]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/coredump.c
c01aa7b9ab5ddb3ac78e98cbcfad31ccf1220b07
[karo-tx-linux.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 unsigned int core_pipe_limit;
50
51 struct core_name {
52         char *corename;
53         int used, size;
54 };
55 static atomic_t call_count = ATOMIC_INIT(1);
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn)
60 {
61         char *old_corename = cn->corename;
62
63         cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
64         cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
65
66         if (!cn->corename) {
67                 kfree(old_corename);
68                 return -ENOMEM;
69         }
70
71         return 0;
72 }
73
74 static int cn_printf(struct core_name *cn, const char *fmt, ...)
75 {
76         char *cur;
77         int need;
78         int ret;
79         va_list arg;
80
81         va_start(arg, fmt);
82         need = vsnprintf(NULL, 0, fmt, arg);
83         va_end(arg);
84
85         if (likely(need < cn->size - cn->used - 1))
86                 goto out_printf;
87
88         ret = expand_corename(cn);
89         if (ret)
90                 goto expand_fail;
91
92 out_printf:
93         cur = cn->corename + cn->used;
94         va_start(arg, fmt);
95         vsnprintf(cur, need + 1, fmt, arg);
96         va_end(arg);
97         cn->used += need;
98         return 0;
99
100 expand_fail:
101         return ret;
102 }
103
104 static void cn_escape(char *str)
105 {
106         for (; *str; str++)
107                 if (*str == '/')
108                         *str = '!';
109 }
110
111 static int cn_print_exe_file(struct core_name *cn)
112 {
113         struct file *exe_file;
114         char *pathbuf, *path;
115         int ret;
116
117         exe_file = get_mm_exe_file(current->mm);
118         if (!exe_file) {
119                 char *commstart = cn->corename + cn->used;
120                 ret = cn_printf(cn, "%s (path unknown)", current->comm);
121                 cn_escape(commstart);
122                 return ret;
123         }
124
125         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
126         if (!pathbuf) {
127                 ret = -ENOMEM;
128                 goto put_exe_file;
129         }
130
131         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
132         if (IS_ERR(path)) {
133                 ret = PTR_ERR(path);
134                 goto free_buf;
135         }
136
137         cn_escape(path);
138
139         ret = cn_printf(cn, "%s", path);
140
141 free_buf:
142         kfree(pathbuf);
143 put_exe_file:
144         fput(exe_file);
145         return ret;
146 }
147
148 /* format_corename will inspect the pattern parameter, and output a
149  * name into corename, which must have space for at least
150  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
151  */
152 static int format_corename(struct core_name *cn, long signr)
153 {
154         const struct cred *cred = current_cred();
155         const char *pat_ptr = core_pattern;
156         int ispipe = (*pat_ptr == '|');
157         int pid_in_pattern = 0;
158         int err = 0;
159
160         cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
161         cn->corename = kmalloc(cn->size, GFP_KERNEL);
162         cn->used = 0;
163
164         if (!cn->corename)
165                 return -ENOMEM;
166
167         /* Repeat as long as we have more pattern to process and more output
168            space */
169         while (*pat_ptr) {
170                 if (*pat_ptr != '%') {
171                         if (*pat_ptr == 0)
172                                 goto out;
173                         err = cn_printf(cn, "%c", *pat_ptr++);
174                 } else {
175                         switch (*++pat_ptr) {
176                         /* single % at the end, drop that */
177                         case 0:
178                                 goto out;
179                         /* Double percent, output one percent */
180                         case '%':
181                                 err = cn_printf(cn, "%c", '%');
182                                 break;
183                         /* pid */
184                         case 'p':
185                                 pid_in_pattern = 1;
186                                 err = cn_printf(cn, "%d",
187                                               task_tgid_vnr(current));
188                                 break;
189                         /* uid */
190                         case 'u':
191                                 err = cn_printf(cn, "%d", cred->uid);
192                                 break;
193                         /* gid */
194                         case 'g':
195                                 err = cn_printf(cn, "%d", cred->gid);
196                                 break;
197                         /* signal that caused the coredump */
198                         case 's':
199                                 err = cn_printf(cn, "%ld", signr);
200                                 break;
201                         /* UNIX time of coredump */
202                         case 't': {
203                                 struct timeval tv;
204                                 do_gettimeofday(&tv);
205                                 err = cn_printf(cn, "%lu", tv.tv_sec);
206                                 break;
207                         }
208                         /* hostname */
209                         case 'h': {
210                                 char *namestart = cn->corename + cn->used;
211                                 down_read(&uts_sem);
212                                 err = cn_printf(cn, "%s",
213                                               utsname()->nodename);
214                                 up_read(&uts_sem);
215                                 cn_escape(namestart);
216                                 break;
217                         }
218                         /* executable */
219                         case 'e': {
220                                 char *commstart = cn->corename + cn->used;
221                                 err = cn_printf(cn, "%s", current->comm);
