4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 if (WARN_ON(!fmt->load_binary))
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
103 * Note that a shared library must be both readable and executable due to
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct linux_binfmt *fmt;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
126 error = PTR_ERR(file);
131 if (!S_ISREG(file_inode(file)->i_mode))
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
146 if (!try_module_get(fmt->module))
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
152 if (error != -ENOEXEC)
155 read_unlock(&binfmt_lock);
161 #endif /* #ifdef CONFIG_USELIB */
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
188 #ifdef CONFIG_STACK_GROWSUP
190 ret = expand_downwards(bprm->vma, pos);
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
204 acct_arg_size(bprm, size / PAGE_SIZE);
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
214 * Limit to 1/4-th the stack size for the argv+env strings.
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 static void put_arg_page(struct page *page)
235 static void free_arg_page(struct linux_binprm *bprm, int i)
239 static void free_arg_pages(struct linux_binprm *bprm)
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 static int __bprm_mm_init(struct linux_binprm *bprm)
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
259 down_write(&mm->mmap_sem);
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
275 err = insert_vm_struct(mm, vma);
279 mm->stack_vm = mm->total_vm = 1;
280 arch_bprm_mm_init(mm, vma);
281 up_write(&mm->mmap_sem);
282 bprm->p = vma->vm_end - sizeof(void *);
285 up_write(&mm->mmap_sem);
287 kmem_cache_free(vm_area_cachep, vma);
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 return len <= MAX_ARG_STRLEN;
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 page = bprm->page[pos / PAGE_SIZE];
308 if (!page && write) {
309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 bprm->page[pos / PAGE_SIZE] = page;
318 static void put_arg_page(struct page *page)
322 static void free_arg_page(struct linux_binprm *bprm, int i)
325 __free_page(bprm->page[i]);
326 bprm->page[i] = NULL;
330 static void free_arg_pages(struct linux_binprm *bprm)
334 for (i = 0; i < MAX_ARG_PAGES; i++)
335 free_arg_page(bprm, i);
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 static int __bprm_mm_init(struct linux_binprm *bprm)
345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 return len <= bprm->p;
354 #endif /* CONFIG_MMU */
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct. We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values. We'll update
360 * them later in setup_arg_pages().
362 static int bprm_mm_init(struct linux_binprm *bprm)
365 struct mm_struct *mm = NULL;
367 bprm->mm = mm = mm_alloc();
372 err = __bprm_mm_init(bprm);
387 struct user_arg_ptr {
392 const char __user *const __user *native;
394 const compat_uptr_t __user *compat;
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 const char __user *native;
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
410 return compat_ptr(compat);
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
421 * count() counts the number of strings in array ARGV.
423 static int count(struct user_arg_ptr argv, int max)
427 if (argv.ptr.native != NULL) {
429 const char __user *p = get_user_arg_ptr(argv, i);
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
457 struct page *kmapped_page = NULL;
459 unsigned long kpos = 0;
463 const char __user *str;
468 str = get_user_arg_ptr(argv, argc);
472 len = strnlen_user(str, MAX_ARG_STRLEN);
477 if (!valid_arg_len(bprm, len))
480 /* We're going to work our way backwords. */
486 int offset, bytes_to_copy;
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
494 offset = pos % PAGE_SIZE;
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
510 page = get_arg_page(bprm, pos, 1);
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
543 * Like copy_strings, but get argv and its values from kernel memory.
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
555 r = copy_strings(argc, argv, bprm);
560 EXPORT_SYMBOL(copy_strings_kernel);
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
586 BUG_ON(new_start > new_end);
589 * ensure there are no vmas between where we want to go
592 if (vma != find_vma(mm, new_start))
596 * cover the whole range: [new_start, old_end)
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
610 tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 if (new_end > old_start) {
613 * when the old and new regions overlap clear from new_end.
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
627 tlb_finish_mmu(&tlb, old_start, old_end);
630 * Shrink the vma to just the new range. Always succeeds.
