4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo *cifs_init_private(
43 struct cifsFileInfo *private_data, struct inode *inode,
44 struct file *file, __u16 netfid)
46 memset(private_data, 0, sizeof(struct cifsFileInfo));
47 private_data->netfid = netfid;
48 private_data->pid = current->tgid;
49 init_MUTEX(&private_data->fh_sem);
50 mutex_init(&private_data->lock_mutex);
51 INIT_LIST_HEAD(&private_data->llist);
52 private_data->pfile = file; /* needed for writepage */
53 private_data->pInode = inode;
54 private_data->invalidHandle = false;
55 private_data->closePend = false;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data->wrtPending, 0);
65 static inline int cifs_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
69 else if ((flags & O_ACCMODE) == O_WRONLY)
71 else if ((flags & O_ACCMODE) == O_RDWR) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ | GENERIC_WRITE);
78 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
79 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
83 static inline fmode_t cifs_posix_convert_flags(unsigned int flags)
85 fmode_t posix_flags = 0;
87 if ((flags & O_ACCMODE) == O_RDONLY)
88 posix_flags = FMODE_READ;
89 else if ((flags & O_ACCMODE) == O_WRONLY)
90 posix_flags = FMODE_WRITE;
91 else if ((flags & O_ACCMODE) == O_RDWR) {
92 /* GENERIC_ALL is too much permission to request
93 can cause unnecessary access denied on create */
94 /* return GENERIC_ALL; */
95 posix_flags = FMODE_READ | FMODE_WRITE;
97 /* can not map O_CREAT or O_EXCL or O_TRUNC flags when
98 reopening a file. They had their effect on the original open */
100 posix_flags |= (fmode_t)O_APPEND;
102 posix_flags |= (fmode_t)O_SYNC;
103 if (flags & O_DIRECTORY)
104 posix_flags |= (fmode_t)O_DIRECTORY;
105 if (flags & O_NOFOLLOW)
106 posix_flags |= (fmode_t)O_NOFOLLOW;
107 if (flags & O_DIRECT)
108 posix_flags |= (fmode_t)O_DIRECT;
113 static inline int cifs_get_disposition(unsigned int flags)
115 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
117 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
118 return FILE_OVERWRITE_IF;
119 else if ((flags & O_CREAT) == O_CREAT)
121 else if ((flags & O_TRUNC) == O_TRUNC)
122 return FILE_OVERWRITE;
127 /* all arguments to this function must be checked for validity in caller */
128 static inline int cifs_posix_open_inode_helper(struct inode *inode,
129 struct file *file, struct cifsInodeInfo *pCifsInode,
130 struct cifsFileInfo *pCifsFile, int oplock, u16 netfid)
132 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
133 /* struct timespec temp; */ /* BB REMOVEME BB */
135 file->private_data = kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
136 if (file->private_data == NULL)
138 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
139 write_lock(&GlobalSMBSeslock);
140 list_add(&pCifsFile->tlist, &cifs_sb->tcon->openFileList);
142 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
143 if (pCifsInode == NULL) {
144 write_unlock(&GlobalSMBSeslock);
148 /* want handles we can use to read with first
149 in the list so we do not have to walk the
150 list to search for one in write_begin */
151 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
152 list_add_tail(&pCifsFile->flist,
153 &pCifsInode->openFileList);
155 list_add(&pCifsFile->flist,
156 &pCifsInode->openFileList);
159 if (pCifsInode->clientCanCacheRead) {
160 /* we have the inode open somewhere else
161 no need to discard cache data */
162 goto psx_client_can_cache;
165 /* BB FIXME need to fix this check to move it earlier into posix_open
166 BB fIX following section BB FIXME */
168 /* if not oplocked, invalidate inode pages if mtime or file
170 /* temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
171 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
172 (file->f_path.dentry->d_inode->i_size ==
173 (loff_t)le64_to_cpu(buf->EndOfFile))) {
174 cFYI(1, ("inode unchanged on server"));
176 if (file->f_path.dentry->d_inode->i_mapping) {
177 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
179 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
181 cFYI(1, ("invalidating remote inode since open detected it "
183 invalidate_remote_inode(file->f_path.dentry->d_inode);
186 psx_client_can_cache:
187 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
188 pCifsInode->clientCanCacheAll = true;
189 pCifsInode->clientCanCacheRead = true;
190 cFYI(1, ("Exclusive Oplock granted on inode %p",
191 file->f_path.dentry->d_inode));
192 } else if ((oplock & 0xF) == OPLOCK_READ)
193 pCifsInode->clientCanCacheRead = true;
195 /* will have to change the unlock if we reenable the
196 filemap_fdatawrite (which does not seem necessary */
197 write_unlock(&GlobalSMBSeslock);
201 /* all arguments to this function must be checked for validity in caller */
202 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
203 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
204 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
205 char *full_path, int xid)
207 struct timespec temp;
210 /* want handles we can use to read with first
211 in the list so we do not have to walk the
212 list to search for one in write_begin */
213 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
214 list_add_tail(&pCifsFile->flist,
215 &pCifsInode->openFileList);
217 list_add(&pCifsFile->flist,
218 &pCifsInode->openFileList);
220 write_unlock(&GlobalSMBSeslock);
221 if (pCifsInode->clientCanCacheRead) {
222 /* we have the inode open somewhere else
223 no need to discard cache data */
224 goto client_can_cache;
227 /* BB need same check in cifs_create too? */
228 /* if not oplocked, invalidate inode pages if mtime or file
230 temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
231 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
232 (file->f_path.dentry->d_inode->i_size ==
233 (loff_t)le64_to_cpu(buf->EndOfFile))) {
234 cFYI(1, ("inode unchanged on server"));
236 if (file->f_path.dentry->d_inode->i_mapping) {
237 /* BB no need to lock inode until after invalidate
238 since namei code should already have it locked? */
239 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
241 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
243 cFYI(1, ("invalidating remote inode since open detected it "
245 invalidate_remote_inode(file->f_path.dentry->d_inode);
250 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
251 full_path, inode->i_sb, xid);
253 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
254 full_path, buf, inode->i_sb, xid, NULL);
256 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
257 pCifsInode->clientCanCacheAll = true;
258 pCifsInode->clientCanCacheRead = true;
259 cFYI(1, ("Exclusive Oplock granted on inode %p",
260 file->f_path.dentry->d_inode));
261 } else if ((*oplock & 0xF) == OPLOCK_READ)
262 pCifsInode->clientCanCacheRead = true;
267 int cifs_open(struct inode *inode, struct file *file)
271 struct cifs_sb_info *cifs_sb;
272 struct cifsTconInfo *tcon;
273 struct cifsFileInfo *pCifsFile;
274 struct cifsInodeInfo *pCifsInode;
275 struct list_head *tmp;
276 char *full_path = NULL;
280 FILE_ALL_INFO *buf = NULL;
284 cifs_sb = CIFS_SB(inode->i_sb);
285 tcon = cifs_sb->tcon;
287 if (file->f_flags & O_CREAT) {
288 /* search inode for this file and fill in file->private_data */
289 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
290 read_lock(&GlobalSMBSeslock);
291 list_for_each(tmp, &pCifsInode->openFileList) {
292 pCifsFile = list_entry(tmp, struct cifsFileInfo,
294 if ((pCifsFile->pfile == NULL) &&
295 (pCifsFile->pid == current->tgid)) {
296 /* mode set in cifs_create */
298 /* needed for writepage */
299 pCifsFile->pfile = file;
301 file->private_data = pCifsFile;
305 read_unlock(&GlobalSMBSeslock);
306 if (file->private_data != NULL) {
311 if (file->f_flags & O_EXCL)
312 cERROR(1, ("could not find file instance for "
313 "new file %p", file));
317 full_path = build_path_from_dentry(file->f_path.dentry);
318 if (full_path == NULL) {
323 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
324 inode, file->f_flags, full_path));
331 if (!tcon->broken_posix_open && tcon->unix_ext &&
332 (tcon->ses->capabilities & CAP_UNIX) &&
333 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
334 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
335 int oflags = (int) cifs_posix_convert_flags(file->f_flags);
336 /* can not refresh inode info since size could be stale */
337 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
338 cifs_sb->mnt_file_mode /* ignored */,
339 oflags, &oplock, &netfid, xid);
341 cFYI(1, ("posix open succeeded"));
342 /* no need for special case handling of setting mode
343 on read only files needed here */
345 cifs_posix_open_inode_helper(inode, file, pCifsInode,
346 pCifsFile, oplock, netfid);
348 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
349 if (tcon->ses->serverNOS)
350 cERROR(1, ("server %s of type %s returned"
351 " unexpected error on SMB posix open"
352 ", disabling posix open support."
