]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/exec.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[karo-tx-linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         if (WARN_ON(!fmt->load_binary))
78                 return;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct linux_binfmt *fmt;
111         struct file *file;
112         struct filename *tmp = getname(library);
113         int error = PTR_ERR(tmp);
114         static const struct open_flags uselib_flags = {
115                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117                 .intent = LOOKUP_OPEN,
118                 .lookup_flags = LOOKUP_FOLLOW,
119         };
120
121         if (IS_ERR(tmp))
122                 goto out;
123
124         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125         putname(tmp);
126         error = PTR_ERR(file);
127         if (IS_ERR(file))
128                 goto out;
129
130         error = -EINVAL;
131         if (!S_ISREG(file_inode(file)->i_mode))
132                 goto exit;
133
134         error = -EACCES;
135         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136                 goto exit;
137
138         fsnotify_open(file);
139
140         error = -ENOEXEC;
141
142         read_lock(&binfmt_lock);
143         list_for_each_entry(fmt, &formats, lh) {
144                 if (!fmt->load_shlib)
145                         continue;
146                 if (!try_module_get(fmt->module))
147                         continue;
148                 read_unlock(&binfmt_lock);
149                 error = fmt->load_shlib(file);
150                 read_lock(&binfmt_lock);
151                 put_binfmt(fmt);
152                 if (error != -ENOEXEC)
153                         break;
154         }
155         read_unlock(&binfmt_lock);
156 exit:
157         fput(file);
158 out:
159         return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172         struct mm_struct *mm = current->mm;
173         long diff = (long)(pages - bprm->vma_pages);
174
175         if (!mm || !diff)
176                 return;
177
178         bprm->vma_pages = pages;
179         add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183                 int write)
184 {
185         struct page *page;
186         int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189         if (write) {
190                 ret = expand_downwards(bprm->vma, pos);
191                 if (ret < 0)
192                         return NULL;
193         }
194 #endif
195         ret = get_user_pages(current, bprm->mm, pos,
196                         1, write, 1, &page, NULL);
197         if (ret <= 0)
198                 return NULL;
199
200         if (write) {
201                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202                 struct rlimit *rlim;
203
204                 acct_arg_size(bprm, size / PAGE_SIZE);
205
206                 /*
207                  * We've historically supported up to 32 pages (ARG_MAX)
208                  * of argument strings even with small stacks
209                  */
210                 if (size <= ARG_MAX)
211                         return page;
212
213                 /*
214                  * Limit to 1/4-th the stack size for the argv+env strings.
215                  * This ensures that:
216                  *  - the remaining binfmt code will not run out of stack space,
217                  *  - the program will have a reasonable amount of stack left
218                  *    to work from.
219                  */
220                 rlim = current->signal->rlim;
221                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222                         put_page(page);
223                         return NULL;
224                 }
225         }
226
227         return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232         put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256         if (!vma)
257                 return -ENOMEM;
258
259         down_write(&mm->mmap_sem);
260         vma->vm_mm = mm;
261
262         /*
263          * Place the stack at the largest stack address the architecture
264          * supports. Later, we'll move this to an appropriate place. We don't
265          * use STACK_TOP because that can depend on attributes which aren't
266          * configured yet.
267          */
268         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269         vma->vm_end = STACK_TOP_MAX;
270         vma->vm_start = vma->vm_end - PAGE_SIZE;
271         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273         INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278
279         mm->stack_vm = mm->total_vm = 1;
280         arch_bprm_mm_init(mm, vma);
281         up_write(&mm->mmap_sem);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         up_write(&mm->mmap_sem);
286         bprm->vma = NULL;
287         kmem_cache_free(vm_area_cachep, vma);
288         return err;
289 }
290
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293         return len <= MAX_ARG_STRLEN;
294 }
295
296 #else
297
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303                 int write)
304 {
305         struct page *page;
306
307         page = bprm->page[pos / PAGE_SIZE];
308         if (!page && write) {
309                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310                 if (!page)
311                         return NULL;
312                 bprm->page[pos / PAGE_SIZE] = page;
313         }
314
315         return page;
316 }
317
318 static void put_arg_page(struct page *page)
319 {
320 }
321
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324         if (bprm->page[i]) {
325                 __free_page(bprm->page[i]);
326                 bprm->page[i] = NULL;
327         }
328 }
329
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332         int i;
333
334         for (i = 0; i < MAX_ARG_PAGES; i++)
335                 free_arg_page(bprm, i);
336 }
337
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339                 struct page *page)
340 {
341 }
342
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346         return 0;
347 }
348
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351         return len <= bprm->p;
352 }
353
354 #endif /* CONFIG_MMU */
355
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364         int err;
365         struct mm_struct *mm = NULL;
366
367         bprm->mm = mm = mm_alloc();
368         err = -ENOMEM;
369         if (!mm)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length, false))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, old_start, old_end);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626         }
627         tlb_finish_mmu(&tlb, old_start, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > STACK_SIZE_MAX)
660                 stack_base = STACK_SIZE_MAX;
661
662         /* Make sure we didn't let the argument array grow too large. */
663         if (vma->vm_end - vma->vm_start > stack_base)
664                 return -ENOMEM;
665
666         stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668         stack_shift = vma->vm_start - stack_base;
669         mm->arg_start = bprm->p - stack_shift;
670         bprm->p = vma->vm_end - stack_shift;
671 #else
672         stack_top = arch_align_stack(stack_top);
673         stack_top = PAGE_ALIGN(stack_top);
674
675         if (unlikely(stack_top < mmap_min_addr) ||
676             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677                 return -ENOMEM;
678
679         stack_shift = vma->vm_end - stack_top;
680
681         bprm->p -= stack_shift;
682         mm->arg_start = bprm->p;
683 #endif
684
685         if (bprm->loader)
686                 bprm->loader -= stack_shift;
687         bprm->exec -= stack_shift;
688
689         down_write(&mm->mmap_sem);
690         vm_flags = VM_STACK_FLAGS;
691
692         /*
693          * Adjust stack execute permissions; explicitly enable for
694          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695          * (arch default) otherwise.