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > STACK_SIZE_MAX)
660 stack_base = STACK_SIZE_MAX;
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
679 stack_shift = vma->vm_end - stack_top;
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
710 /* Move stack pages down in memory. */
712 ret = shift_arg_pages(vma, stack_shift);
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
723 * Align this down to a page boundary as expand_stack
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
731 stack_base = vma->vm_end + stack_expand;
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
736 stack_base = vma->vm_start - stack_expand;
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
744 up_write(&mm->mmap_sem);
747 EXPORT_SYMBOL(setup_arg_pages);
749 #endif /* CONFIG_MMU */
751 static struct file *do_open_execat(int fd, struct filename *name, int flags)
755 struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN,
759 .lookup_flags = LOOKUP_FOLLOW,
762 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
763 return ERR_PTR(-EINVAL);
764 if (flags & AT_SYMLINK_NOFOLLOW)
765 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
766 if (flags & AT_EMPTY_PATH)
767 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
769 file = do_filp_open(fd, name, &open_exec_flags);
774 if (!S_ISREG(file_inode(file)->i_mode))
777 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
780 err = deny_write_access(file);
784 if (name->name[0] != '\0')
795 struct file *open_exec(const char *name)
797 struct filename *filename = getname_kernel(name);
798 struct file *f = ERR_CAST(filename);
800 if (!IS_ERR(filename)) {
801 f = do_open_execat(AT_FDCWD, filename, 0);
806 EXPORT_SYMBOL(open_exec);
808 int kernel_read(struct file *file, loff_t offset,
809 char *addr, unsigned long count)
817 /* The cast to a user pointer is valid due to the set_fs() */
818 result = vfs_read(file, (void __user *)addr, count, &pos);
823 EXPORT_SYMBOL(kernel_read);
825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
827 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
829 flush_icache_range(addr, addr + len);
832 EXPORT_SYMBOL(read_code);
834 static int exec_mmap(struct mm_struct *mm)
836 struct task_struct *tsk;
837 struct mm_struct *old_mm, *active_mm;
839 /* Notify parent that we're no longer interested in the old VM */
841 old_mm = current->mm;
842 mm_release(tsk, old_mm);
847 * Make sure that if there is a core dump in progress
848 * for the old mm, we get out and die instead of going
849 * through with the exec. We must hold mmap_sem around
850 * checking core_state and changing tsk->mm.
852 down_read(&old_mm->mmap_sem);
853 if (unlikely(old_mm->core_state)) {
854 up_read(&old_mm->mmap_sem);
859 active_mm = tsk->active_mm;
862 activate_mm(active_mm, mm);
863 tsk->mm->vmacache_seqnum = 0;
867 up_read(&old_mm->mmap_sem);
868 BUG_ON(active_mm != old_mm);
869 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
870 mm_update_next_owner(old_mm);
879 * This function makes sure the current process has its own signal table,
880 * so that flush_signal_handlers can later reset the handlers without
881 * disturbing other processes. (Other processes might share the signal
882 * table via the CLONE_SIGHAND option to clone().)
884 static int de_thread(struct task_struct *tsk)
886 struct signal_struct *sig = tsk->signal;
887 struct sighand_struct *oldsighand = tsk->sighand;
888 spinlock_t *lock = &oldsighand->siglock;
890 if (thread_group_empty(tsk))
891 goto no_thread_group;
894 * Kill all other threads in the thread group.
897 if (signal_group_exit(sig)) {
899 * Another group action in progress, just
900 * return so that the signal is processed.