353 " Check if server update available.",
354 tcon->ses->serverName,
355 tcon->ses->serverNOS));
356 tcon->broken_posix_open = true;
357 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
358 (rc != -EOPNOTSUPP)) /* path not found or net err */
360 /* else fallthrough to retry open the old way on network i/o
364 desiredAccess = cifs_convert_flags(file->f_flags);
366 /*********************************************************************
367 * open flag mapping table:
369 * POSIX Flag CIFS Disposition
370 * ---------- ----------------
371 * O_CREAT FILE_OPEN_IF
372 * O_CREAT | O_EXCL FILE_CREATE
373 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
374 * O_TRUNC FILE_OVERWRITE
375 * none of the above FILE_OPEN
377 * Note that there is not a direct match between disposition
378 * FILE_SUPERSEDE (ie create whether or not file exists although
379 * O_CREAT | O_TRUNC is similar but truncates the existing
380 * file rather than creating a new file as FILE_SUPERSEDE does
381 * (which uses the attributes / metadata passed in on open call)
383 *? O_SYNC is a reasonable match to CIFS writethrough flag
384 *? and the read write flags match reasonably. O_LARGEFILE
385 *? is irrelevant because largefile support is always used
386 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
387 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
388 *********************************************************************/
390 disposition = cifs_get_disposition(file->f_flags);
392 /* BB pass O_SYNC flag through on file attributes .. BB */
394 /* Also refresh inode by passing in file_info buf returned by SMBOpen
395 and calling get_inode_info with returned buf (at least helps
396 non-Unix server case) */
398 /* BB we can not do this if this is the second open of a file
399 and the first handle has writebehind data, we might be
400 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
401 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
407 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
408 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
409 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
410 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
411 & CIFS_MOUNT_MAP_SPECIAL_CHR);
413 rc = -EIO; /* no NT SMB support fall into legacy open below */
416 /* Old server, try legacy style OpenX */
417 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
418 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
419 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
420 & CIFS_MOUNT_MAP_SPECIAL_CHR);
423 cFYI(1, ("cifs_open returned 0x%x", rc));
427 kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
428 if (file->private_data == NULL) {
432 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
433 write_lock(&GlobalSMBSeslock);
434 list_add(&pCifsFile->tlist, &tcon->openFileList);
436 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
438 rc = cifs_open_inode_helper(inode, file, pCifsInode,
440 &oplock, buf, full_path, xid);
442 write_unlock(&GlobalSMBSeslock);
445 if (oplock & CIFS_CREATE_ACTION) {
446 /* time to set mode which we can not set earlier due to
447 problems creating new read-only files */
448 if (tcon->unix_ext) {
449 struct cifs_unix_set_info_args args = {
450 .mode = inode->i_mode,
453 .ctime = NO_CHANGE_64,
454 .atime = NO_CHANGE_64,
455 .mtime = NO_CHANGE_64,
458 CIFSSMBUnixSetInfo(xid, tcon, full_path, &args,
460 cifs_sb->mnt_cifs_flags &
461 CIFS_MOUNT_MAP_SPECIAL_CHR);
472 /* Try to reacquire byte range locks that were released when session */
473 /* to server was lost */
474 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
478 /* BB list all locks open on this file and relock */
483 static int cifs_reopen_file(struct file *file, bool can_flush)
487 struct cifs_sb_info *cifs_sb;
488 struct cifsTconInfo *tcon;
489 struct cifsFileInfo *pCifsFile;
490 struct cifsInodeInfo *pCifsInode;
492 char *full_path = NULL;
494 int disposition = FILE_OPEN;
497 if (file->private_data)
498 pCifsFile = (struct cifsFileInfo *)file->private_data;
503 down(&pCifsFile->fh_sem);
504 if (!pCifsFile->invalidHandle) {
505 up(&pCifsFile->fh_sem);
510 if (file->f_path.dentry == NULL) {
511 cERROR(1, ("no valid name if dentry freed"));
514 goto reopen_error_exit;
517 inode = file->f_path.dentry->d_inode;
519 cERROR(1, ("inode not valid"));
522 goto reopen_error_exit;
525 cifs_sb = CIFS_SB(inode->i_sb);
526 tcon = cifs_sb->tcon;
528 /* can not grab rename sem here because various ops, including
529 those that already have the rename sem can end up causing writepage
530 to get called and if the server was down that means we end up here,
531 and we can never tell if the caller already has the rename_sem */
532 full_path = build_path_from_dentry(file->f_path.dentry);
533 if (full_path == NULL) {
536 up(&pCifsFile->fh_sem);
541 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
542 inode, file->f_flags, full_path));
549 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
550 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
551 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
552 int oflags = (int) cifs_posix_convert_flags(file->f_flags);
553 /* can not refresh inode info since size could be stale */
554 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
555 cifs_sb->mnt_file_mode /* ignored */,
556 oflags, &oplock, &netfid, xid);
558 cFYI(1, ("posix reopen succeeded"));
561 /* fallthrough to retry open the old way on errors, especially
562 in the reconnect path it is important to retry hard */
565 desiredAccess = cifs_convert_flags(file->f_flags);
567 /* Can not refresh inode by passing in file_info buf to be returned
568 by SMBOpen and then calling get_inode_info with returned buf
569 since file might have write behind data that needs to be flushed
570 and server version of file size can be stale. If we knew for sure
571 that inode was not dirty locally we could do this */
573 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
574 CREATE_NOT_DIR, &netfid, &oplock, NULL,
575 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
576 CIFS_MOUNT_MAP_SPECIAL_CHR);
578 up(&pCifsFile->fh_sem);
579 cFYI(1, ("cifs_open returned 0x%x", rc));
580 cFYI(1, ("oplock: %d", oplock));
583 pCifsFile->netfid = netfid;
584 pCifsFile->invalidHandle = false;
585 up(&pCifsFile->fh_sem);
586 pCifsInode = CIFS_I(inode);
589 rc = filemap_write_and_wait(inode->i_mapping);
591 CIFS_I(inode)->write_behind_rc = rc;
592 /* temporarily disable caching while we
593 go to server to get inode info */
594 pCifsInode->clientCanCacheAll = false;
595 pCifsInode->clientCanCacheRead = false;
597 rc = cifs_get_inode_info_unix(&inode,
598 full_path, inode->i_sb, xid);