696          */
697         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698                 vm_flags |= VM_EXEC;
699         else if (executable_stack == EXSTACK_DISABLE_X)
700                 vm_flags &= ~VM_EXEC;
701         vm_flags |= mm->def_flags;
702         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705                         vm_flags);
706         if (ret)
707                 goto out_unlock;
708         BUG_ON(prev != vma);
709
710         /* Move stack pages down in memory. */
711         if (stack_shift) {
712                 ret = shift_arg_pages(vma, stack_shift);
713                 if (ret)
714                         goto out_unlock;
715         }
716
717         /* mprotect_fixup is overkill to remove the temporary stack flags */
718         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721         stack_size = vma->vm_end - vma->vm_start;
722         /*
723          * Align this down to a page boundary as expand_stack
724          * will align it up.
725          */
726         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728         if (stack_size + stack_expand > rlim_stack)
729                 stack_base = vma->vm_start + rlim_stack;
730         else
731                 stack_base = vma->vm_end + stack_expand;
732 #else
733         if (stack_size + stack_expand > rlim_stack)
734                 stack_base = vma->vm_end - rlim_stack;
735         else
736                 stack_base = vma->vm_start - stack_expand;
737 #endif
738         current->mm->start_stack = bprm->p;
739         ret = expand_stack(vma, stack_base);
740         if (ret)
741                 ret = -EFAULT;
742
743 out_unlock:
744         up_write(&mm->mmap_sem);
745         return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 static struct file *do_open_execat(int fd, struct filename *name, int flags)
752 {
753         struct file *file;
754         int err;
755         struct open_flags open_exec_flags = {
756                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757                 .acc_mode = MAY_EXEC | MAY_OPEN,
758                 .intent = LOOKUP_OPEN,
759                 .lookup_flags = LOOKUP_FOLLOW,
760         };
761
762         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
763                 return ERR_PTR(-EINVAL);
764         if (flags & AT_SYMLINK_NOFOLLOW)
765                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
766         if (flags & AT_EMPTY_PATH)
767                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
768
769         file = do_filp_open(fd, name, &open_exec_flags);
770         if (IS_ERR(file))
771                 goto out;
772
773         err = -EACCES;
774         if (!S_ISREG(file_inode(file)->i_mode))
775                 goto exit;
776
777         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
778                 goto exit;
779
780         err = deny_write_access(file);
781         if (err)
782                 goto exit;
783
784         if (name->name[0] != '\0')
785                 fsnotify_open(file);
786
787 out:
788         return file;
789
790 exit:
791         fput(file);
792         return ERR_PTR(err);
793 }
794
795 struct file *open_exec(const char *name)
796 {
797         struct filename *filename = getname_kernel(name);
798         struct file *f = ERR_CAST(filename);
799
800         if (!IS_ERR(filename)) {
801                 f = do_open_execat(AT_FDCWD, filename, 0);
802                 putname(filename);
803         }
804         return f;
805 }
806 EXPORT_SYMBOL(open_exec);
807
808 int kernel_read(struct file *file, loff_t offset,
809                 char *addr, unsigned long count)
810 {
811         mm_segment_t old_fs;
812         loff_t pos = offset;
813         int result;
814
815         old_fs = get_fs();
816         set_fs(get_ds());
817         /* The cast to a user pointer is valid due to the set_fs() */
818         result = vfs_read(file, (void __user *)addr, count, &pos);
819         set_fs(old_fs);
820         return result;
821 }
822
823 EXPORT_SYMBOL(kernel_read);
824
825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
826 {
827         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
828         if (res > 0)
829                 flush_icache_range(addr, addr + len);
830         return res;
831 }
832 EXPORT_SYMBOL(read_code);
833
834 static int exec_mmap(struct mm_struct *mm)
835 {
836         struct task_struct *tsk;
837         struct mm_struct *old_mm, *active_mm;
838
839         /* Notify parent that we're no longer interested in the old VM */
840         tsk = current;
841         old_mm = current->mm;
842         mm_release(tsk, old_mm);
843
844         if (old_mm) {
845                 sync_mm_rss(old_mm);
846                 /*
847                  * Make sure that if there is a core dump in progress
848                  * for the old mm, we get out and die instead of going
849                  * through with the exec.  We must hold mmap_sem around
850                  * checking core_state and changing tsk->mm.
