply_info_filelock(p, end, info, features);
243         else
244                 return parse_reply_info_dir(p, end, info, features);
245 }
246
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251                             struct ceph_mds_reply_info_parsed *info,
252                             int features)
253 {
254         void *p, *end;
255         u32 len;
256         int err;
257
258         info->head = msg->front.iov_base;
259         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261
262         /* trace */
263         ceph_decode_32_safe(&p, end, len, bad);
264         if (len > 0) {
265                 ceph_decode_need(&p, end, len, bad);
266                 err = parse_reply_info_trace(&p, p+len, info, features);
267                 if (err < 0)
268                         goto out_bad;
269         }
270
271         /* extra */
272         ceph_decode_32_safe(&p, end, len, bad);
273         if (len > 0) {
274                 ceph_decode_need(&p, end, len, bad);
275                 err = parse_reply_info_extra(&p, p+len, info, features);
276                 if (err < 0)
277                         goto out_bad;
278         }
279
280         /* snap blob */
281         ceph_decode_32_safe(&p, end, len, bad);
282         info->snapblob_len = len;
283         info->snapblob = p;
284         p += len;
285
286         if (p != end)
287                 goto bad;
288         return 0;
289
290 bad:
291         err = -EIO;
292 out_bad:
293         pr_err("mds parse_reply err %d\n", err);
294         return err;
295 }
296
297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
298 {
299         kfree(info->dir_in);
300 }
301
302
303 /*
304  * sessions
305  */
306 static const char *session_state_name(int s)
307 {
308         switch (s) {
309         case CEPH_MDS_SESSION_NEW: return "new";
310         case CEPH_MDS_SESSION_OPENING: return "opening";
311         case CEPH_MDS_SESSION_OPEN: return "open";
312         case CEPH_MDS_SESSION_HUNG: return "hung";
313         case CEPH_MDS_SESSION_CLOSING: return "closing";
314         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316         default: return "???";
317         }
318 }
319
320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
321 {
322         if (atomic_inc_not_zero(&s->s_ref)) {
323                 dout("mdsc get_session %p %d -> %d\n", s,
324                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325                 return s;
326         } else {
327                 dout("mdsc get_session %p 0 -- FAIL", s);
328                 return NULL;
329         }
330 }
331
332 void ceph_put_mds_session(struct ceph_mds_session *s)
333 {
334         dout("mdsc put_session %p %d -> %d\n", s,
335              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336         if (atomic_dec_and_test(&s->s_ref)) {
337                 if (s->s_auth.authorizer)
338                      s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
339                              s->s_mdsc->fsc->client->monc.auth,
340                              s->s_auth.authorizer);
341                 kfree(s);
342         }
343 }
344
345 /*
346  * called under mdsc->mutex
347  */
348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349                                                    int mds)
350 {
351         struct ceph_mds_session *session;
352
353         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354                 return NULL;
355         session = mdsc->sessions[mds];
356         dout("lookup_mds_session %p %d\n", session,
357              atomic_read(&session->s_ref));
358         get_session(session);
359         return session;
360 }
361
362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
363 {
364         if (mds >= mdsc->max_sessions)
365                 return false;
366         return mdsc->sessions[mds];
367 }
368
369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370                                        struct ceph_mds_session *s)
371 {
372         if (s->s_mds >= mdsc->max_sessions ||
373             mdsc->sessions[s->s_mds] != s)
374                 return -ENOENT;
375         return 0;
376 }
377
378 /*
379  * create+register a new session for given mds.
380  * called under mdsc->mutex.
381  */
382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383                                                  int mds)
384 {
385         struct ceph_mds_session *s;
386
387         s = kzalloc(sizeof(*s), GFP_NOFS);
388         if (!s)
389                 return ERR_PTR(-ENOMEM);
390         s->s_mdsc = mdsc;
391         s->s_mds = mds;
392         s->s_state = CEPH_MDS_SESSION_NEW;
393         s->s_ttl = 0;
394         s->s_seq = 0;
395         mutex_init(&s->s_mutex);
396
397         ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
398
399         spin_lock_init(&s->s_gen_ttl_lock);
400         s->s_cap_gen = 0;
401         s->s_cap_ttl = jiffies - 1;
402
403         spin_lock_init(&s->s_cap_lock);
404         s->s_renew_requested = 0;
405         s->s_renew_seq = 0;
406         INIT_LIST_HEAD(&s->s_caps);
407         s->s_nr_caps = 0;
408         s->s_trim_caps = 0;
409         atomic_set(&s->s_ref, 1);
410         INIT_LIST_HEAD(&s->s_waiting);
411         INIT_LIST_HEAD(&s->s_unsafe);
412         s->s_num_cap_releases = 0;
413         s->s_cap_iterator = NULL;
414         INIT_LIST_HEAD(&s->s_cap_releases);
415         INIT_LIST_HEAD(&s->s_cap_releases_done);
416         INIT_LIST_HEAD(&s->s_cap_flushing);
417         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418
419         dout("register_session mds%d\n", mds);
420         if (mds >= mdsc->max_sessions) {
421                 int newmax = 1 << get_count_order(mds+1);
422                 struct ceph_mds_session **sa;
423
424                 dout("register_session realloc to %d\n", newmax);
425                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426                 if (sa == NULL)
427                         goto fail_realloc;
428                 if (mdsc->sessions) {
429                         memcpy(sa, mdsc->sessions,
430                                mdsc->max_sessions * sizeof(void *));
431                         kfree(mdsc->sessions);
432                 }
433                 mdsc->sessions = sa;
434                 mdsc->max_sessions = newmax;
435         }
436         mdsc->sessions[mds] = s;
437         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
438
439         ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
440                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
441
442         return s;
443
444 fail_realloc:
445         kfree(s);
446         return ERR_PTR(-ENOMEM);
447 }
448
449 /*
450  * called under mdsc->mutex
451  */
452 static void __unregister_session(struct ceph_mds_client *mdsc,
453                                struct ceph_mds_session *s)
454 {
455         dout("__unregister_session mds%d %p\n", s->s_mds, s);
456         BUG_ON(mdsc->sessions[s->s_mds] != s);
457         mdsc->sessions[s->s_mds] = NULL;
458         ceph_con_close(&s->s_con);
459         ceph_put_mds_session(s);
460 }
461
462 /*
463  * drop session refs in request.
464  *
465  * should be last request ref, or hold mdsc->mutex
466  */
467 static void put_request_session(struct ceph_mds_request *req)
468 {
469         if (req->r_session) {
470                 ceph_put_mds_session(req->r_session);
471                 req->r_session = NULL;
472         }
473 }
474
475 void ceph_mdsc_release_request(struct kref *kref)
476 {
477         struct ceph_mds_request *req = container_of(kref,
478                                                     struct ceph_mds_request,
479                                                     r_kref);
480         if (req->r_request)
481                 ceph_msg_put(req->r_request);
482         if (req->r_reply) {
483                 ceph_msg_put(req->r_reply);
484                 destroy_reply_info(&req->r_reply_info);
485         }
486         if (req->r_inode) {
487                 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
488                 iput(req->r_inode);
489         }
490         if (req->r_locked_dir)
491                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
492         if (req->r_target_inode)
493                 iput(req->r_target_inode);
494         if (req->r_dentry)
495                 dput(req->r_dentry);
496         if (req->r_old_dentry) {
497                 /*
498                  * track (and drop pins for) r_old_dentry_dir
499                  * separately, since r_old_dentry's d_parent may have
500                  * changed between the dir mutex being dropped and
501                  * this request being freed.
502                  */
503                 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
504                                   CEPH_CAP_PIN);
505                 dput(req->r_old_dentry);
506                 iput(req->r_old_dentry_dir);
507         }
508         kfree(req->r_path1);
509         kfree(req->r_path2);
510         put_request_session(req);
511         ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
512         kfree(req);
513 }
514
515 /*
516  * lookup session, bump ref if found.
517  *
518  * called under mdsc->mutex.
519  */
520 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
521                                              u64 tid)
522 {
523         struct ceph_mds_request *req;
524         struct rb_node *n = mdsc->request_tree.rb_node;
525
526         while (n) {
527                 req = rb_entry(n, struct ceph_mds_request, r_node);
528                 if (tid < req->r_tid)
529                         n = n->rb_left;
530                 else if (tid > req->r_tid)
531                         n = n->rb_right;
532                 else {
533                         ceph_mdsc_get_request(req);
534                         return req;
535                 }
536         }
537         return NULL;
538 }
539
540 static void __insert_request(struct ceph_mds_client *mdsc,
541                              struct ceph_mds_request *new)
542 {
543         struct rb_node **p = &mdsc->request_tree.rb_node;
544         struct rb_node *parent = NULL;
545         struct ceph_mds_request *req = NULL;
546
547         while (*p) {
548                 parent = *p;
549                 req = rb_entry(parent, struct ceph_mds_request, r_node);
550                 if (new->r_tid < req->r_tid)
551                         p = &(*p)->rb_left;
552                 else if (new->r_tid > req->r_tid)
553                         p = &(*p)->rb_right;
554                 else
555                         BUG();
556         }
557
558         rb_link_node(&new->r_node, parent, p);
559         rb_insert_color(&new->r_node, &mdsc->request_tree);
560 }
561
562 /*
563  * Register an in-flight request, and assign a tid.  Link to directory
564  * are modifying (if any).
565  *
566  * Called under mdsc->mutex.
567  */
568 static void __register_request(struct ceph_mds_client *mdsc,
569                                struct ceph_mds_request *req,
570                                struct inode *dir)
571 {
572         req->r_tid = ++mdsc->last_tid;
573         if (req->r_num_caps)
574                 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
575                                   req->r_num_caps);
576         dout("__register_request %p tid %lld\n", req, req->r_tid);
577         ceph_mdsc_get_request(req);
578         __insert_request(mdsc, req);
579
580         req->r_uid = current_fsuid();
581         req->r_gid = current_fsgid();
582
583         if (dir) {
584                 struct ceph_inode_info *ci = ceph_inode(dir);
585
586                 ihold(dir);
587                 spin_lock(&ci->i_unsafe_lock);
588                 req->r_unsafe_dir = dir;
589                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
590                 spin_unlock(&ci->i_unsafe_lock);
591         }
592 }
593
594 static void __unregister_request(struct ceph_mds_client *mdsc,
595                                  struct ceph_mds_request *req)
596 {
597         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
598         rb_erase(&req->r_node, &mdsc->request_tree);
599         RB_CLEAR_NODE(&req->r_node);
600
601         if (req->r_unsafe_dir) {
602                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
603
604                 spin_lock(&ci->i_unsafe_lock);
605                 list_del_init(&req->r_unsafe_dir_item);
606                 spin_unlock(&ci->i_unsafe_lock);
607
608                 iput(req->r_unsafe_dir);
609                 req->r_unsafe_dir = NULL;
610         }
611
612         ceph_mdsc_put_request(req);
613 }
614
615 /*
616  * Choose mds to send request to next.  If there is a hint set in the
617  * request (e.g., due to a prior forward hint from the mds), use that.
618  * Otherwise, consult frag tree and/or caps to identify the
619  * appropriate mds.  If all else fails, choose randomly.
620  *
621  * Called under mdsc->mutex.
622  */
623 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
624 {
625         /*
626          * we don't need to worry about protecting the d_parent access
627          * here because we never renaming inside the snapped namespace
628          * except to resplice to another snapdir, and either the old or new
629          * result is a valid result.
630          */
631         while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
632                 dentry = dentry->d_parent;
633         return dentry;
634 }
635
636 static int __choose_mds(struct ceph_mds_client *mdsc,
637                         struct ceph_mds_request *req)
638 {
639         struct inode *inode;
640         struct ceph_inode_info *ci;
641         struct ceph_cap *cap;
642         int mode = req->r_direct_mode;
643         int mds = -1;
644         u32 hash = req->r_direct_hash;
645         bool is_hash = req->r_direct_is_hash;
646
647         /*
648          * is there a specific mds we should try?  ignore hint if we have
649          * no session and the mds is not up (active or recovering).