600 rc = cifs_get_inode_info(&inode,
601 full_path, NULL, inode->i_sb,
603 } /* else we are writing out data to server already
604 and could deadlock if we tried to flush data, and
605 since we do not know if we have data that would
606 invalidate the current end of file on the server
607 we can not go to the server to get the new inod
609 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
610 pCifsInode->clientCanCacheAll = true;
611 pCifsInode->clientCanCacheRead = true;
612 cFYI(1, ("Exclusive Oplock granted on inode %p",
613 file->f_path.dentry->d_inode));
614 } else if ((oplock & 0xF) == OPLOCK_READ) {
615 pCifsInode->clientCanCacheRead = true;
616 pCifsInode->clientCanCacheAll = false;
618 pCifsInode->clientCanCacheRead = false;
619 pCifsInode->clientCanCacheAll = false;
621 cifs_relock_file(pCifsFile);
629 int cifs_close(struct inode *inode, struct file *file)
633 struct cifs_sb_info *cifs_sb;
634 struct cifsTconInfo *pTcon;
635 struct cifsFileInfo *pSMBFile =
636 (struct cifsFileInfo *)file->private_data;
640 cifs_sb = CIFS_SB(inode->i_sb);
641 pTcon = cifs_sb->tcon;
643 struct cifsLockInfo *li, *tmp;
644 write_lock(&GlobalSMBSeslock);
645 pSMBFile->closePend = true;
647 /* no sense reconnecting to close a file that is
649 if (!pTcon->need_reconnect) {
650 write_unlock(&GlobalSMBSeslock);
652 while ((atomic_read(&pSMBFile->wrtPending) != 0)
653 && (timeout <= 2048)) {
654 /* Give write a better chance to get to
655 server ahead of the close. We do not
656 want to add a wait_q here as it would
657 increase the memory utilization as
658 the struct would be in each open file,
659 but this should give enough time to
662 ("close delay, write pending"));
666 if (atomic_read(&pSMBFile->wrtPending))
667 cERROR(1, ("close with pending write"));
668 if (!pTcon->need_reconnect &&
669 !pSMBFile->invalidHandle)
670 rc = CIFSSMBClose(xid, pTcon,
673 write_unlock(&GlobalSMBSeslock);
675 write_unlock(&GlobalSMBSeslock);
677 /* Delete any outstanding lock records.
678 We'll lose them when the file is closed anyway. */
679 mutex_lock(&pSMBFile->lock_mutex);
680 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
681 list_del(&li->llist);
684 mutex_unlock(&pSMBFile->lock_mutex);
686 write_lock(&GlobalSMBSeslock);
687 list_del(&pSMBFile->flist);
688 list_del(&pSMBFile->tlist);
689 write_unlock(&GlobalSMBSeslock);
691 /* We waited above to give the SMBWrite a chance to issue
692 on the wire (so we do not get SMBWrite returning EBADF
693 if writepages is racing with close. Note that writepages
694 does not specify a file handle, so it is possible for a file
695 to be opened twice, and the application close the "wrong"
696 file handle - in these cases we delay long enough to allow
697 the SMBWrite to get on the wire before the SMB Close.
698 We allow total wait here over 45 seconds, more than
699 oplock break time, and more than enough to allow any write
700 to complete on the server, or to time out on the client */
701 while ((atomic_read(&pSMBFile->wrtPending) != 0)
702 && (timeout <= 50000)) {
703 cERROR(1, ("writes pending, delay free of handle"));
707 kfree(file->private_data);
708 file->private_data = NULL;
712 read_lock(&GlobalSMBSeslock);
713 if (list_empty(&(CIFS_I(inode)->openFileList))) {
714 cFYI(1, ("closing last open instance for inode %p", inode));
715 /* if the file is not open we do not know if we can cache info
716 on this inode, much less write behind and read ahead */
717 CIFS_I(inode)->clientCanCacheRead = false;
718 CIFS_I(inode)->clientCanCacheAll = false;
720 read_unlock(&GlobalSMBSeslock);
721 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
722 rc = CIFS_I(inode)->write_behind_rc;
727 int cifs_closedir(struct inode *inode, struct file *file)
731 struct cifsFileInfo *pCFileStruct =
732 (struct cifsFileInfo *)file->private_data;
735 cFYI(1, ("Closedir inode = 0x%p", inode));
740 struct cifsTconInfo *pTcon;
741 struct cifs_sb_info *cifs_sb =
742 CIFS_SB(file->f_path.dentry->d_sb);
744 pTcon = cifs_sb->tcon;
746 cFYI(1, ("Freeing private data in close dir"));
747 write_lock(&GlobalSMBSeslock);
748 if (!pCFileStruct->srch_inf.endOfSearch &&
749 !pCFileStruct->invalidHandle) {
750 pCFileStruct->invalidHandle = true;
751 write_unlock(&GlobalSMBSeslock);
752 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
753 cFYI(1, ("Closing uncompleted readdir with rc %d",
755 /* not much we can do if it fails anyway, ignore rc */
758 write_unlock(&GlobalSMBSeslock);
759 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
761 cFYI(1, ("closedir free smb buf in srch struct"));
762 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
763 if (pCFileStruct->srch_inf.smallBuf)
764 cifs_small_buf_release(ptmp);
766 cifs_buf_release(ptmp);
768 kfree(file->private_data);
769 file->private_data = NULL;
771 /* BB can we lock the filestruct while this is going on? */
776 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
777 __u64 offset, __u8 lockType)
779 struct cifsLockInfo *li =
780 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
786 mutex_lock(&fid->lock_mutex);
787 list_add(&li->llist, &fid->llist);
788 mutex_unlock(&fid->lock_mutex);
792 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
798 bool wait_flag = false;
799 struct cifs_sb_info *cifs_sb;
800 struct cifsTconInfo *tcon;
802 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
803 bool posix_locking = 0;
805 length = 1 + pfLock->fl_end - pfLock->fl_start;
809 cFYI(1, ("Lock parm: 0x%x flockflags: "
810 "0x%x flocktype: 0x%x start: %lld end: %lld",
811 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
814 if (pfLock->fl_flags & FL_POSIX)
816 if (pfLock->fl_flags & FL_FLOCK)
818 if (pfLock->fl_flags & FL_SLEEP) {
819 cFYI(1, ("Blocking lock"));
822 if (pfLock->fl_flags & FL_ACCESS)
823 cFYI(1, ("Process suspended by mandatory locking - "
824 "not implemented yet"));
825 if (pfLock->fl_flags & FL_LEASE)
826 cFYI(1, ("Lease on file - not implemented yet"));
827 if (pfLock->fl_flags &
828 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
829 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
831 if (pfLock->fl_type == F_WRLCK) {
832 cFYI(1, ("F_WRLCK "));
834 } else if (pfLock->fl_type == F_UNLCK) {
835 cFYI(1, ("F_UNLCK"));
837 /* Check if unlock includes more than
839 } else if (pfLock->fl_type == F_RDLCK) {
840 cFYI(1, ("F_RDLCK"));
841 lockType |= LOCKING_ANDX_SHARED_LOCK;
843 } else if (pfLock->fl_type == F_EXLCK) {
844 cFYI(1, ("F_EXLCK"));
846 } else if (pfLock->fl_type == F_SHLCK) {
847 cFYI(1, ("F_SHLCK"));
848 lockType |= LOCKING_ANDX_SHARED_LOCK;
851 cFYI(1, ("Unknown type of lock"));
853 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
854 tcon = cifs_sb->tcon;
