]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/cifs/file.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[karo-tx-linux.git] / fs / cifs / file.c
1 /*
2  *   fs/cifs/file.c
3  *
4  *   vfs operations that deal with files
5  *
6  *   Copyright (C) International Business Machines  Corp., 2002,2010
7  *   Author(s): Steve French (sfrench@us.ibm.com)
8  *              Jeremy Allison (jra@samba.org)
9  *
10  *   This library is free software; you can redistribute it and/or modify
11  *   it under the terms of the GNU Lesser General Public License as published
12  *   by the Free Software Foundation; either version 2.1 of the License, or
13  *   (at your option) any later version.
14  *
15  *   This library is distributed in the hope that it will be useful,
16  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
18  *   the GNU Lesser General Public License for more details.
19  *
20  *   You should have received a copy of the GNU Lesser General Public License
21  *   along with this library; if not, write to the Free Software
22  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46
47 static inline int cifs_convert_flags(unsigned int flags)
48 {
49         if ((flags & O_ACCMODE) == O_RDONLY)
50                 return GENERIC_READ;
51         else if ((flags & O_ACCMODE) == O_WRONLY)
52                 return GENERIC_WRITE;
53         else if ((flags & O_ACCMODE) == O_RDWR) {
54                 /* GENERIC_ALL is too much permission to request
55                    can cause unnecessary access denied on create */
56                 /* return GENERIC_ALL; */
57                 return (GENERIC_READ | GENERIC_WRITE);
58         }
59
60         return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
61                 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
62                 FILE_READ_DATA);
63 }
64
65 static u32 cifs_posix_convert_flags(unsigned int flags)
66 {
67         u32 posix_flags = 0;
68
69         if ((flags & O_ACCMODE) == O_RDONLY)
70                 posix_flags = SMB_O_RDONLY;
71         else if ((flags & O_ACCMODE) == O_WRONLY)
72                 posix_flags = SMB_O_WRONLY;
73         else if ((flags & O_ACCMODE) == O_RDWR)
74                 posix_flags = SMB_O_RDWR;
75
76         if (flags & O_CREAT) {
77                 posix_flags |= SMB_O_CREAT;
78                 if (flags & O_EXCL)
79                         posix_flags |= SMB_O_EXCL;
80         } else if (flags & O_EXCL)
81                 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
82                          current->comm, current->tgid);
83
84         if (flags & O_TRUNC)
85                 posix_flags |= SMB_O_TRUNC;
86         /* be safe and imply O_SYNC for O_DSYNC */
87         if (flags & O_DSYNC)
88                 posix_flags |= SMB_O_SYNC;
89         if (flags & O_DIRECTORY)
90                 posix_flags |= SMB_O_DIRECTORY;
91         if (flags & O_NOFOLLOW)
92                 posix_flags |= SMB_O_NOFOLLOW;
93         if (flags & O_DIRECT)
94                 posix_flags |= SMB_O_DIRECT;
95
96         return posix_flags;
97 }
98
99 static inline int cifs_get_disposition(unsigned int flags)
100 {
101         if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
102                 return FILE_CREATE;
103         else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
104                 return FILE_OVERWRITE_IF;
105         else if ((flags & O_CREAT) == O_CREAT)
106                 return FILE_OPEN_IF;
107         else if ((flags & O_TRUNC) == O_TRUNC)
108                 return FILE_OVERWRITE;
109         else
110                 return FILE_OPEN;
111 }
112
113 int cifs_posix_open(char *full_path, struct inode **pinode,
114                         struct super_block *sb, int mode, unsigned int f_flags,
115                         __u32 *poplock, __u16 *pnetfid, unsigned int xid)
116 {
117         int rc;
118         FILE_UNIX_BASIC_INFO *presp_data;
119         __u32 posix_flags = 0;
120         struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
121         struct cifs_fattr fattr;
122         struct tcon_link *tlink;
123         struct cifs_tcon *tcon;
124
125         cifs_dbg(FYI, "posix open %s\n", full_path);
126
127         presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
128         if (presp_data == NULL)
129                 return -ENOMEM;
130
131         tlink = cifs_sb_tlink(cifs_sb);
132         if (IS_ERR(tlink)) {
133                 rc = PTR_ERR(tlink);
134                 goto posix_open_ret;
135         }
136
137         tcon = tlink_tcon(tlink);
138         mode &= ~current_umask();
139
140         posix_flags = cifs_posix_convert_flags(f_flags);
141         rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
142                              poplock, full_path, cifs_sb->local_nls,
143                              cifs_sb->mnt_cifs_flags &
144                                         CIFS_MOUNT_MAP_SPECIAL_CHR);
145         cifs_put_tlink(tlink);
146
147         if (rc)
148                 goto posix_open_ret;
149
150         if (presp_data->Type == cpu_to_le32(-1))
151                 goto posix_open_ret; /* open ok, caller does qpathinfo */
152
153         if (!pinode)
154                 goto posix_open_ret; /* caller does not need info */
155
156         cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
157
158         /* get new inode and set it up */
159         if (*pinode == NULL) {
160                 cifs_fill_uniqueid(sb, &fattr);
161                 *pinode = cifs_iget(sb, &fattr);
162                 if (!*pinode) {
163                         rc = -ENOMEM;
164                         goto posix_open_ret;
165                 }
166         } else {
167                 cifs_fattr_to_inode(*pinode, &fattr);
168         }
169
170 posix_open_ret:
171         kfree(presp_data);
172         return rc;
173 }
174
175 static int
176 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
177              struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
178              struct cifs_fid *fid, unsigned int xid)
179 {
180         int rc;
181         int desired_access;
182         int disposition;
183         int create_options = CREATE_NOT_DIR;
184         FILE_ALL_INFO *buf;
185         struct TCP_Server_Info *server = tcon->ses->server;
186         struct cifs_open_parms oparms;
187
188         if (!server->ops->open)
189                 return -ENOSYS;
190
191         desired_access = cifs_convert_flags(f_flags);
192
193 /*********************************************************************
194  *  open flag mapping table:
195  *
196  *      POSIX Flag            CIFS Disposition
197  *      ----------            ----------------
198  *      O_CREAT               FILE_OPEN_IF
199  *      O_CREAT | O_EXCL      FILE_CREATE
200  *      O_CREAT | O_TRUNC     FILE_OVERWRITE_IF
201  *      O_TRUNC               FILE_OVERWRITE
202  *      none of the above     FILE_OPEN
203  *
204  *      Note that there is not a direct match between disposition
205  *      FILE_SUPERSEDE (ie create whether or not file exists although
206  *      O_CREAT | O_TRUNC is similar but truncates the existing
207  *      file rather than creating a new file as FILE_SUPERSEDE does
208  *      (which uses the attributes / metadata passed in on open call)
209  *?
210  *?  O_SYNC is a reasonable match to CIFS writethrough flag
211  *?  and the read write flags match reasonably.  O_LARGEFILE
212  *?  is irrelevant because largefile support is always used
213  *?  by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
214  *       O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
215  *********************************************************************/
216
217         disposition = cifs_get_disposition(f_flags);
218
219         /* BB pass O_SYNC flag through on file attributes .. BB */
220
221         buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
222         if (!buf)
223                 return -ENOMEM;
224
225         if (backup_cred(cifs_sb))
226                 create_options |= CREATE_OPEN_BACKUP_INTENT;
227
228         oparms.tcon = tcon;
229         oparms.cifs_sb = cifs_sb;
230         oparms.desired_access = desired_access;
231         oparms.create_options = create_options;
232         oparms.disposition = disposition;
233         oparms.path = full_path;
234         oparms.fid = fid;
235         oparms.reconnect = false;
236
237         rc = server->ops->open(xid, &oparms, oplock, buf);
238
239         if (rc)
240                 goto out;
241
242         if (tcon->unix_ext)
243                 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
244                                               xid);
245         else
246                 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
247                                          xid, fid);
248
249 out:
250         kfree(buf);
251         return rc;
252 }
253
254 static bool
255 cifs_has_mand_locks(struct cifsInodeInfo *cinode)
256 {
257         struct cifs_fid_locks *cur;
258         bool has_locks = false;
259
260         down_read(&cinode->lock_sem);
261         list_for_each_entry(cur, &cinode->llist, llist) {
262                 if (!list_empty(&cur->locks)) {
263                         has_locks = true;
264                         break;
265                 }
266         }
267         up_read(&cinode->lock_sem);
268         return has_locks;
269 }
270
271 struct cifsFileInfo *
272 cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
273                   struct tcon_link *tlink, __u32 oplock)
274 {
275         struct dentry *dentry = file->f_path.dentry;
276         struct inode *inode = dentry->d_inode;
277         struct cifsInodeInfo *cinode = CIFS_I(inode);
278         struct cifsFileInfo *cfile;
279         struct cifs_fid_locks *fdlocks;
280         struct cifs_tcon *tcon = tlink_tcon(tlink);
281         struct TCP_Server_Info *server = tcon->ses->server;
282
283         cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
284         if (cfile == NULL)
285                 return cfile;
286
287         fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
288         if (!fdlocks) {
289                 kfree(cfile);
290                 return NULL;
291         }
292
293         INIT_LIST_HEAD(&fdlocks->locks);
294         fdlocks->cfile = cfile;
295         cfile->llist = fdlocks;
296         down_write(&cinode->lock_sem);
297         list_add(&fdlocks->llist, &cinode->llist);
298         up_write(&cinode->lock_sem);
299
300         cfile->count = 1;
301         cfile->pid = current->tgid;
302         cfile->uid = current_fsuid();
303         cfile->dentry = dget(dentry);
304         cfile->f_flags = file->f_flags;
305         cfile->invalidHandle = false;
306         cfile->tlink = cifs_get_tlink(tlink);
307         INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
308         mutex_init(&cfile->fh_mutex);
309
310         cifs_sb_active(inode->i_sb);
311
312         /*
313          * If the server returned a read oplock and we have mandatory brlocks,
314          * set oplock level to None.
315          */
316         if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
317                 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
318                 oplock = 0;
319         }
320
321         spin_lock(&cifs_file_list_lock);
322         if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
323                 oplock = fid->pending_open->oplock;
324         list_del(&fid->pending_open->olist);
325
326         fid->purge_cache = false;
327         server->ops->set_fid(cfile, fid, oplock);
328
329         list_add(&cfile->tlist, &tcon->openFileList);
330         /* if readable file instance put first in list*/
331         if (file->f_mode & FMODE_READ)
332                 list_add(&cfile->flist, &cinode->openFileList);
333         else
334                 list_add_tail(&cfile->flist, &cinode->openFileList);
335         spin_unlock(&cifs_file_list_lock);
336
337         if (fid->purge_cache)
338                 cifs_zap_mapping(inode);
339
340         file->private_data = cfile;
341         return cfile;
342 }
343
344 struct cifsFileInfo *
345 cifsFileInfo_get(struct cifsFileInfo *cifs_file)
346 {
347         spin_lock(&cifs_file_list_lock);
348         cifsFileInfo_get_locked(cifs_file);
349         spin_unlock(&cifs_file_list_lock);
350         return cifs_file;
351 }
352
353 /*
354  * Release a reference on the file private data. This may involve closing
355  * the filehandle out on the server. Must be called without holding
356  * cifs_file_list_lock.
357  */
358 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
359 {
360         struct inode *inode = cifs_file->dentry->d_inode;
361         struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
362         struct TCP_Server_Info *server = tcon->ses->server;
363         struct cifsInodeInfo *cifsi = CIFS_I(inode);
364         struct super_block *sb = inode->i_sb;
365         struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
366         struct cifsLockInfo *li, *tmp;
367         struct cifs_fid fid;
368         struct cifs_pending_open open;
369
370         spin_lock(&cifs_file_list_lock);
371         if (--cifs_file->count > 0) {
372                 spin_unlock(&cifs_file_list_lock);
373                 return;
374         }
375
376         if (server->ops->get_lease_key)
377                 server->ops->get_lease_key(inode, &fid);
378
379         /* store open in pending opens to make sure we don't miss lease break */
380         cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
381
382         /* remove it from the lists */
383         list_del(&cifs_file->flist);
384         list_del(&cifs_file->tlist);
385
386         if (list_empty(&cifsi->openFileList)) {
387                 cifs_dbg(FYI, "closing last open instance for inode %p\n",
388                          cifs_file->dentry->d_inode);
389                 /*
390                  * In strict cache mode we need invalidate mapping on the last
391                  * close  because it may cause a error when we open this file
392                  * again and get at least level II oplock.
393                  */
394                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
395                         set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
396                 cifs_set_oplock_level(cifsi, 0);
397         }
398         spin_unlock(&cifs_file_list_lock);
399
400         cancel_work_sync(&cifs_file->oplock_break);
401
402         if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
403                 struct TCP_Server_Info *server = tcon->ses->server;
404                 unsigned int xid;
405
406                 xid = get_xid();
407                 if (server->ops->close)
408                         server->ops->close(xid, tcon, &cifs_file->fid);
409                 _free_xid(xid);
410         }
411
412         cifs_del_pending_open(&open);
413
414         /*
415          * Delete any outstanding lock records. We'll lose them when the file
416          * is closed anyway.
417          */
418         down_write(&cifsi->lock_sem);
419         list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
420                 list_del(&li->llist);
421                 cifs_del_lock_waiters(li);
422                 kfree(li);
423         }
424         list_del(&cifs_file->llist->llist);
425         kfree(cifs_file->llist);
426         up_write(&cifsi->lock_sem);
427
428         cifs_put_tlink(cifs_file->tlink);
429         dput(cifs_file->dentry);
430         cifs_sb_deactive(sb);
431         kfree(cifs_file);
432 }
433
434 int cifs_open(struct inode *inode, struct file *file)
435
436 {
437         int rc = -EACCES;
438         unsigned int xid;
439         __u32 oplock;
440         struct cifs_sb_info *cifs_sb;
441         struct TCP_Server_Info *server;
442         struct cifs_tcon *tcon;
443         struct tcon_link *tlink;
444         struct cifsFileInfo *cfile = NULL;
445         char *full_path = NULL;
446         bool posix_open_ok = false;
447         struct cifs_fid fid;
448         struct cifs_pending_open open;
449
450         xid = get_xid();
451
452         cifs_sb = CIFS_SB(inode->i_sb);
453         tlink = cifs_sb_tlink(cifs_sb);
454         if (IS_ERR(tlink)) {
455                 free_xid(xid);
456                 return PTR_ERR(tlink);
457         }
458         tcon = tlink_tcon(tlink);
459         server = tcon->ses->server;
460
461         full_path = build_path_from_dentry(file->f_path.dentry);
462         if (full_path == NULL) {
463                 rc = -ENOMEM;
464                 goto out;
465         }
466
467         cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
468                  inode, file->f_flags, full_path);
469
470         if (server->oplocks)
471                 oplock = REQ_OPLOCK;
472         else
473                 oplock = 0;
474
475         if (!tcon->broken_posix_open && tcon->unix_ext &&
476             cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
477                                 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
478                 /* can not refresh inode info since size could be stale */
479                 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
480                                 cifs_sb->mnt_file_mode /* ignored */,
481                                 file->f_flags, &oplock, &fid.netfid, xid);
482                 if (rc == 0) {
483                         cifs_dbg(FYI, "posix open succeeded\n");
484                         posix_open_ok = true;
485                 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
486                         if (tcon->ses->serverNOS)
487                                 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
488                                          tcon->ses->serverName,
489                                          tcon->ses->serverNOS);
490                         tcon->broken_posix_open = true;
491                 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
492                          (rc != -EOPNOTSUPP)) /* path not found or net err */
493                         goto out;
494                 /*
495                  * Else fallthrough to retry open the old way on network i/o
496                  * or DFS errors.