650          */
651         if (req->r_resend_mds >= 0 &&
652             (__have_session(mdsc, req->r_resend_mds) ||
653              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
654                 dout("choose_mds using resend_mds mds%d\n",
655                      req->r_resend_mds);
656                 return req->r_resend_mds;
657         }
658
659         if (mode == USE_RANDOM_MDS)
660                 goto random;
661
662         inode = NULL;
663         if (req->r_inode) {
664                 inode = req->r_inode;
665         } else if (req->r_dentry) {
666                 /* ignore race with rename; old or new d_parent is okay */
667                 struct dentry *parent = req->r_dentry->d_parent;
668                 struct inode *dir = parent->d_inode;
669
670                 if (dir->i_sb != mdsc->fsc->sb) {
671                         /* not this fs! */
672                         inode = req->r_dentry->d_inode;
673                 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
674                         /* direct snapped/virtual snapdir requests
675                          * based on parent dir inode */
676                         struct dentry *dn = get_nonsnap_parent(parent);
677                         inode = dn->d_inode;
678                         dout("__choose_mds using nonsnap parent %p\n", inode);
679                 } else if (req->r_dentry->d_inode) {
680                         /* dentry target */
681                         inode = req->r_dentry->d_inode;
682                 } else {
683                         /* dir + name */
684                         inode = dir;
685                         hash = ceph_dentry_hash(dir, req->r_dentry);
686                         is_hash = true;
687                 }
688         }
689
690         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
691              (int)hash, mode);
692         if (!inode)
693                 goto random;
694         ci = ceph_inode(inode);
695
696         if (is_hash && S_ISDIR(inode->i_mode)) {
697                 struct ceph_inode_frag frag;
698                 int found;
699
700                 ceph_choose_frag(ci, hash, &frag, &found);
701                 if (found) {
702                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
703                                 u8 r;
704
705                                 /* choose a random replica */
706                                 get_random_bytes(&r, 1);
707                                 r %= frag.ndist;
708                                 mds = frag.dist[r];
709                                 dout("choose_mds %p %llx.%llx "
710                                      "frag %u mds%d (%d/%d)\n",
711                                      inode, ceph_vinop(inode),
712                                      frag.frag, mds,
713                                      (int)r, frag.ndist);
714                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
715                                     CEPH_MDS_STATE_ACTIVE)
716                                         return mds;
717                         }
718
719                         /* since this file/dir wasn't known to be
720                          * replicated, then we want to look for the
721                          * authoritative mds. */
722                         mode = USE_AUTH_MDS;
723                         if (frag.mds >= 0) {
724                                 /* choose auth mds */
725                                 mds = frag.mds;
726                                 dout("choose_mds %p %llx.%llx "
727                                      "frag %u mds%d (auth)\n",
728                                      inode, ceph_vinop(inode), frag.frag, mds);
729                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
730                                     CEPH_MDS_STATE_ACTIVE)
731                                         return mds;
732                         }
733                 }
734         }
735
736         spin_lock(&ci->i_ceph_lock);
737         cap = NULL;
738         if (mode == USE_AUTH_MDS)
739                 cap = ci->i_auth_cap;
740         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
741                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
742         if (!cap) {
743                 spin_unlock(&ci->i_ceph_lock);
744                 goto random;
745         }
746         mds = cap->session->s_mds;
747         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
748              inode, ceph_vinop(inode), mds,
749              cap == ci->i_auth_cap ? "auth " : "", cap);
750         spin_unlock(&ci->i_ceph_lock);
751         return mds;
752
753 random:
754         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
755         dout("choose_mds chose random mds%d\n", mds);
756         return mds;
757 }
758
759
760 /*
761  * session messages
762  */
763 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
764 {
765         struct ceph_msg *msg;
766         struct ceph_mds_session_head *h;
767
768         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
769                            false);
770         if (!msg) {
771                 pr_err("create_session_msg ENOMEM creating msg\n");
772                 return NULL;
773         }
774         h = msg->front.iov_base;
775         h->op = cpu_to_le32(op);
776         h->seq = cpu_to_le64(seq);
777         return msg;
778 }
779
780 /*
781  * send session open request.
782  *
783  * called under mdsc->mutex
784  */
785 static int __open_session(struct ceph_mds_client *mdsc,
786                           struct ceph_mds_session *session)
787 {
788         struct ceph_msg *msg;
789         int mstate;
790         int mds = session->s_mds;
791
792         /* wait for mds to go active? */
793         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
794         dout("open_session to mds%d (%s)\n", mds,
795              ceph_mds_state_name(mstate));
796         session->s_state = CEPH_MDS_SESSION_OPENING;
797         session->s_renew_requested = jiffies;
798
799         /* send connect message */
800         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
801         if (!msg)
802                 return -ENOMEM;
803         ceph_con_send(&session->s_con, msg);
804         return 0;
805 }
806
807 /*
808  * open sessions for any export targets for the given mds
809  *
810  * called under mdsc->mutex
811  */
812 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
813                                           struct ceph_mds_session *session)
814 {
815         struct ceph_mds_info *mi;
816         struct ceph_mds_session *ts;
817         int i, mds = session->s_mds;
818         int target;
819
820         if (mds >= mdsc->mdsmap->m_max_mds)
821                 return;
822         mi = &mdsc->mdsmap->m_info[mds];
823         dout("open_export_target_sessions for mds%d (%d targets)\n",
824              session->s_mds, mi->num_export_targets);
825
826         for (i = 0; i < mi->num_export_targets; i++) {
827                 target = mi->export_targets[i];
828                 ts = __ceph_lookup_mds_session(mdsc, target);
829                 if (!ts) {
830                         ts = register_session(mdsc, target);
831                         if (IS_ERR(ts))
832                                 return;
833                 }
834                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
835                     session->s_state == CEPH_MDS_SESSION_CLOSING)
836                         __open_session(mdsc, session);
837                 else
838                         dout(" mds%d target mds%d %p is %s\n", session->s_mds,
839                              i, ts, session_state_name(ts->s_state));
840                 ceph_put_mds_session(ts);
841         }
842 }
843
844 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
845                                            struct ceph_mds_session *session)
846 {
847         mutex_lock(&mdsc->mutex);
848         __open_export_target_sessions(mdsc, session);
849         mutex_unlock(&mdsc->mutex);
850 }
851
852 /*
853  * session caps
854  */
855
856 /*
857  * Free preallocated cap messages assigned to this session
858  */
859 static void cleanup_cap_releases(struct ceph_mds_session *session)
860 {
861         struct ceph_msg *msg;
862
863         spin_lock(&session->s_cap_lock);
864         while (!list_empty(&session->s_cap_releases)) {
865                 msg = list_first_entry(&session->s_cap_releases,
866                                        struct ceph_msg, list_head);
867                 list_del_init(&msg->list_head);
868                 ceph_msg_put(msg);
869         }
870         while (!list_empty(&session->s_cap_releases_done)) {
871                 msg = list_first_entry(&session->s_cap_releases_done,
872                                        struct ceph_msg, list_head);
873                 list_del_init(&msg->list_head);
874                 ceph_msg_put(msg);
875         }
876         spin_unlock(&session->s_cap_lock);
877 }
878
879 /*
880  * Helper to safely iterate over all caps associated with a session, with
881  * special care taken to handle a racing __ceph_remove_cap().
882  *
883  * Caller must hold session s_mutex.
884  */
885 static int iterate_session_caps(struct ceph_mds_session *session,
886                                  int (*cb)(struct inode *, struct ceph_cap *,
887                                             void *), void *arg)
888 {
889         struct list_head *p;
890         struct ceph_cap *cap;
891         struct inode *inode, *last_inode = NULL;
892         struct ceph_cap *old_cap = NULL;
893         int ret;
894
895         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
896         spin_lock(&session->s_cap_lock);
897         p = session->s_caps.next;
898         while (p != &session->s_caps) {
899                 cap = list_entry(p, struct ceph_cap, session_caps);
900                 inode = igrab(&cap->ci->vfs_inode);
901                 if (!inode) {
902                         p = p->next;
903                         continue;
904                 }
905                 session->s_cap_iterator = cap;
906                 spin_unlock(&session->s_cap_lock);
907
908                 if (last_inode) {
909                         iput(last_inode);
910                         last_inode = NULL;
911                 }
912                 if (old_cap) {
913                         ceph_put_cap(session->s_mdsc, old_cap);
914                         old_cap = NULL;
915                 }
916
917                 ret = cb(inode, cap, arg);
918                 last_inode = inode;
919
920                 spin_lock(&session->s_cap_lock);
921                 p = p->next;
922                 if (cap->ci == NULL) {
923                         dout("iterate_session_caps  finishing cap %p removal\n",
924                              cap);
925                         BUG_ON(cap->session != session);
926                         list_del_init(&cap->session_caps);
927                         session->s_nr_caps--;
928                         cap->session = NULL;
929                         old_cap = cap;  /* put_cap it w/o locks held */
930                 }
931                 if (ret < 0)
932                         goto out;
933         }
934         ret = 0;
935 out:
936         session->s_cap_iterator = NULL;
937         spin_unlock(&session->s_cap_lock);
938
939         if (last_inode)
940                 iput(last_inode);
941         if (old_cap)
942                 ceph_put_cap(session->s_mdsc, old_cap);
943
944         return ret;
945 }
946
947 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
948                                   void *arg)
949 {
950         struct ceph_inode_info *ci = ceph_inode(inode);
951         int drop = 0;
952
953         dout("removing cap %p, ci is %p, inode is %p\n",
954              cap, ci, &ci->vfs_inode);
955         spin_lock(&ci->i_ceph_lock);
956         __ceph_remove_cap(cap);
957         if (!__ceph_is_any_real_caps(ci)) {
958                 struct ceph_mds_client *mdsc =
959                         ceph_sb_to_client(inode->i_sb)->mdsc;
960
961                 spin_lock(&mdsc->cap_dirty_lock);
962                 if (!list_empty(&ci->i_dirty_item)) {
963                         pr_info(" dropping dirty %s state for %p %lld\n",
964                                 ceph_cap_string(ci->i_dirty_caps),
965                                 inode, ceph_ino(inode));
966                         ci->i_dirty_caps = 0;
967                         list_del_init(&ci->i_dirty_item);
968                         drop = 1;
969                 }
970                 if (!list_empty(&ci->i_flushing_item)) {
971                         pr_info(" dropping dirty+flushing %s state for %p %lld\n",
972                                 ceph_cap_string(ci->i_flushing_caps),
973                                 inode, ceph_ino(inode));
974                         ci->i_flushing_caps = 0;
975                         list_del_init(&ci->i_flushing_item);
976                         mdsc->num_cap_flushing--;
977                         drop = 1;
978                 }
979                 if (drop && ci->i_wrbuffer_ref) {
980                         pr_info(" dropping dirty data for %p %lld\n",
981                                 inode, ceph_ino(inode));
982                         ci->i_wrbuffer_ref = 0;
983                         ci->i_wrbuffer_ref_head = 0;
984                         drop++;
985                 }
986                 spin_unlock(&mdsc->cap_dirty_lock);
987         }
988         spin_unlock(&ci->i_ceph_lock);
989         while (drop--)
990                 iput(inode);
991         return 0;
992 }
993
994 /*
995  * caller must hold session s_mutex
996  */
997 static void remove_session_caps(struct ceph_mds_session *session)
998 {
999         dout("remove_session_caps on %p\n", session);
1000         iterate_session_caps(session, remove_session_caps_cb, NULL);
1001         BUG_ON(session->s_nr_caps > 0);
1002         BUG_ON(!list_empty(&session->s_cap_flushing));
1003         cleanup_cap_releases(session);
1004 }
1005
1006 /*
1007  * wake up any threads waiting on this session's caps.  if the cap is
1008  * old (didn't get renewed on the client reconnect), remove it now.
1009  *
1010  * caller must hold s_mutex.
1011  */
1012 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1013                               void *arg)
1014 {
1015         struct ceph_inode_info *ci = ceph_inode(inode);
1016
1017         wake_up_all(&ci->i_cap_wq);
1018         if (arg) {
1019                 spin_lock(&ci->i_ceph_lock);
1020                 ci->i_wanted_max_size = 0;
1021                 ci->i_requested_max_size = 0;
1022                 spin_unlock(&ci->i_ceph_lock);
1023         }
1024         return 0;
1025 }
1026
1027 static void wake_up_session_caps(struct ceph_mds_session *session,
1028                                  int reconnect)
1029 {
1030         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1031         iterate_session_caps(session, wake_up_session_cb,
1032                              (void *)(unsigned long)reconnect);
1033 }
1034
1035 /*
1036  * Send periodic message to MDS renewing all currently held caps.  The
1037  * ack will reset the expiration for all caps from this session.