851                  */
852                 down_read(&old_mm->mmap_sem);
853                 if (unlikely(old_mm->core_state)) {
854                         up_read(&old_mm->mmap_sem);
855                         return -EINTR;
856                 }
857         }
858         task_lock(tsk);
859         active_mm = tsk->active_mm;
860         tsk->mm = mm;
861         tsk->active_mm = mm;
862         activate_mm(active_mm, mm);
863         tsk->mm->vmacache_seqnum = 0;
864         vmacache_flush(tsk);
865         task_unlock(tsk);
866         if (old_mm) {
867                 up_read(&old_mm->mmap_sem);
868                 BUG_ON(active_mm != old_mm);
869                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
870                 mm_update_next_owner(old_mm);
871                 mmput(old_mm);
872                 return 0;
873         }
874         mmdrop(active_mm);
875         return 0;
876 }
877
878 /*
879  * This function makes sure the current process has its own signal table,
880  * so that flush_signal_handlers can later reset the handlers without
881  * disturbing other processes.  (Other processes might share the signal
882  * table via the CLONE_SIGHAND option to clone().)
883  */
884 static int de_thread(struct task_struct *tsk)
885 {
886         struct signal_struct *sig = tsk->signal;
887         struct sighand_struct *oldsighand = tsk->sighand;
888         spinlock_t *lock = &oldsighand->siglock;
889
890         if (thread_group_empty(tsk))
891                 goto no_thread_group;
892
893         /*
894          * Kill all other threads in the thread group.
895          */
896         spin_lock_irq(lock);
897         if (signal_group_exit(sig)) {
898                 /*
899                  * Another group action in progress, just
900                  * return so that the signal is processed.
901                  */
902                 spin_unlock_irq(lock);
903                 return -EAGAIN;
904         }
905
906         sig->group_exit_task = tsk;
907         sig->notify_count = zap_other_threads(tsk);
908         if (!thread_group_leader(tsk))
909                 sig->notify_count--;
910
911         while (sig->notify_count) {
912                 __set_current_state(TASK_KILLABLE);
913                 spin_unlock_irq(lock);
914                 schedule();
915                 if (unlikely(__fatal_signal_pending(tsk)))
916                         goto killed;
917                 spin_lock_irq(lock);
918         }
919         spin_unlock_irq(lock);
920
921         /*
922          * At this point all other threads have exited, all we have to
923          * do is to wait for the thread group leader to become inactive,
924          * and to assume its PID:
925          */
926         if (!thread_group_leader(tsk)) {
927                 struct task_struct *leader = tsk->group_leader;
928
929                 for (;;) {
930                         threadgroup_change_begin(tsk);
931                         write_lock_irq(&tasklist_lock);
932                         /*
933                          * Do this under tasklist_lock to ensure that
934                          * exit_notify() can't miss ->group_exit_task
935                          */
936                         sig->notify_count = -1;
937                         if (likely(leader->exit_state))
938                                 break;
939                         __set_current_state(TASK_KILLABLE);
940                         write_unlock_irq(&tasklist_lock);
941                         threadgroup_change_end(tsk);
942                         schedule();
943                         if (unlikely(__fatal_signal_pending(tsk)))
944                                 goto killed;
945                 }
946
947                 /*
948                  * The only record we have of the real-time age of a
949                  * process, regardless of execs it's done, is start_time.
950                  * All the past CPU time is accumulated in signal_struct
951                  * from sister threads now dead.  But in this non-leader
952                  * exec, nothing survives from the original leader thread,
953                  * whose birth marks the true age of this process now.
954                  * When we take on its identity by switching to its PID, we
955                  * also take its birthdate (always earlier than our own).
956                  */
957                 tsk->start_time = leader->start_time;
958                 tsk->real_start_time = leader->real_start_time;
959
960                 BUG_ON(!same_thread_group(leader, tsk));
961                 BUG_ON(has_group_leader_pid(tsk));
962                 /*
963                  * An exec() starts a new thread group with the
964                  * TGID of the previous thread group. Rehash the
965                  * two threads with a switched PID, and release
966                  * the former thread group leader:
967                  */
968
969                 /* Become a process group leader with the old leader's pid.