856 if (file->private_data == NULL) {
860 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
862 if ((tcon->ses->capabilities & CAP_UNIX) &&
863 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
864 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
866 /* BB add code here to normalize offset and length to
867 account for negative length which we can not accept over the
872 if (lockType & LOCKING_ANDX_SHARED_LOCK)
873 posix_lock_type = CIFS_RDLCK;
875 posix_lock_type = CIFS_WRLCK;
876 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1 /* get */,
878 posix_lock_type, wait_flag);
883 /* BB we could chain these into one lock request BB */
884 rc = CIFSSMBLock(xid, tcon, netfid, length, pfLock->fl_start,
885 0, 1, lockType, 0 /* wait flag */ );
887 rc = CIFSSMBLock(xid, tcon, netfid, length,
888 pfLock->fl_start, 1 /* numUnlock */ ,
889 0 /* numLock */ , lockType,
891 pfLock->fl_type = F_UNLCK;
893 cERROR(1, ("Error unlocking previously locked "
894 "range %d during test of lock", rc));
898 /* if rc == ERR_SHARING_VIOLATION ? */
899 rc = 0; /* do not change lock type to unlock
900 since range in use */
907 if (!numLock && !numUnlock) {
908 /* if no lock or unlock then nothing
909 to do since we do not know what it is */
916 if (lockType & LOCKING_ANDX_SHARED_LOCK)
917 posix_lock_type = CIFS_RDLCK;
919 posix_lock_type = CIFS_WRLCK;
922 posix_lock_type = CIFS_UNLCK;
924 rc = CIFSSMBPosixLock(xid, tcon, netfid, 0 /* set */,
926 posix_lock_type, wait_flag);
928 struct cifsFileInfo *fid =
929 (struct cifsFileInfo *)file->private_data;
932 rc = CIFSSMBLock(xid, tcon, netfid, length,
934 0, numLock, lockType, wait_flag);
937 /* For Windows locks we must store them. */
938 rc = store_file_lock(fid, length,
939 pfLock->fl_start, lockType);
941 } else if (numUnlock) {
942 /* For each stored lock that this unlock overlaps
943 completely, unlock it. */
945 struct cifsLockInfo *li, *tmp;
948 mutex_lock(&fid->lock_mutex);
949 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
950 if (pfLock->fl_start <= li->offset &&
951 (pfLock->fl_start + length) >=
952 (li->offset + li->length)) {
953 stored_rc = CIFSSMBLock(xid, tcon,
955 li->length, li->offset,
956 1, 0, li->type, false);
960 list_del(&li->llist);
964 mutex_unlock(&fid->lock_mutex);
968 if (pfLock->fl_flags & FL_POSIX)
969 posix_lock_file_wait(file, pfLock);
974 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
975 size_t write_size, loff_t *poffset)
978 unsigned int bytes_written = 0;
979 unsigned int total_written;
980 struct cifs_sb_info *cifs_sb;
981 struct cifsTconInfo *pTcon;
983 struct cifsFileInfo *open_file;
985 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
987 pTcon = cifs_sb->tcon;
990 (" write %d bytes to offset %lld of %s", write_size,
991 *poffset, file->f_path.dentry->d_name.name)); */
993 if (file->private_data == NULL)
995 open_file = (struct cifsFileInfo *) file->private_data;
997 rc = generic_write_checks(file, poffset, &write_size, 0);
1003 if (*poffset > file->f_path.dentry->d_inode->i_size)
1004 long_op = CIFS_VLONG_OP; /* writes past EOF take long time */
1006 long_op = CIFS_LONG_OP;
1008 for (total_written = 0; write_size > total_written;
1009 total_written += bytes_written) {
1011 while (rc == -EAGAIN) {
1012 if (file->private_data == NULL) {
1013 /* file has been closed on us */
1015 /* if we have gotten here we have written some data
1016 and blocked, and the file has been freed on us while
1017 we blocked so return what we managed to write */
1018 return total_written;
1020 if (open_file->closePend) {
1023 return total_written;
1027 if (open_file->invalidHandle) {
1028 /* we could deadlock if we called
1029 filemap_fdatawait from here so tell
1030 reopen_file not to flush data to server
1032 rc = cifs_reopen_file(file, false);
1037 rc = CIFSSMBWrite(xid, pTcon,
1039 min_t(const int, cifs_sb->wsize,
1040 write_size - total_written),
1041 *poffset, &bytes_written,
1042 NULL, write_data + total_written, long_op);
1044 if (rc || (bytes_written == 0)) {
1052 *poffset += bytes_written;
1053 long_op = CIFS_STD_OP; /* subsequent writes fast -
1054 15 seconds is plenty */
1057 cifs_stats_bytes_written(pTcon, total_written);
1059 /* since the write may have blocked check these pointers again */
1060 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1061 struct inode *inode = file->f_path.dentry->d_inode;
1062 /* Do not update local mtime - server will set its actual value on write
1063 * inode->i_ctime = inode->i_mtime =
1064 * current_fs_time(inode->i_sb);*/
1065 if (total_written > 0) {
1066 spin_lock(&inode->i_lock);
1067 if (*poffset > file->f_path.dentry->d_inode->i_size)
1068 i_size_write(file->f_path.dentry->d_inode,
1070 spin_unlock(&inode->i_lock);
1072 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1075 return total_written;
1078 static ssize_t cifs_write(struct file *file, const char *write_data,
1079 size_t write_size, loff_t *poffset)
1082 unsigned int bytes_written = 0;
1083 unsigned int total_written;
1084 struct cifs_sb_info *cifs_sb;
1085 struct cifsTconInfo *pTcon;
1087 struct cifsFileInfo *open_file;
1089 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1091 pTcon = cifs_sb->tcon;
1093 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
1094 *poffset, file->f_path.dentry->d_name.name));
1096 if (file->private_data == NULL)
1098 open_file = (struct cifsFileInfo *)file->private_data;
1102 if (*poffset > file->f_path.dentry->d_inode->i_size)
1103 long_op = CIFS_VLONG_OP; /* writes past EOF can be slow */
1105 long_op = CIFS_LONG_OP;
1107 for (total_written = 0; write_size > total_written;
1108 total_written += bytes_written) {
1110 while (rc == -EAGAIN) {
1111 if (file->private_data == NULL) {
1112 /* file has been closed on us */
1114 /* if we have gotten here we have written some data
1115 and blocked, and the file has been freed on us
1116 while we blocked so return what we managed to
1118 return total_written;
1120 if (open_file->closePend) {
1123 return total_written;
1127 if (open_file->invalidHandle) {
1128 /* we could deadlock if we called
1129 filemap_fdatawait from here so tell
1130 reopen_file not to flush data to
1132 rc = cifs_reopen_file(file, false);
1136 if (experimEnabled || (pTcon->ses->server &&
1137 ((pTcon->ses->server->secMode &
1138 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1143 len = min((size_t)cifs_sb->wsize,
1144 write_size - total_written);
1145 /* iov[0] is reserved for smb header */
1146 iov[1].iov_base = (char *)write_data +
1148 iov[1].iov_len = len;
1149 rc = CIFSSMBWrite2(xid, pTcon,
1150 open_file->netfid, len,
1151 *poffset, &bytes_written,
1154 rc = CIFSSMBWrite(xid, pTcon,
1156 min_t(const int, cifs_sb->wsize,