1038  *
1039  * caller holds s_mutex
1040  */
1041 static int send_renew_caps(struct ceph_mds_client *mdsc,
1042                            struct ceph_mds_session *session)
1043 {
1044         struct ceph_msg *msg;
1045         int state;
1046
1047         if (time_after_eq(jiffies, session->s_cap_ttl) &&
1048             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1049                 pr_info("mds%d caps stale\n", session->s_mds);
1050         session->s_renew_requested = jiffies;
1051
1052         /* do not try to renew caps until a recovering mds has reconnected
1053          * with its clients. */
1054         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1055         if (state < CEPH_MDS_STATE_RECONNECT) {
1056                 dout("send_renew_caps ignoring mds%d (%s)\n",
1057                      session->s_mds, ceph_mds_state_name(state));
1058                 return 0;
1059         }
1060
1061         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1062                 ceph_mds_state_name(state));
1063         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1064                                  ++session->s_renew_seq);
1065         if (!msg)
1066                 return -ENOMEM;
1067         ceph_con_send(&session->s_con, msg);
1068         return 0;
1069 }
1070
1071 /*
1072  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1073  *
1074  * Called under session->s_mutex
1075  */
1076 static void renewed_caps(struct ceph_mds_client *mdsc,
1077                          struct ceph_mds_session *session, int is_renew)
1078 {
1079         int was_stale;
1080         int wake = 0;
1081
1082         spin_lock(&session->s_cap_lock);
1083         was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1084
1085         session->s_cap_ttl = session->s_renew_requested +
1086                 mdsc->mdsmap->m_session_timeout*HZ;
1087
1088         if (was_stale) {
1089                 if (time_before(jiffies, session->s_cap_ttl)) {
1090                         pr_info("mds%d caps renewed\n", session->s_mds);
1091                         wake = 1;
1092                 } else {
1093                         pr_info("mds%d caps still stale\n", session->s_mds);
1094                 }
1095         }
1096         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1097              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1098              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1099         spin_unlock(&session->s_cap_lock);
1100
1101         if (wake)
1102                 wake_up_session_caps(session, 0);
1103 }
1104
1105 /*
1106  * send a session close request
1107  */
1108 static int request_close_session(struct ceph_mds_client *mdsc,
1109                                  struct ceph_mds_session *session)
1110 {
1111         struct ceph_msg *msg;
1112
1113         dout("request_close_session mds%d state %s seq %lld\n",
1114              session->s_mds, session_state_name(session->s_state),
1115              session->s_seq);
1116         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1117         if (!msg)
1118                 return -ENOMEM;
1119         ceph_con_send(&session->s_con, msg);
1120         return 0;
1121 }
1122
1123 /*
1124  * Called with s_mutex held.
1125  */
1126 static int __close_session(struct ceph_mds_client *mdsc,
1127                          struct ceph_mds_session *session)
1128 {
1129         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1130                 return 0;
1131         session->s_state = CEPH_MDS_SESSION_CLOSING;
1132         return request_close_session(mdsc, session);
1133 }
1134
1135 /*
1136  * Trim old(er) caps.
1137  *
1138  * Because we can't cache an inode without one or more caps, we do
1139  * this indirectly: if a cap is unused, we prune its aliases, at which
1140  * point the inode will hopefully get dropped to.
1141  *
1142  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1143  * memory pressure from the MDS, though, so it needn't be perfect.
1144  */
1145 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1146 {
1147         struct ceph_mds_session *session = arg;
1148         struct ceph_inode_info *ci = ceph_inode(inode);
1149         int used, oissued, mine;
1150
1151         if (session->s_trim_caps <= 0)
1152                 return -1;
1153
1154         spin_lock(&ci->i_ceph_lock);
1155         mine = cap->issued | cap->implemented;
1156         used = __ceph_caps_used(ci);
1157         oissued = __ceph_caps_issued_other(ci, cap);
1158
1159         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1160              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1161              ceph_cap_string(used));
1162         if (ci->i_dirty_caps)
1163                 goto out;   /* dirty caps */
1164         if ((used & ~oissued) & mine)
1165                 goto out;   /* we need these caps */
1166
1167         session->s_trim_caps--;
1168         if (oissued) {
1169                 /* we aren't the only cap.. just remove us */
1170                 __ceph_remove_cap(cap);
1171         } else {
1172                 /* try to drop referring dentries */
1173                 spin_unlock(&ci->i_ceph_lock);
1174                 d_prune_aliases(inode);
1175                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1176                      inode, cap, atomic_read(&inode->i_count));
1177                 return 0;
1178         }
1179
1180 out:
1181         spin_unlock(&ci->i_ceph_lock);
1182         return 0;
1183 }
1184
1185 /*
1186  * Trim session cap count down to some max number.
1187  */
1188 static int trim_caps(struct ceph_mds_client *mdsc,
1189                      struct ceph_mds_session *session,
1190                      int max_caps)
1191 {
1192         int trim_caps = session->s_nr_caps - max_caps;
1193
1194         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1195              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1196         if (trim_caps > 0) {
1197                 session->s_trim_caps = trim_caps;
1198                 iterate_session_caps(session, trim_caps_cb, session);
1199                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1200                      session->s_mds, session->s_nr_caps, max_caps,
1201                         trim_caps - session->s_trim_caps);
1202                 session->s_trim_caps = 0;
1203         }
1204         return 0;
1205 }
1206
1207 /*
1208  * Allocate cap_release messages.  If there is a partially full message
1209  * in the queue, try to allocate enough to cover it's remainder, so that
1210  * we can send it immediately.
1211  *
1212  * Called under s_mutex.
1213  */
1214 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1215                           struct ceph_mds_session *session)
1216 {
1217         struct ceph_msg *msg, *partial = NULL;
1218         struct ceph_mds_cap_release *head;
1219         int err = -ENOMEM;
1220         int extra = mdsc->fsc->mount_options->cap_release_safety;
1221         int num;
1222
1223         dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1224              extra);
1225
1226         spin_lock(&session->s_cap_lock);
1227
1228         if (!list_empty(&session->s_cap_releases)) {
1229                 msg = list_first_entry(&session->s_cap_releases,
1230                                        struct ceph_msg,
1231                                  list_head);
1232                 head = msg->front.iov_base;
1233                 num = le32_to_cpu(head->num);
1234                 if (num) {
1235                         dout(" partial %p with (%d/%d)\n", msg, num,
1236                              (int)CEPH_CAPS_PER_RELEASE);
1237                         extra += CEPH_CAPS_PER_RELEASE - num;
1238                         partial = msg;
1239                 }
1240         }
1241         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1242                 spin_unlock(&session->s_cap_lock);
1243                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1244                                    GFP_NOFS, false);
1245                 if (!msg)
1246                         goto out_unlocked;
1247                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1248                      (int)msg->front.iov_len);
1249                 head = msg->front.iov_base;
1250                 head->num = cpu_to_le32(0);
1251                 msg->front.iov_len = sizeof(*head);
1252                 spin_lock(&session->s_cap_lock);
1253                 list_add(&msg->list_head, &session->s_cap_releases);
1254                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1255         }
1256
1257         if (partial) {
1258                 head = partial->front.iov_base;
1259                 num = le32_to_cpu(head->num);
1260                 dout(" queueing partial %p with %d/%d\n", partial, num,
1261                      (int)CEPH_CAPS_PER_RELEASE);
1262                 list_move_tail(&partial->list_head,
1263                                &session->s_cap_releases_done);
1264                 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1265         }
1266         err = 0;
1267         spin_unlock(&session->s_cap_lock);
1268 out_unlocked:
1269         return err;
1270 }
1271
1272 /*
1273  * flush all dirty inode data to disk.
1274  *
1275  * returns true if we've flushed through want_flush_seq
1276  */
1277 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1278 {
1279         int mds, ret = 1;
1280
1281         dout("check_cap_flush want %lld\n", want_flush_seq);
1282         mutex_lock(&mdsc->mutex);
1283         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1284                 struct ceph_mds_session *session = mdsc->sessions[mds];
1285
1286                 if (!session)
1287                         continue;
1288                 get_session(session);
1289                 mutex_unlock(&mdsc->mutex);
1290
1291                 mutex_lock(&session->s_mutex);
1292                 if (!list_empty(&session->s_cap_flushing)) {
1293                         struct ceph_inode_info *ci =
1294                                 list_entry(session->s_cap_flushing.next,
1295                                            struct ceph_inode_info,
1296                                            i_flushing_item);
1297                         struct inode *inode = &ci->vfs_inode;
1298
1299                         spin_lock(&ci->i_ceph_lock);
1300                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1301                                 dout("check_cap_flush still flushing %p "
1302                                      "seq %lld <= %lld to mds%d\n", inode,
1303                                      ci->i_cap_flush_seq, want_flush_seq,
1304                                      session->s_mds);
1305                                 ret = 0;
1306                         }
1307                         spin_unlock(&ci->i_ceph_lock);
1308                 }
1309                 mutex_unlock(&session->s_mutex);
1310                 ceph_put_mds_session(session);
1311
1312                 if (!ret)
1313                         return ret;
1314                 mutex_lock(&mdsc->mutex);
1315         }
1316
1317         mutex_unlock(&mdsc->mutex);
1318         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1319         return ret;
1320 }
1321
1322 /*
1323  * called under s_mutex
1324  */
1325 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1326                             struct ceph_mds_session *session)
1327 {
1328         struct ceph_msg *msg;
1329
1330         dout("send_cap_releases mds%d\n", session->s_mds);
1331         spin_lock(&session->s_cap_lock);
1332         while (!list_empty(&session->s_cap_releases_done)) {
1333                 msg = list_first_entry(&session->s_cap_releases_done,
1334                                  struct ceph_msg, list_head);
1335                 list_del_init(&msg->list_head);
1336                 spin_unlock(&session->s_cap_lock);
1337                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1338                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1339                 ceph_con_send(&session->s_con, msg);
1340                 spin_lock(&session->s_cap_lock);
1341         }
1342         spin_unlock(&session->s_cap_lock);
1343 }
1344
1345 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1346                                  struct ceph_mds_session *session)
1347 {
1348         struct ceph_msg *msg;
1349         struct ceph_mds_cap_release *head;
1350         unsigned num;
1351
1352         dout("discard_cap_releases mds%d\n", session->s_mds);
1353         spin_lock(&session->s_cap_lock);
1354
1355         /* zero out the in-progress message */
1356         msg = list_first_entry(&session->s_cap_releases,
1357                                struct ceph_msg, list_head);
1358         head = msg->front.iov_base;
1359         num = le32_to_cpu(head->num);
1360         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1361         head->num = cpu_to_le32(0);
1362         session->s_num_cap_releases += num;
1363
1364         /* requeue completed messages */
1365         while (!list_empty(&session->s_cap_releases_done)) {
1366                 msg = list_first_entry(&session->s_cap_releases_done,
1367                                  struct ceph_msg, list_head);
1368                 list_del_init(&msg->list_head);
1369
1370                 head = msg->front.iov_base;
1371                 num = le32_to_cpu(head->num);
1372                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1373                      num);
1374                 session->s_num_cap_releases += num;
1375                 head->num = cpu_to_le32(0);
1376                 msg->front.iov_len = sizeof(*head);
1377                 list_add(&msg->list_head, &session->s_cap_releases);
1378         }
1379
1380         spin_unlock(&session->s_cap_lock);
1381 }
1382
1383 /*
1384  * requests
1385  */
1386
1387 /*
1388  * Create an mds request.
1389  */
1390 struct ceph_mds_request *
1391 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1392 {
1393         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1394
1395         if (!req)
1396                 return ERR_PTR(-ENOMEM);
1397
1398         mutex_init(&req->r_fill_mutex);
1399         req->r_mdsc = mdsc;
1400         req->r_started = jiffies;
1401         req->r_resend_mds = -1;
1402         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1403         req->r_fmode = -1;
1404         kref_init(&req->r_kref);
1405         INIT_LIST_HEAD(&req->r_wait);
1406         init_completion(&req->r_completion);
1407         init_completion(&req->r_safe_completion);
1408         INIT_LIST_HEAD(&req->r_unsafe_item);
1409
1410         req->r_op = op;
1411         req->r_direct_mode = mode;
1412         return req;
1413 }
1414
1415 /*
1416  * return oldest (lowest) request, tid in request tree, 0 if none.
1417  *
1418  * called under mdsc->mutex.
1419  */
1420 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1421 {
1422         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1423                 return NULL;
1424         return rb_entry(rb_first(&mdsc->request_tree),
1425                         struct ceph_mds_request, r_node);
1426 }
1427
1428 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1429 {
1430         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1431
1432         if (req)
1433                 return req->r_tid;
1434         return 0;
1435 }
1436
1437 /*
1438  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1439  * on build_path_from_dentry in fs/cifs/dir.c.
1440  *
1441  * If @stop_on_nosnap, generate path relative to the first non-snapped
1442  * inode.
1443  *
1444  * Encode hidden .snap dirs as a double /, i.e.