497                  */
498         }
499
500         if (server->ops->get_lease_key)
501                 server->ops->get_lease_key(inode, &fid);
502
503         cifs_add_pending_open(&fid, tlink, &open);
504
505         if (!posix_open_ok) {
506                 if (server->ops->get_lease_key)
507                         server->ops->get_lease_key(inode, &fid);
508
509                 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
510                                   file->f_flags, &oplock, &fid, xid);
511                 if (rc) {
512                         cifs_del_pending_open(&open);
513                         goto out;
514                 }
515         }
516
517         cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
518         if (cfile == NULL) {
519                 if (server->ops->close)
520                         server->ops->close(xid, tcon, &fid);
521                 cifs_del_pending_open(&open);
522                 rc = -ENOMEM;
523                 goto out;
524         }
525
526         cifs_fscache_set_inode_cookie(inode, file);
527
528         if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
529                 /*
530                  * Time to set mode which we can not set earlier due to
531                  * problems creating new read-only files.
532                  */
533                 struct cifs_unix_set_info_args args = {
534                         .mode   = inode->i_mode,
535                         .uid    = INVALID_UID, /* no change */
536                         .gid    = INVALID_GID, /* no change */
537                         .ctime  = NO_CHANGE_64,
538                         .atime  = NO_CHANGE_64,
539                         .mtime  = NO_CHANGE_64,
540                         .device = 0,
541                 };
542                 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
543                                        cfile->pid);
544         }
545
546 out:
547         kfree(full_path);
548         free_xid(xid);
549         cifs_put_tlink(tlink);
550         return rc;
551 }
552
553 static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
554
555 /*
556  * Try to reacquire byte range locks that were released when session
557  * to server was lost.
558  */
559 static int
560 cifs_relock_file(struct cifsFileInfo *cfile)
561 {
562         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
563         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
564         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
565         int rc = 0;
566
567         down_read(&cinode->lock_sem);
568         if (cinode->can_cache_brlcks) {
569                 /* can cache locks - no need to relock */
570                 up_read(&cinode->lock_sem);
571                 return rc;
572         }
573
574         if (cap_unix(tcon->ses) &&
575             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
576             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
577                 rc = cifs_push_posix_locks(cfile);
578         else
579                 rc = tcon->ses->server->ops->push_mand_locks(cfile);
580
581         up_read(&cinode->lock_sem);
582         return rc;
583 }
584
585 static int
586 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
587 {
588         int rc = -EACCES;
589         unsigned int xid;
590         __u32 oplock;
591         struct cifs_sb_info *cifs_sb;
592         struct cifs_tcon *tcon;
593         struct TCP_Server_Info *server;
594         struct cifsInodeInfo *cinode;
595         struct inode *inode;
596         char *full_path = NULL;
597         int desired_access;
598         int disposition = FILE_OPEN;
599         int create_options = CREATE_NOT_DIR;
600         struct cifs_open_parms oparms;
601
602         xid = get_xid();
603         mutex_lock(&cfile->fh_mutex);
604         if (!cfile->invalidHandle) {
605                 mutex_unlock(&cfile->fh_mutex);
606                 rc = 0;
607                 free_xid(xid);
608                 return rc;
609         }
610
611         inode = cfile->dentry->d_inode;
612         cifs_sb = CIFS_SB(inode->i_sb);
613         tcon = tlink_tcon(cfile->tlink);
614         server = tcon->ses->server;
615
616         /*
617          * Can not grab rename sem here because various ops, including those
618          * that already have the rename sem can end up causing writepage to get
619          * called and if the server was down that means we end up here, and we
620          * can never tell if the caller already has the rename_sem.
621          */
622         full_path = build_path_from_dentry(cfile->dentry);
623         if (full_path == NULL) {
624                 rc = -ENOMEM;
625                 mutex_unlock(&cfile->fh_mutex);
626                 free_xid(xid);
627                 return rc;
628         }
629
630         cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
631                  inode, cfile->f_flags, full_path);
632
633         if (tcon->ses->server->oplocks)
634                 oplock = REQ_OPLOCK;
635         else
636                 oplock = 0;
637
638         if (tcon->unix_ext && cap_unix(tcon->ses) &&
639             (CIFS_UNIX_POSIX_PATH_OPS_CAP &
640                                 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
641                 /*
642                  * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
643                  * original open. Must mask them off for a reopen.
644                  */
645                 unsigned int oflags = cfile->f_flags &
646                                                 ~(O_CREAT | O_EXCL | O_TRUNC);
647
648                 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
649                                      cifs_sb->mnt_file_mode /* ignored */,
650                                      oflags, &oplock, &cfile->fid.netfid, xid);
651                 if (rc == 0) {
652                         cifs_dbg(FYI, "posix reopen succeeded\n");
653                         oparms.reconnect = true;
654                         goto reopen_success;
655                 }
656                 /*
657                  * fallthrough to retry open the old way on errors, especially
658                  * in the reconnect path it is important to retry hard
659                  */
660         }
661
662         desired_access = cifs_convert_flags(cfile->f_flags);
663
664         if (backup_cred(cifs_sb))
665                 create_options |= CREATE_OPEN_BACKUP_INTENT;
666
667         if (server->ops->get_lease_key)
668                 server->ops->get_lease_key(inode, &cfile->fid);
669
670         oparms.tcon = tcon;
671         oparms.cifs_sb = cifs_sb;
672         oparms.desired_access = desired_access;
673         oparms.create_options = create_options;
674         oparms.disposition = disposition;
675         oparms.path = full_path;
676         oparms.fid = &cfile->fid;
677         oparms.reconnect = true;
678
679         /*
680          * Can not refresh inode by passing in file_info buf to be returned by
681          * ops->open and then calling get_inode_info with returned buf since
682          * file might have write behind data that needs to be flushed and server
683          * version of file size can be stale. If we knew for sure that inode was
684          * not dirty locally we could do this.
685          */
686         rc = server->ops->open(xid, &oparms, &oplock, NULL);
687         if (rc == -ENOENT && oparms.reconnect == false) {
688                 /* durable handle timeout is expired - open the file again */
689                 rc = server->ops->open(xid, &oparms, &oplock, NULL);
690                 /* indicate that we need to relock the file */
691                 oparms.reconnect = true;
692         }
693
694         if (rc) {
695                 mutex_unlock(&cfile->fh_mutex);
696                 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
697                 cifs_dbg(FYI, "oplock: %d\n", oplock);
698                 goto reopen_error_exit;
699         }
700
701 reopen_success:
702         cfile->invalidHandle = false;
703         mutex_unlock(&cfile->fh_mutex);
704         cinode = CIFS_I(inode);
705
706         if (can_flush) {
707                 rc = filemap_write_and_wait(inode->i_mapping);
708                 mapping_set_error(inode->i_mapping, rc);
709
710                 if (tcon->unix_ext)
711                         rc = cifs_get_inode_info_unix(&inode, full_path,
712                                                       inode->i_sb, xid);
713                 else
714                         rc = cifs_get_inode_info(&inode, full_path, NULL,
715                                                  inode->i_sb, xid, NULL);
716         }
717         /*
718          * Else we are writing out data to server already and could deadlock if
719          * we tried to flush data, and since we do not know if we have data that
720          * would invalidate the current end of file on the server we can not go
721          * to the server to get the new inode info.
722          */
723
724         server->ops->set_fid(cfile, &cfile->fid, oplock);
725         if (oparms.reconnect)
726                 cifs_relock_file(cfile);
727
728 reopen_error_exit:
729         kfree(full_path);
730         free_xid(xid);
731         return rc;
732 }
733
734 int cifs_close(struct inode *inode, struct file *file)
735 {
736         if (file->private_data != NULL) {
737                 cifsFileInfo_put(file->private_data);
738                 file->private_data = NULL;
739         }
740
741         /* return code from the ->release op is always ignored */
742         return 0;
743 }
744
745 int cifs_closedir(struct inode *inode, struct file *file)
746 {
747         int rc = 0;
748         unsigned int xid;
749         struct cifsFileInfo *cfile = file->private_data;
750         struct cifs_tcon *tcon;
751         struct TCP_Server_Info *server;
752         char *buf;
753
754         cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
755
756         if (cfile == NULL)
757                 return rc;
758
759         xid = get_xid();
760         tcon = tlink_tcon(cfile->tlink);
761         server = tcon->ses->server;
762
763         cifs_dbg(FYI, "Freeing private data in close dir\n");
764         spin_lock(&cifs_file_list_lock);
765         if (!cfile->srch_inf.endOfSearch && !cfile->invalidHandle) {
766                 cfile->invalidHandle = true;
767                 spin_unlock(&cifs_file_list_lock);
768                 if (server->ops->close_dir)
769                         rc = server->ops->close_dir(xid, tcon, &cfile->fid);
770                 else
771                         rc = -ENOSYS;
772                 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
773                 /* not much we can do if it fails anyway, ignore rc */
774                 rc = 0;
775         } else
776                 spin_unlock(&cifs_file_list_lock);
777
778         buf = cfile->srch_inf.ntwrk_buf_start;
779         if (buf) {
780                 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
781                 cfile->srch_inf.ntwrk_buf_start = NULL;
782                 if (cfile->srch_inf.smallBuf)
783                         cifs_small_buf_release(buf);
784                 else
785                         cifs_buf_release(buf);
786         }
787
788         cifs_put_tlink(cfile->tlink);
789         kfree(file->private_data);
790         file->private_data = NULL;
791         /* BB can we lock the filestruct while this is going on? */
792         free_xid(xid);
793         return rc;
794 }
795
796 static struct cifsLockInfo *
797 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
798 {
799         struct cifsLockInfo *lock =
800                 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
801         if (!lock)
802                 return lock;
803         lock->offset = offset;
804         lock->length = length;
805         lock->type = type;
806         lock->pid = current->tgid;
807         INIT_LIST_HEAD(&lock->blist);
808         init_waitqueue_head(&lock->block_q);
809         return lock;
810 }
811
812 void
813 cifs_del_lock_waiters(struct cifsLockInfo *lock)
814 {
815         struct cifsLockInfo *li, *tmp;
816         list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
817                 list_del_init(&li->blist);
818                 wake_up(&li->block_q);
819         }
820 }
821
822 #define CIFS_LOCK_OP    0
823 #define CIFS_READ_OP    1
824 #define CIFS_WRITE_OP   2
825
826 /* @rw_check : 0 - no op, 1 - read, 2 - write */
827 static bool
828 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
829                             __u64 length, __u8 type, struct cifsFileInfo *cfile,
830                             struct cifsLockInfo **conf_lock, int rw_check)
831 {
832         struct cifsLockInfo *li;
833         struct cifsFileInfo *cur_cfile = fdlocks->cfile;
834         struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
835
836         list_for_each_entry(li, &fdlocks->locks, llist) {
837                 if (offset + length <= li->offset ||
838                     offset >= li->offset + li->length)
839                         continue;
840                 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
841                     server->ops->compare_fids(cfile, cur_cfile)) {
842                         /* shared lock prevents write op through the same fid */
843                         if (!(li->type & server->vals->shared_lock_type) ||
844                             rw_check != CIFS_WRITE_OP)
845                                 continue;
846                 }
847                 if ((type & server->vals->shared_lock_type) &&
848                     ((server->ops->compare_fids(cfile, cur_cfile) &&
849                      current->tgid == li->pid) || type == li->type))
850                         continue;
851                 if (conf_lock)
852                         *conf_lock = li;
853                 return true;
854         }
855         return false;
856 }
857
858 bool
859 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
860                         __u8 type, struct cifsLockInfo **conf_lock,
861                         int rw_check)
862 {
863         bool rc = false;
864         struct cifs_fid_locks *cur;
865         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
866
867         list_for_each_entry(cur, &cinode->llist, llist) {
868                 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
869                                                  cfile, conf_lock, rw_check);
870                 if (rc)
871                         break;
872         }
873
874         return rc;
875 }
876
877 /*
878  * Check if there is another lock that prevents us to set the lock (mandatory
879  * style). If such a lock exists, update the flock structure with its
880  * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
881  * or leave it the same if we can't. Returns 0 if we don't need to request to
882  * the server or 1 otherwise.
883  */
884 static int
885 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
886                __u8 type, struct file_lock *flock)
887 {
888         int rc = 0;
889         struct cifsLockInfo *conf_lock;
890         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
891         struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
892         bool exist;
893
894         down_read(&cinode->lock_sem);
895
896         exist = cifs_find_lock_conflict(cfile, offset, length, type,
897                                         &conf_lock, CIFS_LOCK_OP);
898         if (exist) {
899                 flock->fl_start = conf_lock->offset;
900                 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
901                 flock->fl_pid = conf_lock->pid;
902                 if (conf_lock->type & server->vals->shared_lock_type)
903                         flock->fl_type = F_RDLCK;
904                 else
905                         flock->fl_type = F_WRLCK;
906         } else if (!cinode->can_cache_brlcks)
907                 rc = 1;
908         else
909                 flock->fl_type = F_UNLCK;
910
911         up_read(&cinode->lock_sem);
912         return rc;
913 }
914
915 static void
916 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
917 {
918         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
919         down_write(&cinode->lock_sem);
920         list_add_tail(&lock->llist, &cfile->llist->locks);
921         up_write(&cinode->lock_sem);
922 }
923
924 /*
925  * Set the byte-range lock (mandatory style). Returns:
926  * 1) 0, if we set the lock and don't need to request to the server;
927  * 2) 1, if no locks prevent us but we need to request to the server;
928  * 3) -EACCESS, if there is a lock that prevents us and wait is false.
