4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* dio_state only used in the submission path */
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
98 struct iov_iter *iter;
100 * Page queue. These variables belong to dio_refill_pages() and
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
108 /* dio_state communicated between submission path and end_io */
110 int flags; /* doesn't change */
113 loff_t i_size; /* i_size when submitted */
114 dio_iodone_t *end_io; /* IO completion function */
116 void *private; /* copy from map_bh.b_private */
118 /* BIO completion state */
119 spinlock_t bio_lock; /* protects BIO fields below */
120 int page_errors; /* errno from get_user_pages() */
121 int is_async; /* is IO async ? */
122 bool defer_completion; /* defer AIO completion to workqueue? */
123 int io_error; /* IO error in completion path */
124 unsigned long refcount; /* direct_io_worker() and bios */
125 struct bio *bio_list; /* singly linked via bi_private */
126 struct task_struct *waiter; /* waiting task (NULL if none) */
128 /* AIO related stuff */
129 struct kiocb *iocb; /* kiocb */
130 ssize_t result; /* IO result */
133 * pages[] (and any fields placed after it) are not zeroed out at
134 * allocation time. Don't add new fields after pages[] unless you
135 * wish that they not be zeroed.
138 struct page *pages[DIO_PAGES]; /* page buffer */
139 struct work_struct complete_work;/* deferred AIO completion */
141 } ____cacheline_aligned_in_smp;
143 static struct kmem_cache *dio_cache __read_mostly;
146 * How many pages are in the queue?
148 static inline unsigned dio_pages_present(struct dio_submit *sdio)
150 return sdio->tail - sdio->head;
154 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
156 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
163 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164 struct page *page = ZERO_PAGE(0);
166 * A memory fault, but the filesystem has some outstanding
167 * mapped blocks. We need to use those blocks up to avoid
168 * leaking stale data in the file.
170 if (dio->page_errors == 0)
171 dio->page_errors = ret;
172 page_cache_get(page);
173 dio->pages[0] = page;
177 sdio->to = PAGE_SIZE;
182 iov_iter_advance(sdio->iter, ret);
185 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
193 * Get another userspace page. Returns an ERR_PTR on error. Pages are
194 * buffered inside the dio so that we can call get_user_pages() against a
195 * decent number of pages, less frequently. To provide nicer use of the
198 static inline struct page *dio_get_page(struct dio *dio,
199 struct dio_submit *sdio)
201 if (dio_pages_present(sdio) == 0) {
204 ret = dio_refill_pages(dio, sdio);
207 BUG_ON(dio_pages_present(sdio) == 0);
209 return dio->pages[sdio->head];
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
216 * This drops i_dio_count, lets interested parties know that a DIO operation
217 * has completed, and calculates the resulting return code for the operation.
219 * It lets the filesystem know if it registered an interest earlier via
220 * get_block. Pass the private field of the map buffer_head so that
221 * filesystems can use it to hold additional state between get_block calls and
224 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
227 ssize_t transferred = 0;
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
235 if (ret == -EIOCBQUEUED)
239 transferred = dio->result;
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
247 ret = dio->page_errors;
253 if (dio->end_io && dio->result)
254 dio->end_io(dio->iocb, offset, transferred, dio->private);
256 inode_dio_done(dio->inode);
258 if (dio->rw & WRITE) {
261 err = generic_write_sync(dio->iocb->ki_filp, offset,
263 if (err < 0 && ret > 0)
267 dio->iocb->ki_complete(dio->iocb, ret, 0);
270 kmem_cache_free(dio_cache, dio);
274 static void dio_aio_complete_work(struct work_struct *work)
276 struct dio *dio = container_of(work, struct dio, complete_work);
278 dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284 * Asynchronous IO callback.
286 static void dio_bio_end_aio(struct bio *bio, int error)
288 struct dio *dio = bio->bi_private;
289 unsigned long remaining;
292 /* cleanup the bio */
293 dio_bio_complete(dio, bio);
295 spin_lock_irqsave(&dio->bio_lock, flags);
296 remaining = --dio->refcount;
297 if (remaining == 1 && dio->waiter)
298 wake_up_process(dio->waiter);
299 spin_unlock_irqrestore(&dio->bio_lock, flags);
301 if (remaining == 0) {
302 if (dio->result && dio->defer_completion) {
303 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
304 queue_work(dio->inode->i_sb->s_dio_done_wq,
305 &dio->complete_work);
307 dio_complete(dio, dio->iocb->ki_pos, 0, true);
313 * The BIO completion handler simply queues the BIO up for the process-context
316 * During I/O bi_private points at the dio. After I/O, bi_private is used to
317 * implement a singly-linked list of completed BIOs, at dio->bio_list.