1157 write_size - total_written),
1158 *poffset, &bytes_written,
1159 write_data + total_written,
1162 if (rc || (bytes_written == 0)) {
1170 *poffset += bytes_written;
1171 long_op = CIFS_STD_OP; /* subsequent writes fast -
1172 15 seconds is plenty */
1175 cifs_stats_bytes_written(pTcon, total_written);
1177 /* since the write may have blocked check these pointers again */
1178 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1179 /*BB We could make this contingent on superblock ATIME flag too */
1180 /* file->f_path.dentry->d_inode->i_ctime =
1181 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1182 if (total_written > 0) {
1183 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1184 if (*poffset > file->f_path.dentry->d_inode->i_size)
1185 i_size_write(file->f_path.dentry->d_inode,
1187 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1189 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1192 return total_written;
1195 #ifdef CONFIG_CIFS_EXPERIMENTAL
1196 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1198 struct cifsFileInfo *open_file = NULL;
1200 read_lock(&GlobalSMBSeslock);
1201 /* we could simply get the first_list_entry since write-only entries
1202 are always at the end of the list but since the first entry might
1203 have a close pending, we go through the whole list */
1204 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1205 if (open_file->closePend)
1207 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1208 (open_file->pfile->f_flags & O_RDONLY))) {
1209 if (!open_file->invalidHandle) {
1210 /* found a good file */
1211 /* lock it so it will not be closed on us */
1212 atomic_inc(&open_file->wrtPending);
1213 read_unlock(&GlobalSMBSeslock);
1215 } /* else might as well continue, and look for
1216 another, or simply have the caller reopen it
1217 again rather than trying to fix this handle */
1218 } else /* write only file */
1219 break; /* write only files are last so must be done */
1221 read_unlock(&GlobalSMBSeslock);
1226 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1228 struct cifsFileInfo *open_file;
1229 bool any_available = false;
1232 /* Having a null inode here (because mapping->host was set to zero by
1233 the VFS or MM) should not happen but we had reports of on oops (due to
1234 it being zero) during stress testcases so we need to check for it */
1236 if (cifs_inode == NULL) {
1237 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1242 read_lock(&GlobalSMBSeslock);
1244 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1245 if (open_file->closePend ||
1246 (!any_available && open_file->pid != current->tgid))
1249 if (open_file->pfile &&
1250 ((open_file->pfile->f_flags & O_RDWR) ||
1251 (open_file->pfile->f_flags & O_WRONLY))) {
1252 atomic_inc(&open_file->wrtPending);
1254 if (!open_file->invalidHandle) {
1255 /* found a good writable file */
1256 read_unlock(&GlobalSMBSeslock);
1260 read_unlock(&GlobalSMBSeslock);
1261 /* Had to unlock since following call can block */
1262 rc = cifs_reopen_file(open_file->pfile, false);
1264 if (!open_file->closePend)
1266 else { /* start over in case this was deleted */
1267 /* since the list could be modified */
1268 read_lock(&GlobalSMBSeslock);
1269 atomic_dec(&open_file->wrtPending);
1270 goto refind_writable;
1274 /* if it fails, try another handle if possible -
1275 (we can not do this if closePending since
1276 loop could be modified - in which case we
1277 have to start at the beginning of the list
1278 again. Note that it would be bad
1279 to hold up writepages here (rather than
1280 in caller) with continuous retries */
1281 cFYI(1, ("wp failed on reopen file"));
1282 read_lock(&GlobalSMBSeslock);
1283 /* can not use this handle, no write
1284 pending on this one after all */
1285 atomic_dec(&open_file->wrtPending);
1287 if (open_file->closePend) /* list could have changed */
1288 goto refind_writable;
1289 /* else we simply continue to the next entry. Thus
1290 we do not loop on reopen errors. If we
1291 can not reopen the file, for example if we
1292 reconnected to a server with another client
1293 racing to delete or lock the file we would not
1294 make progress if we restarted before the beginning
1295 of the loop here. */
1298 /* couldn't find useable FH with same pid, try any available */
1299 if (!any_available) {
1300 any_available = true;
1301 goto refind_writable;
1303 read_unlock(&GlobalSMBSeslock);
1307 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1309 struct address_space *mapping = page->mapping;
1310 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1313 int bytes_written = 0;
1314 struct cifs_sb_info *cifs_sb;
1315 struct cifsTconInfo *pTcon;
1316 struct inode *inode;
1317 struct cifsFileInfo *open_file;
1319 if (!mapping || !mapping->host)
1322 inode = page->mapping->host;
1323 cifs_sb = CIFS_SB(inode->i_sb);
1324 pTcon = cifs_sb->tcon;
1326 offset += (loff_t)from;
1327 write_data = kmap(page);
1330 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1335 /* racing with truncate? */
1336 if (offset > mapping->host->i_size) {
1338 return 0; /* don't care */
1341 /* check to make sure that we are not extending the file */
1342 if (mapping->host->i_size - offset < (loff_t)to)
1343 to = (unsigned)(mapping->host->i_size - offset);
1345 open_file = find_writable_file(CIFS_I(mapping->host));
1347 bytes_written = cifs_write(open_file->pfile, write_data,
1349 atomic_dec(&open_file->wrtPending);
1350 /* Does mm or vfs already set times? */
1351 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1352 if ((bytes_written > 0) && (offset))
1354 else if (bytes_written < 0)
1357 cFYI(1, ("No writeable filehandles for inode"));
1365 static int cifs_writepages(struct address_space *mapping,
1366 struct writeback_control *wbc)
1368 struct backing_dev_info *bdi = mapping->backing_dev_info;
1369 unsigned int bytes_to_write;
1370 unsigned int bytes_written;
1371 struct cifs_sb_info *cifs_sb;
1375 int range_whole = 0;
1382 struct cifsFileInfo *open_file;
1384 struct pagevec pvec;
1389 cifs_sb = CIFS_SB(mapping->host->i_sb);
1392 * If wsize is smaller that the page cache size, default to writing
1393 * one page at a time via cifs_writepage
1395 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1396 return generic_writepages(mapping, wbc);
1398 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1399 if (cifs_sb->tcon->ses->server->secMode &
1400 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1401 if (!experimEnabled)
1402 return generic_writepages(mapping, wbc);
1404 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1406 return generic_writepages(mapping, wbc);
1410 * BB: Is this meaningful for a non-block-device file system?