929  */
930 static int
931 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
932                  bool wait)
933 {
934         struct cifsLockInfo *conf_lock;
935         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
936         bool exist;
937         int rc = 0;
938
939 try_again:
940         exist = false;
941         down_write(&cinode->lock_sem);
942
943         exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
944                                         lock->type, &conf_lock, CIFS_LOCK_OP);
945         if (!exist && cinode->can_cache_brlcks) {
946                 list_add_tail(&lock->llist, &cfile->llist->locks);
947                 up_write(&cinode->lock_sem);
948                 return rc;
949         }
950
951         if (!exist)
952                 rc = 1;
953         else if (!wait)
954                 rc = -EACCES;
955         else {
956                 list_add_tail(&lock->blist, &conf_lock->blist);
957                 up_write(&cinode->lock_sem);
958                 rc = wait_event_interruptible(lock->block_q,
959                                         (lock->blist.prev == &lock->blist) &&
960                                         (lock->blist.next == &lock->blist));
961                 if (!rc)
962                         goto try_again;
963                 down_write(&cinode->lock_sem);
964                 list_del_init(&lock->blist);
965         }
966
967         up_write(&cinode->lock_sem);
968         return rc;
969 }
970
971 /*
972  * Check if there is another lock that prevents us to set the lock (posix
973  * style). If such a lock exists, update the flock structure with its
974  * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
975  * or leave it the same if we can't. Returns 0 if we don't need to request to
976  * the server or 1 otherwise.
977  */
978 static int
979 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
980 {
981         int rc = 0;
982         struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
983         unsigned char saved_type = flock->fl_type;
984
985         if ((flock->fl_flags & FL_POSIX) == 0)
986                 return 1;
987
988         down_read(&cinode->lock_sem);
989         posix_test_lock(file, flock);
990
991         if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
992                 flock->fl_type = saved_type;
993                 rc = 1;
994         }
995
996         up_read(&cinode->lock_sem);
997         return rc;
998 }
999
1000 /*
1001  * Set the byte-range lock (posix style). Returns:
1002  * 1) 0, if we set the lock and don't need to request to the server;
1003  * 2) 1, if we need to request to the server;
1004  * 3) <0, if the error occurs while setting the lock.
1005  */
1006 static int
1007 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1008 {
1009         struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1010         int rc = 1;
1011
1012         if ((flock->fl_flags & FL_POSIX) == 0)
1013                 return rc;
1014
1015 try_again:
1016         down_write(&cinode->lock_sem);
1017         if (!cinode->can_cache_brlcks) {
1018                 up_write(&cinode->lock_sem);
1019                 return rc;
1020         }
1021
1022         rc = posix_lock_file(file, flock, NULL);
1023         up_write(&cinode->lock_sem);
1024         if (rc == FILE_LOCK_DEFERRED) {
1025                 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
1026                 if (!rc)
1027                         goto try_again;
1028                 posix_unblock_lock(flock);
1029         }
1030         return rc;
1031 }
1032
1033 int
1034 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1035 {
1036         unsigned int xid;
1037         int rc = 0, stored_rc;
1038         struct cifsLockInfo *li, *tmp;
1039         struct cifs_tcon *tcon;
1040         unsigned int num, max_num, max_buf;
1041         LOCKING_ANDX_RANGE *buf, *cur;
1042         int types[] = {LOCKING_ANDX_LARGE_FILES,
1043                        LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1044         int i;
1045
1046         xid = get_xid();
1047         tcon = tlink_tcon(cfile->tlink);
1048
1049         /*
1050          * Accessing maxBuf is racy with cifs_reconnect - need to store value
1051          * and check it for zero before using.
1052          */
1053         max_buf = tcon->ses->server->maxBuf;
1054         if (!max_buf) {
1055                 free_xid(xid);
1056                 return -EINVAL;
1057         }
1058
1059         max_num = (max_buf - sizeof(struct smb_hdr)) /
1060                                                 sizeof(LOCKING_ANDX_RANGE);
1061         buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1062         if (!buf) {
1063                 free_xid(xid);
1064                 return -ENOMEM;
1065         }
1066
1067         for (i = 0; i < 2; i++) {
1068                 cur = buf;
1069                 num = 0;
1070                 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1071                         if (li->type != types[i])
1072                                 continue;
1073                         cur->Pid = cpu_to_le16(li->pid);
1074                         cur->LengthLow = cpu_to_le32((u32)li->length);
1075                         cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1076                         cur->OffsetLow = cpu_to_le32((u32)li->offset);
1077                         cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1078                         if (++num == max_num) {
1079                                 stored_rc = cifs_lockv(xid, tcon,
1080                                                        cfile->fid.netfid,
1081                                                        (__u8)li->type, 0, num,
1082                                                        buf);
1083                                 if (stored_rc)
1084                                         rc = stored_rc;
1085                                 cur = buf;
1086                                 num = 0;
1087                         } else
1088                                 cur++;
1089                 }
1090
1091                 if (num) {
1092                         stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1093                                                (__u8)types[i], 0, num, buf);
1094                         if (stored_rc)
1095                                 rc = stored_rc;
1096                 }
1097         }
1098
1099         kfree(buf);
1100         free_xid(xid);
1101         return rc;
1102 }
1103
1104 /* copied from fs/locks.c with a name change */
1105 #define cifs_for_each_lock(inode, lockp) \
1106         for (lockp = &inode->i_flock; *lockp != NULL; \
1107              lockp = &(*lockp)->fl_next)
1108
1109 struct lock_to_push {
1110         struct list_head llist;
1111         __u64 offset;
1112         __u64 length;
1113         __u32 pid;
1114         __u16 netfid;
1115         __u8 type;
1116 };
1117
1118 static int
1119 cifs_push_posix_locks(struct cifsFileInfo *cfile)
1120 {
1121         struct inode *inode = cfile->dentry->d_inode;
1122         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1123         struct file_lock *flock, **before;
1124         unsigned int count = 0, i = 0;
1125         int rc = 0, xid, type;
1126         struct list_head locks_to_send, *el;
1127         struct lock_to_push *lck, *tmp;
1128         __u64 length;
1129
1130         xid = get_xid();
1131
1132         spin_lock(&inode->i_lock);
1133         cifs_for_each_lock(inode, before) {
1134                 if ((*before)->fl_flags & FL_POSIX)
1135                         count++;
1136         }
1137         spin_unlock(&inode->i_lock);
1138
1139         INIT_LIST_HEAD(&locks_to_send);
1140
1141         /*
1142          * Allocating count locks is enough because no FL_POSIX locks can be
1143          * added to the list while we are holding cinode->lock_sem that
1144          * protects locking operations of this inode.
1145          */
1146         for (; i < count; i++) {
1147                 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1148                 if (!lck) {
1149                         rc = -ENOMEM;
1150                         goto err_out;
1151                 }
1152                 list_add_tail(&lck->llist, &locks_to_send);
1153         }
1154
1155         el = locks_to_send.next;
1156         spin_lock(&inode->i_lock);
1157         cifs_for_each_lock(inode, before) {
1158                 flock = *before;
1159                 if ((flock->fl_flags & FL_POSIX) == 0)
1160                         continue;
1161                 if (el == &locks_to_send) {
1162                         /*
1163                          * The list ended. We don't have enough allocated
1164                          * structures - something is really wrong.
1165                          */
1166                         cifs_dbg(VFS, "Can't push all brlocks!\n");
1167                         break;
1168                 }
1169                 length = 1 + flock->fl_end - flock->fl_start;
1170                 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1171                         type = CIFS_RDLCK;
1172                 else
1173                         type = CIFS_WRLCK;
1174                 lck = list_entry(el, struct lock_to_push, llist);
1175                 lck->pid = flock->fl_pid;
1176                 lck->netfid = cfile->fid.netfid;
1177                 lck->length = length;
1178                 lck->type = type;
1179                 lck->offset = flock->fl_start;
1180                 el = el->next;
1181         }
1182         spin_unlock(&inode->i_lock);
1183
1184         list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1185                 int stored_rc;
1186
1187                 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1188                                              lck->offset, lck->length, NULL,
1189                                              lck->type, 0);
1190                 if (stored_rc)
1191                         rc = stored_rc;
1192                 list_del(&lck->llist);
1193                 kfree(lck);
1194         }
1195
1196 out:
1197         free_xid(xid);
1198         return rc;
1199 err_out:
1200         list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1201                 list_del(&lck->llist);
1202                 kfree(lck);
1203         }
1204         goto out;
1205 }
1206
1207 static int
1208 cifs_push_locks(struct cifsFileInfo *cfile)
1209 {
1210         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1211         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1212         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1213         int rc = 0;
1214
1215         /* we are going to update can_cache_brlcks here - need a write access */
1216         down_write(&cinode->lock_sem);
1217         if (!cinode->can_cache_brlcks) {
1218                 up_write(&cinode->lock_sem);
1219                 return rc;
1220         }
1221
1222         if (cap_unix(tcon->ses) &&
1223             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1224             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1225                 rc = cifs_push_posix_locks(cfile);
1226         else
1227                 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1228
1229         cinode->can_cache_brlcks = false;
1230         up_write(&cinode->lock_sem);
1231         return rc;
1232 }
1233
1234 static void
1235 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1236                 bool *wait_flag, struct TCP_Server_Info *server)
1237 {
1238         if (flock->fl_flags & FL_POSIX)
1239                 cifs_dbg(FYI, "Posix\n");
1240         if (flock->fl_flags & FL_FLOCK)
1241                 cifs_dbg(FYI, "Flock\n");
1242         if (flock->fl_flags & FL_SLEEP) {
1243                 cifs_dbg(FYI, "Blocking lock\n");
1244                 *wait_flag = true;
1245         }
1246         if (flock->fl_flags & FL_ACCESS)
1247                 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1248         if (flock->fl_flags & FL_LEASE)
1249                 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1250         if (flock->fl_flags &
1251             (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1252                FL_ACCESS | FL_LEASE | FL_CLOSE)))
1253                 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1254
1255         *type = server->vals->large_lock_type;
1256         if (flock->fl_type == F_WRLCK) {
1257                 cifs_dbg(FYI, "F_WRLCK\n");
1258                 *type |= server->vals->exclusive_lock_type;
1259                 *lock = 1;
1260         } else if (flock->fl_type == F_UNLCK) {
1261                 cifs_dbg(FYI, "F_UNLCK\n");
1262                 *type |= server->vals->unlock_lock_type;
1263                 *unlock = 1;
1264                 /* Check if unlock includes more than one lock range */
1265         } else if (flock->fl_type == F_RDLCK) {
1266                 cifs_dbg(FYI, "F_RDLCK\n");
1267                 *type |= server->vals->shared_lock_type;
1268                 *lock = 1;
1269         } else if (flock->fl_type == F_EXLCK) {
1270                 cifs_dbg(FYI, "F_EXLCK\n");
1271                 *type |= server->vals->exclusive_lock_type;
1272                 *lock = 1;
1273         } else if (flock->fl_type == F_SHLCK) {
1274                 cifs_dbg(FYI, "F_SHLCK\n");
1275                 *type |= server->vals->shared_lock_type;
1276                 *lock = 1;
1277         } else
1278                 cifs_dbg(FYI, "Unknown type of lock\n");
1279 }
1280
1281 static int
1282 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1283            bool wait_flag, bool posix_lck, unsigned int xid)
1284 {
1285         int rc = 0;
1286         __u64 length = 1 + flock->fl_end - flock->fl_start;
1287         struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1288         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1289         struct TCP_Server_Info *server = tcon->ses->server;
1290         __u16 netfid = cfile->fid.netfid;
1291
1292         if (posix_lck) {
1293                 int posix_lock_type;
1294
1295                 rc = cifs_posix_lock_test(file, flock);
1296                 if (!rc)
1297                         return rc;
1298
1299                 if (type & server->vals->shared_lock_type)
1300                         posix_lock_type = CIFS_RDLCK;
1301                 else
1302                         posix_lock_type = CIFS_WRLCK;
1303                 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1304                                       flock->fl_start, length, flock,
1305                                       posix_lock_type, wait_flag);
1306                 return rc;
1307         }
1308
1309         rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1310         if (!rc)
1311                 return rc;
1312
1313         /* BB we could chain these into one lock request BB */
1314         rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1315                                     1, 0, false);
1316         if (rc == 0) {
1317                 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1318                                             type, 0, 1, false);
1319                 flock->fl_type = F_UNLCK;
1320                 if (rc != 0)
1321                         cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1322                                  rc);
1323                 return 0;
1324         }
1325
1326         if (type & server->vals->shared_lock_type) {
1327                 flock->fl_type = F_WRLCK;
1328                 return 0;
1329         }
1330
1331         type &= ~server->vals->exclusive_lock_type;
1332
1333         rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1334                                     type | server->vals->shared_lock_type,
1335                                     1, 0, false);
1336         if (rc == 0) {
1337                 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1338                         type | server->vals->shared_lock_type, 0, 1, false);
1339                 flock->fl_type = F_RDLCK;
1340                 if (rc != 0)
1341                         cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1342                                  rc);
1343         } else
1344                 flock->fl_type = F_WRLCK;
1345
1346         return 0;
1347 }
1348
1349 void
1350 cifs_move_llist(struct list_head *source, struct list_head *dest)
1351 {
1352         struct list_head *li, *tmp;
1353         list_for_each_safe(li, tmp, source)
1354                 list_move(li, dest);
1355 }
1356
1357 void
1358 cifs_free_llist(struct list_head *llist)
1359 {
1360         struct cifsLockInfo *li, *tmp;
1361         list_for_each_entry_safe(li, tmp, llist, llist) {
1362                 cifs_del_lock_waiters(li);
1363                 list_del(&li->llist);
1364                 kfree(li);
1365         }
1366 }
1367
1368 int
1369 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1370                   unsigned int xid)
1371 {
1372         int rc = 0, stored_rc;
1373         int types[] = {LOCKING_ANDX_LARGE_FILES,
1374                        LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1375         unsigned int i;
1376         unsigned int max_num, num, max_buf;
1377         LOCKING_ANDX_RANGE *buf, *cur;
1378         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1379         struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1380         struct cifsLockInfo *li, *tmp;
1381         __u64 length = 1 + flock->fl_end - flock->fl_start;
1382         struct list_head tmp_llist;
1383
1384         INIT_LIST_HEAD(&tmp_llist);
1385
1386         /*
1387          * Accessing maxBuf is racy with cifs_reconnect - need to store value
1388          * and check it for zero before using.
1389          */
1390         max_buf = tcon->ses->server->maxBuf;
1391         if (!max_buf)
1392                 return -EINVAL;
1393
1394         max_num = (max_buf - sizeof(struct smb_hdr)) /
1395                                                 sizeof(LOCKING_ANDX_RANGE);
1396         buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1397         if (!buf)
1398                 return -ENOMEM;
1399
1400         down_write(&cinode->lock_sem);
1401         for (i = 0; i < 2; i++) {
1402                 cur = buf;
1403                 num = 0;
1404                 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1405                         if (flock->fl_start > li->offset ||
1406                             (flock->fl_start + length) <
1407                             (li->offset + li->length))
1408                                 continue;
1409                         if (current->tgid != li->pid)
1410                                 continue;
1411                         if (types[i] != li->type)
1412                                 continue;
1413                         if (cinode->can_cache_brlcks) {
1414                                 /*
1415                                  * We can cache brlock requests - simply remove
1416                                  * a lock from the file's list.