319 static void dio_bio_end_io(struct bio *bio, int error)
321 struct dio *dio = bio->bi_private;
324 spin_lock_irqsave(&dio->bio_lock, flags);
325 bio->bi_private = dio->bio_list;
327 if (--dio->refcount == 1 && dio->waiter)
328 wake_up_process(dio->waiter);
329 spin_unlock_irqrestore(&dio->bio_lock, flags);
333 * dio_end_io - handle the end io action for the given bio
334 * @bio: The direct io bio thats being completed
335 * @error: Error if there was one
337 * This is meant to be called by any filesystem that uses their own dio_submit_t
338 * so that the DIO specific endio actions are dealt with after the filesystem
339 * has done it's completion work.
341 void dio_end_io(struct bio *bio, int error)
343 struct dio *dio = bio->bi_private;
346 dio_bio_end_aio(bio, error);
348 dio_bio_end_io(bio, error);
350 EXPORT_SYMBOL_GPL(dio_end_io);
353 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
354 struct block_device *bdev,
355 sector_t first_sector, int nr_vecs)
360 * bio_alloc() is guaranteed to return a bio when called with
361 * __GFP_WAIT and we request a valid number of vectors.
363 bio = bio_alloc(GFP_KERNEL, nr_vecs);
366 bio->bi_iter.bi_sector = first_sector;
368 bio->bi_end_io = dio_bio_end_aio;
370 bio->bi_end_io = dio_bio_end_io;
373 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
377 * In the AIO read case we speculatively dirty the pages before starting IO.
378 * During IO completion, any of these pages which happen to have been written
379 * back will be redirtied by bio_check_pages_dirty().
381 * bios hold a dio reference between submit_bio and ->end_io.
383 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
385 struct bio *bio = sdio->bio;
388 bio->bi_private = dio;
390 spin_lock_irqsave(&dio->bio_lock, flags);
392 spin_unlock_irqrestore(&dio->bio_lock, flags);
394 if (dio->is_async && dio->rw == READ)
395 bio_set_pages_dirty(bio);
398 sdio->submit_io(dio->rw, bio, dio->inode,
399 sdio->logical_offset_in_bio);
401 submit_bio(dio->rw, bio);
405 sdio->logical_offset_in_bio = 0;
409 * Release any resources in case of a failure
411 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
413 while (sdio->head < sdio->tail)
414 page_cache_release(dio->pages[sdio->head++]);
418 * Wait for the next BIO to complete. Remove it and return it. NULL is
419 * returned once all BIOs have been completed. This must only be called once
420 * all bios have been issued so that dio->refcount can only decrease. This
421 * requires that that the caller hold a reference on the dio.
423 static struct bio *dio_await_one(struct dio *dio)
426 struct bio *bio = NULL;
428 spin_lock_irqsave(&dio->bio_lock, flags);
431 * Wait as long as the list is empty and there are bios in flight. bio
432 * completion drops the count, maybe adds to the list, and wakes while
433 * holding the bio_lock so we don't need set_current_state()'s barrier
434 * and can call it after testing our condition.
436 while (dio->refcount > 1 && dio->bio_list == NULL) {
437 __set_current_state(TASK_UNINTERRUPTIBLE);
438 dio->waiter = current;
439 spin_unlock_irqrestore(&dio->bio_lock, flags);
441 /* wake up sets us TASK_RUNNING */
442 spin_lock_irqsave(&dio->bio_lock, flags);
447 dio->bio_list = bio->bi_private;
449 spin_unlock_irqrestore(&dio->bio_lock, flags);
454 * Process one completed BIO. No locks are held.
456 static int dio_bio_complete(struct dio *dio, struct bio *bio)
458 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
459 struct bio_vec *bvec;
463 dio->io_error = -EIO;
465 if (dio->is_async && dio->rw == READ) {
466 bio_check_pages_dirty(bio); /* transfers ownership */
468 bio_for_each_segment_all(bvec, bio, i) {
469 struct page *page = bvec->bv_page;
471 if (dio->rw == READ && !PageCompound(page))
472 set_page_dirty_lock(page);
473 page_cache_release(page);
477 return uptodate ? 0 : -EIO;
481 * Wait on and process all in-flight BIOs. This must only be called once
482 * all bios have been issued so that the refcount can only decrease.