222                                 cn_escape(commstart);
223                                 break;
224                         }
225                         case 'E':
226                                 err = cn_print_exe_file(cn);
227                                 break;
228                         /* core limit size */
229                         case 'c':
230                                 err = cn_printf(cn, "%lu",
231                                               rlimit(RLIMIT_CORE));
232                                 break;
233                         default:
234                                 break;
235                         }
236                         ++pat_ptr;
237                 }
238
239                 if (err)
240                         return err;
241         }
242
243         /* Backward compatibility with core_uses_pid:
244          *
245          * If core_pattern does not include a %p (as is the default)
246          * and core_uses_pid is set, then .%pid will be appended to
247          * the filename. Do not do this for piped commands. */
248         if (!ispipe && !pid_in_pattern && core_uses_pid) {
249                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
250                 if (err)
251                         return err;
252         }
253 out:
254         return ispipe;
255 }
256
257 static int zap_process(struct task_struct *start, int exit_code)
258 {
259         struct task_struct *t;
260         int nr = 0;
261
262         start->signal->flags = SIGNAL_GROUP_EXIT;
263         start->signal->group_exit_code = exit_code;
264         start->signal->group_stop_count = 0;
265
266         t = start;
267         do {
268                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
269                 if (t != current && t->mm) {
270                         sigaddset(&t->pending.signal, SIGKILL);
271                         signal_wake_up(t, 1);
272                         nr++;
273                 }
274         } while_each_thread(start, t);
275
276         return nr;
277 }
278
279 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
280                                 struct core_state *core_state, int exit_code)
281 {
282         struct task_struct *g, *p;
283         unsigned long flags;
284         int nr = -EAGAIN;
285
286         spin_lock_irq(&tsk->sighand->siglock);
287         if (!signal_group_exit(tsk->signal)) {
288                 mm->core_state = core_state;
289                 nr = zap_process(tsk, exit_code);
290         }
291         spin_unlock_irq(&tsk->sighand->siglock);
292         if (unlikely(nr < 0))
293                 return nr;
294
295         if (atomic_read(&mm->mm_users) == nr + 1)
296                 goto done;
297         /*
298          * We should find and kill all tasks which use this mm, and we should
299          * count them correctly into ->nr_threads. We don't take tasklist
300          * lock, but this is safe wrt:
301          *
302          * fork:
303          *      None of sub-threads can fork after zap_process(leader). All
304          *      processes which were created before this point should be
305          *      visible to zap_threads() because copy_process() adds the new
306          *      process to the tail of init_task.tasks list, and lock/unlock
307          *      of ->siglock provides a memory barrier.
308          *
309          * do_exit:
310          *      The caller holds mm->mmap_sem. This means that the task which
311          *      uses this mm can't pass exit_mm(), so it can't exit or clear
312          *      its ->mm.
313          *
314          * de_thread:
315          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
316          *      we must see either old or new leader, this does not matter.
317          *      However, it can change p->sighand, so lock_task_sighand(p)
318          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
319          *      it can't fail.
320          *
321          *      Note also that "g" can be the old leader with ->mm == NULL
322          *      and already unhashed and thus removed from ->thread_group.
323          *      This is OK, __unhash_process()->list_del_rcu() does not
324          *      clear the ->next pointer, we will find the new leader via
325          *      next_thread().
326          */
327         rcu_read_lock();
328         for_each_process(g) {
329                 if (g == tsk->group_leader)
330                         continue;
331                 if (g->flags & PF_KTHREAD)
332                         continue;
333                 p = g;
334                 do {
335                         if (p->mm) {
336                                 if (unlikely(p->mm == mm)) {
337                                         lock_task_sighand(p, &flags);
338                                         nr += zap_process(p, exit_code);
339                                         unlock_task_sighand(p, &flags);
340                                 }
341                                 break;
342                         }
343                 } while_each_thread(g, p);
344         }
345         rcu_read_unlock();
346 done:
347         atomic_set(&core_state->nr_threads, nr);
348         return nr;
349 }
350
351 static int coredump_wait(int exit_code, struct core_state *core_state)
352 {
353         struct task_struct *tsk = current;
354         struct mm_struct *mm = tsk->mm;
355         int core_waiters = -EBUSY;
356
357         init_completion(&core_state->startup);
358         core_state->dumper.task = tsk;
359         core_state->dumper.next = NULL;
360
361         down_write(&mm->mmap_sem);
362         if (!mm->core_state)
363                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
364         up_write(&mm->mmap_sem);
365
366         if (core_waiters > 0) {
367                 struct core_thread *ptr;
368
369                 wait_for_completion(&core_state->startup);
370                 /*
371                  * Wait for all the threads to become inactive, so that
372                  * all the thread context (extended register state, like
373                  * fpu etc) gets copied to the memory.