1411 * If it is, we should test it again after we do I/O
1413 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1414 wbc->encountered_congestion = 1;
1421 pagevec_init(&pvec, 0);
1422 if (wbc->range_cyclic) {
1423 index = mapping->writeback_index; /* Start from prev offset */
1426 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1427 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1428 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1433 while (!done && (index <= end) &&
1434 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1435 PAGECACHE_TAG_DIRTY,
1436 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1445 for (i = 0; i < nr_pages; i++) {
1446 page = pvec.pages[i];
1448 * At this point we hold neither mapping->tree_lock nor
1449 * lock on the page itself: the page may be truncated or
1450 * invalidated (changing page->mapping to NULL), or even
1451 * swizzled back from swapper_space to tmpfs file
1457 else if (!trylock_page(page))
1460 if (unlikely(page->mapping != mapping)) {
1465 if (!wbc->range_cyclic && page->index > end) {
1471 if (next && (page->index != next)) {
1472 /* Not next consecutive page */
1477 if (wbc->sync_mode != WB_SYNC_NONE)
1478 wait_on_page_writeback(page);
1480 if (PageWriteback(page) ||
1481 !clear_page_dirty_for_io(page)) {
1487 * This actually clears the dirty bit in the radix tree.
1488 * See cifs_writepage() for more commentary.
1490 set_page_writeback(page);
1492 if (page_offset(page) >= mapping->host->i_size) {
1495 end_page_writeback(page);
1500 * BB can we get rid of this? pages are held by pvec
1502 page_cache_get(page);
1504 len = min(mapping->host->i_size - page_offset(page),
1505 (loff_t)PAGE_CACHE_SIZE);
1507 /* reserve iov[0] for the smb header */
1509 iov[n_iov].iov_base = kmap(page);
1510 iov[n_iov].iov_len = len;
1511 bytes_to_write += len;
1515 offset = page_offset(page);
1517 next = page->index + 1;
1518 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1522 /* Search for a writable handle every time we call
1523 * CIFSSMBWrite2. We can't rely on the last handle
1524 * we used to still be valid
1526 open_file = find_writable_file(CIFS_I(mapping->host));
1528 cERROR(1, ("No writable handles for inode"));
1531 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1533 bytes_to_write, offset,
1534 &bytes_written, iov, n_iov,
1536 atomic_dec(&open_file->wrtPending);
1537 if (rc || bytes_written < bytes_to_write) {
1538 cERROR(1, ("Write2 ret %d, wrote %d",
1539 rc, bytes_written));
1540 /* BB what if continued retry is
1541 requested via mount flags? */
1543 set_bit(AS_ENOSPC, &mapping->flags);
1545 set_bit(AS_EIO, &mapping->flags);
1547 cifs_stats_bytes_written(cifs_sb->tcon,
1551 for (i = 0; i < n_iov; i++) {
1552 page = pvec.pages[first + i];
1553 /* Should we also set page error on
1554 success rc but too little data written? */
1555 /* BB investigate retry logic on temporary
1556 server crash cases and how recovery works
1557 when page marked as error */
1562 end_page_writeback(page);
1563 page_cache_release(page);
1565 if ((wbc->nr_to_write -= n_iov) <= 0)
1569 /* Need to re-find the pages we skipped */
1570 index = pvec.pages[0]->index + 1;
1572 pagevec_release(&pvec);
1574 if (!scanned && !done) {
1576 * We hit the last page and there is more work to be done: wrap
1577 * back to the start of the file
1583 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1584 mapping->writeback_index = index;
1591 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1597 /* BB add check for wbc flags */
1598 page_cache_get(page);
1599 if (!PageUptodate(page))
1600 cFYI(1, ("ppw - page not up to date"));
1603 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1605 * A writepage() implementation always needs to do either this,
1606 * or re-dirty the page with "redirty_page_for_writepage()" in
1607 * the case of a failure.
1609 * Just unlocking the page will cause the radix tree tag-bits
1610 * to fail to update with the state of the page correctly.
1612 set_page_writeback(page);
1613 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1614 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1616 end_page_writeback(page);
1617 page_cache_release(page);
1622 static int cifs_write_end(struct file *file, struct address_space *mapping,
1623 loff_t pos, unsigned len, unsigned copied,
1624 struct page *page, void *fsdata)
1627 struct inode *inode = mapping->host;
1629 cFYI(1, ("write_end for page %p from pos %lld with %d bytes",
1630 page, pos, copied));
1632 if (PageChecked(page)) {
1634 SetPageUptodate(page);
1635 ClearPageChecked(page);
1636 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1637 SetPageUptodate(page);
1639 if (!PageUptodate(page)) {
1641 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1645 /* this is probably better than directly calling
1646 partialpage_write since in this function the file handle is
1647 known which we might as well leverage */
1648 /* BB check if anything else missing out of ppw
1649 such as updating last write time */
1650 page_data = kmap(page);
1651 rc = cifs_write(file, page_data + offset, copied, &pos);
1652 /* if (rc < 0) should we set writebehind rc? */
1659 set_page_dirty(page);
1663 spin_lock(&inode->i_lock);
1664 if (pos > inode->i_size)
1665 i_size_write(inode, pos);
1666 spin_unlock(&inode->i_lock);
1670 page_cache_release(page);
1675 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1679 struct cifsTconInfo *tcon;
1680 struct cifsFileInfo *smbfile =
1681 (struct cifsFileInfo *)file->private_data;
1682 struct inode *inode = file->f_path.dentry->d_inode;
1686 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1687 dentry->d_name.name, datasync));
1689 rc = filemap_write_and_wait(inode->i_mapping);
1691 rc = CIFS_I(inode)->write_behind_rc;
1692 CIFS_I(inode)->write_behind_rc = 0;
1693 tcon = CIFS_SB(inode->i_sb)->tcon;
1694 if (!rc && tcon && smbfile &&
1695 !(CIFS_SB(inode->i_sb)->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1696 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1703 /* static void cifs_sync_page(struct page *page)
1705 struct address_space *mapping;
1706 struct inode *inode;
1707 unsigned long index = page->index;
1708 unsigned int rpages = 0;
1711 cFYI(1, ("sync page %p",page));
1712 mapping = page->mapping;
1715 inode = mapping->host;
1719 /* fill in rpages then
1720 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1722 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1732 * As file closes, flush all cached write data for this inode checking
1733 * for write behind errors.