1417                                  */
1418                                 list_del(&li->llist);
1419                                 cifs_del_lock_waiters(li);
1420                                 kfree(li);
1421                                 continue;
1422                         }
1423                         cur->Pid = cpu_to_le16(li->pid);
1424                         cur->LengthLow = cpu_to_le32((u32)li->length);
1425                         cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1426                         cur->OffsetLow = cpu_to_le32((u32)li->offset);
1427                         cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1428                         /*
1429                          * We need to save a lock here to let us add it again to
1430                          * the file's list if the unlock range request fails on
1431                          * the server.
1432                          */
1433                         list_move(&li->llist, &tmp_llist);
1434                         if (++num == max_num) {
1435                                 stored_rc = cifs_lockv(xid, tcon,
1436                                                        cfile->fid.netfid,
1437                                                        li->type, num, 0, buf);
1438                                 if (stored_rc) {
1439                                         /*
1440                                          * We failed on the unlock range
1441                                          * request - add all locks from the tmp
1442                                          * list to the head of the file's list.
1443                                          */
1444                                         cifs_move_llist(&tmp_llist,
1445                                                         &cfile->llist->locks);
1446                                         rc = stored_rc;
1447                                 } else
1448                                         /*
1449                                          * The unlock range request succeed -
1450                                          * free the tmp list.
1451                                          */
1452                                         cifs_free_llist(&tmp_llist);
1453                                 cur = buf;
1454                                 num = 0;
1455                         } else
1456                                 cur++;
1457                 }
1458                 if (num) {
1459                         stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1460                                                types[i], num, 0, buf);
1461                         if (stored_rc) {
1462                                 cifs_move_llist(&tmp_llist,
1463                                                 &cfile->llist->locks);
1464                                 rc = stored_rc;
1465                         } else
1466                                 cifs_free_llist(&tmp_llist);
1467                 }
1468         }
1469
1470         up_write(&cinode->lock_sem);
1471         kfree(buf);
1472         return rc;
1473 }
1474
1475 static int
1476 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1477            bool wait_flag, bool posix_lck, int lock, int unlock,
1478            unsigned int xid)
1479 {
1480         int rc = 0;
1481         __u64 length = 1 + flock->fl_end - flock->fl_start;
1482         struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1483         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1484         struct TCP_Server_Info *server = tcon->ses->server;
1485         struct inode *inode = cfile->dentry->d_inode;
1486
1487         if (posix_lck) {
1488                 int posix_lock_type;
1489
1490                 rc = cifs_posix_lock_set(file, flock);
1491                 if (!rc || rc < 0)
1492                         return rc;
1493
1494                 if (type & server->vals->shared_lock_type)
1495                         posix_lock_type = CIFS_RDLCK;
1496                 else
1497                         posix_lock_type = CIFS_WRLCK;
1498
1499                 if (unlock == 1)
1500                         posix_lock_type = CIFS_UNLCK;
1501
1502                 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1503                                       current->tgid, flock->fl_start, length,
1504                                       NULL, posix_lock_type, wait_flag);
1505                 goto out;
1506         }
1507
1508         if (lock) {
1509                 struct cifsLockInfo *lock;
1510
1511                 lock = cifs_lock_init(flock->fl_start, length, type);
1512                 if (!lock)
1513                         return -ENOMEM;
1514
1515                 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1516                 if (rc < 0) {
1517                         kfree(lock);
1518                         return rc;
1519                 }
1520                 if (!rc)
1521                         goto out;
1522
1523                 /*
1524                  * Windows 7 server can delay breaking lease from read to None
1525                  * if we set a byte-range lock on a file - break it explicitly
1526                  * before sending the lock to the server to be sure the next
1527                  * read won't conflict with non-overlapted locks due to
1528                  * pagereading.
1529                  */
1530                 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1531                                         CIFS_CACHE_READ(CIFS_I(inode))) {
1532                         cifs_zap_mapping(inode);
1533                         cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1534                                  inode);
1535                         CIFS_I(inode)->oplock = 0;
1536                 }
1537
1538                 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1539                                             type, 1, 0, wait_flag);
1540                 if (rc) {
1541                         kfree(lock);
1542                         return rc;
1543                 }
1544
1545                 cifs_lock_add(cfile, lock);
1546         } else if (unlock)
1547                 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1548
1549 out:
1550         if (flock->fl_flags & FL_POSIX)
1551                 posix_lock_file_wait(file, flock);
1552         return rc;
1553 }
1554
1555 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1556 {
1557         int rc, xid;
1558         int lock = 0, unlock = 0;
1559         bool wait_flag = false;
1560         bool posix_lck = false;
1561         struct cifs_sb_info *cifs_sb;
1562         struct cifs_tcon *tcon;
1563         struct cifsInodeInfo *cinode;
1564         struct cifsFileInfo *cfile;
1565         __u16 netfid;
1566         __u32 type;
1567
1568         rc = -EACCES;
1569         xid = get_xid();
1570
1571         cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1572                  cmd, flock->fl_flags, flock->fl_type,
1573                  flock->fl_start, flock->fl_end);
1574
1575         cfile = (struct cifsFileInfo *)file->private_data;
1576         tcon = tlink_tcon(cfile->tlink);
1577
1578         cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1579                         tcon->ses->server);
1580
1581         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1582         netfid = cfile->fid.netfid;
1583         cinode = CIFS_I(file_inode(file));
1584
1585         if (cap_unix(tcon->ses) &&
1586             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1587             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1588                 posix_lck = true;
1589         /*
1590          * BB add code here to normalize offset and length to account for
1591          * negative length which we can not accept over the wire.
1592          */
1593         if (IS_GETLK(cmd)) {
1594                 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1595                 free_xid(xid);
1596                 return rc;
1597         }
1598
1599         if (!lock && !unlock) {
1600                 /*
1601                  * if no lock or unlock then nothing to do since we do not
1602                  * know what it is
1603                  */
1604                 free_xid(xid);
1605                 return -EOPNOTSUPP;
1606         }
1607
1608         rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1609                         xid);
1610         free_xid(xid);
1611         return rc;
1612 }
1613
1614 /*
1615  * update the file size (if needed) after a write. Should be called with
1616  * the inode->i_lock held
1617  */
1618 void
1619 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1620                       unsigned int bytes_written)
1621 {
1622         loff_t end_of_write = offset + bytes_written;
1623
1624         if (end_of_write > cifsi->server_eof)
1625                 cifsi->server_eof = end_of_write;
1626 }
1627
1628 static ssize_t
1629 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1630            size_t write_size, loff_t *offset)
1631 {
1632         int rc = 0;
1633         unsigned int bytes_written = 0;
1634         unsigned int total_written;
1635         struct cifs_sb_info *cifs_sb;
1636         struct cifs_tcon *tcon;
1637         struct TCP_Server_Info *server;
1638         unsigned int xid;
1639         struct dentry *dentry = open_file->dentry;
1640         struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1641         struct cifs_io_parms io_parms;
1642
1643         cifs_sb = CIFS_SB(dentry->d_sb);
1644
1645         cifs_dbg(FYI, "write %zd bytes to offset %lld of %s\n",
1646                  write_size, *offset, dentry->d_name.name);
1647
1648         tcon = tlink_tcon(open_file->tlink);
1649         server = tcon->ses->server;
1650
1651         if (!server->ops->sync_write)
1652                 return -ENOSYS;
1653
1654         xid = get_xid();
1655
1656         for (total_written = 0; write_size > total_written;
1657              total_written += bytes_written) {
1658                 rc = -EAGAIN;
1659                 while (rc == -EAGAIN) {
1660                         struct kvec iov[2];
1661                         unsigned int len;
1662
1663                         if (open_file->invalidHandle) {
1664                                 /* we could deadlock if we called
1665                                    filemap_fdatawait from here so tell
1666                                    reopen_file not to flush data to
1667                                    server now */
1668                                 rc = cifs_reopen_file(open_file, false);
1669                                 if (rc != 0)
1670                                         break;
1671                         }
1672
1673                         len = min((size_t)cifs_sb->wsize,
1674                                   write_size - total_written);
1675                         /* iov[0] is reserved for smb header */
1676                         iov[1].iov_base = (char *)write_data + total_written;
1677                         iov[1].iov_len = len;
1678                         io_parms.pid = pid;
1679                         io_parms.tcon = tcon;
1680                         io_parms.offset = *offset;
1681                         io_parms.length = len;
1682                         rc = server->ops->sync_write(xid, open_file, &io_parms,
1683                                                      &bytes_written, iov, 1);
1684                 }
1685                 if (rc || (bytes_written == 0)) {
1686                         if (total_written)
1687                                 break;
1688                         else {
1689                                 free_xid(xid);
1690                                 return rc;
1691                         }
1692                 } else {
1693                         spin_lock(&dentry->d_inode->i_lock);
1694                         cifs_update_eof(cifsi, *offset, bytes_written);
1695                         spin_unlock(&dentry->d_inode->i_lock);
1696                         *offset += bytes_written;
1697                 }
1698         }
1699
1700         cifs_stats_bytes_written(tcon, total_written);
1701
1702         if (total_written > 0) {
1703                 spin_lock(&dentry->d_inode->i_lock);
1704                 if (*offset > dentry->d_inode->i_size)
1705                         i_size_write(dentry->d_inode, *offset);
1706                 spin_unlock(&dentry->d_inode->i_lock);
1707         }
1708         mark_inode_dirty_sync(dentry->d_inode);
1709         free_xid(xid);
1710         return total_written;
1711 }
1712
1713 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1714                                         bool fsuid_only)
1715 {
1716         struct cifsFileInfo *open_file = NULL;
1717         struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1718
1719         /* only filter by fsuid on multiuser mounts */
1720         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1721                 fsuid_only = false;
1722
1723         spin_lock(&cifs_file_list_lock);
1724         /* we could simply get the first_list_entry since write-only entries
1725            are always at the end of the list but since the first entry might
1726            have a close pending, we go through the whole list */
1727         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1728                 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1729                         continue;
1730                 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1731                         if (!open_file->invalidHandle) {
1732                                 /* found a good file */
1733                                 /* lock it so it will not be closed on us */
1734                                 cifsFileInfo_get_locked(open_file);
1735                                 spin_unlock(&cifs_file_list_lock);
1736                                 return open_file;
1737                         } /* else might as well continue, and look for
1738                              another, or simply have the caller reopen it
1739                              again rather than trying to fix this handle */
1740                 } else /* write only file */
1741                         break; /* write only files are last so must be done */
1742         }
1743         spin_unlock(&cifs_file_list_lock);
1744         return NULL;
1745 }
1746
1747 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1748                                         bool fsuid_only)
1749 {
1750         struct cifsFileInfo *open_file, *inv_file = NULL;
1751         struct cifs_sb_info *cifs_sb;
1752         bool any_available = false;
1753         int rc;
1754         unsigned int refind = 0;
1755
1756         /* Having a null inode here (because mapping->host was set to zero by
1757         the VFS or MM) should not happen but we had reports of on oops (due to
1758         it being zero) during stress testcases so we need to check for it */
1759
1760         if (cifs_inode == NULL) {
1761                 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
1762                 dump_stack();
1763                 return NULL;
1764         }
1765
1766         cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1767
1768         /* only filter by fsuid on multiuser mounts */
1769         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1770                 fsuid_only = false;
1771
1772         spin_lock(&cifs_file_list_lock);
1773 refind_writable:
1774         if (refind > MAX_REOPEN_ATT) {
1775                 spin_unlock(&cifs_file_list_lock);
1776                 return NULL;
1777         }
1778         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1779                 if (!any_available && open_file->pid != current->tgid)
1780                         continue;
1781                 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
1782                         continue;
1783                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1784                         if (!open_file->invalidHandle) {
1785                                 /* found a good writable file */
1786                                 cifsFileInfo_get_locked(open_file);
1787                                 spin_unlock(&cifs_file_list_lock);
1788                                 return open_file;
1789                         } else {
1790                                 if (!inv_file)
1791                                         inv_file = open_file;
1792                         }
1793                 }
1794         }
1795         /* couldn't find useable FH with same pid, try any available */
1796         if (!any_available) {
1797                 any_available = true;
1798                 goto refind_writable;
1799         }
1800
1801         if (inv_file) {
1802                 any_available = false;
1803                 cifsFileInfo_get_locked(inv_file);
1804         }
1805
1806         spin_unlock(&cifs_file_list_lock);
1807
1808         if (inv_file) {
1809                 rc = cifs_reopen_file(inv_file, false);
1810                 if (!rc)
1811                         return inv_file;
1812                 else {
1813                         spin_lock(&cifs_file_list_lock);
1814                         list_move_tail(&inv_file->flist,
1815                                         &cifs_inode->openFileList);
1816                         spin_unlock(&cifs_file_list_lock);
1817                         cifsFileInfo_put(inv_file);
1818                         spin_lock(&cifs_file_list_lock);
1819                         ++refind;
1820                         goto refind_writable;
1821                 }
1822         }
1823
1824         return NULL;
1825 }
1826
1827 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1828 {
1829         struct address_space *mapping = page->mapping;
1830         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1831         char *write_data;
1832         int rc = -EFAULT;
1833         int bytes_written = 0;
1834         struct inode *inode;
1835         struct cifsFileInfo *open_file;
1836
1837         if (!mapping || !mapping->host)
1838                 return -EFAULT;
1839
1840         inode = page->mapping->host;
1841
1842         offset += (loff_t)from;
1843         write_data = kmap(page);
1844         write_data += from;
1845
1846         if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1847                 kunmap(page);
1848                 return -EIO;
1849         }
1850
1851         /* racing with truncate? */
1852         if (offset > mapping->host->i_size) {
1853                 kunmap(page);
1854                 return 0; /* don't care */
1855         }
1856
1857         /* check to make sure that we are not extending the file */
1858         if (mapping->host->i_size - offset < (loff_t)to)
1859                 to = (unsigned)(mapping->host->i_size - offset);
1860
1861         open_file = find_writable_file(CIFS_I(mapping->host), false);
1862         if (open_file) {
1863                 bytes_written = cifs_write(open_file, open_file->pid,
1864                                            write_data, to - from, &offset);
1865                 cifsFileInfo_put(open_file);
1866                 /* Does mm or vfs already set times? */
1867                 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1868                 if ((bytes_written > 0) && (offset))
1869                         rc = 0;
1870                 else if (bytes_written < 0)
1871                         rc = bytes_written;
1872         } else {
1873                 cifs_dbg(FYI, "No writeable filehandles for inode\n");
1874                 rc = -EIO;
1875         }
1876
1877         kunmap(page);
1878         return rc;
1879 }
1880
1881 static int cifs_writepages(struct address_space *mapping,
1882                            struct writeback_control *wbc)
1883 {
1884         struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1885         bool done = false, scanned = false, range_whole = false;
1886         pgoff_t end, index;
1887         struct cifs_writedata *wdata;
1888         struct TCP_Server_Info *server;
1889         struct page *page;
1890         int rc = 0;
1891
1892         /*
1893          * If wsize is smaller than the page cache size, default to writing
1894          * one page at a time via cifs_writepage
1895          */
1896         if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1897                 return generic_writepages(mapping, wbc);
1898
1899         if (wbc->range_cyclic) {
1900                 index = mapping->writeback_index; /* Start from prev offset */
1901                 end = -1;
1902         } else {
1903                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1904                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1905                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1906                         range_whole = true;
1907                 scanned = true;
1908         }
1909 retry:
1910         while (!done && index <= end) {
1911                 unsigned int i, nr_pages, found_pages;
1912                 pgoff_t next = 0, tofind;
1913                 struct page **pages;
1914
1915                 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1916                                 end - index) + 1;
1917
1918                 wdata = cifs_writedata_alloc((unsigned int)tofind,
1919                                              cifs_writev_complete);
1920                 if (!wdata) {
1921                         rc = -ENOMEM;
1922                         break;
1923                 }
1924
1925                 /*
1926                  * find_get_pages_tag seems to return a max of 256 on each
1927                  * iteration, so we must call it several times in order to
1928                  * fill the array or the wsize is effectively limited to
1929                  * 256 * PAGE_CACHE_SIZE.