483 * This just waits for all bios to make it through dio_bio_complete. IO
484 * errors are propagated through dio->io_error and should be propagated via
487 static void dio_await_completion(struct dio *dio)
491 bio = dio_await_one(dio);
493 dio_bio_complete(dio, bio);
498 * A really large O_DIRECT read or write can generate a lot of BIOs. So
499 * to keep the memory consumption sane we periodically reap any completed BIOs
500 * during the BIO generation phase.
502 * This also helps to limit the peak amount of pinned userspace memory.
504 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
508 if (sdio->reap_counter++ >= 64) {
509 while (dio->bio_list) {
514 spin_lock_irqsave(&dio->bio_lock, flags);
516 dio->bio_list = bio->bi_private;
517 spin_unlock_irqrestore(&dio->bio_lock, flags);
518 ret2 = dio_bio_complete(dio, bio);
522 sdio->reap_counter = 0;
528 * Create workqueue for deferred direct IO completions. We allocate the
529 * workqueue when it's first needed. This avoids creating workqueue for
530 * filesystems that don't need it and also allows us to create the workqueue
531 * late enough so the we can include s_id in the name of the workqueue.
533 static int sb_init_dio_done_wq(struct super_block *sb)
535 struct workqueue_struct *old;
536 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
542 * This has to be atomic as more DIOs can race to create the workqueue
544 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
545 /* Someone created workqueue before us? Free ours... */
547 destroy_workqueue(wq);
551 static int dio_set_defer_completion(struct dio *dio)
553 struct super_block *sb = dio->inode->i_sb;
555 if (dio->defer_completion)
557 dio->defer_completion = true;
558 if (!sb->s_dio_done_wq)
559 return sb_init_dio_done_wq(sb);
564 * Call into the fs to map some more disk blocks. We record the current number
565 * of available blocks at sdio->blocks_available. These are in units of the
566 * fs blocksize, (1 << inode->i_blkbits).
568 * The fs is allowed to map lots of blocks at once. If it wants to do that,
569 * it uses the passed inode-relative block number as the file offset, as usual.
571 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
572 * has remaining to do. The fs should not map more than this number of blocks.
574 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
575 * indicate how much contiguous disk space has been made available at
578 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
579 * This isn't very efficient...
581 * In the case of filesystem holes: the fs may return an arbitrarily-large
582 * hole by returning an appropriate value in b_size and by clearing
583 * buffer_mapped(). However the direct-io code will only process holes one
584 * block at a time - it will repeatedly call get_block() as it walks the hole.
586 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
587 struct buffer_head *map_bh)
590 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
591 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
592 unsigned long fs_count; /* Number of filesystem-sized blocks */
594 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
597 * If there was a memory error and we've overwritten all the
598 * mapped blocks then we can now return that memory error
600 ret = dio->page_errors;
602 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
603 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
604 fs_endblk = (sdio->final_block_in_request - 1) >>
606 fs_count = fs_endblk - fs_startblk + 1;
609 map_bh->b_size = fs_count << i_blkbits;
612 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
613 * forbid block creations: only overwrites are permitted.
614 * We will return early to the caller once we see an
615 * unmapped buffer head returned, and the caller will fall
616 * back to buffered I/O.
618 * Otherwise the decision is left to the get_blocks method,
619 * which may decide to handle it or also return an unmapped
622 create = dio->rw & WRITE;
623 if (dio->flags & DIO_SKIP_HOLES) {
624 if (sdio->block_in_file < (i_size_read(dio->inode) >>
629 ret = (*sdio->get_block)(dio->inode, fs_startblk,
632 /* Store for completion */
633 dio->private = map_bh->b_private;
635 if (ret == 0 && buffer_defer_completion(map_bh))
636 ret = dio_set_defer_completion(dio);
642 * There is no bio. Make one now.
644 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
645 sector_t start_sector, struct buffer_head *map_bh)
650 ret = dio_bio_reap(dio, sdio);
653 sector = start_sector << (sdio->blkbits - 9);
654 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
655 BUG_ON(nr_pages <= 0);
656 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
663 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
664 * that was successful then update final_block_in_bio and take a ref against
665 * the just-added page.