970                  * The old leader becomes a thread of the this thread group.
971                  * Note: The old leader also uses this pid until release_task
972                  *       is called.  Odd but simple and correct.
973                  */
974                 tsk->pid = leader->pid;
975                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
976                 transfer_pid(leader, tsk, PIDTYPE_PGID);
977                 transfer_pid(leader, tsk, PIDTYPE_SID);
978
979                 list_replace_rcu(&leader->tasks, &tsk->tasks);
980                 list_replace_init(&leader->sibling, &tsk->sibling);
981
982                 tsk->group_leader = tsk;
983                 leader->group_leader = tsk;
984
985                 tsk->exit_signal = SIGCHLD;
986                 leader->exit_signal = -1;
987
988                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
989                 leader->exit_state = EXIT_DEAD;
990
991                 /*
992                  * We are going to release_task()->ptrace_unlink() silently,
993                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
994                  * the tracer wont't block again waiting for this thread.
995                  */
996                 if (unlikely(leader->ptrace))
997                         __wake_up_parent(leader, leader->parent);
998                 write_unlock_irq(&tasklist_lock);
999                 threadgroup_change_end(tsk);
1000
1001                 release_task(leader);
1002         }
1003
1004         sig->group_exit_task = NULL;
1005         sig->notify_count = 0;
1006
1007 no_thread_group:
1008         /* we have changed execution domain */
1009         tsk->exit_signal = SIGCHLD;
1010
1011         exit_itimers(sig);
1012         flush_itimer_signals();
1013
1014         if (atomic_read(&oldsighand->count) != 1) {
1015                 struct sighand_struct *newsighand;
1016                 /*
1017                  * This ->sighand is shared with the CLONE_SIGHAND
1018                  * but not CLONE_THREAD task, switch to the new one.
1019                  */
1020                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1021                 if (!newsighand)
1022                         return -ENOMEM;
1023
1024                 atomic_set(&newsighand->count, 1);
1025                 memcpy(newsighand->action, oldsighand->action,
1026                        sizeof(newsighand->action));
1027
1028                 write_lock_irq(&tasklist_lock);
1029                 spin_lock(&oldsighand->siglock);
1030                 rcu_assign_pointer(tsk->sighand, newsighand);
1031                 spin_unlock(&oldsighand->siglock);
1032                 write_unlock_irq(&tasklist_lock);
1033
1034                 __cleanup_sighand(oldsighand);
1035         }
1036
1037         BUG_ON(!thread_group_leader(tsk));
1038         return 0;
1039
1040 killed:
1041         /* protects against exit_notify() and __exit_signal() */
1042         read_lock(&tasklist_lock);
1043         sig->group_exit_task = NULL;
1044         sig->notify_count = 0;
1045         read_unlock(&tasklist_lock);
1046         return -EAGAIN;
1047 }
1048
1049 char *get_task_comm(char *buf, struct task_struct *tsk)
1050 {
1051         /* buf must be at least sizeof(tsk->comm) in size */
1052         task_lock(tsk);
1053         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1054         task_unlock(tsk);
1055         return buf;
1056 }
1057 EXPORT_SYMBOL_GPL(get_task_comm);
1058
1059 /*
1060  * These functions flushes out all traces of the currently running executable
1061  * so that a new one can be started
1062  */
1063
1064 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1065 {
1066         task_lock(tsk);
1067         trace_task_rename(tsk, buf);
1068         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1069         task_unlock(tsk);
1070         perf_event_comm(tsk, exec);
1071 }
1072
1073 int flush_old_exec(struct linux_binprm * bprm)
1074 {
1075         int retval;
1076
1077         /*
1078          * Make sure we have a private signal table and that
1079          * we are unassociated from the previous thread group.
1080          */
1081         retval = de_thread(current);
1082         if (retval)
1083                 goto out;
1084
1085         /*
1086          * Must be called _before_ exec_mmap() as bprm->mm is
1087          * not visibile until then. This also enables the update
1088          * to be lockless.