1930                  */
1931                 found_pages = 0;
1932                 pages = wdata->pages;
1933                 do {
1934                         nr_pages = find_get_pages_tag(mapping, &index,
1935                                                         PAGECACHE_TAG_DIRTY,
1936                                                         tofind, pages);
1937                         found_pages += nr_pages;
1938                         tofind -= nr_pages;
1939                         pages += nr_pages;
1940                 } while (nr_pages && tofind && index <= end);
1941
1942                 if (found_pages == 0) {
1943                         kref_put(&wdata->refcount, cifs_writedata_release);
1944                         break;
1945                 }
1946
1947                 nr_pages = 0;
1948                 for (i = 0; i < found_pages; i++) {
1949                         page = wdata->pages[i];
1950                         /*
1951                          * At this point we hold neither mapping->tree_lock nor
1952                          * lock on the page itself: the page may be truncated or
1953                          * invalidated (changing page->mapping to NULL), or even
1954                          * swizzled back from swapper_space to tmpfs file
1955                          * mapping
1956                          */
1957
1958                         if (nr_pages == 0)
1959                                 lock_page(page);
1960                         else if (!trylock_page(page))
1961                                 break;
1962
1963                         if (unlikely(page->mapping != mapping)) {
1964                                 unlock_page(page);
1965                                 break;
1966                         }
1967
1968                         if (!wbc->range_cyclic && page->index > end) {
1969                                 done = true;
1970                                 unlock_page(page);
1971                                 break;
1972                         }
1973
1974                         if (next && (page->index != next)) {
1975                                 /* Not next consecutive page */
1976                                 unlock_page(page);
1977                                 break;
1978                         }
1979
1980                         if (wbc->sync_mode != WB_SYNC_NONE)
1981                                 wait_on_page_writeback(page);
1982
1983                         if (PageWriteback(page) ||
1984                                         !clear_page_dirty_for_io(page)) {
1985                                 unlock_page(page);
1986                                 break;
1987                         }
1988
1989                         /*
1990                          * This actually clears the dirty bit in the radix tree.
1991                          * See cifs_writepage() for more commentary.
1992                          */
1993                         set_page_writeback(page);
1994
1995                         if (page_offset(page) >= i_size_read(mapping->host)) {
1996                                 done = true;
1997                                 unlock_page(page);
1998                                 end_page_writeback(page);
1999                                 break;
2000                         }
2001
2002                         wdata->pages[i] = page;
2003                         next = page->index + 1;
2004                         ++nr_pages;
2005                 }
2006
2007                 /* reset index to refind any pages skipped */
2008                 if (nr_pages == 0)
2009                         index = wdata->pages[0]->index + 1;
2010
2011                 /* put any pages we aren't going to use */
2012                 for (i = nr_pages; i < found_pages; i++) {
2013                         page_cache_release(wdata->pages[i]);
2014                         wdata->pages[i] = NULL;
2015                 }
2016
2017                 /* nothing to write? */
2018                 if (nr_pages == 0) {
2019                         kref_put(&wdata->refcount, cifs_writedata_release);
2020                         continue;
2021                 }
2022
2023                 wdata->sync_mode = wbc->sync_mode;
2024                 wdata->nr_pages = nr_pages;
2025                 wdata->offset = page_offset(wdata->pages[0]);
2026                 wdata->pagesz = PAGE_CACHE_SIZE;
2027                 wdata->tailsz =
2028                         min(i_size_read(mapping->host) -
2029                             page_offset(wdata->pages[nr_pages - 1]),
2030                             (loff_t)PAGE_CACHE_SIZE);
2031                 wdata->bytes = ((nr_pages - 1) * PAGE_CACHE_SIZE) +
2032                                         wdata->tailsz;
2033
2034                 do {
2035                         if (wdata->cfile != NULL)
2036                                 cifsFileInfo_put(wdata->cfile);
2037                         wdata->cfile = find_writable_file(CIFS_I(mapping->host),
2038                                                           false);
2039                         if (!wdata->cfile) {
2040                                 cifs_dbg(VFS, "No writable handles for inode\n");
2041                                 rc = -EBADF;
2042                                 break;
2043                         }
2044                         wdata->pid = wdata->cfile->pid;
2045                         server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2046                         rc = server->ops->async_writev(wdata,
2047                                                         cifs_writedata_release);
2048                 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
2049
2050                 for (i = 0; i < nr_pages; ++i)
2051                         unlock_page(wdata->pages[i]);
2052
2053                 /* send failure -- clean up the mess */
2054                 if (rc != 0) {
2055                         for (i = 0; i < nr_pages; ++i) {
2056                                 if (rc == -EAGAIN)
2057                                         redirty_page_for_writepage(wbc,
2058                                                            wdata->pages[i]);
2059                                 else
2060                                         SetPageError(wdata->pages[i]);
2061                                 end_page_writeback(wdata->pages[i]);
2062                                 page_cache_release(wdata->pages[i]);
2063                         }
2064                         if (rc != -EAGAIN)
2065                                 mapping_set_error(mapping, rc);
2066                 }
2067                 kref_put(&wdata->refcount, cifs_writedata_release);
2068
2069                 wbc->nr_to_write -= nr_pages;
2070                 if (wbc->nr_to_write <= 0)
2071                         done = true;
2072
2073                 index = next;
2074         }
2075
2076         if (!scanned && !done) {
2077                 /*
2078                  * We hit the last page and there is more work to be done: wrap
2079                  * back to the start of the file
2080                  */
2081                 scanned = true;
2082                 index = 0;
2083                 goto retry;
2084         }
2085
2086         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2087                 mapping->writeback_index = index;
2088
2089         return rc;
2090 }
2091
2092 static int
2093 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2094 {
2095         int rc;
2096         unsigned int xid;
2097
2098         xid = get_xid();
2099 /* BB add check for wbc flags */
2100         page_cache_get(page);
2101         if (!PageUptodate(page))
2102                 cifs_dbg(FYI, "ppw - page not up to date\n");
2103
2104         /*
2105          * Set the "writeback" flag, and clear "dirty" in the radix tree.
2106          *
2107          * A writepage() implementation always needs to do either this,
2108          * or re-dirty the page with "redirty_page_for_writepage()" in
2109          * the case of a failure.
2110          *
2111          * Just unlocking the page will cause the radix tree tag-bits
2112          * to fail to update with the state of the page correctly.
2113          */
2114         set_page_writeback(page);
2115 retry_write:
2116         rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
2117         if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
2118                 goto retry_write;
2119         else if (rc == -EAGAIN)
2120                 redirty_page_for_writepage(wbc, page);
2121         else if (rc != 0)
2122                 SetPageError(page);
2123         else
2124                 SetPageUptodate(page);
2125         end_page_writeback(page);
2126         page_cache_release(page);
2127         free_xid(xid);
2128         return rc;
2129 }
2130
2131 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2132 {
2133         int rc = cifs_writepage_locked(page, wbc);
2134         unlock_page(page);
2135         return rc;
2136 }
2137
2138 static int cifs_write_end(struct file *file, struct address_space *mapping,
2139                         loff_t pos, unsigned len, unsigned copied,
2140                         struct page *page, void *fsdata)
2141 {
2142         int rc;
2143         struct inode *inode = mapping->host;
2144         struct cifsFileInfo *cfile = file->private_data;
2145         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2146         __u32 pid;
2147
2148         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2149                 pid = cfile->pid;
2150         else
2151                 pid = current->tgid;
2152
2153         cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2154                  page, pos, copied);
2155
2156         if (PageChecked(page)) {
2157                 if (copied == len)
2158                         SetPageUptodate(page);
2159                 ClearPageChecked(page);
2160         } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
2161                 SetPageUptodate(page);
2162
2163         if (!PageUptodate(page)) {
2164                 char *page_data;
2165                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2166                 unsigned int xid;
2167
2168                 xid = get_xid();
2169                 /* this is probably better than directly calling
2170                    partialpage_write since in this function the file handle is
2171                    known which we might as well leverage */
2172                 /* BB check if anything else missing out of ppw
2173                    such as updating last write time */
2174                 page_data = kmap(page);
2175                 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2176                 /* if (rc < 0) should we set writebehind rc? */
2177                 kunmap(page);
2178
2179                 free_xid(xid);
2180         } else {
2181                 rc = copied;
2182                 pos += copied;
2183                 set_page_dirty(page);
2184         }
2185
2186         if (rc > 0) {
2187                 spin_lock(&inode->i_lock);
2188                 if (pos > inode->i_size)
2189                         i_size_write(inode, pos);
2190                 spin_unlock(&inode->i_lock);
2191         }
2192
2193         unlock_page(page);
2194         page_cache_release(page);
2195
2196         return rc;
2197 }
2198
2199 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2200                       int datasync)
2201 {
2202         unsigned int xid;
2203         int rc = 0;
2204         struct cifs_tcon *tcon;
2205         struct TCP_Server_Info *server;
2206         struct cifsFileInfo *smbfile = file->private_data;
2207         struct inode *inode = file_inode(file);
2208         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2209
2210         rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2211         if (rc)
2212                 return rc;
2213         mutex_lock(&inode->i_mutex);
2214
2215         xid = get_xid();
2216
2217         cifs_dbg(FYI, "Sync file - name: %s datasync: 0x%x\n",
2218                  file->f_path.dentry->d_name.name, datasync);
2219
2220         if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2221                 rc = cifs_zap_mapping(inode);
2222                 if (rc) {
2223                         cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2224                         rc = 0; /* don't care about it in fsync */
2225                 }
2226         }
2227
2228         tcon = tlink_tcon(smbfile->tlink);
2229         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2230                 server = tcon->ses->server;
2231                 if (server->ops->flush)
2232                         rc = server->ops->flush(xid, tcon, &smbfile->fid);
2233                 else
2234                         rc = -ENOSYS;
2235         }
2236
2237         free_xid(xid);
2238         mutex_unlock(&inode->i_mutex);
2239         return rc;
2240 }
2241
2242 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2243 {
2244         unsigned int xid;
2245         int rc = 0;
2246         struct cifs_tcon *tcon;
2247         struct TCP_Server_Info *server;
2248         struct cifsFileInfo *smbfile = file->private_data;
2249         struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2250         struct inode *inode = file->f_mapping->host;
2251
2252         rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2253         if (rc)
2254                 return rc;
2255         mutex_lock(&inode->i_mutex);
2256
2257         xid = get_xid();
2258
2259         cifs_dbg(FYI, "Sync file - name: %s datasync: 0x%x\n",
2260                  file->f_path.dentry->d_name.name, datasync);
2261
2262         tcon = tlink_tcon(smbfile->tlink);
2263         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2264                 server = tcon->ses->server;
2265                 if (server->ops->flush)
2266                         rc = server->ops->flush(xid, tcon, &smbfile->fid);
2267                 else
2268                         rc = -ENOSYS;
2269         }
2270
2271         free_xid(xid);
2272         mutex_unlock(&inode->i_mutex);
2273         return rc;
2274 }
2275
2276 /*
2277  * As file closes, flush all cached write data for this inode checking
2278  * for write behind errors.
2279  */
2280 int cifs_flush(struct file *file, fl_owner_t id)
2281 {
2282         struct inode *inode = file_inode(file);
2283         int rc = 0;
2284
2285         if (file->f_mode & FMODE_WRITE)
2286                 rc = filemap_write_and_wait(inode->i_mapping);
2287
2288         cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2289
2290         return rc;
2291 }
2292
2293 static int
2294 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2295 {
2296         int rc = 0;
2297         unsigned long i;
2298
2299         for (i = 0; i < num_pages; i++) {
2300                 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2301                 if (!pages[i]) {
2302                         /*
2303                          * save number of pages we have already allocated and
2304                          * return with ENOMEM error
2305                          */
2306                         num_pages = i;
2307                         rc = -ENOMEM;
2308                         break;
2309                 }
2310         }
2311
2312         if (rc) {
2313                 for (i = 0; i < num_pages; i++)
2314                         put_page(pages[i]);
2315         }
2316         return rc;
2317 }
2318
2319 static inline
2320 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2321 {
2322         size_t num_pages;
2323         size_t clen;
2324
2325         clen = min_t(const size_t, len, wsize);
2326         num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2327
2328         if (cur_len)
2329                 *cur_len = clen;
2330
2331         return num_pages;
2332 }
2333
2334 static void
2335 cifs_uncached_writedata_release(struct kref *refcount)
2336 {
2337         int i;
2338         struct cifs_writedata *wdata = container_of(refcount,
2339                                         struct cifs_writedata, refcount);
2340
2341         for (i = 0; i < wdata->nr_pages; i++)
2342                 put_page(wdata->pages[i]);
2343         cifs_writedata_release(refcount);
2344 }
2345
2346 static void
2347 cifs_uncached_writev_complete(struct work_struct *work)
2348 {
2349         struct cifs_writedata *wdata = container_of(work,
2350                                         struct cifs_writedata, work);
2351         struct inode *inode = wdata->cfile->dentry->d_inode;
2352         struct cifsInodeInfo *cifsi = CIFS_I(inode);
2353
2354         spin_lock(&inode->i_lock);
2355         cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2356         if (cifsi->server_eof > inode->i_size)
2357                 i_size_write(inode, cifsi->server_eof);
2358         spin_unlock(&inode->i_lock);
2359
2360         complete(&wdata->done);
2361
2362         kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2363 }
2364
2365 /* attempt to send write to server, retry on any -EAGAIN errors */
2366 static int
2367 cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2368 {
2369         int rc;
2370         struct TCP_Server_Info *server;
2371
2372         server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2373
2374         do {
2375                 if (wdata->cfile->invalidHandle) {
2376                         rc = cifs_reopen_file(wdata->cfile, false);
2377                         if (rc != 0)
2378                                 continue;
2379                 }
2380                 rc = server->ops->async_writev(wdata,
2381                                                cifs_uncached_writedata_release);
2382         } while (rc == -EAGAIN);
2383
2384         return rc;
2385 }
2386
2387 static ssize_t
2388 cifs_iovec_write(struct file *file, const struct iovec *iov,
2389                  unsigned long nr_segs, loff_t *poffset)
2390 {
2391         unsigned long nr_pages, i;
2392         size_t bytes, copied, len, cur_len;
2393         ssize_t total_written = 0;
2394         loff_t offset;
2395         struct iov_iter it;
2396         struct cifsFileInfo *open_file;
2397         struct cifs_tcon *tcon;
2398         struct cifs_sb_info *cifs_sb;
2399         struct cifs_writedata *wdata, *tmp;
2400         struct list_head wdata_list;
2401         int rc;
2402         pid_t pid;
2403
2404         len = iov_length(iov, nr_segs);
2405         if (!len)
2406                 return 0;
2407
2408         rc = generic_write_checks(file, poffset, &len, 0);
2409         if (rc)
2410                 return rc;
2411
2412         INIT_LIST_HEAD(&wdata_list);
2413         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2414         open_file = file->private_data;
2415         tcon = tlink_tcon(open_file->tlink);
2416
2417         if (!tcon->ses->server->ops->async_writev)
2418                 return -ENOSYS;
2419
2420         offset = *poffset;
2421
2422         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2423                 pid = open_file->pid;
2424         else
2425                 pid = current->tgid;
2426
2427         iov_iter_init(&it, iov, nr_segs, len, 0);
2428         do {
2429                 size_t save_len;
2430
2431                 nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2432                 wdata = cifs_writedata_alloc(nr_pages,
2433                                              cifs_uncached_writev_complete);
2434                 if (!wdata) {
2435                         rc = -ENOMEM;
2436                         break;
2437                 }
2438
2439                 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2440                 if (rc) {
2441                         kfree(wdata);
2442                         break;
2443                 }
2444
2445                 save_len = cur_len;
2446                 for (i = 0; i < nr_pages; i++) {
2447                         bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2448                         copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2449                                                          0, bytes);
2450                         cur_len -= copied;
2451                         iov_iter_advance(&it, copied);
2452                         /*
2453                          * If we didn't copy as much as we expected, then that
2454                          * may mean we trod into an unmapped area. Stop copying
2455                          * at that point. On the next pass through the big
2456                          * loop, we'll likely end up getting a zero-length
2457                          * write and bailing out of it.