667 * Return zero on success. Non-zero means the caller needs to start a new BIO.
669 static inline int dio_bio_add_page(struct dio_submit *sdio)
673 ret = bio_add_page(sdio->bio, sdio->cur_page,
674 sdio->cur_page_len, sdio->cur_page_offset);
675 if (ret == sdio->cur_page_len) {
677 * Decrement count only, if we are done with this page
679 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
681 page_cache_get(sdio->cur_page);
682 sdio->final_block_in_bio = sdio->cur_page_block +
683 (sdio->cur_page_len >> sdio->blkbits);
692 * Put cur_page under IO. The section of cur_page which is described by
693 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
694 * starts on-disk at cur_page_block.
696 * We take a ref against the page here (on behalf of its presence in the bio).
698 * The caller of this function is responsible for removing cur_page from the
699 * dio, and for dropping the refcount which came from that presence.
701 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
702 struct buffer_head *map_bh)
707 loff_t cur_offset = sdio->cur_page_fs_offset;
708 loff_t bio_next_offset = sdio->logical_offset_in_bio +
709 sdio->bio->bi_iter.bi_size;
712 * See whether this new request is contiguous with the old.
714 * Btrfs cannot handle having logically non-contiguous requests
715 * submitted. For example if you have
717 * Logical: [0-4095][HOLE][8192-12287]
718 * Physical: [0-4095] [4096-8191]
720 * We cannot submit those pages together as one BIO. So if our
721 * current logical offset in the file does not equal what would
722 * be the next logical offset in the bio, submit the bio we
725 if (sdio->final_block_in_bio != sdio->cur_page_block ||
726 cur_offset != bio_next_offset)
727 dio_bio_submit(dio, sdio);
730 if (sdio->bio == NULL) {
731 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
736 if (dio_bio_add_page(sdio) != 0) {
737 dio_bio_submit(dio, sdio);
738 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
740 ret = dio_bio_add_page(sdio);
749 * An autonomous function to put a chunk of a page under deferred IO.
751 * The caller doesn't actually know (or care) whether this piece of page is in
752 * a BIO, or is under IO or whatever. We just take care of all possible
753 * situations here. The separation between the logic of do_direct_IO() and
754 * that of submit_page_section() is important for clarity. Please don't break.
756 * The chunk of page starts on-disk at blocknr.
758 * We perform deferred IO, by recording the last-submitted page inside our
759 * private part of the dio structure. If possible, we just expand the IO
760 * across that page here.
762 * If that doesn't work out then we put the old page into the bio and add this
763 * page to the dio instead.
766 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
767 unsigned offset, unsigned len, sector_t blocknr,
768 struct buffer_head *map_bh)
772 if (dio->rw & WRITE) {
774 * Read accounting is performed in submit_bio()
776 task_io_account_write(len);
780 * Can we just grow the current page's presence in the dio?
782 if (sdio->cur_page == page &&
783 sdio->cur_page_offset + sdio->cur_page_len == offset &&
784 sdio->cur_page_block +
785 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
786 sdio->cur_page_len += len;
791 * If there's a deferred page already there then send it.
793 if (sdio->cur_page) {
794 ret = dio_send_cur_page(dio, sdio, map_bh);
795 page_cache_release(sdio->cur_page);
796 sdio->cur_page = NULL;
801 page_cache_get(page); /* It is in dio */
802 sdio->cur_page = page;
803 sdio->cur_page_offset = offset;
804 sdio->cur_page_len = len;
805 sdio->cur_page_block = blocknr;
806 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809 * If sdio->boundary then we want to schedule the IO now to
810 * avoid metadata seeks.
812 if (sdio->boundary) {
813 ret = dio_send_cur_page(dio, sdio, map_bh);
814 dio_bio_submit(dio, sdio);
815 page_cache_release(sdio->cur_page);
816 sdio->cur_page = NULL;
822 * Clean any dirty buffers in the blockdev mapping which alias newly-created
823 * file blocks. Only called for S_ISREG files - blockdevs do not set
826 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
831 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
833 for (i = 0; i < nblocks; i++) {
834 unmap_underlying_metadata(map_bh->b_bdev,
835 map_bh->b_blocknr + i);
840 * If we are not writing the entire block and get_block() allocated
841 * the block for us, we need to fill-in the unused portion of the
842 * block with zeros. This happens only if user-buffer, fileoffset or
843 * io length is not filesystem block-size multiple.