1445  *   foo/.snap/bar -> foo//bar
1446  */
1447 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1448                            int stop_on_nosnap)
1449 {
1450         struct dentry *temp;
1451         char *path;
1452         int len, pos;
1453         unsigned seq;
1454
1455         if (dentry == NULL)
1456                 return ERR_PTR(-EINVAL);
1457
1458 retry:
1459         len = 0;
1460         seq = read_seqbegin(&rename_lock);
1461         rcu_read_lock();
1462         for (temp = dentry; !IS_ROOT(temp);) {
1463                 struct inode *inode = temp->d_inode;
1464                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1465                         len++;  /* slash only */
1466                 else if (stop_on_nosnap && inode &&
1467                          ceph_snap(inode) == CEPH_NOSNAP)
1468                         break;
1469                 else
1470                         len += 1 + temp->d_name.len;
1471                 temp = temp->d_parent;
1472                 if (temp == NULL) {
1473                         rcu_read_unlock();
1474                         pr_err("build_path corrupt dentry %p\n", dentry);
1475                         return ERR_PTR(-EINVAL);
1476                 }
1477         }
1478         rcu_read_unlock();
1479         if (len)
1480                 len--;  /* no leading '/' */
1481
1482         path = kmalloc(len+1, GFP_NOFS);
1483         if (path == NULL)
1484                 return ERR_PTR(-ENOMEM);
1485         pos = len;
1486         path[pos] = 0;  /* trailing null */
1487         rcu_read_lock();
1488         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1489                 struct inode *inode;
1490
1491                 spin_lock(&temp->d_lock);
1492                 inode = temp->d_inode;
1493                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1494                         dout("build_path path+%d: %p SNAPDIR\n",
1495                              pos, temp);
1496                 } else if (stop_on_nosnap && inode &&
1497                            ceph_snap(inode) == CEPH_NOSNAP) {
1498                         spin_unlock(&temp->d_lock);
1499                         break;
1500                 } else {
1501                         pos -= temp->d_name.len;
1502                         if (pos < 0) {
1503                                 spin_unlock(&temp->d_lock);
1504                                 break;
1505                         }
1506                         strncpy(path + pos, temp->d_name.name,
1507                                 temp->d_name.len);
1508                 }
1509                 spin_unlock(&temp->d_lock);
1510                 if (pos)
1511                         path[--pos] = '/';
1512                 temp = temp->d_parent;
1513                 if (temp == NULL) {
1514                         rcu_read_unlock();
1515                         pr_err("build_path corrupt dentry\n");
1516                         kfree(path);
1517                         return ERR_PTR(-EINVAL);
1518                 }
1519         }
1520         rcu_read_unlock();
1521         if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1522                 pr_err("build_path did not end path lookup where "
1523                        "expected, namelen is %d, pos is %d\n", len, pos);
1524                 /* presumably this is only possible if racing with a
1525                    rename of one of the parent directories (we can not
1526                    lock the dentries above us to prevent this, but
1527                    retrying should be harmless) */
1528                 kfree(path);
1529                 goto retry;
1530         }
1531
1532         *base = ceph_ino(temp->d_inode);
1533         *plen = len;
1534         dout("build_path on %p %d built %llx '%.*s'\n",
1535              dentry, dentry->d_count, *base, len, path);
1536         return path;
1537 }
1538
1539 static int build_dentry_path(struct dentry *dentry,
1540                              const char **ppath, int *ppathlen, u64 *pino,
1541                              int *pfreepath)
1542 {
1543         char *path;
1544
1545         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1546                 *pino = ceph_ino(dentry->d_parent->d_inode);
1547                 *ppath = dentry->d_name.name;
1548                 *ppathlen = dentry->d_name.len;
1549                 return 0;
1550         }
1551         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1552         if (IS_ERR(path))
1553                 return PTR_ERR(path);
1554         *ppath = path;
1555         *pfreepath = 1;
1556         return 0;
1557 }
1558
1559 static int build_inode_path(struct inode *inode,
1560                             const char **ppath, int *ppathlen, u64 *pino,
1561                             int *pfreepath)
1562 {
1563         struct dentry *dentry;
1564         char *path;
1565
1566         if (ceph_snap(inode) == CEPH_NOSNAP) {
1567                 *pino = ceph_ino(inode);
1568                 *ppathlen = 0;
1569                 return 0;
1570         }
1571         dentry = d_find_alias(inode);
1572         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1573         dput(dentry);
1574         if (IS_ERR(path))
1575                 return PTR_ERR(path);
1576         *ppath = path;
1577         *pfreepath = 1;
1578         return 0;
1579 }
1580
1581 /*
1582  * request arguments may be specified via an inode *, a dentry *, or
1583  * an explicit ino+path.
1584  */
1585 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1586                                   const char *rpath, u64 rino,
1587                                   const char **ppath, int *pathlen,
1588                                   u64 *ino, int *freepath)
1589 {
1590         int r = 0;
1591
1592         if (rinode) {
1593                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1594                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1595                      ceph_snap(rinode));
1596         } else if (rdentry) {
1597                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1598                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1599                      *ppath);
1600         } else if (rpath || rino) {
1601                 *ino = rino;
1602                 *ppath = rpath;
1603                 *pathlen = strlen(rpath);
1604                 dout(" path %.*s\n", *pathlen, rpath);
1605         }
1606
1607         return r;
1608 }
1609
1610 /*
1611  * called under mdsc->mutex
1612  */
1613 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1614                                                struct ceph_mds_request *req,
1615                                                int mds)
1616 {
1617         struct ceph_msg *msg;
1618         struct ceph_mds_request_head *head;
1619         const char *path1 = NULL;
1620         const char *path2 = NULL;
1621         u64 ino1 = 0, ino2 = 0;
1622         int pathlen1 = 0, pathlen2 = 0;
1623         int freepath1 = 0, freepath2 = 0;
1624         int len;
1625         u16 releases;
1626         void *p, *end;
1627         int ret;
1628
1629         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1630                               req->r_path1, req->r_ino1.ino,
1631                               &path1, &pathlen1, &ino1, &freepath1);
1632         if (ret < 0) {
1633                 msg = ERR_PTR(ret);
1634                 goto out;
1635         }
1636
1637         ret = set_request_path_attr(NULL, req->r_old_dentry,
1638                               req->r_path2, req->r_ino2.ino,
1639                               &path2, &pathlen2, &ino2, &freepath2);
1640         if (ret < 0) {
1641                 msg = ERR_PTR(ret);
1642                 goto out_free1;
1643         }
1644
1645         len = sizeof(*head) +
1646                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1647
1648         /* calculate (max) length for cap releases */
1649         len += sizeof(struct ceph_mds_request_release) *
1650                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1651                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1652         if (req->r_dentry_drop)
1653                 len += req->r_dentry->d_name.len;
1654         if (req->r_old_dentry_drop)
1655                 len += req->r_old_dentry->d_name.len;
1656
1657         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1658         if (!msg) {
1659                 msg = ERR_PTR(-ENOMEM);
1660                 goto out_free2;
1661         }
1662
1663         msg->hdr.tid = cpu_to_le64(req->r_tid);
1664
1665         head = msg->front.iov_base;
1666         p = msg->front.iov_base + sizeof(*head);
1667         end = msg->front.iov_base + msg->front.iov_len;
1668
1669         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1670         head->op = cpu_to_le32(req->r_op);
1671         head->caller_uid = cpu_to_le32(req->r_uid);
1672         head->caller_gid = cpu_to_le32(req->r_gid);
1673         head->args = req->r_args;
1674
1675         ceph_encode_filepath(&p, end, ino1, path1);
1676         ceph_encode_filepath(&p, end, ino2, path2);
1677
1678         /* make note of release offset, in case we need to replay */
1679         req->r_request_release_offset = p - msg->front.iov_base;
1680
1681         /* cap releases */
1682         releases = 0;
1683         if (req->r_inode_drop)
1684                 releases += ceph_encode_inode_release(&p,
1685                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1686                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1687         if (req->r_dentry_drop)
1688                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1689                        mds, req->r_dentry_drop, req->r_dentry_unless);
1690         if (req->r_old_dentry_drop)
1691                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1692                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1693         if (req->r_old_inode_drop)
1694                 releases += ceph_encode_inode_release(&p,
1695                       req->r_old_dentry->d_inode,
1696                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1697         head->num_releases = cpu_to_le16(releases);
1698
1699         BUG_ON(p > end);
1700         msg->front.iov_len = p - msg->front.iov_base;
1701         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1702
1703         msg->pages = req->r_pages;
1704         msg->nr_pages = req->r_num_pages;
1705         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1706         msg->hdr.data_off = cpu_to_le16(0);
1707
1708 out_free2:
1709         if (freepath2)
1710                 kfree((char *)path2);
1711 out_free1:
1712         if (freepath1)
1713                 kfree((char *)path1);
1714 out:
1715         return msg;
1716 }
1717
1718 /*
1719  * called under mdsc->mutex if error, under no mutex if
1720  * success.
1721  */
1722 static void complete_request(struct ceph_mds_client *mdsc,
1723                              struct ceph_mds_request *req)
1724 {
1725         if (req->r_callback)
1726                 req->r_callback(mdsc, req);
1727         else
1728                 complete_all(&req->r_completion);
1729 }
1730
1731 /*
1732  * called under mdsc->mutex
1733  */
1734 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1735                                   struct ceph_mds_request *req,
1736                                   int mds)
1737 {
1738         struct ceph_mds_request_head *rhead;
1739         struct ceph_msg *msg;
1740         int flags = 0;
1741
1742         req->r_attempts++;
1743         if (req->r_inode) {
1744                 struct ceph_cap *cap =
1745                         ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1746
1747                 if (cap)
1748                         req->r_sent_on_mseq = cap->mseq;
1749                 else
1750                         req->r_sent_on_mseq = -1;
1751         }
1752         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1753              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1754
1755         if (req->r_got_unsafe) {
1756                 /*
1757                  * Replay.  Do not regenerate message (and rebuild
1758                  * paths, etc.); just use the original message.
1759                  * Rebuilding paths will break for renames because
1760                  * d_move mangles the src name.
1761                  */
1762                 msg = req->r_request;
1763                 rhead = msg->front.iov_base;
1764
1765                 flags = le32_to_cpu(rhead->flags);
1766                 flags |= CEPH_MDS_FLAG_REPLAY;
1767                 rhead->flags = cpu_to_le32(flags);
1768
1769                 if (req->r_target_inode)
1770                         rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1771
1772                 rhead->num_retry = req->r_attempts - 1;
1773
1774                 /* remove cap/dentry releases from message */
1775                 rhead->num_releases = 0;
1776                 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1777                 msg->front.iov_len = req->r_request_release_offset;
1778                 return 0;
1779         }
1780
1781         if (req->r_request) {
1782                 ceph_msg_put(req->r_request);
1783                 req->r_request = NULL;
1784         }
1785         msg = create_request_message(mdsc, req, mds);
1786         if (IS_ERR(msg)) {
1787                 req->r_err = PTR_ERR(msg);
1788                 complete_request(mdsc, req);
1789                 return PTR_ERR(msg);
1790         }
1791         req->r_request = msg;
1792
1793         rhead = msg->front.iov_base;
1794         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1795         if (req->r_got_unsafe)
1796                 flags |= CEPH_MDS_FLAG_REPLAY;
1797         if (req->r_locked_dir)
1798                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1799         rhead->flags = cpu_to_le32(flags);
1800         rhead->num_fwd = req->r_num_fwd;
1801         rhead->num_retry = req->r_attempts - 1;
1802         rhead->ino = 0;
1803
1804         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1805         return 0;
1806 }
1807
1808 /*
1809  * send request, or put it on the appropriate wait list.
1810  */
1811 static int __do_request(struct ceph_mds_client *mdsc,
1812                         struct ceph_mds_request *req)
1813 {
1814         struct ceph_mds_session *session = NULL;
1815         int mds = -1;
1816         int err = -EAGAIN;
1817
1818         if (req->r_err || req->r_got_result)
1819                 goto out;
1820
1821         if (req->r_timeout &&
1822             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1823                 dout("do_request timed out\n");
1824                 err = -EIO;
1825                 goto finish;
1826         }
1827
1828         put_request_session(req);
1829
1830         mds = __choose_mds(mdsc, req);
1831         if (mds < 0 ||
1832             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1833                 dout("do_request no mds or not active, waiting for map\n");
1834                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1835                 goto out;
1836         }
1837
1838         /* get, open session */
1839         session = __ceph_lookup_mds_session(mdsc, mds);
1840         if (!session) {
1841                 session = register_session(mdsc, mds);
1842                 if (IS_ERR(session)) {
1843                         err = PTR_ERR(session);
1844                         goto finish;
1845                 }
1846         }
1847         req->r_session = get_session(session);
1848
1849         dout("do_request mds%d session %p state %s\n", mds, session,
1850              session_state_name(session->s_state));
1851         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1852             session->s_state != CEPH_MDS_SESSION_HUNG) {
1853                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1854                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1855                         __open_session(mdsc, session);
1856                 list_add(&req->r_wait, &session->s_waiting);
1857                 goto out_session;
1858         }
1859
1860         /* send request */
1861         req->r_resend_mds = -1;   /* forget any previous mds hint */
1862
1863         if (req->r_request_started == 0)   /* note request start time */
1864                 req->r_request_started = jiffies;
1865
1866         err = __prepare_send_request(mdsc, req, mds);
1867         if (!err) {
1868                 ceph_msg_get(req->r_request);
1869                 ceph_con_send(&session->s_con, req->r_request);
1870         }
1871
1872 out_session:
1873         ceph_put_mds_session(session);
1874 out:
1875         return err;
1876
1877 finish:
1878         req->r_err = err;
1879         complete_request(mdsc, req);
1880         goto out;
1881 }
1882
1883 /*
1884  * called under mdsc->mutex
1885  */
1886 static void __wake_requests(struct ceph_mds_client *mdsc,
1887                             struct list_head *head)
1888 {
1889         struct ceph_mds_request *req, *nreq;
1890
1891         list_for_each_entry_safe(req, nreq, head, r_wait) {
1892                 list_del_init(&req->r_wait);
1893                 __do_request(mdsc, req);
1894         }
1895 }
1896
1897 /*
1898  * Wake up threads with requests pending for @mds, so that they can
1899  * resubmit their requests to a possibly different mds.