2458                          */
2459                         if (copied < bytes)
2460                                 break;
2461                 }
2462                 cur_len = save_len - cur_len;
2463
2464                 /*
2465                  * If we have no data to send, then that probably means that
2466                  * the copy above failed altogether. That's most likely because
2467                  * the address in the iovec was bogus. Set the rc to -EFAULT,
2468                  * free anything we allocated and bail out.
2469                  */
2470                 if (!cur_len) {
2471                         for (i = 0; i < nr_pages; i++)
2472                                 put_page(wdata->pages[i]);
2473                         kfree(wdata);
2474                         rc = -EFAULT;
2475                         break;
2476                 }
2477
2478                 /*
2479                  * i + 1 now represents the number of pages we actually used in
2480                  * the copy phase above. Bring nr_pages down to that, and free
2481                  * any pages that we didn't use.
2482                  */
2483                 for ( ; nr_pages > i + 1; nr_pages--)
2484                         put_page(wdata->pages[nr_pages - 1]);
2485
2486                 wdata->sync_mode = WB_SYNC_ALL;
2487                 wdata->nr_pages = nr_pages;
2488                 wdata->offset = (__u64)offset;
2489                 wdata->cfile = cifsFileInfo_get(open_file);
2490                 wdata->pid = pid;
2491                 wdata->bytes = cur_len;
2492                 wdata->pagesz = PAGE_SIZE;
2493                 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
2494                 rc = cifs_uncached_retry_writev(wdata);
2495                 if (rc) {
2496                         kref_put(&wdata->refcount,
2497                                  cifs_uncached_writedata_release);
2498                         break;
2499                 }
2500
2501                 list_add_tail(&wdata->list, &wdata_list);
2502                 offset += cur_len;
2503                 len -= cur_len;
2504         } while (len > 0);
2505
2506         /*
2507          * If at least one write was successfully sent, then discard any rc
2508          * value from the later writes. If the other write succeeds, then
2509          * we'll end up returning whatever was written. If it fails, then
2510          * we'll get a new rc value from that.
2511          */
2512         if (!list_empty(&wdata_list))
2513                 rc = 0;
2514
2515         /*
2516          * Wait for and collect replies for any successful sends in order of
2517          * increasing offset. Once an error is hit or we get a fatal signal
2518          * while waiting, then return without waiting for any more replies.
2519          */
2520 restart_loop:
2521         list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2522                 if (!rc) {
2523                         /* FIXME: freezable too? */
2524                         rc = wait_for_completion_killable(&wdata->done);
2525                         if (rc)
2526                                 rc = -EINTR;
2527                         else if (wdata->result)
2528                                 rc = wdata->result;
2529                         else
2530                                 total_written += wdata->bytes;
2531
2532                         /* resend call if it's a retryable error */
2533                         if (rc == -EAGAIN) {
2534                                 rc = cifs_uncached_retry_writev(wdata);
2535                                 goto restart_loop;
2536                         }
2537                 }
2538                 list_del_init(&wdata->list);
2539                 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2540         }
2541
2542         if (total_written > 0)
2543                 *poffset += total_written;
2544
2545         cifs_stats_bytes_written(tcon, total_written);
2546         return total_written ? total_written : (ssize_t)rc;
2547 }
2548
2549 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2550                                 unsigned long nr_segs, loff_t pos)
2551 {
2552         ssize_t written;
2553         struct inode *inode;
2554
2555         inode = file_inode(iocb->ki_filp);
2556
2557         /*
2558          * BB - optimize the way when signing is disabled. We can drop this
2559          * extra memory-to-memory copying and use iovec buffers for constructing
2560          * write request.
2561          */
2562
2563         written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2564         if (written > 0) {
2565                 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(inode)->flags);
2566                 iocb->ki_pos = pos;
2567         }
2568
2569         return written;
2570 }
2571
2572 static ssize_t
2573 cifs_writev(struct kiocb *iocb, const struct iovec *iov,
2574             unsigned long nr_segs, loff_t pos)
2575 {
2576         struct file *file = iocb->ki_filp;
2577         struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
2578         struct inode *inode = file->f_mapping->host;
2579         struct cifsInodeInfo *cinode = CIFS_I(inode);
2580         struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
2581         ssize_t rc = -EACCES;
2582         loff_t lock_pos = iocb->ki_pos;
2583
2584         /*
2585          * We need to hold the sem to be sure nobody modifies lock list
2586          * with a brlock that prevents writing.
2587          */
2588         down_read(&cinode->lock_sem);
2589         mutex_lock(&inode->i_mutex);
2590         if (file->f_flags & O_APPEND)
2591                 lock_pos = i_size_read(inode);
2592         if (!cifs_find_lock_conflict(cfile, lock_pos, iov_length(iov, nr_segs),
2593                                      server->vals->exclusive_lock_type, NULL,
2594                                      CIFS_WRITE_OP)) {
2595                 rc = __generic_file_aio_write(iocb, iov, nr_segs);
2596                 mutex_unlock(&inode->i_mutex);
2597
2598                 if (rc > 0) {
2599                         ssize_t err;
2600
2601                         err = generic_write_sync(file, iocb->ki_pos - rc, rc);
2602                         if (err < 0)
2603                                 rc = err;
2604                 }
2605         } else {
2606                 mutex_unlock(&inode->i_mutex);
2607         }
2608         up_read(&cinode->lock_sem);
2609         return rc;
2610 }
2611
2612 ssize_t
2613 cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2614                    unsigned long nr_segs, loff_t pos)
2615 {
2616         struct inode *inode = file_inode(iocb->ki_filp);
2617         struct cifsInodeInfo *cinode = CIFS_I(inode);
2618         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2619         struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2620                                                 iocb->ki_filp->private_data;
2621         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2622         ssize_t written;
2623
2624         written = cifs_get_writer(cinode);
2625         if (written)
2626                 return written;
2627
2628         if (CIFS_CACHE_WRITE(cinode)) {
2629                 if (cap_unix(tcon->ses) &&
2630                 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
2631                   && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
2632                         written = generic_file_aio_write(
2633                                         iocb, iov, nr_segs, pos);
2634                         goto out;
2635                 }
2636                 written = cifs_writev(iocb, iov, nr_segs, pos);
2637                 goto out;
2638         }
2639         /*
2640          * For non-oplocked files in strict cache mode we need to write the data
2641          * to the server exactly from the pos to pos+len-1 rather than flush all
2642          * affected pages because it may cause a error with mandatory locks on
2643          * these pages but not on the region from pos to ppos+len-1.
2644          */
2645         written = cifs_user_writev(iocb, iov, nr_segs, pos);
2646         if (written > 0 && CIFS_CACHE_READ(cinode)) {
2647                 /*
2648                  * Windows 7 server can delay breaking level2 oplock if a write
2649                  * request comes - break it on the client to prevent reading
2650                  * an old data.
2651                  */
2652                 cifs_zap_mapping(inode);
2653                 cifs_dbg(FYI, "Set no oplock for inode=%p after a write operation\n",
2654                          inode);
2655                 cinode->oplock = 0;
2656         }
2657 out:
2658         cifs_put_writer(cinode);
2659         return written;
2660 }
2661
2662 static struct cifs_readdata *
2663 cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
2664 {
2665         struct cifs_readdata *rdata;
2666
2667         rdata = kzalloc(sizeof(*rdata) + (sizeof(struct page *) * nr_pages),
2668                         GFP_KERNEL);
2669         if (rdata != NULL) {
2670                 kref_init(&rdata->refcount);
2671                 INIT_LIST_HEAD(&rdata->list);
2672                 init_completion(&rdata->done);
2673                 INIT_WORK(&rdata->work, complete);
2674         }
2675
2676         return rdata;
2677 }
2678
2679 void
2680 cifs_readdata_release(struct kref *refcount)
2681 {
2682         struct cifs_readdata *rdata = container_of(refcount,
2683                                         struct cifs_readdata, refcount);
2684
2685         if (rdata->cfile)
2686                 cifsFileInfo_put(rdata->cfile);
2687
2688         kfree(rdata);
2689 }
2690
2691 static int
2692 cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
2693 {
2694         int rc = 0;
2695         struct page *page;
2696         unsigned int i;
2697
2698         for (i = 0; i < nr_pages; i++) {
2699                 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2700                 if (!page) {
2701                         rc = -ENOMEM;
2702                         break;
2703                 }
2704                 rdata->pages[i] = page;
2705         }
2706
2707         if (rc) {
2708                 for (i = 0; i < nr_pages; i++) {
2709                         put_page(rdata->pages[i]);
2710                         rdata->pages[i] = NULL;
2711                 }
2712         }
2713         return rc;
2714 }
2715
2716 static void
2717 cifs_uncached_readdata_release(struct kref *refcount)
2718 {
2719         struct cifs_readdata *rdata = container_of(refcount,
2720                                         struct cifs_readdata, refcount);
2721         unsigned int i;
2722
2723         for (i = 0; i < rdata->nr_pages; i++) {
2724                 put_page(rdata->pages[i]);
2725                 rdata->pages[i] = NULL;
2726         }
2727         cifs_readdata_release(refcount);
2728 }
2729
2730 static int
2731 cifs_retry_async_readv(struct cifs_readdata *rdata)
2732 {
2733         int rc;
2734         struct TCP_Server_Info *server;
2735
2736         server = tlink_tcon(rdata->cfile->tlink)->ses->server;
2737
2738         do {
2739                 if (rdata->cfile->invalidHandle) {
2740                         rc = cifs_reopen_file(rdata->cfile, true);
2741                         if (rc != 0)
2742                                 continue;
2743                 }
2744                 rc = server->ops->async_readv(rdata);
2745         } while (rc == -EAGAIN);
2746
2747         return rc;
2748 }
2749
2750 /**
2751  * cifs_readdata_to_iov - copy data from pages in response to an iovec
2752  * @rdata:      the readdata response with list of pages holding data
2753  * @iter:       destination for our data
2754  *
2755  * This function copies data from a list of pages in a readdata response into
2756  * an array of iovecs. It will first calculate where the data should go
2757  * based on the info in the readdata and then copy the data into that spot.