845 * `end' is zero if we're doing the start of the IO, 1 at the end of the
848 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
849 int end, struct buffer_head *map_bh)
851 unsigned dio_blocks_per_fs_block;
852 unsigned this_chunk_blocks; /* In dio_blocks */
853 unsigned this_chunk_bytes;
856 sdio->start_zero_done = 1;
857 if (!sdio->blkfactor || !buffer_new(map_bh))
860 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
861 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
863 if (!this_chunk_blocks)
867 * We need to zero out part of an fs block. It is either at the
868 * beginning or the end of the fs block.
871 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
873 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
876 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
877 sdio->next_block_for_io, map_bh))
880 sdio->next_block_for_io += this_chunk_blocks;
884 * Walk the user pages, and the file, mapping blocks to disk and generating
885 * a sequence of (page,offset,len,block) mappings. These mappings are injected
886 * into submit_page_section(), which takes care of the next stage of submission
888 * Direct IO against a blockdev is different from a file. Because we can
889 * happily perform page-sized but 512-byte aligned IOs. It is important that
890 * blockdev IO be able to have fine alignment and large sizes.
892 * So what we do is to permit the ->get_block function to populate bh.b_size
893 * with the size of IO which is permitted at this offset and this i_blkbits.
895 * For best results, the blockdev should be set up with 512-byte i_blkbits and
896 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
897 * fine alignment but still allows this function to work in PAGE_SIZE units.
899 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
900 struct buffer_head *map_bh)
902 const unsigned blkbits = sdio->blkbits;
905 while (sdio->block_in_file < sdio->final_block_in_request) {
909 page = dio_get_page(dio, sdio);
914 from = sdio->head ? 0 : sdio->from;
915 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
919 unsigned this_chunk_bytes; /* # of bytes mapped */
920 unsigned this_chunk_blocks; /* # of blocks */
923 if (sdio->blocks_available == 0) {
925 * Need to go and map some more disk
927 unsigned long blkmask;
928 unsigned long dio_remainder;
930 ret = get_more_blocks(dio, sdio, map_bh);
932 page_cache_release(page);
935 if (!buffer_mapped(map_bh))
938 sdio->blocks_available =
939 map_bh->b_size >> sdio->blkbits;
940 sdio->next_block_for_io =
941 map_bh->b_blocknr << sdio->blkfactor;
942 if (buffer_new(map_bh))
943 clean_blockdev_aliases(dio, map_bh);
945 if (!sdio->blkfactor)
948 blkmask = (1 << sdio->blkfactor) - 1;
949 dio_remainder = (sdio->block_in_file & blkmask);
952 * If we are at the start of IO and that IO
953 * starts partway into a fs-block,
954 * dio_remainder will be non-zero. If the IO
955 * is a read then we can simply advance the IO
956 * cursor to the first block which is to be
957 * read. But if the IO is a write and the
958 * block was newly allocated we cannot do that;
959 * the start of the fs block must be zeroed out
962 if (!buffer_new(map_bh))
963 sdio->next_block_for_io += dio_remainder;
964 sdio->blocks_available -= dio_remainder;
968 if (!buffer_mapped(map_bh)) {
969 loff_t i_size_aligned;
971 /* AKPM: eargh, -ENOTBLK is a hack */
972 if (dio->rw & WRITE) {
973 page_cache_release(page);
978 * Be sure to account for a partial block as the
979 * last block in the file
981 i_size_aligned = ALIGN(i_size_read(dio->inode),
983 if (sdio->block_in_file >=
984 i_size_aligned >> blkbits) {
986 page_cache_release(page);
989 zero_user(page, from, 1 << blkbits);
990 sdio->block_in_file++;
991 from += 1 << blkbits;
992 dio->result += 1 << blkbits;
997 * If we're performing IO which has an alignment which
998 * is finer than the underlying fs, go check to see if
999 * we must zero out the start of this block.