1900  */
1901 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1902 {
1903         struct ceph_mds_request *req;
1904         struct rb_node *p;
1905
1906         dout("kick_requests mds%d\n", mds);
1907         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1908                 req = rb_entry(p, struct ceph_mds_request, r_node);
1909                 if (req->r_got_unsafe)
1910                         continue;
1911                 if (req->r_session &&
1912                     req->r_session->s_mds == mds) {
1913                         dout(" kicking tid %llu\n", req->r_tid);
1914                         __do_request(mdsc, req);
1915                 }
1916         }
1917 }
1918
1919 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1920                               struct ceph_mds_request *req)
1921 {
1922         dout("submit_request on %p\n", req);
1923         mutex_lock(&mdsc->mutex);
1924         __register_request(mdsc, req, NULL);
1925         __do_request(mdsc, req);
1926         mutex_unlock(&mdsc->mutex);
1927 }
1928
1929 /*
1930  * Synchrously perform an mds request.  Take care of all of the
1931  * session setup, forwarding, retry details.
1932  */
1933 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1934                          struct inode *dir,
1935                          struct ceph_mds_request *req)
1936 {
1937         int err;
1938
1939         dout("do_request on %p\n", req);
1940
1941         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1942         if (req->r_inode)
1943                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1944         if (req->r_locked_dir)
1945                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1946         if (req->r_old_dentry)
1947                 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1948                                   CEPH_CAP_PIN);
1949
1950         /* issue */
1951         mutex_lock(&mdsc->mutex);
1952         __register_request(mdsc, req, dir);
1953         __do_request(mdsc, req);
1954
1955         if (req->r_err) {
1956                 err = req->r_err;
1957                 __unregister_request(mdsc, req);
1958                 dout("do_request early error %d\n", err);
1959                 goto out;
1960         }
1961
1962         /* wait */
1963         mutex_unlock(&mdsc->mutex);
1964         dout("do_request waiting\n");
1965         if (req->r_timeout) {
1966                 err = (long)wait_for_completion_killable_timeout(
1967                         &req->r_completion, req->r_timeout);
1968                 if (err == 0)
1969                         err = -EIO;
1970         } else {
1971                 err = wait_for_completion_killable(&req->r_completion);
1972         }
1973         dout("do_request waited, got %d\n", err);
1974         mutex_lock(&mdsc->mutex);
1975
1976         /* only abort if we didn't race with a real reply */
1977         if (req->r_got_result) {
1978                 err = le32_to_cpu(req->r_reply_info.head->result);
1979         } else if (err < 0) {
1980                 dout("aborted request %lld with %d\n", req->r_tid, err);
1981
1982                 /*
1983                  * ensure we aren't running concurrently with
1984                  * ceph_fill_trace or ceph_readdir_prepopulate, which
1985                  * rely on locks (dir mutex) held by our caller.
1986                  */
1987                 mutex_lock(&req->r_fill_mutex);
1988                 req->r_err = err;
1989                 req->r_aborted = true;
1990                 mutex_unlock(&req->r_fill_mutex);
1991
1992                 if (req->r_locked_dir &&
1993                     (req->r_op & CEPH_MDS_OP_WRITE))
1994                         ceph_invalidate_dir_request(req);
1995         } else {
1996                 err = req->r_err;
1997         }
1998
1999 out:
2000         mutex_unlock(&mdsc->mutex);
2001         dout("do_request %p done, result %d\n", req, err);
2002         return err;
2003 }
2004
2005 /*
2006  * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2007  * namespace request.
2008  */
2009 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2010 {
2011         struct inode *inode = req->r_locked_dir;
2012         struct ceph_inode_info *ci = ceph_inode(inode);
2013
2014         dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2015         spin_lock(&ci->i_ceph_lock);
2016         ceph_dir_clear_complete(inode);
2017         ci->i_release_count++;
2018         spin_unlock(&ci->i_ceph_lock);
2019
2020         if (req->r_dentry)
2021                 ceph_invalidate_dentry_lease(req->r_dentry);
2022         if (req->r_old_dentry)
2023                 ceph_invalidate_dentry_lease(req->r_old_dentry);
2024 }
2025
2026 /*
2027  * Handle mds reply.
2028  *
2029  * We take the session mutex and parse and process the reply immediately.
2030  * This preserves the logical ordering of replies, capabilities, etc., sent
2031  * by the MDS as they are applied to our local cache.
2032  */
2033 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2034 {
2035         struct ceph_mds_client *mdsc = session->s_mdsc;
2036         struct ceph_mds_request *req;
2037         struct ceph_mds_reply_head *head = msg->front.iov_base;
2038         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2039         u64 tid;
2040         int err, result;
2041         int mds = session->s_mds;
2042
2043         if (msg->front.iov_len < sizeof(*head)) {
2044                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2045                 ceph_msg_dump(msg);
2046                 return;
2047         }
2048
2049         /* get request, session */
2050         tid = le64_to_cpu(msg->hdr.tid);
2051         mutex_lock(&mdsc->mutex);
2052         req = __lookup_request(mdsc, tid);
2053         if (!req) {
2054                 dout("handle_reply on unknown tid %llu\n", tid);
2055                 mutex_unlock(&mdsc->mutex);
2056                 return;
2057         }
2058         dout("handle_reply %p\n", req);
2059
2060         /* correct session? */
2061         if (req->r_session != session) {
2062                 pr_err("mdsc_handle_reply got %llu on session mds%d"
2063                        " not mds%d\n", tid, session->s_mds,
2064                        req->r_session ? req->r_session->s_mds : -1);
2065                 mutex_unlock(&mdsc->mutex);
2066                 goto out;
2067         }
2068
2069         /* dup? */
2070         if ((req->r_got_unsafe && !head->safe) ||
2071             (req->r_got_safe && head->safe)) {
2072                 pr_warning("got a dup %s reply on %llu from mds%d\n",
2073                            head->safe ? "safe" : "unsafe", tid, mds);
2074                 mutex_unlock(&mdsc->mutex);
2075                 goto out;
2076         }
2077         if (req->r_got_safe && !head->safe) {
2078                 pr_warning("got unsafe after safe on %llu from mds%d\n",
2079                            tid, mds);
2080                 mutex_unlock(&mdsc->mutex);
2081                 goto out;
2082         }
2083
2084         result = le32_to_cpu(head->result);
2085
2086         /*
2087          * Handle an ESTALE
2088          * if we're not talking to the authority, send to them
2089          * if the authority has changed while we weren't looking,
2090          * send to new authority
2091          * Otherwise we just have to return an ESTALE
2092          */
2093         if (result == -ESTALE) {
2094                 dout("got ESTALE on request %llu", req->r_tid);
2095                 if (!req->r_inode) {
2096                         /* do nothing; not an authority problem */
2097                 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2098                         dout("not using auth, setting for that now");
2099                         req->r_direct_mode = USE_AUTH_MDS;
2100                         __do_request(mdsc, req);
2101                         mutex_unlock(&mdsc->mutex);
2102                         goto out;
2103                 } else  {
2104                         struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2105                         struct ceph_cap *cap = NULL;
2106
2107                         if (req->r_session)
2108                                 cap = ceph_get_cap_for_mds(ci,
2109                                                    req->r_session->s_mds);
2110
2111                         dout("already using auth");
2112                         if ((!cap || cap != ci->i_auth_cap) ||
2113                             (cap->mseq != req->r_sent_on_mseq)) {
2114                                 dout("but cap changed, so resending");
2115                                 __do_request(mdsc, req);
2116                                 mutex_unlock(&mdsc->mutex);
2117                                 goto out;
2118                         }
2119                 }
2120                 dout("have to return ESTALE on request %llu", req->r_tid);
2121         }
2122
2123
2124         if (head->safe) {
2125                 req->r_got_safe = true;
2126                 __unregister_request(mdsc, req);
2127                 complete_all(&req->r_safe_completion);
2128
2129                 if (req->r_got_unsafe) {
2130                         /*
2131                          * We already handled the unsafe response, now do the
2132                          * cleanup.  No need to examine the response; the MDS
2133                          * doesn't include any result info in the safe
2134                          * response.  And even if it did, there is nothing
2135                          * useful we could do with a revised return value.
2136                          */
2137                         dout("got safe reply %llu, mds%d\n", tid, mds);
2138                         list_del_init(&req->r_unsafe_item);
2139
2140                         /* last unsafe request during umount? */
2141                         if (mdsc->stopping && !__get_oldest_req(mdsc))
2142                                 complete_all(&mdsc->safe_umount_waiters);
2143                         mutex_unlock(&mdsc->mutex);
2144                         goto out;
2145                 }
2146         } else {
2147                 req->r_got_unsafe = true;
2148                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2149         }
2150
2151         dout("handle_reply tid %lld result %d\n", tid, result);
2152         rinfo = &req->r_reply_info;
2153         err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2154         mutex_unlock(&mdsc->mutex);
2155
2156         mutex_lock(&session->s_mutex);
2157         if (err < 0) {
2158                 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2159                 ceph_msg_dump(msg);
2160                 goto out_err;
2161         }
2162
2163         /* snap trace */
2164         if (rinfo->snapblob_len) {
2165                 down_write(&mdsc->snap_rwsem);
2166                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2167                                rinfo->snapblob + rinfo->snapblob_len,
2168                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2169                 downgrade_write(&mdsc->snap_rwsem);
2170         } else {
2171                 down_read(&mdsc->snap_rwsem);
2172         }
2173
2174         /* insert trace into our cache */
2175         mutex_lock(&req->r_fill_mutex);
2176         err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2177         if (err == 0) {
2178                 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2179                     rinfo->dir_nr)
2180                         ceph_readdir_prepopulate(req, req->r_session);
2181                 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2182         }
2183         mutex_unlock(&req->r_fill_mutex);
2184
2185         up_read(&mdsc->snap_rwsem);
2186 out_err:
2187         mutex_lock(&mdsc->mutex);
2188         if (!req->r_aborted) {
2189                 if (err) {
2190                         req->r_err = err;
2191                 } else {
2192                         req->r_reply = msg;
2193                         ceph_msg_get(msg);
2194                         req->r_got_result = true;
2195                 }
2196         } else {
2197                 dout("reply arrived after request %lld was aborted\n", tid);
2198         }
2199         mutex_unlock(&mdsc->mutex);
2200
2201         ceph_add_cap_releases(mdsc, req->r_session);
2202         mutex_unlock(&session->s_mutex);
2203
2204         /* kick calling process */
2205         complete_request(mdsc, req);
2206 out:
2207         ceph_mdsc_put_request(req);
2208         return;
2209 }
2210
2211
2212
2213 /*
2214  * handle mds notification that our request has been forwarded.