2758  */
2759 static int
2760 cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
2761 {
2762         size_t remaining = rdata->bytes;
2763         unsigned int i;
2764
2765         for (i = 0; i < rdata->nr_pages; i++) {
2766                 struct page *page = rdata->pages[i];
2767                 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
2768                 size_t written = copy_page_to_iter(page, 0, copy, iter);
2769                 remaining -= written;
2770                 if (written < copy && iov_iter_count(iter) > 0)
2771                         break;
2772         }
2773         return remaining ? -EFAULT : 0;
2774 }
2775
2776 static void
2777 cifs_uncached_readv_complete(struct work_struct *work)
2778 {
2779         struct cifs_readdata *rdata = container_of(work,
2780                                                 struct cifs_readdata, work);
2781
2782         complete(&rdata->done);
2783         kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2784 }
2785
2786 static int
2787 cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
2788                         struct cifs_readdata *rdata, unsigned int len)
2789 {
2790         int total_read = 0, result = 0;
2791         unsigned int i;
2792         unsigned int nr_pages = rdata->nr_pages;
2793         struct kvec iov;
2794
2795         rdata->tailsz = PAGE_SIZE;
2796         for (i = 0; i < nr_pages; i++) {
2797                 struct page *page = rdata->pages[i];
2798
2799                 if (len >= PAGE_SIZE) {
2800                         /* enough data to fill the page */
2801                         iov.iov_base = kmap(page);
2802                         iov.iov_len = PAGE_SIZE;
2803                         cifs_dbg(FYI, "%u: iov_base=%p iov_len=%zu\n",
2804                                  i, iov.iov_base, iov.iov_len);
2805                         len -= PAGE_SIZE;
2806                 } else if (len > 0) {
2807                         /* enough for partial page, fill and zero the rest */
2808                         iov.iov_base = kmap(page);
2809                         iov.iov_len = len;
2810                         cifs_dbg(FYI, "%u: iov_base=%p iov_len=%zu\n",
2811                                  i, iov.iov_base, iov.iov_len);
2812                         memset(iov.iov_base + len, '\0', PAGE_SIZE - len);
2813                         rdata->tailsz = len;
2814                         len = 0;
2815                 } else {
2816                         /* no need to hold page hostage */
2817                         rdata->pages[i] = NULL;
2818                         rdata->nr_pages--;
2819                         put_page(page);
2820                         continue;
2821                 }
2822
2823                 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
2824                 kunmap(page);
2825                 if (result < 0)
2826                         break;
2827
2828                 total_read += result;
2829         }
2830
2831         return total_read > 0 ? total_read : result;
2832 }
2833
2834 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2835                                unsigned long nr_segs, loff_t pos)
2836 {
2837         struct file *file = iocb->ki_filp;
2838         ssize_t rc;
2839         size_t len, cur_len;
2840         ssize_t total_read = 0;
2841         loff_t offset = pos;
2842         unsigned int npages;
2843         struct cifs_sb_info *cifs_sb;
2844         struct cifs_tcon *tcon;
2845         struct cifsFileInfo *open_file;
2846         struct cifs_readdata *rdata, *tmp;
2847         struct list_head rdata_list;
2848         struct iov_iter to;
2849         pid_t pid;
2850
2851         if (!nr_segs)
2852                 return 0;
2853
2854         len = iov_length(iov, nr_segs);
2855         if (!len)
2856                 return 0;
2857
2858         iov_iter_init(&to, iov, nr_segs, len, 0);
2859
2860         INIT_LIST_HEAD(&rdata_list);
2861         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2862         open_file = file->private_data;
2863         tcon = tlink_tcon(open_file->tlink);
2864
2865         if (!tcon->ses->server->ops->async_readv)
2866                 return -ENOSYS;
2867
2868         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2869                 pid = open_file->pid;
2870         else
2871                 pid = current->tgid;
2872
2873         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2874                 cifs_dbg(FYI, "attempting read on write only file instance\n");
2875
2876         do {
2877                 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
2878                 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2879
2880                 /* allocate a readdata struct */
2881                 rdata = cifs_readdata_alloc(npages,
2882                                             cifs_uncached_readv_complete);
2883                 if (!rdata) {
2884                         rc = -ENOMEM;
2885                         break;
2886                 }
2887
2888                 rc = cifs_read_allocate_pages(rdata, npages);
2889                 if (rc)
2890                         goto error;
2891
2892                 rdata->cfile = cifsFileInfo_get(open_file);
2893                 rdata->nr_pages = npages;
2894                 rdata->offset = offset;
2895                 rdata->bytes = cur_len;
2896                 rdata->pid = pid;
2897                 rdata->pagesz = PAGE_SIZE;
2898                 rdata->read_into_pages = cifs_uncached_read_into_pages;
2899
2900                 rc = cifs_retry_async_readv(rdata);
2901 error:
2902                 if (rc) {
2903                         kref_put(&rdata->refcount,
2904                                  cifs_uncached_readdata_release);
2905                         break;
2906                 }
2907
2908                 list_add_tail(&rdata->list, &rdata_list);
2909                 offset += cur_len;
2910                 len -= cur_len;
2911         } while (len > 0);
2912
2913         /* if at least one read request send succeeded, then reset rc */
2914         if (!list_empty(&rdata_list))
2915                 rc = 0;
2916
2917         len = iov_iter_count(&to);
2918         /* the loop below should proceed in the order of increasing offsets */
2919         list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
2920         again:
2921                 if (!rc) {
2922                         /* FIXME: freezable sleep too? */
2923                         rc = wait_for_completion_killable(&rdata->done);
2924                         if (rc)
2925                                 rc = -EINTR;
2926                         else if (rdata->result) {
2927                                 rc = rdata->result;
2928                                 /* resend call if it's a retryable error */
2929                                 if (rc == -EAGAIN) {
2930                                         rc = cifs_retry_async_readv(rdata);
2931                                         goto again;
2932                                 }
2933                         } else {
2934                                 rc = cifs_readdata_to_iov(rdata, &to);
2935                         }
2936
2937                 }
2938                 list_del_init(&rdata->list);
2939                 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2940         }
2941
2942         total_read = len - iov_iter_count(&to);
2943
2944         cifs_stats_bytes_read(tcon, total_read);
2945
2946         /* mask nodata case */
2947         if (rc == -ENODATA)
2948                 rc = 0;
2949
2950         if (total_read) {
2951                 iocb->ki_pos = pos + total_read;
2952                 return total_read;
2953         }
2954         return rc;
2955 }
2956
2957 ssize_t
2958 cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2959                   unsigned long nr_segs, loff_t pos)
2960 {
2961         struct inode *inode = file_inode(iocb->ki_filp);
2962         struct cifsInodeInfo *cinode = CIFS_I(inode);
2963         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2964         struct cifsFileInfo *cfile = (struct cifsFileInfo *)
2965                                                 iocb->ki_filp->private_data;
2966         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
2967         int rc = -EACCES;
2968
2969         /*
2970          * In strict cache mode we need to read from the server all the time
2971          * if we don't have level II oplock because the server can delay mtime
2972          * change - so we can't make a decision about inode invalidating.
2973          * And we can also fail with pagereading if there are mandatory locks
2974          * on pages affected by this read but not on the region from pos to
2975          * pos+len-1.
2976          */
2977         if (!CIFS_CACHE_READ(cinode))
2978                 return cifs_user_readv(iocb, iov, nr_segs, pos);
2979
2980         if (cap_unix(tcon->ses) &&
2981             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
2982             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
2983                 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2984
2985         /*
2986          * We need to hold the sem to be sure nobody modifies lock list
2987          * with a brlock that prevents reading.
2988          */
2989         down_read(&cinode->lock_sem);
2990         if (!cifs_find_lock_conflict(cfile, pos, iov_length(iov, nr_segs),
2991                                      tcon->ses->server->vals->shared_lock_type,
2992                                      NULL, CIFS_READ_OP))
2993                 rc = generic_file_aio_read(iocb, iov, nr_segs, pos);
2994         up_read(&cinode->lock_sem);
2995         return rc;
2996 }
2997
2998 static ssize_t
2999 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
3000 {
3001         int rc = -EACCES;
3002         unsigned int bytes_read = 0;
3003         unsigned int total_read;
3004         unsigned int current_read_size;
3005         unsigned int rsize;
3006         struct cifs_sb_info *cifs_sb;
3007         struct cifs_tcon *tcon;
3008         struct TCP_Server_Info *server;
3009         unsigned int xid;
3010         char *cur_offset;
3011         struct cifsFileInfo *open_file;
3012         struct cifs_io_parms io_parms;
3013         int buf_type = CIFS_NO_BUFFER;
3014         __u32 pid;
3015
3016         xid = get_xid();
3017         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
3018
3019         /* FIXME: set up handlers for larger reads and/or convert to async */
3020         rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
3021
3022         if (file->private_data == NULL) {
3023                 rc = -EBADF;
3024                 free_xid(xid);
3025                 return rc;
3026         }
3027         open_file = file->private_data;
3028         tcon = tlink_tcon(open_file->tlink);
3029         server = tcon->ses->server;
3030
3031         if (!server->ops->sync_read) {
3032                 free_xid(xid);
3033                 return -ENOSYS;
3034         }
3035
3036         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3037                 pid = open_file->pid;
3038         else
3039                 pid = current->tgid;
3040
3041         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3042                 cifs_dbg(FYI, "attempting read on write only file instance\n");
3043
3044         for (total_read = 0, cur_offset = read_data; read_size > total_read;
3045              total_read += bytes_read, cur_offset += bytes_read) {
3046                 current_read_size = min_t(uint, read_size - total_read, rsize);
3047                 /*
3048                  * For windows me and 9x we do not want to request more than it
3049                  * negotiated since it will refuse the read then.
3050                  */
3051                 if ((tcon->ses) && !(tcon->ses->capabilities &
3052                                 tcon->ses->server->vals->cap_large_files)) {
3053                         current_read_size = min_t(uint, current_read_size,
3054                                         CIFSMaxBufSize);
3055                 }
3056                 rc = -EAGAIN;
3057                 while (rc == -EAGAIN) {
3058                         if (open_file->invalidHandle) {
3059                                 rc = cifs_reopen_file(open_file, true);
3060                                 if (rc != 0)
3061                                         break;
3062                         }
3063                         io_parms.pid = pid;
3064                         io_parms.tcon = tcon;
3065                         io_parms.offset = *offset;
3066                         io_parms.length = current_read_size;
3067                         rc = server->ops->sync_read(xid, open_file, &io_parms,
3068                                                     &bytes_read, &cur_offset,
3069                                                     &buf_type);
3070                 }
3071                 if (rc || (bytes_read == 0)) {
3072                         if (total_read) {
3073                                 break;
3074                         } else {
3075                                 free_xid(xid);
3076                                 return rc;
3077                         }
3078                 } else {
3079                         cifs_stats_bytes_read(tcon, total_read);
3080                         *offset += bytes_read;
3081                 }
3082         }
3083         free_xid(xid);
3084         return total_read;
3085 }
3086
3087 /*
3088  * If the page is mmap'ed into a process' page tables, then we need to make
3089  * sure that it doesn't change while being written back.
3090  */
3091 static int
3092 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
3093 {
3094         struct page *page = vmf->page;
3095
3096         lock_page(page);
3097         return VM_FAULT_LOCKED;
3098 }
3099
3100 static struct vm_operations_struct cifs_file_vm_ops = {
3101         .fault = filemap_fault,
3102         .map_pages = filemap_map_pages,
3103         .page_mkwrite = cifs_page_mkwrite,
3104         .remap_pages = generic_file_remap_pages,
3105 };
3106
3107 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
3108 {
3109         int rc, xid;
3110         struct inode *inode = file_inode(file);
3111
3112         xid = get_xid();
3113
3114         if (!CIFS_CACHE_READ(CIFS_I(inode))) {
3115                 rc = cifs_zap_mapping(inode);
3116                 if (rc)
3117                         return rc;
3118         }
3119
3120         rc = generic_file_mmap(file, vma);
3121         if (rc == 0)
3122                 vma->vm_ops = &cifs_file_vm_ops;
3123         free_xid(xid);
3124         return rc;
3125 }
3126
3127 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
3128 {
3129         int rc, xid;
3130
3131         xid = get_xid();
3132         rc = cifs_revalidate_file(file);
3133         if (rc) {
3134                 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
3135                          rc);
3136                 free_xid(xid);
3137                 return rc;
3138         }
3139         rc = generic_file_mmap(file, vma);
3140         if (rc == 0)
3141                 vma->vm_ops = &cifs_file_vm_ops;
3142         free_xid(xid);
3143         return rc;
3144 }
3145
3146 static void
3147 cifs_readv_complete(struct work_struct *work)
3148 {
3149         unsigned int i;
3150         struct cifs_readdata *rdata = container_of(work,
3151                                                 struct cifs_readdata, work);
3152
3153         for (i = 0; i < rdata->nr_pages; i++) {
3154                 struct page *page = rdata->pages[i];
3155
3156                 lru_cache_add_file(page);
3157
3158                 if (rdata->result == 0) {
3159                         flush_dcache_page(page);
3160                         SetPageUptodate(page);
3161                 }
3162
3163                 unlock_page(page);
3164
3165                 if (rdata->result == 0)
3166                         cifs_readpage_to_fscache(rdata->mapping->host, page);
3167
3168                 page_cache_release(page);
3169                 rdata->pages[i] = NULL;
3170         }
3171         kref_put(&rdata->refcount, cifs_readdata_release);
3172 }
3173
3174 static int
3175 cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
3176                         struct cifs_readdata *rdata, unsigned int len)
3177 {
3178         int total_read = 0, result = 0;
3179         unsigned int i;
3180         u64 eof;
3181         pgoff_t eof_index;
3182         unsigned int nr_pages = rdata->nr_pages;
3183         struct kvec iov;
3184
3185         /* determine the eof that the server (probably) has */
3186         eof = CIFS_I(rdata->mapping->host)->server_eof;
3187         eof_index = eof ? (eof - 1) >> PAGE_CACHE_SHIFT : 0;
3188         cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
3189
3190         rdata->tailsz = PAGE_CACHE_SIZE;
3191         for (i = 0; i < nr_pages; i++) {
3192                 struct page *page = rdata->pages[i];
3193
3194                 if (len >= PAGE_CACHE_SIZE) {
3195                         /* enough data to fill the page */
3196                         iov.iov_base = kmap(page);
3197                         iov.iov_len = PAGE_CACHE_SIZE;
3198                         cifs_dbg(FYI, "%u: idx=%lu iov_base=%p iov_len=%zu\n",
3199                                  i, page->index, iov.iov_base, iov.iov_len);
3200                         len -= PAGE_CACHE_SIZE;
3201                 } else if (len > 0) {
3202                         /* enough for partial page, fill and zero the rest */
3203                         iov.iov_base = kmap(page);
3204                         iov.iov_len = len;
3205                         cifs_dbg(FYI, "%u: idx=%lu iov_base=%p iov_len=%zu\n",
3206                                  i, page->index, iov.iov_base, iov.iov_len);
3207                         memset(iov.iov_base + len,
3208                                 '\0', PAGE_CACHE_SIZE - len);
3209                         rdata->tailsz = len;
3210                         len = 0;
3211                 } else if (page->index > eof_index) {
3212                         /*
3213                          * The VFS will not try to do readahead past the
3214                          * i_size, but it's possible that we have outstanding
3215                          * writes with gaps in the middle and the i_size hasn't
3216                          * caught up yet. Populate those with zeroed out pages
3217                          * to prevent the VFS from repeatedly attempting to
3218                          * fill them until the writes are flushed.
3219                          */
3220                         zero_user(page, 0, PAGE_CACHE_SIZE);
3221                         lru_cache_add_file(page);
3222                         flush_dcache_page(page);
3223                         SetPageUptodate(page);
3224                         unlock_page(page);
3225                         page_cache_release(page);
3226                         rdata->pages[i] = NULL;
3227                         rdata->nr_pages--;
3228                         continue;
3229                 } else {
3230                         /* no need to hold page hostage */
3231                         lru_cache_add_file(page);
3232                         unlock_page(page);
3233                         page_cache_release(page);
3234                         rdata->pages[i] = NULL;
3235                         rdata->nr_pages--;
3236                         continue;
3237                 }
3238
3239                 result = cifs_readv_from_socket(server, &iov, 1, iov.iov_len);
3240                 kunmap(page);
3241                 if (result < 0)
3242                         break;
3243
3244                 total_read += result;
3245         }
3246
3247         return total_read > 0 ? total_read : result;
3248 }
3249
3250 static int cifs_readpages(struct file *file, struct address_space *mapping,
3251         struct list_head *page_list, unsigned num_pages)
3252 {
3253         int rc;
3254         struct list_head tmplist;
3255         struct cifsFileInfo *open_file = file->private_data;
3256         struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
3257         unsigned int rsize = cifs_sb->rsize;
3258         pid_t pid;
3259
3260         /*
3261          * Give up immediately if rsize is too small to read an entire page.
3262          * The VFS will fall back to readpage. We should never reach this
3263          * point however since we set ra_pages to 0 when the rsize is smaller
3264          * than a cache page.
3265          */
3266         if (unlikely(rsize < PAGE_CACHE_SIZE))
3267                 return 0;
3268
3269         /*
3270          * Reads as many pages as possible from fscache. Returns -ENOBUFS
3271          * immediately if the cookie is negative
3272          *
3273          * After this point, every page in the list might have PG_fscache set,
3274          * so we will need to clean that up off of every page we don't use.