902 spin_unlock_irq(lock);
906 sig->group_exit_task = tsk;
907 sig->notify_count = zap_other_threads(tsk);
908 if (!thread_group_leader(tsk))
911 while (sig->notify_count) {
912 __set_current_state(TASK_KILLABLE);
913 spin_unlock_irq(lock);
915 if (unlikely(__fatal_signal_pending(tsk)))
919 spin_unlock_irq(lock);
922 * At this point all other threads have exited, all we have to
923 * do is to wait for the thread group leader to become inactive,
924 * and to assume its PID:
926 if (!thread_group_leader(tsk)) {
927 struct task_struct *leader = tsk->group_leader;
930 threadgroup_change_begin(tsk);
931 write_lock_irq(&tasklist_lock);
933 * Do this under tasklist_lock to ensure that
934 * exit_notify() can't miss ->group_exit_task
936 sig->notify_count = -1;
937 if (likely(leader->exit_state))
939 __set_current_state(TASK_KILLABLE);
940 write_unlock_irq(&tasklist_lock);
941 threadgroup_change_end(tsk);
943 if (unlikely(__fatal_signal_pending(tsk)))
948 * The only record we have of the real-time age of a
949 * process, regardless of execs it's done, is start_time.
950 * All the past CPU time is accumulated in signal_struct
951 * from sister threads now dead. But in this non-leader
952 * exec, nothing survives from the original leader thread,
953 * whose birth marks the true age of this process now.
954 * When we take on its identity by switching to its PID, we
955 * also take its birthdate (always earlier than our own).
957 tsk->start_time = leader->start_time;
958 tsk->real_start_time = leader->real_start_time;
960 BUG_ON(!same_thread_group(leader, tsk));
961 BUG_ON(has_group_leader_pid(tsk));
963 * An exec() starts a new thread group with the
964 * TGID of the previous thread group. Rehash the
965 * two threads with a switched PID, and release
966 * the former thread group leader:
969 /* Become a process group leader with the old leader's pid.
970 * The old leader becomes a thread of the this thread group.
971 * Note: The old leader also uses this pid until release_task
972 * is called. Odd but simple and correct.
974 tsk->pid = leader->pid;
975 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
976 transfer_pid(leader, tsk, PIDTYPE_PGID);
977 transfer_pid(leader, tsk, PIDTYPE_SID);
979 list_replace_rcu(&leader->tasks, &tsk->tasks);
980 list_replace_init(&leader->sibling, &tsk->sibling);
982 tsk->group_leader = tsk;
983 leader->group_leader = tsk;
985 tsk->exit_signal = SIGCHLD;
986 leader->exit_signal = -1;
988 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
989 leader->exit_state = EXIT_DEAD;
992 * We are going to release_task()->ptrace_unlink() silently,
993 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
994 * the tracer wont't block again waiting for this thread.
996 if (unlikely(leader->ptrace))
997 __wake_up_parent(leader, leader->parent);
998 write_unlock_irq(&tasklist_lock);
999 threadgroup_change_end(tsk);
1001 release_task(leader);
1004 sig->group_exit_task = NULL;
1005 sig->notify_count = 0;
1008 /* we have changed execution domain */
1009 tsk->exit_signal = SIGCHLD;
1012 flush_itimer_signals();
1014 if (atomic_read(&oldsighand->count) != 1) {
1015 struct sighand_struct *newsighand;
1017 * This ->sighand is shared with the CLONE_SIGHAND
1018 * but not CLONE_THREAD task, switch to the new one.
1020 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1024 atomic_set(&newsighand->count, 1);
1025 memcpy(newsighand->action, oldsighand->action,
1026 sizeof(newsighand->action));
1028 write_lock_irq(&tasklist_lock);
1029 spin_lock(&oldsighand->siglock);
1030 rcu_assign_pointer(tsk->sighand, newsighand);
1031 spin_unlock(&oldsighand->siglock);
1032 write_unlock_irq(&tasklist_lock);
1034 __cleanup_sighand(oldsighand);
1037 BUG_ON(!thread_group_leader(tsk));
1041 /* protects against exit_notify() and __exit_signal() */
1042 read_lock(&tasklist_lock);
1043 sig->group_exit_task = NULL;
1044 sig->notify_count = 0;
1045 read_unlock(&tasklist_lock);
1049 char *get_task_comm(char *buf, struct task_struct *tsk)
1051 /* buf must be at least sizeof(tsk->comm) in size */
1053 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1057 EXPORT_SYMBOL_GPL(get_task_comm);
1060 * These functions flushes out all traces of the currently running executable
1061 * so that a new one can be started
1064 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1067 trace_task_rename(tsk, buf);
1068 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 perf_event_comm(tsk, exec);
1073 int flush_old_exec(struct linux_binprm * bprm)
1078 * Make sure we have a private signal table and that
1079 * we are unassociated from the previous thread group.