2215  */
2216 static void handle_forward(struct ceph_mds_client *mdsc,
2217                            struct ceph_mds_session *session,
2218                            struct ceph_msg *msg)
2219 {
2220         struct ceph_mds_request *req;
2221         u64 tid = le64_to_cpu(msg->hdr.tid);
2222         u32 next_mds;
2223         u32 fwd_seq;
2224         int err = -EINVAL;
2225         void *p = msg->front.iov_base;
2226         void *end = p + msg->front.iov_len;
2227
2228         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2229         next_mds = ceph_decode_32(&p);
2230         fwd_seq = ceph_decode_32(&p);
2231
2232         mutex_lock(&mdsc->mutex);
2233         req = __lookup_request(mdsc, tid);
2234         if (!req) {
2235                 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2236                 goto out;  /* dup reply? */
2237         }
2238
2239         if (req->r_aborted) {
2240                 dout("forward tid %llu aborted, unregistering\n", tid);
2241                 __unregister_request(mdsc, req);
2242         } else if (fwd_seq <= req->r_num_fwd) {
2243                 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2244                      tid, next_mds, req->r_num_fwd, fwd_seq);
2245         } else {
2246                 /* resend. forward race not possible; mds would drop */
2247                 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2248                 BUG_ON(req->r_err);
2249                 BUG_ON(req->r_got_result);
2250                 req->r_num_fwd = fwd_seq;
2251                 req->r_resend_mds = next_mds;
2252                 put_request_session(req);
2253                 __do_request(mdsc, req);
2254         }
2255         ceph_mdsc_put_request(req);
2256 out:
2257         mutex_unlock(&mdsc->mutex);
2258         return;
2259
2260 bad:
2261         pr_err("mdsc_handle_forward decode error err=%d\n", err);
2262 }
2263
2264 /*
2265  * handle a mds session control message
2266  */
2267 static void handle_session(struct ceph_mds_session *session,
2268                            struct ceph_msg *msg)
2269 {
2270         struct ceph_mds_client *mdsc = session->s_mdsc;
2271         u32 op;
2272         u64 seq;
2273         int mds = session->s_mds;
2274         struct ceph_mds_session_head *h = msg->front.iov_base;
2275         int wake = 0;
2276
2277         /* decode */
2278         if (msg->front.iov_len != sizeof(*h))
2279                 goto bad;
2280         op = le32_to_cpu(h->op);
2281         seq = le64_to_cpu(h->seq);
2282
2283         mutex_lock(&mdsc->mutex);
2284         if (op == CEPH_SESSION_CLOSE)
2285                 __unregister_session(mdsc, session);
2286         /* FIXME: this ttl calculation is generous */
2287         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2288         mutex_unlock(&mdsc->mutex);
2289
2290         mutex_lock(&session->s_mutex);
2291
2292         dout("handle_session mds%d %s %p state %s seq %llu\n",
2293              mds, ceph_session_op_name(op), session,
2294              session_state_name(session->s_state), seq);
2295
2296         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2297                 session->s_state = CEPH_MDS_SESSION_OPEN;
2298                 pr_info("mds%d came back\n", session->s_mds);
2299         }
2300
2301         switch (op) {
2302         case CEPH_SESSION_OPEN:
2303                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2304                         pr_info("mds%d reconnect success\n", session->s_mds);
2305                 session->s_state = CEPH_MDS_SESSION_OPEN;
2306                 renewed_caps(mdsc, session, 0);
2307                 wake = 1;
2308                 if (mdsc->stopping)
2309                         __close_session(mdsc, session);
2310                 break;
2311
2312         case CEPH_SESSION_RENEWCAPS:
2313                 if (session->s_renew_seq == seq)
2314                         renewed_caps(mdsc, session, 1);
2315                 break;
2316
2317         case CEPH_SESSION_CLOSE:
2318                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2319                         pr_info("mds%d reconnect denied\n", session->s_mds);
2320                 remove_session_caps(session);
2321                 wake = 1; /* for good measure */
2322                 wake_up_all(&mdsc->session_close_wq);
2323                 kick_requests(mdsc, mds);
2324                 break;
2325
2326         case CEPH_SESSION_STALE:
2327                 pr_info("mds%d caps went stale, renewing\n",
2328                         session->s_mds);
2329                 spin_lock(&session->s_gen_ttl_lock);
2330                 session->s_cap_gen++;
2331                 session->s_cap_ttl = jiffies - 1;
2332                 spin_unlock(&session->s_gen_ttl_lock);
2333                 send_renew_caps(mdsc, session);
2334                 break;
2335
2336         case CEPH_SESSION_RECALL_STATE:
2337                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2338                 break;
2339
2340         default:
2341                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2342                 WARN_ON(1);
2343         }
2344
2345         mutex_unlock(&session->s_mutex);
2346         if (wake) {
2347                 mutex_lock(&mdsc->mutex);
2348                 __wake_requests(mdsc, &session->s_waiting);
2349                 mutex_unlock(&mdsc->mutex);
2350         }
2351         return;
2352
2353 bad:
2354         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2355                (int)msg->front.iov_len);
2356         ceph_msg_dump(msg);
2357         return;
2358 }
2359
2360
2361 /*
2362  * called under session->mutex.
2363  */
2364 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2365                                    struct ceph_mds_session *session)
2366 {
2367         struct ceph_mds_request *req, *nreq;
2368         int err;
2369
2370         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2371
2372         mutex_lock(&mdsc->mutex);
2373         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2374                 err = __prepare_send_request(mdsc, req, session->s_mds);
2375                 if (!err) {
2376                         ceph_msg_get(req->r_request);
2377                         ceph_con_send(&session->s_con, req->r_request);
2378                 }
2379         }
2380         mutex_unlock(&mdsc->mutex);
2381 }
2382
2383 /*
2384  * Encode information about a cap for a reconnect with the MDS.
2385  */
2386 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2387                           void *arg)
2388 {
2389         union {
2390                 struct ceph_mds_cap_reconnect v2;
2391                 struct ceph_mds_cap_reconnect_v1 v1;
2392         } rec;
2393         size_t reclen;
2394         struct ceph_inode_info *ci;
2395         struct ceph_reconnect_state *recon_state = arg;
2396         struct ceph_pagelist *pagelist = recon_state->pagelist;
2397         char *path;
2398         int pathlen, err;
2399         u64 pathbase;
2400         struct dentry *dentry;
2401
2402         ci = cap->ci;
2403
2404         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2405              inode, ceph_vinop(inode), cap, cap->cap_id,
2406              ceph_cap_string(cap->issued));
2407         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2408         if (err)
2409                 return err;
2410
2411         dentry = d_find_alias(inode);
2412         if (dentry) {
2413                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2414                 if (IS_ERR(path)) {
2415                         err = PTR_ERR(path);
2416                         goto out_dput;
2417                 }
2418         } else {
2419                 path = NULL;
2420                 pathlen = 0;
2421         }
2422         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2423         if (err)
2424                 goto out_free;
2425
2426         spin_lock(&ci->i_ceph_lock);
2427         cap->seq = 0;        /* reset cap seq */
2428         cap->issue_seq = 0;  /* and issue_seq */
2429
2430         if (recon_state->flock) {
2431                 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2432                 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2433                 rec.v2.issued = cpu_to_le32(cap->issued);
2434                 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2435                 rec.v2.pathbase = cpu_to_le64(pathbase);
2436                 rec.v2.flock_len = 0;
2437                 reclen = sizeof(rec.v2);
2438         } else {
2439                 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2440                 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2441                 rec.v1.issued = cpu_to_le32(cap->issued);
2442                 rec.v1.size = cpu_to_le64(inode->i_size);
2443                 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2444                 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2445                 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2446                 rec.v1.pathbase = cpu_to_le64(pathbase);
2447                 reclen = sizeof(rec.v1);
2448         }
2449         spin_unlock(&ci->i_ceph_lock);
2450
2451         if (recon_state->flock) {
2452                 int num_fcntl_locks, num_flock_locks;
2453                 struct ceph_pagelist_cursor trunc_point;
2454
2455                 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2456                 do {
2457                         lock_flocks();
2458                         ceph_count_locks(inode, &num_fcntl_locks,
2459                                          &num_flock_locks);
2460                         rec.v2.flock_len = (2*sizeof(u32) +
2461                                             (num_fcntl_locks+num_flock_locks) *
2462                                             sizeof(struct ceph_filelock));
2463                         unlock_flocks();
2464
2465                         /* pre-alloc pagelist */
2466                         ceph_pagelist_truncate(pagelist, &trunc_point);
2467                         err = ceph_pagelist_append(pagelist, &rec, reclen);
2468                         if (!err)
2469                                 err = ceph_pagelist_reserve(pagelist,
2470                                                             rec.v2.flock_len);
2471
2472                         /* encode locks */
2473                         if (!err) {
2474                                 lock_flocks();
2475                                 err = ceph_encode_locks(inode,
2476                                                         pagelist,
2477                                                         num_fcntl_locks,
2478                                                         num_flock_locks);
2479                                 unlock_flocks();
2480                         }
2481                 } while (err == -ENOSPC);
2482         } else {
2483                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2484         }
2485
2486 out_free:
2487         kfree(path);
2488 out_dput:
2489         dput(dentry);
2490         return err;
2491 }
2492
2493
2494 /*
2495  * If an MDS fails and recovers, clients need to reconnect in order to
2496  * reestablish shared state.  This includes all caps issued through
2497  * this session _and_ the snap_realm hierarchy.  Because it's not
2498  * clear which snap realms the mds cares about, we send everything we
2499  * know about.. that ensures we'll then get any new info the
2500  * recovering MDS might have.
2501  *
2502  * This is a relatively heavyweight operation, but it's rare.
2503  *
2504  * called with mdsc->mutex held.
2505  */
2506 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2507                                struct ceph_mds_session *session)
2508 {
2509         struct ceph_msg *reply;
2510         struct rb_node *p;
2511         int mds = session->s_mds;
2512         int err = -ENOMEM;
2513         struct ceph_pagelist *pagelist;
2514         struct ceph_reconnect_state recon_state;
2515
2516         pr_info("mds%d reconnect start\n", mds);
2517
2518         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2519         if (!pagelist)
2520                 goto fail_nopagelist;
2521         ceph_pagelist_init(pagelist);
2522
2523         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2524         if (!reply)
2525                 goto fail_nomsg;
2526
2527         mutex_lock(&session->s_mutex);
2528         session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2529         session->s_seq = 0;
2530
2531         ceph_con_open(&session->s_con,
2532                       CEPH_ENTITY_TYPE_MDS, mds,
2533                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2534
2535         /* replay unsafe requests */
2536         replay_unsafe_requests(mdsc, session);
2537
2538         down_read(&mdsc->snap_rwsem);
2539
2540         dout("session %p state %s\n", session,
2541              session_state_name(session->s_state));
2542
2543         /* drop old cap expires; we're about to reestablish that state */
2544         discard_cap_releases(mdsc, session);
2545
2546         /* traverse this session's caps */
2547         err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2548         if (err)
2549                 goto fail;
2550
2551         recon_state.pagelist = pagelist;
2552         recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2553         err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2554         if (err < 0)
2555                 goto fail;
2556
2557         /*
2558          * snaprealms.  we provide mds with the ino, seq (version), and
2559          * parent for all of our realms.  If the mds has any newer info,
2560          * it will tell us.
2561          */
2562         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2563                 struct ceph_snap_realm *realm =
2564                         rb_entry(p, struct ceph_snap_realm, node);
2565                 struct ceph_mds_snaprealm_reconnect sr_rec;
2566
2567                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2568                      realm->ino, realm->seq, realm->parent_ino);
2569                 sr_rec.ino = cpu_to_le64(realm->ino);
2570                 sr_rec.seq = cpu_to_le64(realm->seq);
2571                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2572                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2573                 if (err)
2574                         goto fail;
2575         }
2576
2577         reply->pagelist = pagelist;
2578         if (recon_state.flock)
2579                 reply->hdr.version = cpu_to_le16(2);
2580         reply->hdr.data_len = cpu_to_le32(pagelist->length);
2581         reply->nr_pages = calc_pages_for(0, pagelist->length);
2582         ceph_con_send(&session->s_con, reply);
2583
2584         mutex_unlock(&session->s_mutex);
2585
2586         mutex_lock(&mdsc->mutex);
2587         __wake_requests(mdsc, &session->s_waiting);
2588         mutex_unlock(&mdsc->mutex);
2589
2590         up_read(&mdsc->snap_rwsem);
2591         return;
2592
2593 fail:
2594         ceph_msg_put(reply);
2595         up_read(&mdsc->snap_rwsem);
2596         mutex_unlock(&session->s_mutex);
2597 fail_nomsg:
2598         ceph_pagelist_release(pagelist);
2599         kfree(pagelist);
2600 fail_nopagelist:
2601         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2602         return;
2603 }
2604
2605
2606 /*
2607  * compare old and new mdsmaps, kicking requests
2608  * and closing out old connections as necessary
2609  *
2610  * called under mdsc->mutex.
2611  */
2612 static void check_new_map(struct ceph_mds_client *mdsc,
2613                           struct ceph_mdsmap *newmap,
2614                           struct ceph_mdsmap *oldmap)
2615 {
2616         int i;
2617         int oldstate, newstate;
2618         struct ceph_mds_session *s;
2619
2620         dout("check_new_map new %u old %u\n",
2621              newmap->m_epoch, oldmap->m_epoch);
2622
2623         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2624                 if (mdsc->sessions[i] == NULL)
2625                         continue;
2626                 s = mdsc->sessions[i];
2627                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2628                 newstate = ceph_mdsmap_get_state(newmap, i);
2629
2630                 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2631                      i, ceph_mds_state_name(oldstate),
2632                      ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2633                      ceph_mds_state_name(newstate),
2634                      ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2635                      session_state_name(s->s_state));
2636
2637                 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2638                            ceph_mdsmap_get_addr(newmap, i),
2639                            sizeof(struct ceph_entity_addr))) {
2640                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2641                                 /* the session never opened, just close it
2642                                  * out now */
2643                                 __wake_requests(mdsc, &s->s_waiting);
2644                                 __unregister_session(mdsc, s);
2645                         } else {
2646                                 /* just close it */
2647                                 mutex_unlock(&mdsc->mutex);
2648                                 mutex_lock(&s->s_mutex);
2649                                 mutex_lock(&mdsc->mutex);
2650                                 ceph_con_close(&s->s_con);
2651                                 mutex_unlock(&s->s_mutex);
2652                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2653                         }
2654
2655                         /* kick any requests waiting on the recovering mds */
2656                         kick_requests(mdsc, i);
2657                 } else if (oldstate == newstate) {
2658                         continue;  /* nothing new with this mds */
2659                 }
2660
2661                 /*
2662                  * send reconnect?