1735 int cifs_flush(struct file *file, fl_owner_t id)
1737 struct inode *inode = file->f_path.dentry->d_inode;
1740 /* Rather than do the steps manually:
1741 lock the inode for writing
1742 loop through pages looking for write behind data (dirty pages)
1743 coalesce into contiguous 16K (or smaller) chunks to write to server
1744 send to server (prefer in parallel)
1745 deal with writebehind errors
1746 unlock inode for writing
1747 filemapfdatawrite appears easier for the time being */
1749 rc = filemap_fdatawrite(inode->i_mapping);
1750 /* reset wb rc if we were able to write out dirty pages */
1752 rc = CIFS_I(inode)->write_behind_rc;
1753 CIFS_I(inode)->write_behind_rc = 0;
1756 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1761 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1762 size_t read_size, loff_t *poffset)
1765 unsigned int bytes_read = 0;
1766 unsigned int total_read = 0;
1767 unsigned int current_read_size;
1768 struct cifs_sb_info *cifs_sb;
1769 struct cifsTconInfo *pTcon;
1771 struct cifsFileInfo *open_file;
1772 char *smb_read_data;
1773 char __user *current_offset;
1774 struct smb_com_read_rsp *pSMBr;
1777 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1778 pTcon = cifs_sb->tcon;
1780 if (file->private_data == NULL) {
1784 open_file = (struct cifsFileInfo *)file->private_data;
1786 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1787 cFYI(1, ("attempting read on write only file instance"));
1789 for (total_read = 0, current_offset = read_data;
1790 read_size > total_read;
1791 total_read += bytes_read, current_offset += bytes_read) {
1792 current_read_size = min_t(const int, read_size - total_read,
1795 smb_read_data = NULL;
1796 while (rc == -EAGAIN) {
1797 int buf_type = CIFS_NO_BUFFER;
1798 if ((open_file->invalidHandle) &&
1799 (!open_file->closePend)) {
1800 rc = cifs_reopen_file(file, true);
1804 rc = CIFSSMBRead(xid, pTcon,
1806 current_read_size, *poffset,
1807 &bytes_read, &smb_read_data,
1809 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1810 if (smb_read_data) {
1811 if (copy_to_user(current_offset,
1813 4 /* RFC1001 length field */ +
1814 le16_to_cpu(pSMBr->DataOffset),
1818 if (buf_type == CIFS_SMALL_BUFFER)
1819 cifs_small_buf_release(smb_read_data);
1820 else if (buf_type == CIFS_LARGE_BUFFER)
1821 cifs_buf_release(smb_read_data);
1822 smb_read_data = NULL;
1825 if (rc || (bytes_read == 0)) {
1833 cifs_stats_bytes_read(pTcon, bytes_read);
1834 *poffset += bytes_read;
1842 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1846 unsigned int bytes_read = 0;
1847 unsigned int total_read;
1848 unsigned int current_read_size;
1849 struct cifs_sb_info *cifs_sb;
1850 struct cifsTconInfo *pTcon;
1852 char *current_offset;
1853 struct cifsFileInfo *open_file;
1854 int buf_type = CIFS_NO_BUFFER;
1857 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1858 pTcon = cifs_sb->tcon;
1860 if (file->private_data == NULL) {
1864 open_file = (struct cifsFileInfo *)file->private_data;
1866 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1867 cFYI(1, ("attempting read on write only file instance"));
1869 for (total_read = 0, current_offset = read_data;
1870 read_size > total_read;
1871 total_read += bytes_read, current_offset += bytes_read) {
1872 current_read_size = min_t(const int, read_size - total_read,
1874 /* For windows me and 9x we do not want to request more
1875 than it negotiated since it will refuse the read then */
1877 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1878 current_read_size = min_t(const int, current_read_size,
1879 pTcon->ses->server->maxBuf - 128);
1882 while (rc == -EAGAIN) {
1883 if ((open_file->invalidHandle) &&
1884 (!open_file->closePend)) {
1885 rc = cifs_reopen_file(file, true);
1889 rc = CIFSSMBRead(xid, pTcon,
1891 current_read_size, *poffset,
1892 &bytes_read, ¤t_offset,
1895 if (rc || (bytes_read == 0)) {
1903 cifs_stats_bytes_read(pTcon, total_read);
1904 *poffset += bytes_read;
1911 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1913 struct dentry *dentry = file->f_path.dentry;
1917 rc = cifs_revalidate(dentry);
1919 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1923 rc = generic_file_mmap(file, vma);
1929 static void cifs_copy_cache_pages(struct address_space *mapping,
1930 struct list_head *pages, int bytes_read, char *data,
1931 struct pagevec *plru_pvec)
1936 while (bytes_read > 0) {
1937 if (list_empty(pages))
1940 page = list_entry(pages->prev, struct page, lru);
1941 list_del(&page->lru);
1943 if (add_to_page_cache(page, mapping, page->index,
1945 page_cache_release(page);
1946 cFYI(1, ("Add page cache failed"));
1947 data += PAGE_CACHE_SIZE;
1948 bytes_read -= PAGE_CACHE_SIZE;
1952 target = kmap_atomic(page, KM_USER0);
1954 if (PAGE_CACHE_SIZE > bytes_read) {
1955 memcpy(target, data, bytes_read);
1956 /* zero the tail end of this partial page */
1957 memset(target + bytes_read, 0,
1958 PAGE_CACHE_SIZE - bytes_read);
1961 memcpy(target, data, PAGE_CACHE_SIZE);
1962 bytes_read -= PAGE_CACHE_SIZE;
1964 kunmap_atomic(target, KM_USER0);
1966 flush_dcache_page(page);
1967 SetPageUptodate(page);
1969 if (!pagevec_add(plru_pvec, page))
1970 __pagevec_lru_add_file(plru_pvec);
1971 data += PAGE_CACHE_SIZE;
1976 static int cifs_readpages(struct file *file, struct address_space *mapping,
1977 struct list_head *page_list, unsigned num_pages)
1983 struct cifs_sb_info *cifs_sb;
1984 struct cifsTconInfo *pTcon;
1985 unsigned int bytes_read = 0;
1986 unsigned int read_size, i;
1987 char *smb_read_data = NULL;
1988 struct smb_com_read_rsp *pSMBr;
1989 struct pagevec lru_pvec;
1990 struct cifsFileInfo *open_file;
1991 int buf_type = CIFS_NO_BUFFER;
1994 if (file->private_data == NULL) {
1998 open_file = (struct cifsFileInfo *)file->private_data;
1999 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2000 pTcon = cifs_sb->tcon;
2002 pagevec_init(&lru_pvec, 0);
2003 cFYI(DBG2, ("rpages: num pages %d", num_pages));
2004 for (i = 0; i < num_pages; ) {
2005 unsigned contig_pages;
2006 struct page *tmp_page;
2007 unsigned long expected_index;
2009 if (list_empty(page_list))
2012 page = list_entry(page_list->prev, struct page, lru);
2013 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2015 /* count adjacent pages that we will read into */
2018 list_entry(page_list->prev, struct page, lru)->index;
2019 list_for_each_entry_reverse(tmp_page, page_list, lru) {
2020 if (tmp_page->index == expected_index) {
2026 if (contig_pages + i > num_pages)
2027 contig_pages = num_pages - i;
2029 /* for reads over a certain size could initiate async
2032 read_size = contig_pages * PAGE_CACHE_SIZE;
2033 /* Read size needs to be in multiples of one page */
2034 read_size = min_t(const unsigned int, read_size,
2035 cifs_sb->rsize & PAGE_CACHE_MASK);
2036 cFYI(DBG2, ("rpages: read size 0x%x contiguous pages %d",
2037 read_size, contig_pages));
2039 while (rc == -EAGAIN) {
2040 if ((open_file->invalidHandle) &&
2041 (!open_file->closePend)) {
2042 rc = cifs_reopen_file(file, true);
2047 rc = CIFSSMBRead(xid, pTcon,
2050 &bytes_read, &smb_read_data,
2052 /* BB more RC checks ? */
2053 if (rc == -EAGAIN) {
2054 if (smb_read_data) {
2055 if (buf_type == CIFS_SMALL_BUFFER)
2056 cifs_small_buf_release(smb_read_data);
2057 else if (buf_type == CIFS_LARGE_BUFFER)
2058 cifs_buf_release(smb_read_data);
2059 smb_read_data = NULL;
2063 if ((rc < 0) || (smb_read_data == NULL)) {
2064 cFYI(1, ("Read error in readpages: %d", rc));
2066 } else if (bytes_read > 0) {
2067 task_io_account_read(bytes_read);
2068 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
2069 cifs_copy_cache_pages(mapping, page_list, bytes_read,
2070 smb_read_data + 4 /* RFC1001 hdr */ +
2071 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
2073 i += bytes_read >> PAGE_CACHE_SHIFT;
2074 cifs_stats_bytes_read(pTcon, bytes_read);
2075 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
2076 i++; /* account for partial page */
2078 /* server copy of file can have smaller size
2080 /* BB do we need to verify this common case ?