1001 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1002 dio_zero_block(dio, sdio, 0, map_bh);
1005 * Work out, in this_chunk_blocks, how much disk we
1006 * can add to this page
1008 this_chunk_blocks = sdio->blocks_available;
1009 u = (to - from) >> blkbits;
1010 if (this_chunk_blocks > u)
1011 this_chunk_blocks = u;
1012 u = sdio->final_block_in_request - sdio->block_in_file;
1013 if (this_chunk_blocks > u)
1014 this_chunk_blocks = u;
1015 this_chunk_bytes = this_chunk_blocks << blkbits;
1016 BUG_ON(this_chunk_bytes == 0);
1018 if (this_chunk_blocks == sdio->blocks_available)
1019 sdio->boundary = buffer_boundary(map_bh);
1020 ret = submit_page_section(dio, sdio, page,
1023 sdio->next_block_for_io,
1026 page_cache_release(page);
1029 sdio->next_block_for_io += this_chunk_blocks;
1031 sdio->block_in_file += this_chunk_blocks;
1032 from += this_chunk_bytes;
1033 dio->result += this_chunk_bytes;
1034 sdio->blocks_available -= this_chunk_blocks;
1036 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1037 if (sdio->block_in_file == sdio->final_block_in_request)
1041 /* Drop the ref which was taken in get_user_pages() */
1042 page_cache_release(page);
1048 static inline int drop_refcount(struct dio *dio)
1051 unsigned long flags;
1054 * Sync will always be dropping the final ref and completing the
1055 * operation. AIO can if it was a broken operation described above or
1056 * in fact if all the bios race to complete before we get here. In
1057 * that case dio_complete() translates the EIOCBQUEUED into the proper
1058 * return code that the caller will hand to ->complete().
1060 * This is managed by the bio_lock instead of being an atomic_t so that
1061 * completion paths can drop their ref and use the remaining count to
1062 * decide to wake the submission path atomically.
1064 spin_lock_irqsave(&dio->bio_lock, flags);
1065 ret2 = --dio->refcount;
1066 spin_unlock_irqrestore(&dio->bio_lock, flags);
1071 * This is a library function for use by filesystem drivers.
1073 * The locking rules are governed by the flags parameter:
1074 * - if the flags value contains DIO_LOCKING we use a fancy locking
1075 * scheme for dumb filesystems.
1076 * For writes this function is called under i_mutex and returns with
1077 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1078 * taken and dropped again before returning.
1079 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1080 * internal locking but rather rely on the filesystem to synchronize
1081 * direct I/O reads/writes versus each other and truncate.
1083 * To help with locking against truncate we incremented the i_dio_count
1084 * counter before starting direct I/O, and decrement it once we are done.
1085 * Truncate can wait for it to reach zero to provide exclusion. It is
1086 * expected that filesystem provide exclusion between new direct I/O
1087 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1088 * but other filesystems need to take care of this on their own.
1090 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1091 * is always inlined. Otherwise gcc is unable to split the structure into
1092 * individual fields and will generate much worse code. This is important
1093 * for the whole file.
1095 static inline ssize_t
1096 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1097 struct block_device *bdev, struct iov_iter *iter,
1098 loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1099 dio_submit_t submit_io, int flags)
1101 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1102 unsigned blkbits = i_blkbits;
1103 unsigned blocksize_mask = (1 << blkbits) - 1;
1104 ssize_t retval = -EINVAL;
1105 size_t count = iov_iter_count(iter);
1106 loff_t end = offset + count;
1108 struct dio_submit sdio = { 0, };
1109 struct buffer_head map_bh = { 0, };
1110 struct blk_plug plug;
1111 unsigned long align = offset | iov_iter_alignment(iter);
1114 * Avoid references to bdev if not absolutely needed to give
1115 * the early prefetch in the caller enough time.
1118 if (align & blocksize_mask) {
1120 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1121 blocksize_mask = (1 << blkbits) - 1;
1122 if (align & blocksize_mask)
1126 /* watch out for a 0 len io from a tricksy fs */
1127 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1130 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135 * Believe it or not, zeroing out the page array caused a .5%
1136 * performance regression in a database benchmark. So, we take
1137 * care to only zero out what's needed.
1139 memset(dio, 0, offsetof(struct dio, pages));
1142 if (dio->flags & DIO_LOCKING) {
1143 if (iov_iter_rw(iter) == READ) {
1144 struct address_space *mapping =
1145 iocb->ki_filp->f_mapping;
1147 /* will be released by direct_io_worker */
1148 mutex_lock(&inode->i_mutex);
1150 retval = filemap_write_and_wait_range(mapping, offset,
1153 mutex_unlock(&inode->i_mutex);
1154 kmem_cache_free(dio_cache, dio);
1161 * For file extending writes updating i_size before data writeouts
1162 * complete can expose uninitialized blocks in dumb filesystems.