2663                  */
2664                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2665                     newstate >= CEPH_MDS_STATE_RECONNECT) {
2666                         mutex_unlock(&mdsc->mutex);
2667                         send_mds_reconnect(mdsc, s);
2668                         mutex_lock(&mdsc->mutex);
2669                 }
2670
2671                 /*
2672                  * kick request on any mds that has gone active.
2673                  */
2674                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2675                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2676                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2677                             oldstate != CEPH_MDS_STATE_STARTING)
2678                                 pr_info("mds%d recovery completed\n", s->s_mds);
2679                         kick_requests(mdsc, i);
2680                         ceph_kick_flushing_caps(mdsc, s);
2681                         wake_up_session_caps(s, 1);
2682                 }
2683         }
2684
2685         for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2686                 s = mdsc->sessions[i];
2687                 if (!s)
2688                         continue;
2689                 if (!ceph_mdsmap_is_laggy(newmap, i))
2690                         continue;
2691                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2692                     s->s_state == CEPH_MDS_SESSION_HUNG ||
2693                     s->s_state == CEPH_MDS_SESSION_CLOSING) {
2694                         dout(" connecting to export targets of laggy mds%d\n",
2695                              i);
2696                         __open_export_target_sessions(mdsc, s);
2697                 }
2698         }
2699 }
2700
2701
2702
2703 /*
2704  * leases
2705  */
2706
2707 /*
2708  * caller must hold session s_mutex, dentry->d_lock
2709  */
2710 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2711 {
2712         struct ceph_dentry_info *di = ceph_dentry(dentry);
2713
2714         ceph_put_mds_session(di->lease_session);
2715         di->lease_session = NULL;
2716 }
2717
2718 static void handle_lease(struct ceph_mds_client *mdsc,
2719                          struct ceph_mds_session *session,
2720                          struct ceph_msg *msg)
2721 {
2722         struct super_block *sb = mdsc->fsc->sb;
2723         struct inode *inode;
2724         struct dentry *parent, *dentry;
2725         struct ceph_dentry_info *di;
2726         int mds = session->s_mds;
2727         struct ceph_mds_lease *h = msg->front.iov_base;
2728         u32 seq;
2729         struct ceph_vino vino;
2730         struct qstr dname;
2731         int release = 0;
2732
2733         dout("handle_lease from mds%d\n", mds);
2734
2735         /* decode */
2736         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2737                 goto bad;
2738         vino.ino = le64_to_cpu(h->ino);
2739         vino.snap = CEPH_NOSNAP;
2740         seq = le32_to_cpu(h->seq);
2741         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2742         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2743         if (dname.len != get_unaligned_le32(h+1))
2744                 goto bad;
2745
2746         mutex_lock(&session->s_mutex);
2747         session->s_seq++;
2748
2749         /* lookup inode */
2750         inode = ceph_find_inode(sb, vino);
2751         dout("handle_lease %s, ino %llx %p %.*s\n",
2752              ceph_lease_op_name(h->action), vino.ino, inode,
2753              dname.len, dname.name);
2754         if (inode == NULL) {
2755                 dout("handle_lease no inode %llx\n", vino.ino);
2756                 goto release;
2757         }
2758
2759         /* dentry */
2760         parent = d_find_alias(inode);
2761         if (!parent) {
2762                 dout("no parent dentry on inode %p\n", inode);
2763                 WARN_ON(1);
2764                 goto release;  /* hrm... */
2765         }
2766         dname.hash = full_name_hash(dname.name, dname.len);
2767         dentry = d_lookup(parent, &dname);
2768         dput(parent);
2769         if (!dentry)
2770                 goto release;
2771
2772         spin_lock(&dentry->d_lock);
2773         di = ceph_dentry(dentry);
2774         switch (h->action) {
2775         case CEPH_MDS_LEASE_REVOKE:
2776                 if (di->lease_session == session) {
2777                         if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2778                                 h->seq = cpu_to_le32(di->lease_seq);
2779                         __ceph_mdsc_drop_dentry_lease(dentry);
2780                 }
2781                 release = 1;
2782                 break;
2783
2784         case CEPH_MDS_LEASE_RENEW:
2785                 if (di->lease_session == session &&
2786                     di->lease_gen == session->s_cap_gen &&
2787                     di->lease_renew_from &&
2788                     di->lease_renew_after == 0) {
2789                         unsigned long duration =
2790                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2791
2792                         di->lease_seq = seq;
2793                         dentry->d_time = di->lease_renew_from + duration;
2794                         di->lease_renew_after = di->lease_renew_from +
2795                                 (duration >> 1);
2796                         di->lease_renew_from = 0;
2797                 }
2798                 break;
2799         }
2800         spin_unlock(&dentry->d_lock);
2801         dput(dentry);
2802
2803         if (!release)
2804                 goto out;
2805
2806 release:
2807         /* let's just reuse the same message */
2808         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2809         ceph_msg_get(msg);
2810         ceph_con_send(&session->s_con, msg);
2811
2812 out:
2813         iput(inode);
2814         mutex_unlock(&session->s_mutex);
2815         return;
2816
2817 bad:
2818         pr_err("corrupt lease message\n");
2819         ceph_msg_dump(msg);
2820 }
2821
2822 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2823                               struct inode *inode,
2824                               struct dentry *dentry, char action,
2825                               u32 seq)
2826 {
2827         struct ceph_msg *msg;
2828         struct ceph_mds_lease *lease;
2829         int len = sizeof(*lease) + sizeof(u32);
2830         int dnamelen = 0;
2831
2832         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2833              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2834         dnamelen = dentry->d_name.len;
2835         len += dnamelen;
2836
2837         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2838         if (!msg)
2839                 return;
2840         lease = msg->front.iov_base;
2841         lease->action = action;
2842         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2843         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2844         lease->seq = cpu_to_le32(seq);
2845         put_unaligned_le32(dnamelen, lease + 1);
2846         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2847
2848         /*
2849          * if this is a preemptive lease RELEASE, no need to
2850          * flush request stream, since the actual request will
2851          * soon follow.
2852          */
2853         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2854
2855         ceph_con_send(&session->s_con, msg);
2856 }
2857
2858 /*
2859  * Preemptively release a lease we expect to invalidate anyway.
2860  * Pass @inode always, @dentry is optional.
2861  */
2862 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2863                              struct dentry *dentry)
2864 {
2865         struct ceph_dentry_info *di;
2866         struct ceph_mds_session *session;
2867         u32 seq;
2868
2869         BUG_ON(inode == NULL);
2870         BUG_ON(dentry == NULL);
2871
2872         /* is dentry lease valid? */
2873         spin_lock(&dentry->d_lock);
2874         di = ceph_dentry(dentry);
2875         if (!di || !di->lease_session ||
2876             di->lease_session->s_mds < 0 ||
2877             di->lease_gen != di->lease_session->s_cap_gen ||
2878             !time_before(jiffies, dentry->d_time)) {
2879                 dout("lease_release inode %p dentry %p -- "
2880                      "no lease\n",
2881                      inode, dentry);
2882                 spin_unlock(&dentry->d_lock);
2883                 return;
2884         }
2885
2886         /* we do have a lease on this dentry; note mds and seq */
2887         session = ceph_get_mds_session(di->lease_session);
2888         seq = di->lease_seq;
2889         __ceph_mdsc_drop_dentry_lease(dentry);
2890         spin_unlock(&dentry->d_lock);
2891
2892         dout("lease_release inode %p dentry %p to mds%d\n",
2893              inode, dentry, session->s_mds);
2894         ceph_mdsc_lease_send_msg(session, inode, dentry,
2895                                  CEPH_MDS_LEASE_RELEASE, seq);
2896         ceph_put_mds_session(session);
2897 }
2898
2899 /*
2900  * drop all leases (and dentry refs) in preparation for umount
2901  */
2902 static void drop_leases(struct ceph_mds_client *mdsc)
2903 {
2904         int i;
2905
2906         dout("drop_leases\n");
2907         mutex_lock(&mdsc->mutex);
2908         for (i = 0; i < mdsc->max_sessions; i++) {
2909                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2910                 if (!s)
2911                         continue;
2912                 mutex_unlock(&mdsc->mutex);
2913                 mutex_lock(&s->s_mutex);
2914                 mutex_unlock(&s->s_mutex);
2915                 ceph_put_mds_session(s);
2916                 mutex_lock(&mdsc->mutex);
2917         }
2918         mutex_unlock(&mdsc->mutex);
2919 }
2920
2921
2922
2923 /*
2924  * delayed work -- periodically trim expired leases, renew caps with mds
2925  */
2926 static void schedule_delayed(struct ceph_mds_client *mdsc)
2927 {
2928         int delay = 5;
2929         unsigned hz = round_jiffies_relative(HZ * delay);
2930         schedule_delayed_work(&mdsc->delayed_work, hz);
2931 }
2932
2933 static void delayed_work(struct work_struct *work)
2934 {
2935         int i;
2936         struct ceph_mds_client *mdsc =
2937                 container_of(work, struct ceph_mds_client, delayed_work.work);
2938         int renew_interval;
2939         int renew_caps;
2940
2941         dout("mdsc delayed_work\n");
2942         ceph_check_delayed_caps(mdsc);
2943
2944         mutex_lock(&mdsc->mutex);
2945         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2946         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2947                                    mdsc->last_renew_caps);
2948         if (renew_caps)
2949                 mdsc->last_renew_caps = jiffies;
2950
2951         for (i = 0; i < mdsc->max_sessions; i++) {
2952                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2953                 if (s == NULL)
2954                         continue;
2955                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2956                         dout("resending session close request for mds%d\n",
2957                              s->s_mds);
2958                         request_close_session(mdsc, s);
2959                         ceph_put_mds_session(s);
2960                         continue;
2961                 }
2962                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2963                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2964                                 s->s_state = CEPH_MDS_SESSION_HUNG;
2965                                 pr_info("mds%d hung\n", s->s_mds);
2966                         }
2967                 }
2968                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2969                         /* this mds is failed or recovering, just wait */
2970                         ceph_put_mds_session(s);
2971                         continue;
2972                 }
2973                 mutex_unlock(&mdsc->mutex);
2974
2975                 mutex_lock(&s->s_mutex);
2976                 if (renew_caps)
2977                         send_renew_caps(mdsc, s);
2978                 else
2979                         ceph_con_keepalive(&s->s_con);
2980                 ceph_add_cap_releases(mdsc, s);
2981                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2982                     s->s_state == CEPH_MDS_SESSION_HUNG)
2983                         ceph_send_cap_releases(mdsc, s);
2984                 mutex_unlock(&s->s_mutex);
2985                 ceph_put_mds_session(s);
2986
2987                 mutex_lock(&mdsc->mutex);
2988         }
2989         mutex_unlock(&mdsc->mutex);
2990
2991         schedule_delayed(mdsc);
2992 }
2993
2994 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2995
2996 {
2997         struct ceph_mds_client *mdsc;
2998
2999         mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3000         if (!mdsc)
3001                 return -ENOMEM;
3002         mdsc->fsc = fsc;
3003         fsc->mdsc = mdsc;
3004         mutex_init(&mdsc->mutex);
3005         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3006         if (mdsc->mdsmap == NULL)
3007                 return -ENOMEM;
3008
3009         init_completion(&mdsc->safe_umount_waiters);
3010         init_waitqueue_head(&mdsc->session_close_wq);
3011         INIT_LIST_HEAD(&mdsc->waiting_for_map);
3012         mdsc->sessions = NULL;
3013         mdsc->max_sessions = 0;
3014         mdsc->stopping = 0;
3015         init_rwsem(&mdsc->snap_rwsem);
3016         mdsc->snap_realms = RB_ROOT;
3017         INIT_LIST_HEAD(&mdsc->snap_empty);
3018         spin_lock_init(&mdsc->snap_empty_lock);
3019         mdsc->last_tid = 0;
3020         mdsc->request_tree = RB_ROOT;
3021         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3022         mdsc->last_renew_caps = jiffies;
3023         INIT_LIST_HEAD(&mdsc->cap_delay_list);
3024         spin_lock_init(&mdsc->cap_delay_lock);
3025         INIT_LIST_HEAD(&mdsc->snap_flush_list);
3026         spin_lock_init(&mdsc->snap_flush_lock);
3027         mdsc->cap_flush_seq = 0;
3028         INIT_LIST_HEAD(&mdsc->cap_dirty);
3029         INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3030         mdsc->num_cap_flushing = 0;
3031         spin_lock_init(&mdsc->cap_dirty_lock);
3032         init_waitqueue_head(&mdsc->cap_flushing_wq);
3033         spin_lock_init(&mdsc->dentry_lru_lock);
3034         INIT_LIST_HEAD(&mdsc->dentry_lru);
3035
3036         ceph_caps_init(mdsc);
3037         ceph_adjust_min_caps(mdsc, fsc->min_caps);
3038
3039         return 0;
3040 }
3041
3042 /*
3043  * Wait for safe replies on open mds requests.  If we time out, drop
3044  * all requests from the tree to avoid dangling dentry refs.