1089          */
1090         set_mm_exe_file(bprm->mm, bprm->file);
1091
1092         /*
1093          * Release all of the old mmap stuff
1094          */
1095         acct_arg_size(bprm, 0);
1096         retval = exec_mmap(bprm->mm);
1097         if (retval)
1098                 goto out;
1099
1100         bprm->mm = NULL;                /* We're using it now */
1101
1102         set_fs(USER_DS);
1103         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1104                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1105         flush_thread();
1106         current->personality &= ~bprm->per_clear;
1107
1108         return 0;
1109
1110 out:
1111         return retval;
1112 }
1113 EXPORT_SYMBOL(flush_old_exec);
1114
1115 void would_dump(struct linux_binprm *bprm, struct file *file)
1116 {
1117         if (inode_permission(file_inode(file), MAY_READ) < 0)
1118                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1119 }
1120 EXPORT_SYMBOL(would_dump);
1121
1122 void setup_new_exec(struct linux_binprm * bprm)
1123 {
1124         arch_pick_mmap_layout(current->mm);
1125
1126         /* This is the point of no return */
1127         current->sas_ss_sp = current->sas_ss_size = 0;
1128
1129         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1130                 set_dumpable(current->mm, SUID_DUMP_USER);
1131         else
1132                 set_dumpable(current->mm, suid_dumpable);
1133
1134         perf_event_exec();
1135         __set_task_comm(current, kbasename(bprm->filename), true);
1136
1137         /* Set the new mm task size. We have to do that late because it may
1138          * depend on TIF_32BIT which is only updated in flush_thread() on
1139          * some architectures like powerpc
1140          */
1141         current->mm->task_size = TASK_SIZE;
1142
1143         /* install the new credentials */
1144         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1145             !gid_eq(bprm->cred->gid, current_egid())) {
1146                 current->pdeath_signal = 0;
1147         } else {
1148                 would_dump(bprm, bprm->file);
1149                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1150                         set_dumpable(current->mm, suid_dumpable);
1151         }
1152
1153         /* An exec changes our domain. We are no longer part of the thread
1154            group */
1155         current->self_exec_id++;
1156         flush_signal_handlers(current, 0);
1157         do_close_on_exec(current->files);
1158 }
1159 EXPORT_SYMBOL(setup_new_exec);
1160
1161 /*
1162  * Prepare credentials and lock ->cred_guard_mutex.
1163  * install_exec_creds() commits the new creds and drops the lock.
1164  * Or, if exec fails before, free_bprm() should release ->cred and
1165  * and unlock.
1166  */
1167 int prepare_bprm_creds(struct linux_binprm *bprm)
1168 {
1169         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1170                 return -ERESTARTNOINTR;
1171
1172         bprm->cred = prepare_exec_creds();
1173         if (likely(bprm->cred))
1174                 return 0;
1175
1176         mutex_unlock(&current->signal->cred_guard_mutex);
1177         return -ENOMEM;
1178 }
1179
1180 static void free_bprm(struct linux_binprm *bprm)
1181 {
1182         free_arg_pages(bprm);
1183         if (bprm->cred) {
1184                 mutex_unlock(&current->signal->cred_guard_mutex);
1185                 abort_creds(bprm->cred);
1186         }
1187         if (bprm->file) {
1188                 allow_write_access(bprm->file);
1189                 fput(bprm->file);
1190         }
1191         /* If a binfmt changed the interp, free it. */
1192         if (bprm->interp != bprm->filename)
1193                 kfree(bprm->interp);
1194         kfree(bprm);
1195 }
1196
1197 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1198 {
1199         /* If a binfmt changed the interp, free it first. */
1200         if (bprm->interp != bprm->filename)
1201                 kfree(bprm->interp);
1202         bprm->interp = kstrdup(interp, GFP_KERNEL);
1203         if (!bprm->interp)
1204                 return -ENOMEM;
1205         return 0;
1206 }
1207 EXPORT_SYMBOL(bprm_change_interp);
1208
1209 /*
1210  * install the new credentials for this executable
1211  */
1212 void install_exec_creds(struct linux_binprm *bprm)
1213 {
1214         security_bprm_committing_creds(bprm);
1215
1216         commit_creds(bprm->cred);
1217         bprm->cred = NULL;
1218
1219         /*
1220          * Disable monitoring for regular users
1221          * when executing setuid binaries. Must
1222          * wait until new credentials are committed
1223          * by commit_creds() above
1224          */
1225         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1226                 perf_event_exit_task(current);
1227         /*
1228          * cred_guard_mutex must be held at least to this point to prevent
1229          * ptrace_attach() from altering our determination of the task's
1230          * credentials; any time after this it may be unlocked.
1231          */
1232         security_bprm_committed_creds(bprm);
1233         mutex_unlock(&current->signal->cred_guard_mutex);
1234 }
1235 EXPORT_SYMBOL(install_exec_creds);
1236
1237 /*
1238  * determine how safe it is to execute the proposed program
1239  * - the caller must hold ->cred_guard_mutex to protect against
1240  *   PTRACE_ATTACH or seccomp thread-sync
1241  */
1242 static void check_unsafe_exec(struct linux_binprm *bprm)
1243 {
1244         struct task_struct *p = current, *t;
1245         unsigned n_fs;
1246
1247         if (p->ptrace) {
1248                 if (p->ptrace & PT_PTRACE_CAP)
1249                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1250                 else
1251                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1252         }
1253
1254         /*
1255          * This isn't strictly necessary, but it makes it harder for LSMs to
1256          * mess up.