1163 * In that case we need to wait for I/O completion even if asked
1164 * for an asynchronous write.
1166 if (is_sync_kiocb(iocb))
1167 dio->is_async = false;
1168 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1169 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1170 dio->is_async = false;
1172 dio->is_async = true;
1175 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1178 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1179 * so that we can call ->fsync.
1181 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1182 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1183 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1184 retval = dio_set_defer_completion(dio);
1187 * We grab i_mutex only for reads so we don't have
1188 * to release it here
1190 kmem_cache_free(dio_cache, dio);
1196 * Will be decremented at I/O completion time.
1198 atomic_inc(&inode->i_dio_count);
1201 sdio.blkbits = blkbits;
1202 sdio.blkfactor = i_blkbits - blkbits;
1203 sdio.block_in_file = offset >> blkbits;
1205 sdio.get_block = get_block;
1206 dio->end_io = end_io;
1207 sdio.submit_io = submit_io;
1208 sdio.final_block_in_bio = -1;
1209 sdio.next_block_for_io = -1;
1212 dio->i_size = i_size_read(inode);
1214 spin_lock_init(&dio->bio_lock);
1218 sdio.final_block_in_request =
1219 (offset + iov_iter_count(iter)) >> blkbits;
1222 * In case of non-aligned buffers, we may need 2 more
1223 * pages since we need to zero out first and last block.
1225 if (unlikely(sdio.blkfactor))
1226 sdio.pages_in_io = 2;
1228 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1230 blk_start_plug(&plug);
1232 retval = do_direct_IO(dio, &sdio, &map_bh);
1234 dio_cleanup(dio, &sdio);
1236 if (retval == -ENOTBLK) {
1238 * The remaining part of the request will be
1239 * be handled by buffered I/O when we return
1244 * There may be some unwritten disk at the end of a part-written
1245 * fs-block-sized block. Go zero that now.
1247 dio_zero_block(dio, &sdio, 1, &map_bh);
1249 if (sdio.cur_page) {
1252 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1255 page_cache_release(sdio.cur_page);
1256 sdio.cur_page = NULL;
1259 dio_bio_submit(dio, &sdio);
1261 blk_finish_plug(&plug);
1264 * It is possible that, we return short IO due to end of file.
1265 * In that case, we need to release all the pages we got hold on.
1267 dio_cleanup(dio, &sdio);
1270 * All block lookups have been performed. For READ requests
1271 * we can let i_mutex go now that its achieved its purpose
1272 * of protecting us from looking up uninitialized blocks.
1274 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1275 mutex_unlock(&dio->inode->i_mutex);
1278 * The only time we want to leave bios in flight is when a successful
1279 * partial aio read or full aio write have been setup. In that case
1280 * bio completion will call aio_complete. The only time it's safe to
1281 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1282 * This had *better* be the only place that raises -EIOCBQUEUED.
1284 BUG_ON(retval == -EIOCBQUEUED);
1285 if (dio->is_async && retval == 0 && dio->result &&
1286 (iov_iter_rw(iter) == READ || dio->result == count))
1287 retval = -EIOCBQUEUED;
1289 dio_await_completion(dio);
1291 if (drop_refcount(dio) == 0) {
1292 retval = dio_complete(dio, offset, retval, false);
1294 BUG_ON(retval != -EIOCBQUEUED);
1300 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1301 struct block_device *bdev, struct iov_iter *iter,
1302 loff_t offset, get_block_t get_block,
1303 dio_iodone_t end_io, dio_submit_t submit_io,
1307 * The block device state is needed in the end to finally
1308 * submit everything. Since it's likely to be cache cold
1309 * prefetch it here as first thing to hide some of the
1312 * Attempt to prefetch the pieces we likely need later.
1314 prefetch(&bdev->bd_disk->part_tbl);
1315 prefetch(bdev->bd_queue);
1316 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1318 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1319 end_io, submit_io, flags);
1322 EXPORT_SYMBOL(__blockdev_direct_IO);
1324 static __init int dio_init(void)
1326 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1329 module_init(dio_init)