3275          */
3276         rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3277                                          &num_pages);
3278         if (rc == 0)
3279                 return rc;
3280
3281         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3282                 pid = open_file->pid;
3283         else
3284                 pid = current->tgid;
3285
3286         rc = 0;
3287         INIT_LIST_HEAD(&tmplist);
3288
3289         cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
3290                  __func__, file, mapping, num_pages);
3291
3292         /*
3293          * Start with the page at end of list and move it to private
3294          * list. Do the same with any following pages until we hit
3295          * the rsize limit, hit an index discontinuity, or run out of
3296          * pages. Issue the async read and then start the loop again
3297          * until the list is empty.
3298          *
3299          * Note that list order is important. The page_list is in
3300          * the order of declining indexes. When we put the pages in
3301          * the rdata->pages, then we want them in increasing order.
3302          */
3303         while (!list_empty(page_list)) {
3304                 unsigned int i;
3305                 unsigned int bytes = PAGE_CACHE_SIZE;
3306                 unsigned int expected_index;
3307                 unsigned int nr_pages = 1;
3308                 loff_t offset;
3309                 struct page *page, *tpage;
3310                 struct cifs_readdata *rdata;
3311
3312                 page = list_entry(page_list->prev, struct page, lru);
3313
3314                 /*
3315                  * Lock the page and put it in the cache. Since no one else
3316                  * should have access to this page, we're safe to simply set
3317                  * PG_locked without checking it first.
3318                  */
3319                 __set_page_locked(page);
3320                 rc = add_to_page_cache_locked(page, mapping,
3321                                               page->index, GFP_KERNEL);
3322
3323                 /* give up if we can't stick it in the cache */
3324                 if (rc) {
3325                         __clear_page_locked(page);
3326                         break;
3327                 }
3328
3329                 /* move first page to the tmplist */
3330                 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3331                 list_move_tail(&page->lru, &tmplist);
3332
3333                 /* now try and add more pages onto the request */
3334                 expected_index = page->index + 1;
3335                 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3336                         /* discontinuity ? */
3337                         if (page->index != expected_index)
3338                                 break;
3339
3340                         /* would this page push the read over the rsize? */
3341                         if (bytes + PAGE_CACHE_SIZE > rsize)
3342                                 break;
3343
3344                         __set_page_locked(page);
3345                         if (add_to_page_cache_locked(page, mapping,
3346                                                 page->index, GFP_KERNEL)) {
3347                                 __clear_page_locked(page);
3348                                 break;
3349                         }
3350                         list_move_tail(&page->lru, &tmplist);
3351                         bytes += PAGE_CACHE_SIZE;
3352                         expected_index++;
3353                         nr_pages++;
3354                 }
3355
3356                 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3357                 if (!rdata) {
3358                         /* best to give up if we're out of mem */
3359                         list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3360                                 list_del(&page->lru);
3361                                 lru_cache_add_file(page);
3362                                 unlock_page(page);
3363                                 page_cache_release(page);
3364                         }
3365                         rc = -ENOMEM;
3366                         break;
3367                 }
3368
3369                 rdata->cfile = cifsFileInfo_get(open_file);
3370                 rdata->mapping = mapping;
3371                 rdata->offset = offset;
3372                 rdata->bytes = bytes;
3373                 rdata->pid = pid;
3374                 rdata->pagesz = PAGE_CACHE_SIZE;
3375                 rdata->read_into_pages = cifs_readpages_read_into_pages;
3376
3377                 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3378                         list_del(&page->lru);
3379                         rdata->pages[rdata->nr_pages++] = page;
3380                 }
3381
3382                 rc = cifs_retry_async_readv(rdata);
3383                 if (rc != 0) {
3384                         for (i = 0; i < rdata->nr_pages; i++) {
3385                                 page = rdata->pages[i];
3386                                 lru_cache_add_file(page);
3387                                 unlock_page(page);
3388                                 page_cache_release(page);
3389                         }
3390                         kref_put(&rdata->refcount, cifs_readdata_release);
3391                         break;
3392                 }
3393
3394                 kref_put(&rdata->refcount, cifs_readdata_release);
3395         }
3396
3397         /* Any pages that have been shown to fscache but didn't get added to
3398          * the pagecache must be uncached before they get returned to the
3399          * allocator.
3400          */
3401         cifs_fscache_readpages_cancel(mapping->host, page_list);
3402         return rc;
3403 }
3404
3405 /*
3406  * cifs_readpage_worker must be called with the page pinned
3407  */
3408 static int cifs_readpage_worker(struct file *file, struct page *page,
3409         loff_t *poffset)
3410 {
3411         char *read_data;
3412         int rc;
3413
3414         /* Is the page cached? */
3415         rc = cifs_readpage_from_fscache(file_inode(file), page);
3416         if (rc == 0)
3417                 goto read_complete;
3418
3419         read_data = kmap(page);
3420         /* for reads over a certain size could initiate async read ahead */
3421
3422         rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
3423
3424         if (rc < 0)
3425                 goto io_error;
3426         else
3427                 cifs_dbg(FYI, "Bytes read %d\n", rc);
3428
3429         file_inode(file)->i_atime =
3430                 current_fs_time(file_inode(file)->i_sb);
3431
3432         if (PAGE_CACHE_SIZE > rc)
3433                 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
3434
3435         flush_dcache_page(page);
3436         SetPageUptodate(page);
3437
3438         /* send this page to the cache */
3439         cifs_readpage_to_fscache(file_inode(file), page);
3440
3441         rc = 0;
3442
3443 io_error:
3444         kunmap(page);
3445         unlock_page(page);
3446
3447 read_complete:
3448         return rc;
3449 }
3450
3451 static int cifs_readpage(struct file *file, struct page *page)
3452 {
3453         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3454         int rc = -EACCES;
3455         unsigned int xid;
3456
3457         xid = get_xid();
3458
3459         if (file->private_data == NULL) {
3460                 rc = -EBADF;
3461                 free_xid(xid);
3462                 return rc;
3463         }
3464
3465         cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
3466                  page, (int)offset, (int)offset);
3467
3468         rc = cifs_readpage_worker(file, page, &offset);
3469
3470         free_xid(xid);
3471         return rc;
3472 }
3473
3474 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3475 {
3476         struct cifsFileInfo *open_file;
3477
3478         spin_lock(&cifs_file_list_lock);
3479         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3480                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3481                         spin_unlock(&cifs_file_list_lock);
3482                         return 1;
3483                 }
3484         }
3485         spin_unlock(&cifs_file_list_lock);
3486         return 0;
3487 }
3488
3489 /* We do not want to update the file size from server for inodes
3490    open for write - to avoid races with writepage extending
3491    the file - in the future we could consider allowing
3492    refreshing the inode only on increases in the file size
3493    but this is tricky to do without racing with writebehind
3494    page caching in the current Linux kernel design */
3495 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3496 {
3497         if (!cifsInode)
3498                 return true;
3499
3500         if (is_inode_writable(cifsInode)) {
3501                 /* This inode is open for write at least once */
3502                 struct cifs_sb_info *cifs_sb;
3503
3504                 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3505                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3506                         /* since no page cache to corrupt on directio
3507                         we can change size safely */
3508                         return true;
3509                 }
3510
3511                 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3512                         return true;
3513
3514                 return false;
3515         } else
3516                 return true;
3517 }
3518
3519 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3520                         loff_t pos, unsigned len, unsigned flags,
3521                         struct page **pagep, void **fsdata)
3522 {
3523         int oncethru = 0;
3524         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
3525         loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
3526         loff_t page_start = pos & PAGE_MASK;
3527         loff_t i_size;
3528         struct page *page;
3529         int rc = 0;
3530
3531         cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
3532
3533 start:
3534         page = grab_cache_page_write_begin(mapping, index, flags);
3535         if (!page) {
3536                 rc = -ENOMEM;
3537                 goto out;
3538         }
3539
3540         if (PageUptodate(page))
3541                 goto out;
3542
3543         /*
3544          * If we write a full page it will be up to date, no need to read from
3545          * the server. If the write is short, we'll end up doing a sync write
3546          * instead.
3547          */
3548         if (len == PAGE_CACHE_SIZE)
3549                 goto out;
3550
3551         /*
3552          * optimize away the read when we have an oplock, and we're not
3553          * expecting to use any of the data we'd be reading in. That
3554          * is, when the page lies beyond the EOF, or straddles the EOF
3555          * and the write will cover all of the existing data.
3556          */
3557         if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
3558                 i_size = i_size_read(mapping->host);
3559                 if (page_start >= i_size ||
3560                     (offset == 0 && (pos + len) >= i_size)) {
3561                         zero_user_segments(page, 0, offset,
3562                                            offset + len,
3563                                            PAGE_CACHE_SIZE);
3564                         /*
3565                          * PageChecked means that the parts of the page
3566                          * to which we're not writing are considered up
3567                          * to date. Once the data is copied to the
3568                          * page, it can be set uptodate.
3569                          */
3570                         SetPageChecked(page);
3571                         goto out;
3572                 }
3573         }
3574
3575         if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
3576                 /*
3577                  * might as well read a page, it is fast enough. If we get
3578                  * an error, we don't need to return it. cifs_write_end will
3579                  * do a sync write instead since PG_uptodate isn't set.
3580                  */
3581                 cifs_readpage_worker(file, page, &page_start);
3582                 page_cache_release(page);
3583                 oncethru = 1;
3584                 goto start;
3585         } else {
3586                 /* we could try using another file handle if there is one -
3587                    but how would we lock it to prevent close of that handle
3588                    racing with this read? In any case
3589                    this will be written out by write_end so is fine */
3590         }
3591 out:
3592         *pagep = page;
3593         return rc;
3594 }
3595
3596 static int cifs_release_page(struct page *page, gfp_t gfp)
3597 {
3598         if (PagePrivate(page))
3599                 return 0;
3600
3601         return cifs_fscache_release_page(page, gfp);
3602 }
3603
3604 static void cifs_invalidate_page(struct page *page, unsigned int offset,
3605                                  unsigned int length)
3606 {
3607         struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3608
3609         if (offset == 0 && length == PAGE_CACHE_SIZE)
3610                 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3611 }
3612
3613 static int cifs_launder_page(struct page *page)
3614 {
3615         int rc = 0;
3616         loff_t range_start = page_offset(page);
3617         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3618         struct writeback_control wbc = {
3619                 .sync_mode = WB_SYNC_ALL,
3620                 .nr_to_write = 0,
3621                 .range_start = range_start,
3622                 .range_end = range_end,
3623         };
3624
3625         cifs_dbg(FYI, "Launder page: %p\n", page);
3626
3627         if (clear_page_dirty_for_io(page))
3628                 rc = cifs_writepage_locked(page, &wbc);
3629
3630         cifs_fscache_invalidate_page(page, page->mapping->host);
3631         return rc;
3632 }
3633
3634 static int
3635 cifs_pending_writers_wait(void *unused)
3636 {
3637         schedule();
3638         return 0;
3639 }
3640
3641 void cifs_oplock_break(struct work_struct *work)
3642 {
3643         struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3644                                                   oplock_break);
3645         struct inode *inode = cfile->dentry->d_inode;
3646         struct cifsInodeInfo *cinode = CIFS_I(inode);
3647         struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3648         struct TCP_Server_Info *server = tcon->ses->server;
3649         int rc = 0;
3650
3651         wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
3652                         cifs_pending_writers_wait, TASK_UNINTERRUPTIBLE);
3653
3654         server->ops->downgrade_oplock(server, cinode,
3655                 test_bit(CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2, &cinode->flags));
3656
3657         if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
3658                                                 cifs_has_mand_locks(cinode)) {
3659                 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
3660                          inode);
3661                 cinode->oplock = 0;
3662         }
3663
3664         if (inode && S_ISREG(inode->i_mode)) {
3665                 if (CIFS_CACHE_READ(cinode))
3666                         break_lease(inode, O_RDONLY);
3667                 else
3668                         break_lease(inode, O_WRONLY);
3669                 rc = filemap_fdatawrite(inode->i_mapping);
3670                 if (!CIFS_CACHE_READ(cinode)) {
3671                         rc = filemap_fdatawait(inode->i_mapping);
3672                         mapping_set_error(inode->i_mapping, rc);
3673                         cifs_zap_mapping(inode);
3674                 }
3675                 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
3676         }
3677
3678         rc = cifs_push_locks(cfile);
3679         if (rc)
3680                 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
3681
3682         /*
3683          * releasing stale oplock after recent reconnect of smb session using
3684          * a now incorrect file handle is not a data integrity issue but do
3685          * not bother sending an oplock release if session to server still is
3686          * disconnected since oplock already released by the server
3687          */
3688         if (!cfile->oplock_break_cancelled) {
3689                 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
3690                                                              cinode);
3691                 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
3692         }
3693         cifs_done_oplock_break(cinode);
3694 }
3695
3696 /*
3697  * The presence of cifs_direct_io() in the address space ops vector
3698  * allowes open() O_DIRECT flags which would have failed otherwise.
3699  *
3700  * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
3701  * so this method should never be called.
3702  *
3703  * Direct IO is not yet supported in the cached mode. 
3704  */
3705 static ssize_t
3706 cifs_direct_io(int rw, struct kiocb *iocb, const struct iovec *iov,
3707                loff_t pos, unsigned long nr_segs)
3708 {
3709         /*
3710          * FIXME
3711          * Eventually need to support direct IO for non forcedirectio mounts
3712          */
3713         return -EINVAL;
3714 }
3715
3716
3717 const struct address_space_operations cifs_addr_ops = {
3718         .readpage = cifs_readpage,
3719         .readpages = cifs_readpages,
3720         .writepage = cifs_writepage,
3721         .writepages = cifs_writepages,
3722         .write_begin = cifs_write_begin,
3723         .write_end = cifs_write_end,
3724         .set_page_dirty = __set_page_dirty_nobuffers,
3725         .releasepage = cifs_release_page,
3726         .direct_IO = cifs_direct_io,
3727         .invalidatepage = cifs_invalidate_page,
3728         .launder_page = cifs_launder_page,
3729 };
3730
3731 /*
3732  * cifs_readpages requires the server to support a buffer large enough to
3733  * contain the header plus one complete page of data.  Otherwise, we need
3734  * to leave cifs_readpages out of the address space operations.
3735  */
3736 const struct address_space_operations cifs_addr_ops_smallbuf = {
3737         .readpage = cifs_readpage,
3738         .writepage = cifs_writepage,
3739         .writepages = cifs_writepages,
3740         .write_begin = cifs_write_begin,
3741         .write_end = cifs_write_end,
3742         .set_page_dirty = __set_page_dirty_nobuffers,
3743         .releasepage = cifs_release_page,
3744         .invalidatepage = cifs_invalidate_page,
3745         .launder_page = cifs_launder_page,
3746 };