1257          */
1258         if (task_no_new_privs(current))
1259                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1260
1261         t = p;
1262         n_fs = 1;
1263         spin_lock(&p->fs->lock);
1264         rcu_read_lock();
1265         while_each_thread(p, t) {
1266                 if (t->fs == p->fs)
1267                         n_fs++;
1268         }
1269         rcu_read_unlock();
1270
1271         if (p->fs->users > n_fs)
1272                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1273         else
1274                 p->fs->in_exec = 1;
1275         spin_unlock(&p->fs->lock);
1276 }
1277
1278 static void bprm_fill_uid(struct linux_binprm *bprm)
1279 {
1280         struct inode *inode;
1281         unsigned int mode;
1282         kuid_t uid;
1283         kgid_t gid;
1284
1285         /* clear any previous set[ug]id data from a previous binary */
1286         bprm->cred->euid = current_euid();
1287         bprm->cred->egid = current_egid();
1288
1289         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1290                 return;
1291
1292         if (task_no_new_privs(current))
1293                 return;
1294
1295         inode = file_inode(bprm->file);
1296         mode = READ_ONCE(inode->i_mode);
1297         if (!(mode & (S_ISUID|S_ISGID)))
1298                 return;
1299
1300         /* Be careful if suid/sgid is set */
1301         mutex_lock(&inode->i_mutex);
1302
1303         /* reload atomically mode/uid/gid now that lock held */
1304         mode = inode->i_mode;
1305         uid = inode->i_uid;
1306         gid = inode->i_gid;
1307         mutex_unlock(&inode->i_mutex);
1308
1309         /* We ignore suid/sgid if there are no mappings for them in the ns */
1310         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1311                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1312                 return;
1313
1314         if (mode & S_ISUID) {
1315                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1316                 bprm->cred->euid = uid;
1317         }
1318
1319         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1320                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1321                 bprm->cred->egid = gid;
1322         }
1323 }
1324
1325 /*
1326  * Fill the binprm structure from the inode.
1327  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1328  *
1329  * This may be called multiple times for binary chains (scripts for example).
1330  */
1331 int prepare_binprm(struct linux_binprm *bprm)
1332 {
1333         int retval;
1334
1335         bprm_fill_uid(bprm);
1336
1337         /* fill in binprm security blob */
1338         retval = security_bprm_set_creds(bprm);
1339         if (retval)
1340                 return retval;
1341         bprm->cred_prepared = 1;
1342
1343         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1344         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1345 }
1346
1347 EXPORT_SYMBOL(prepare_binprm);
1348
1349 /*
1350  * Arguments are '\0' separated strings found at the location bprm->p
1351  * points to; chop off the first by relocating brpm->p to right after
1352  * the first '\0' encountered.
1353  */
1354 int remove_arg_zero(struct linux_binprm *bprm)
1355 {
1356         int ret = 0;
1357         unsigned long offset;
1358         char *kaddr;
1359         struct page *page;
1360
1361         if (!bprm->argc)
1362                 return 0;
1363
1364         do {
1365                 offset = bprm->p & ~PAGE_MASK;
1366                 page = get_arg_page(bprm, bprm->p, 0);
1367                 if (!page) {
1368                         ret = -EFAULT;
1369                         goto out;
1370                 }
1371                 kaddr = kmap_atomic(page);
1372
1373                 for (; offset < PAGE_SIZE && kaddr[offset];
1374                                 offset++, bprm->p++)
1375                         ;
1376
1377                 kunmap_atomic(kaddr);
1378                 put_arg_page(page);
1379
1380                 if (offset == PAGE_SIZE)
1381                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1382         } while (offset == PAGE_SIZE);
1383
1384         bprm->p++;
1385         bprm->argc--;
1386         ret = 0;
1387
1388 out:
1389         return ret;
1390 }
1391 EXPORT_SYMBOL(remove_arg_zero);
1392
1393 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1394 /*
1395  * cycle the list of binary formats handler, until one recognizes the image
1396  */
1397 int search_binary_handler(struct linux_binprm *bprm)
1398 {
1399         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1400         struct linux_binfmt *fmt;
1401         int retval;
1402
1403         /* This allows 4 levels of binfmt rewrites before failing hard. */
1404         if (bprm->recursion_depth > 5)
1405                 return -ELOOP;
1406
1407         retval = security_bprm_check(bprm);
1408         if (retval)
1409                 return retval;
1410
1411         retval = -ENOENT;
1412  retry:
1413         read_lock(&binfmt_lock);
1414         list_for_each_entry(fmt, &formats, lh) {
1415                 if (!try_module_get(fmt->module))
1416                         continue;
1417                 read_unlock(&binfmt_lock);
1418                 bprm->recursion_depth++;
1419                 retval = fmt->load_binary(bprm);
1420                 read_lock(&binfmt_lock);
1421                 put_binfmt(fmt);
1422                 bprm->recursion_depth--;
1423                 if (retval < 0 && !bprm->mm) {
1424                         /* we got to flush_old_exec() and failed after it */
1425                         read_unlock(&binfmt_lock);
1426                         force_sigsegv(SIGSEGV, current);
1427                         return retval;
1428                 }
1429                 if (retval != -ENOEXEC || !bprm->file) {
1430                         read_unlock(&binfmt_lock);
1431                         return retval;
1432                 }
1433         }
1434         read_unlock(&binfmt_lock);
1435
1436         if (need_retry) {
1437                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1438                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1439                         return retval;
1440                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1441                         return retval;
1442                 need_retry = false;
1443                 goto retry;
1444         }
1445
1446         return retval;
1447 }
1448 EXPORT_SYMBOL(search_binary_handler);
1449
1450 static int exec_binprm(struct linux_binprm *bprm)
1451 {
1452         pid_t old_pid, old_vpid;
1453         int ret;
1454
1455         /* Need to fetch pid before load_binary changes it */
1456         old_pid = current->pid;
1457         rcu_read_lock();
1458         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1459         rcu_read_unlock();
1460
1461         ret = search_binary_handler(bprm);
1462         if (ret >= 0) {
1463                 audit_bprm(bprm);
1464                 trace_sched_process_exec(current, old_pid, bprm);
1465                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1466                 proc_exec_connector(current);
1467         }
1468
1469         return ret;
1470 }
1471
1472 /*
1473  * sys_execve() executes a new program.