374                  */
375                 ptr = core_state->dumper.next;
376                 while (ptr != NULL) {
377                         wait_task_inactive(ptr->task, 0);
378                         ptr = ptr->next;
379                 }
380         }
381
382         return core_waiters;
383 }
384
385 static void coredump_finish(struct mm_struct *mm)
386 {
387         struct core_thread *curr, *next;
388         struct task_struct *task;
389
390         next = mm->core_state->dumper.next;
391         while ((curr = next) != NULL) {
392                 next = curr->next;
393                 task = curr->task;
394                 /*
395                  * see exit_mm(), curr->task must not see
396                  * ->task == NULL before we read ->next.
397                  */
398                 smp_mb();
399                 curr->task = NULL;
400                 wake_up_process(task);
401         }
402
403         mm->core_state = NULL;
404 }
405
406 static void wait_for_dump_helpers(struct file *file)
407 {
408         struct pipe_inode_info *pipe;
409
410         pipe = file->f_path.dentry->d_inode->i_pipe;
411
412         pipe_lock(pipe);
413         pipe->readers++;
414         pipe->writers--;
415
416         while ((pipe->readers > 1) && (!signal_pending(current))) {
417                 wake_up_interruptible_sync(&pipe->wait);
418                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
419                 pipe_wait(pipe);
420         }
421
422         pipe->readers--;
423         pipe->writers++;
424         pipe_unlock(pipe);
425
426 }
427
428 /*
429  * umh_pipe_setup
430  * helper function to customize the process used
431  * to collect the core in userspace.  Specifically
432  * it sets up a pipe and installs it as fd 0 (stdin)
433  * for the process.  Returns 0 on success, or
434  * PTR_ERR on failure.
435  * Note that it also sets the core limit to 1.  This
436  * is a special value that we use to trap recursive
437  * core dumps
438  */
439 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
440 {
441         struct file *files[2];
442         struct coredump_params *cp = (struct coredump_params *)info->data;
443         int err = create_pipe_files(files, 0);
444         if (err)
445                 return err;
446
447         cp->file = files[1];
448
449         replace_fd(0, files[0], 0);
450         /* and disallow core files too */
451         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
452
453         return 0;
454 }
455
456 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
457 {
458         struct core_state core_state;
459         struct core_name cn;
460         struct mm_struct *mm = current->mm;
461         struct linux_binfmt * binfmt;
462         const struct cred *old_cred;
463         struct cred *cred;
464         int retval = 0;
465         int flag = 0;
466         int ispipe;
467         struct files_struct *displaced;
468         bool need_nonrelative = false;
469         static atomic_t core_dump_count = ATOMIC_INIT(0);
470         struct coredump_params cprm = {
471                 .signr = signr,
472                 .regs = regs,
473                 .limit = rlimit(RLIMIT_CORE),
474                 /*
475                  * We must use the same mm->flags while dumping core to avoid
476                  * inconsistency of bit flags, since this flag is not protected
477                  * by any locks.
478                  */
479                 .mm_flags = mm->flags,
480         };
481
482         audit_core_dumps(signr);
483
484         binfmt = mm->binfmt;
485         if (!binfmt || !binfmt->core_dump)
486                 goto fail;
487         if (!__get_dumpable(cprm.mm_flags))
488                 goto fail;
489
490         cred = prepare_creds();
491         if (!cred)
492                 goto fail;
493         /*
494          * We cannot trust fsuid as being the "true" uid of the process
495          * nor do we know its entire history. We only know it was tainted
496          * so we dump it as root in mode 2, and only into a controlled
497          * environment (pipe handler or fully qualified path).
498          */
499         if (__get_dumpable(cprm.mm_flags) == SUID_DUMPABLE_SAFE) {
500                 /* Setuid core dump mode */
501                 flag = O_EXCL;          /* Stop rewrite attacks */
502                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
503                 need_nonrelative = true;
504         }
505
506         retval = coredump_wait(exit_code, &core_state);
507         if (retval < 0)
508                 goto fail_creds;
509
510         old_cred = override_creds(cred);
511
512         /*
513          * Clear any false indication of pending signals that might
514          * be seen by the filesystem code called to write the core file.
515          */
516         clear_thread_flag(TIF_SIGPENDING);
517
518         ispipe = format_corename(&cn, signr);
519
520         if (ispipe) {
521                 int dump_count;
522                 char **helper_argv;
523
524                 if (ispipe < 0) {
525                         printk(KERN_WARNING "format_corename failed\n");
526                         printk(KERN_WARNING "Aborting core\n");
527                         goto fail_corename;
528                 }
529
530                 if (cprm.limit == 1) {
531                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
532                          *
533                          * Normally core limits are irrelevant to pipes, since
534                          * we're not writing to the file system, but we use
535                          * cprm.limit of 1 here as a speacial value, this is a
536                          * consistent way to catch recursive crashes.