2081 this case is ok - if we are at server EOF
2082 we will hit it on next read */
2087 cFYI(1, ("No bytes read (%d) at offset %lld . "
2088 "Cleaning remaining pages from readahead list",
2089 bytes_read, offset));
2090 /* BB turn off caching and do new lookup on
2091 file size at server? */
2094 if (smb_read_data) {
2095 if (buf_type == CIFS_SMALL_BUFFER)
2096 cifs_small_buf_release(smb_read_data);
2097 else if (buf_type == CIFS_LARGE_BUFFER)
2098 cifs_buf_release(smb_read_data);
2099 smb_read_data = NULL;
2104 pagevec_lru_add_file(&lru_pvec);
2106 /* need to free smb_read_data buf before exit */
2107 if (smb_read_data) {
2108 if (buf_type == CIFS_SMALL_BUFFER)
2109 cifs_small_buf_release(smb_read_data);
2110 else if (buf_type == CIFS_LARGE_BUFFER)
2111 cifs_buf_release(smb_read_data);
2112 smb_read_data = NULL;
2119 static int cifs_readpage_worker(struct file *file, struct page *page,
2125 page_cache_get(page);
2126 read_data = kmap(page);
2127 /* for reads over a certain size could initiate async read ahead */
2129 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2134 cFYI(1, ("Bytes read %d", rc));
2136 file->f_path.dentry->d_inode->i_atime =
2137 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2139 if (PAGE_CACHE_SIZE > rc)
2140 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2142 flush_dcache_page(page);
2143 SetPageUptodate(page);
2148 page_cache_release(page);
2152 static int cifs_readpage(struct file *file, struct page *page)
2154 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2160 if (file->private_data == NULL) {
2165 cFYI(1, ("readpage %p at offset %d 0x%x\n",
2166 page, (int)offset, (int)offset));
2168 rc = cifs_readpage_worker(file, page, &offset);
2176 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2178 struct cifsFileInfo *open_file;
2180 read_lock(&GlobalSMBSeslock);
2181 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2182 if (open_file->closePend)
2184 if (open_file->pfile &&
2185 ((open_file->pfile->f_flags & O_RDWR) ||
2186 (open_file->pfile->f_flags & O_WRONLY))) {
2187 read_unlock(&GlobalSMBSeslock);
2191 read_unlock(&GlobalSMBSeslock);
2195 /* We do not want to update the file size from server for inodes
2196 open for write - to avoid races with writepage extending
2197 the file - in the future we could consider allowing
2198 refreshing the inode only on increases in the file size
2199 but this is tricky to do without racing with writebehind
2200 page caching in the current Linux kernel design */
2201 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2206 if (is_inode_writable(cifsInode)) {
2207 /* This inode is open for write at least once */
2208 struct cifs_sb_info *cifs_sb;
2210 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2211 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2212 /* since no page cache to corrupt on directio
2213 we can change size safely */
2217 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2225 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2226 loff_t pos, unsigned len, unsigned flags,
2227 struct page **pagep, void **fsdata)
2229 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2230 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2231 loff_t page_start = pos & PAGE_MASK;
2236 cFYI(1, ("write_begin from %lld len %d", (long long)pos, len));
2238 page = grab_cache_page_write_begin(mapping, index, flags);
2244 if (PageUptodate(page))
2248 * If we write a full page it will be up to date, no need to read from
2249 * the server. If the write is short, we'll end up doing a sync write
2252 if (len == PAGE_CACHE_SIZE)
2256 * optimize away the read when we have an oplock, and we're not
2257 * expecting to use any of the data we'd be reading in. That
2258 * is, when the page lies beyond the EOF, or straddles the EOF
2259 * and the write will cover all of the existing data.
2261 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2262 i_size = i_size_read(mapping->host);
2263 if (page_start >= i_size ||
2264 (offset == 0 && (pos + len) >= i_size)) {
2265 zero_user_segments(page, 0, offset,
2269 * PageChecked means that the parts of the page
2270 * to which we're not writing are considered up
2271 * to date. Once the data is copied to the
2272 * page, it can be set uptodate.
2274 SetPageChecked(page);
2279 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2281 * might as well read a page, it is fast enough. If we get
2282 * an error, we don't need to return it. cifs_write_end will
2283 * do a sync write instead since PG_uptodate isn't set.
2285 cifs_readpage_worker(file, page, &page_start);
2287 /* we could try using another file handle if there is one -
2288 but how would we lock it to prevent close of that handle
2289 racing with this read? In any case
2290 this will be written out by write_end so is fine */
2297 const struct address_space_operations cifs_addr_ops = {
2298 .readpage = cifs_readpage,
2299 .readpages = cifs_readpages,
2300 .writepage = cifs_writepage,
2301 .writepages = cifs_writepages,
2302 .write_begin = cifs_write_begin,
2303 .write_end = cifs_write_end,
2304 .set_page_dirty = __set_page_dirty_nobuffers,
2305 /* .sync_page = cifs_sync_page, */
2310 * cifs_readpages requires the server to support a buffer large enough to
2311 * contain the header plus one complete page of data. Otherwise, we need
2312 * to leave cifs_readpages out of the address space operations.
2314 const struct address_space_operations cifs_addr_ops_smallbuf = {
2315 .readpage = cifs_readpage,
2316 .writepage = cifs_writepage,
2317 .writepages = cifs_writepages,
2318 .write_begin = cifs_write_begin,
2319 .write_end = cifs_write_end,
2320 .set_page_dirty = __set_page_dirty_nobuffers,
2321 /* .sync_page = cifs_sync_page, */