1474  */
1475 static int do_execveat_common(int fd, struct filename *filename,
1476                               struct user_arg_ptr argv,
1477                               struct user_arg_ptr envp,
1478                               int flags)
1479 {
1480         char *pathbuf = NULL;
1481         struct linux_binprm *bprm;
1482         struct file *file;
1483         struct files_struct *displaced;
1484         int retval;
1485
1486         if (IS_ERR(filename))
1487                 return PTR_ERR(filename);
1488
1489         /*
1490          * We move the actual failure in case of RLIMIT_NPROC excess from
1491          * set*uid() to execve() because too many poorly written programs
1492          * don't check setuid() return code.  Here we additionally recheck
1493          * whether NPROC limit is still exceeded.
1494          */
1495         if ((current->flags & PF_NPROC_EXCEEDED) &&
1496             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1497                 retval = -EAGAIN;
1498                 goto out_ret;
1499         }
1500
1501         /* We're below the limit (still or again), so we don't want to make
1502          * further execve() calls fail. */
1503         current->flags &= ~PF_NPROC_EXCEEDED;
1504
1505         retval = unshare_files(&displaced);
1506         if (retval)
1507                 goto out_ret;
1508
1509         retval = -ENOMEM;
1510         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1511         if (!bprm)
1512                 goto out_files;
1513
1514         retval = prepare_bprm_creds(bprm);
1515         if (retval)
1516                 goto out_free;
1517
1518         check_unsafe_exec(bprm);
1519         current->in_execve = 1;
1520
1521         file = do_open_execat(fd, filename, flags);
1522         retval = PTR_ERR(file);
1523         if (IS_ERR(file))
1524                 goto out_unmark;
1525
1526         sched_exec();
1527
1528         bprm->file = file;
1529         if (fd == AT_FDCWD || filename->name[0] == '/') {
1530                 bprm->filename = filename->name;
1531         } else {
1532                 if (filename->name[0] == '\0')
1533                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1534                 else
1535                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1536                                             fd, filename->name);
1537                 if (!pathbuf) {
1538                         retval = -ENOMEM;
1539                         goto out_unmark;
1540                 }
1541                 /*
1542                  * Record that a name derived from an O_CLOEXEC fd will be
1543                  * inaccessible after exec. Relies on having exclusive access to
1544                  * current->files (due to unshare_files above).