537                          * We can still crash if the core_pattern binary sets
538                          * RLIM_CORE = !1, but it runs as root, and can do
539                          * lots of stupid things.
540                          *
541                          * Note that we use task_tgid_vnr here to grab the pid
542                          * of the process group leader.  That way we get the
543                          * right pid if a thread in a multi-threaded
544                          * core_pattern process dies.
545                          */
546                         printk(KERN_WARNING
547                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
548                                 task_tgid_vnr(current), current->comm);
549                         printk(KERN_WARNING "Aborting core\n");
550                         goto fail_unlock;
551                 }
552                 cprm.limit = RLIM_INFINITY;
553
554                 dump_count = atomic_inc_return(&core_dump_count);
555                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
556                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
557                                task_tgid_vnr(current), current->comm);
558                         printk(KERN_WARNING "Skipping core dump\n");
559                         goto fail_dropcount;
560                 }
561
562                 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
563                 if (!helper_argv) {
564                         printk(KERN_WARNING "%s failed to allocate memory\n",
565                                __func__);
566                         goto fail_dropcount;
567                 }
568
569                 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
570                                         NULL, UMH_WAIT_EXEC, umh_pipe_setup,
571                                         NULL, &cprm);
572                 argv_free(helper_argv);
573                 if (retval) {
574                         printk(KERN_INFO "Core dump to %s pipe failed\n",
575                                cn.corename);
576                         goto close_fail;
577                 }
578         } else {
579                 struct inode *inode;
580
581                 if (cprm.limit < binfmt->min_coredump)
582                         goto fail_unlock;
583
584                 if (need_nonrelative && cn.corename[0] != '/') {
585                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
586                                 "to fully qualified path!\n",
587                                 task_tgid_vnr(current), current->comm);
588                         printk(KERN_WARNING "Skipping core dump\n");
589                         goto fail_unlock;
590                 }
591
592                 cprm.file = filp_open(cn.corename,
593                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
594                                  0600);
595                 if (IS_ERR(cprm.file))
596                         goto fail_unlock;
597
598                 inode = cprm.file->f_path.dentry->d_inode;
599                 if (inode->i_nlink > 1)
600                         goto close_fail;
601                 if (d_unhashed(cprm.file->f_path.dentry))
602                         goto close_fail;
603                 /*
604                  * AK: actually i see no reason to not allow this for named
605                  * pipes etc, but keep the previous behaviour for now.
606                  */
607                 if (!S_ISREG(inode->i_mode))
608                         goto close_fail;
609                 /*
610                  * Dont allow local users get cute and trick others to coredump
611                  * into their pre-created files.
612                  */
613                 if (!uid_eq(inode->i_uid, current_fsuid()))
614                         goto close_fail;
615                 if (!cprm.file->f_op || !cprm.file->f_op->write)
616                         goto close_fail;
617                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
618                         goto close_fail;
619         }
620
621         /* get us an unshared descriptor table; almost always a no-op */
622         retval = unshare_files(&displaced);
623         if (retval)
624                 goto close_fail;
625         if (displaced)
626                 put_files_struct(displaced);
627         retval = binfmt->core_dump(&cprm);
628         if (retval)
629                 current->signal->group_exit_code |= 0x80;
630
631         if (ispipe && core_pipe_limit)
632                 wait_for_dump_helpers(cprm.file);
633 close_fail:
634         if (cprm.file)
635                 filp_close(cprm.file, NULL);
636 fail_dropcount:
637         if (ispipe)
638                 atomic_dec(&core_dump_count);
639 fail_unlock:
640         kfree(cn.corename);
641 fail_corename:
642         coredump_finish(mm);
643         revert_creds(old_cred);
644 fail_creds:
645         put_cred(cred);
646 fail:
647         return;
648 }
649
650 /*
651  * Core dumping helper functions.  These are the only things you should
652  * do on a core-file: use only these functions to write out all the
653  * necessary info.
654  */
655 int dump_write(struct file *file, const void *addr, int nr)
656 {
657         return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
658 }
659 EXPORT_SYMBOL(dump_write);
660
661 int dump_seek(struct file *file, loff_t off)
662 {
663         int ret = 1;
664
665         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
666                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
667                         return 0;
668         } else {
669                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
670
671                 if (!buf)
672                         return 0;
673                 while (off > 0) {
674                         unsigned long n = off;
675
676                         if (n > PAGE_SIZE)
677                                 n = PAGE_SIZE;
678                         if (!dump_write(file, buf, n)) {
679                                 ret = 0;
680                                 break;
681                         }
682                         off -= n;
683                 }
684                 free_page((unsigned long)buf);
685         }
686         return ret;
687 }
688 EXPORT_SYMBOL(dump_seek);