3045  */
3046 static void wait_requests(struct ceph_mds_client *mdsc)
3047 {
3048         struct ceph_mds_request *req;
3049         struct ceph_fs_client *fsc = mdsc->fsc;
3050
3051         mutex_lock(&mdsc->mutex);
3052         if (__get_oldest_req(mdsc)) {
3053                 mutex_unlock(&mdsc->mutex);
3054
3055                 dout("wait_requests waiting for requests\n");
3056                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3057                                     fsc->client->options->mount_timeout * HZ);
3058
3059                 /* tear down remaining requests */
3060                 mutex_lock(&mdsc->mutex);
3061                 while ((req = __get_oldest_req(mdsc))) {
3062                         dout("wait_requests timed out on tid %llu\n",
3063                              req->r_tid);
3064                         __unregister_request(mdsc, req);
3065                 }
3066         }
3067         mutex_unlock(&mdsc->mutex);
3068         dout("wait_requests done\n");
3069 }
3070
3071 /*
3072  * called before mount is ro, and before dentries are torn down.
3073  * (hmm, does this still race with new lookups?)
3074  */
3075 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3076 {
3077         dout("pre_umount\n");
3078         mdsc->stopping = 1;
3079
3080         drop_leases(mdsc);
3081         ceph_flush_dirty_caps(mdsc);
3082         wait_requests(mdsc);
3083
3084         /*
3085          * wait for reply handlers to drop their request refs and
3086          * their inode/dcache refs
3087          */
3088         ceph_msgr_flush();
3089 }
3090
3091 /*
3092  * wait for all write mds requests to flush.
3093  */
3094 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3095 {
3096         struct ceph_mds_request *req = NULL, *nextreq;
3097         struct rb_node *n;
3098
3099         mutex_lock(&mdsc->mutex);
3100         dout("wait_unsafe_requests want %lld\n", want_tid);
3101 restart:
3102         req = __get_oldest_req(mdsc);
3103         while (req && req->r_tid <= want_tid) {
3104                 /* find next request */
3105                 n = rb_next(&req->r_node);
3106                 if (n)
3107                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3108                 else
3109                         nextreq = NULL;
3110                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3111                         /* write op */
3112                         ceph_mdsc_get_request(req);
3113                         if (nextreq)
3114                                 ceph_mdsc_get_request(nextreq);
3115                         mutex_unlock(&mdsc->mutex);
3116                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3117                              req->r_tid, want_tid);
3118                         wait_for_completion(&req->r_safe_completion);
3119                         mutex_lock(&mdsc->mutex);
3120                         ceph_mdsc_put_request(req);
3121                         if (!nextreq)
3122                                 break;  /* next dne before, so we're done! */
3123                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
3124                                 /* next request was removed from tree */
3125                                 ceph_mdsc_put_request(nextreq);
3126                                 goto restart;
3127                         }
3128                         ceph_mdsc_put_request(nextreq);  /* won't go away */
3129                 }
3130                 req = nextreq;
3131         }
3132         mutex_unlock(&mdsc->mutex);
3133         dout("wait_unsafe_requests done\n");
3134 }
3135
3136 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3137 {
3138         u64 want_tid, want_flush;
3139
3140         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3141                 return;
3142
3143         dout("sync\n");
3144         mutex_lock(&mdsc->mutex);
3145         want_tid = mdsc->last_tid;
3146         want_flush = mdsc->cap_flush_seq;
3147         mutex_unlock(&mdsc->mutex);
3148         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3149
3150         ceph_flush_dirty_caps(mdsc);
3151
3152         wait_unsafe_requests(mdsc, want_tid);
3153         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3154 }
3155
3156 /*
3157  * true if all sessions are closed, or we force unmount
3158  */
3159 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3160 {
3161         int i, n = 0;
3162
3163         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3164                 return true;
3165
3166         mutex_lock(&mdsc->mutex);
3167         for (i = 0; i < mdsc->max_sessions; i++)
3168                 if (mdsc->sessions[i])
3169                         n++;
3170         mutex_unlock(&mdsc->mutex);
3171         return n == 0;
3172 }
3173
3174 /*
3175  * called after sb is ro.
3176  */
3177 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3178 {
3179         struct ceph_mds_session *session;
3180         int i;
3181         struct ceph_fs_client *fsc = mdsc->fsc;
3182         unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3183
3184         dout("close_sessions\n");
3185
3186         /* close sessions */
3187         mutex_lock(&mdsc->mutex);
3188         for (i = 0; i < mdsc->max_sessions; i++) {
3189                 session = __ceph_lookup_mds_session(mdsc, i);
3190                 if (!session)
3191                         continue;
3192                 mutex_unlock(&mdsc->mutex);
3193                 mutex_lock(&session->s_mutex);
3194                 __close_session(mdsc, session);
3195                 mutex_unlock(&session->s_mutex);
3196                 ceph_put_mds_session(session);
3197                 mutex_lock(&mdsc->mutex);
3198         }
3199         mutex_unlock(&mdsc->mutex);
3200
3201         dout("waiting for sessions to close\n");
3202         wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3203                            timeout);
3204
3205         /* tear down remaining sessions */
3206         mutex_lock(&mdsc->mutex);
3207         for (i = 0; i < mdsc->max_sessions; i++) {
3208                 if (mdsc->sessions[i]) {
3209                         session = get_session(mdsc->sessions[i]);
3210                         __unregister_session(mdsc, session);
3211                         mutex_unlock(&mdsc->mutex);
3212                         mutex_lock(&session->s_mutex);
3213                         remove_session_caps(session);
3214                         mutex_unlock(&session->s_mutex);
3215                         ceph_put_mds_session(session);
3216                         mutex_lock(&mdsc->mutex);
3217                 }
3218         }
3219         WARN_ON(!list_empty(&mdsc->cap_delay_list));
3220         mutex_unlock(&mdsc->mutex);
3221
3222         ceph_cleanup_empty_realms(mdsc);
3223
3224         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3225
3226         dout("stopped\n");
3227 }
3228
3229 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3230 {
3231         dout("stop\n");
3232         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3233         if (mdsc->mdsmap)
3234                 ceph_mdsmap_destroy(mdsc->mdsmap);
3235         kfree(mdsc->sessions);
3236         ceph_caps_finalize(mdsc);
3237 }
3238
3239 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3240 {
3241         struct ceph_mds_client *mdsc = fsc->mdsc;
3242
3243         dout("mdsc_destroy %p\n", mdsc);
3244         ceph_mdsc_stop(mdsc);
3245
3246         /* flush out any connection work with references to us */
3247         ceph_msgr_flush();
3248
3249         fsc->mdsc = NULL;
3250         kfree(mdsc);
3251         dout("mdsc_destroy %p done\n", mdsc);
3252 }
3253
3254
3255 /*
3256  * handle mds map update.
3257  */
3258 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3259 {
3260         u32 epoch;
3261         u32 maplen;
3262         void *p = msg->front.iov_base;
3263         void *end = p + msg->front.iov_len;
3264         struct ceph_mdsmap *newmap, *oldmap;
3265         struct ceph_fsid fsid;
3266         int err = -EINVAL;
3267
3268         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3269         ceph_decode_copy(&p, &fsid, sizeof(fsid));
3270         if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3271                 return;
3272         epoch = ceph_decode_32(&p);
3273         maplen = ceph_decode_32(&p);
3274         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3275
3276         /* do we need it? */
3277         ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3278         mutex_lock(&mdsc->mutex);
3279         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3280                 dout("handle_map epoch %u <= our %u\n",
3281                      epoch, mdsc->mdsmap->m_epoch);
3282                 mutex_unlock(&mdsc->mutex);
3283                 return;
3284         }
3285
3286         newmap = ceph_mdsmap_decode(&p, end);
3287         if (IS_ERR(newmap)) {
3288                 err = PTR_ERR(newmap);
3289                 goto bad_unlock;
3290         }
3291
3292         /* swap into place */
3293         if (mdsc->mdsmap) {
3294                 oldmap = mdsc->mdsmap;
3295                 mdsc->mdsmap = newmap;
3296                 check_new_map(mdsc, newmap, oldmap);
3297                 ceph_mdsmap_destroy(oldmap);
3298         } else {
3299                 mdsc->mdsmap = newmap;  /* first mds map */
3300         }
3301         mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3302
3303         __wake_requests(mdsc, &mdsc->waiting_for_map);
3304
3305         mutex_unlock(&mdsc->mutex);
3306         schedule_delayed(mdsc);
3307         return;
3308
3309 bad_unlock:
3310         mutex_unlock(&mdsc->mutex);
3311 bad:
3312         pr_err("error decoding mdsmap %d\n", err);
3313         return;
3314 }
3315
3316 static struct ceph_connection *con_get(struct ceph_connection *con)
3317 {
3318         struct ceph_mds_session *s = con->private;
3319
3320         if (get_session(s)) {
3321                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3322                 return con;
3323         }
3324         dout("mdsc con_get %p FAIL\n", s);
3325         return NULL;
3326 }
3327
3328 static void con_put(struct ceph_connection *con)
3329 {
3330         struct ceph_mds_session *s = con->private;
3331
3332         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3333         ceph_put_mds_session(s);
3334 }
3335
3336 /*
3337  * if the client is unresponsive for long enough, the mds will kill
3338  * the session entirely.
3339  */
3340 static void peer_reset(struct ceph_connection *con)
3341 {
3342         struct ceph_mds_session *s = con->private;
3343         struct ceph_mds_client *mdsc = s->s_mdsc;
3344
3345         pr_warning("mds%d closed our session\n", s->s_mds);
3346         send_mds_reconnect(mdsc, s);
3347 }
3348
3349 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3350 {
3351         struct ceph_mds_session *s = con->private;
3352         struct ceph_mds_client *mdsc = s->s_mdsc;
3353         int type = le16_to_cpu(msg->hdr.type);
3354
3355         mutex_lock(&mdsc->mutex);
3356         if (__verify_registered_session(mdsc, s) < 0) {
3357                 mutex_unlock(&mdsc->mutex);
3358                 goto out;
3359         }
3360         mutex_unlock(&mdsc->mutex);
3361
3362         switch (type) {
3363         case CEPH_MSG_MDS_MAP:
3364                 ceph_mdsc_handle_map(mdsc, msg);
3365                 break;
3366         case CEPH_MSG_CLIENT_SESSION:
3367                 handle_session(s, msg);
3368                 break;
3369         case CEPH_MSG_CLIENT_REPLY:
3370                 handle_reply(s, msg);
3371                 break;
3372         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3373                 handle_forward(mdsc, s, msg);
3374                 break;
3375         case CEPH_MSG_CLIENT_CAPS:
3376                 ceph_handle_caps(s, msg);
3377                 break;
3378         case CEPH_MSG_CLIENT_SNAP:
3379                 ceph_handle_snap(mdsc, s, msg);
3380                 break;
3381         case CEPH_MSG_CLIENT_LEASE:
3382                 handle_lease(mdsc, s, msg);
3383                 break;
3384
3385         default:
3386                 pr_err("received unknown message type %d %s\n", type,
3387                        ceph_msg_type_name(type));
3388         }
3389 out:
3390         ceph_msg_put(msg);
3391 }
3392
3393 /*
3394  * authentication
3395  */
3396
3397 /*
3398  * Note: returned pointer is the address of a structure that's
3399  * managed separately.  Caller must *not* attempt to free it.
3400  */
3401 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3402                                         int *proto, int force_new)
3403 {
3404         struct ceph_mds_session *s = con->private;
3405         struct ceph_mds_client *mdsc = s->s_mdsc;
3406         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3407         struct ceph_auth_handshake *auth = &s->s_auth;
3408
3409         if (force_new && auth->authorizer) {
3410                 if (ac->ops && ac->ops->destroy_authorizer)
3411                         ac->ops->destroy_authorizer(ac, auth->authorizer);
3412                 auth->authorizer = NULL;
3413         }
3414         if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3415                 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3416                                                         auth);
3417                 if (ret)
3418                         return ERR_PTR(ret);
3419         }
3420         *proto = ac->protocol;
3421
3422         return auth;
3423 }
3424
3425
3426 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3427 {
3428         struct ceph_mds_session *s = con->private;
3429         struct ceph_mds_client *mdsc = s->s_mdsc;
3430         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3431
3432         return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3433 }
3434
3435 static int invalidate_authorizer(struct ceph_connection *con)
3436 {
3437         struct ceph_mds_session *s = con->private;
3438         struct ceph_mds_client *mdsc = s->s_mdsc;
3439         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3440
3441         if (ac->ops->invalidate_authorizer)
3442                 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3443
3444         return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3445 }
3446
3447 static const struct ceph_connection_operations mds_con_ops = {
3448         .get = con_get,
3449         .put = con_put,
3450         .dispatch = dispatch,
3451         .get_authorizer = get_authorizer,
3452         .verify_authorizer_reply = verify_authorizer_reply,
3453         .invalidate_authorizer = invalidate_authorizer,
3454         .peer_reset = peer_reset,
3455 };
3456
3457 /* eof */