1545                  */
1546                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1547                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1548                 bprm->filename = pathbuf;
1549         }
1550         bprm->interp = bprm->filename;
1551
1552         retval = bprm_mm_init(bprm);
1553         if (retval)
1554                 goto out_unmark;
1555
1556         bprm->argc = count(argv, MAX_ARG_STRINGS);
1557         if ((retval = bprm->argc) < 0)
1558                 goto out;
1559
1560         bprm->envc = count(envp, MAX_ARG_STRINGS);
1561         if ((retval = bprm->envc) < 0)
1562                 goto out;
1563
1564         retval = prepare_binprm(bprm);
1565         if (retval < 0)
1566                 goto out;
1567
1568         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1569         if (retval < 0)
1570                 goto out;
1571
1572         bprm->exec = bprm->p;
1573         retval = copy_strings(bprm->envc, envp, bprm);
1574         if (retval < 0)
1575                 goto out;
1576
1577         retval = copy_strings(bprm->argc, argv, bprm);
1578         if (retval < 0)
1579                 goto out;
1580
1581         retval = exec_binprm(bprm);
1582         if (retval < 0)
1583                 goto out;
1584
1585         /* execve succeeded */
1586         current->fs->in_exec = 0;
1587         current->in_execve = 0;
1588         acct_update_integrals(current);
1589         task_numa_free(current);
1590         free_bprm(bprm);
1591         kfree(pathbuf);
1592         putname(filename);
1593         if (displaced)
1594                 put_files_struct(displaced);
1595         return retval;
1596
1597 out:
1598         if (bprm->mm) {
1599                 acct_arg_size(bprm, 0);
1600                 mmput(bprm->mm);
1601         }
1602
1603 out_unmark:
1604         current->fs->in_exec = 0;
1605         current->in_execve = 0;
1606
1607 out_free:
1608         free_bprm(bprm);
1609         kfree(pathbuf);
1610
1611 out_files:
1612         if (displaced)
1613                 reset_files_struct(displaced);
1614 out_ret:
1615         putname(filename);
1616         return retval;
1617 }
1618
1619 int do_execve(struct filename *filename,
1620         const char __user *const __user *__argv,
1621         const char __user *const __user *__envp)
1622 {
1623         struct user_arg_ptr argv = { .ptr.native = __argv };
1624         struct user_arg_ptr envp = { .ptr.native = __envp };
1625         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1626 }
1627
1628 int do_execveat(int fd, struct filename *filename,
1629                 const char __user *const __user *__argv,
1630                 const char __user *const __user *__envp,
1631                 int flags)
1632 {
1633         struct user_arg_ptr argv = { .ptr.native = __argv };
1634         struct user_arg_ptr envp = { .ptr.native = __envp };
1635
1636         return do_execveat_common(fd, filename, argv, envp, flags);
1637 }
1638
1639 #ifdef CONFIG_COMPAT
1640 static int compat_do_execve(struct filename *filename,
1641         const compat_uptr_t __user *__argv,
1642         const compat_uptr_t __user *__envp)
1643 {
1644         struct user_arg_ptr argv = {
1645                 .is_compat = true,
1646                 .ptr.compat = __argv,
1647         };
1648         struct user_arg_ptr envp = {
1649                 .is_compat = true,
1650                 .ptr.compat = __envp,
1651         };
1652         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1653 }
1654
1655 static int compat_do_execveat(int fd, struct filename *filename,
1656                               const compat_uptr_t __user *__argv,
1657                               const compat_uptr_t __user *__envp,
1658                               int flags)
1659 {
1660         struct user_arg_ptr argv = {
1661                 .is_compat = true,
1662                 .ptr.compat = __argv,
1663         };
1664         struct user_arg_ptr envp = {
1665                 .is_compat = true,
1666                 .ptr.compat = __envp,
1667         };
1668         return do_execveat_common(fd, filename, argv, envp, flags);
1669 }
1670 #endif
1671
1672 void set_binfmt(struct linux_binfmt *new)
1673 {
1674         struct mm_struct *mm = current->mm;
1675
1676         if (mm->binfmt)
1677                 module_put(mm->binfmt->module);
1678
1679         mm->binfmt = new;
1680         if (new)
1681                 __module_get(new->module);
1682 }
1683 EXPORT_SYMBOL(set_binfmt);
1684
1685 /*
1686  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1687  */
1688 void set_dumpable(struct mm_struct *mm, int value)
1689 {
1690         unsigned long old, new;
1691
1692         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1693                 return;
1694
1695         do {
1696                 old = ACCESS_ONCE(mm->flags);
1697                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1698         } while (cmpxchg(&mm->flags, old, new) != old);
1699 }
1700
1701 SYSCALL_DEFINE3(execve,
1702                 const char __user *, filename,
1703                 const char __user *const __user *, argv,
1704                 const char __user *const __user *, envp)
1705 {
1706         return do_execve(getname(filename), argv, envp);
1707 }
1708
1709 SYSCALL_DEFINE5(execveat,
1710                 int, fd, const char __user *, filename,
1711                 const char __user *const __user *, argv,
1712                 const char __user *const __user *, envp,
1713                 int, flags)
1714 {
1715         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1716
1717         return do_execveat(fd,
1718                            getname_flags(filename, lookup_flags, NULL),
1719                            argv, envp, flags);
1720 }
1721
1722 #ifdef CONFIG_COMPAT
1723 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1724         const compat_uptr_t __user *, argv,
1725         const compat_uptr_t __user *, envp)
1726 {
1727         return compat_do_execve(getname(filename), argv, envp);
1728 }
1729
1730 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1731                        const char __user *, filename,
1732                        const compat_uptr_t __user *, argv,
1733                        const compat_uptr_t __user *, envp,
1734                        int,  flags)
1735 {
1736         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1737
1738         return compat_do_execveat(fd,
1739                                   getname_flags(filename, lookup_flags, NULL),
1740                                   argv, envp, flags);
1741 }
1742 #endif