1081 retval = de_thread(current);
1086 * Must be called _before_ exec_mmap() as bprm->mm is
1087 * not visibile until then. This also enables the update
1090 set_mm_exe_file(bprm->mm, bprm->file);
1093 * Release all of the old mmap stuff
1095 acct_arg_size(bprm, 0);
1096 retval = exec_mmap(bprm->mm);
1100 bprm->mm = NULL; /* We're using it now */
1103 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1104 PF_NOFREEZE | PF_NO_SETAFFINITY);
1106 current->personality &= ~bprm->per_clear;
1113 EXPORT_SYMBOL(flush_old_exec);
1115 void would_dump(struct linux_binprm *bprm, struct file *file)
1117 if (inode_permission(file_inode(file), MAY_READ) < 0)
1118 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1120 EXPORT_SYMBOL(would_dump);
1122 void setup_new_exec(struct linux_binprm * bprm)
1124 arch_pick_mmap_layout(current->mm);
1126 /* This is the point of no return */
1127 current->sas_ss_sp = current->sas_ss_size = 0;
1129 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1130 set_dumpable(current->mm, SUID_DUMP_USER);
1132 set_dumpable(current->mm, suid_dumpable);
1135 __set_task_comm(current, kbasename(bprm->filename), true);
1137 /* Set the new mm task size. We have to do that late because it may
1138 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 * some architectures like powerpc
1141 current->mm->task_size = TASK_SIZE;
1143 /* install the new credentials */
1144 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1145 !gid_eq(bprm->cred->gid, current_egid())) {
1146 current->pdeath_signal = 0;
1148 would_dump(bprm, bprm->file);
1149 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1150 set_dumpable(current->mm, suid_dumpable);
1153 /* An exec changes our domain. We are no longer part of the thread
1155 current->self_exec_id++;
1156 flush_signal_handlers(current, 0);
1157 do_close_on_exec(current->files);
1159 EXPORT_SYMBOL(setup_new_exec);
1162 * Prepare credentials and lock ->cred_guard_mutex.
1163 * install_exec_creds() commits the new creds and drops the lock.
1164 * Or, if exec fails before, free_bprm() should release ->cred and
1167 int prepare_bprm_creds(struct linux_binprm *bprm)
1169 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1170 return -ERESTARTNOINTR;
1172 bprm->cred = prepare_exec_creds();
1173 if (likely(bprm->cred))
1176 mutex_unlock(¤t->signal->cred_guard_mutex);
1180 static void free_bprm(struct linux_binprm *bprm)
1182 free_arg_pages(bprm);
1184 mutex_unlock(¤t->signal->cred_guard_mutex);
1185 abort_creds(bprm->cred);
1188 allow_write_access(bprm->file);
1191 /* If a binfmt changed the interp, free it. */
1192 if (bprm->interp != bprm->filename)
1193 kfree(bprm->interp);
1197 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1199 /* If a binfmt changed the interp, free it first. */
1200 if (bprm->interp != bprm->filename)
1201 kfree(bprm->interp);
1202 bprm->interp = kstrdup(interp, GFP_KERNEL);
1207 EXPORT_SYMBOL(bprm_change_interp);
1210 * install the new credentials for this executable
1212 void install_exec_creds(struct linux_binprm *bprm)
1214 security_bprm_committing_creds(bprm);
1216 commit_creds(bprm->cred);
1220 * Disable monitoring for regular users
1221 * when executing setuid binaries. Must
1222 * wait until new credentials are committed
1223 * by commit_creds() above
1225 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1226 perf_event_exit_task(current);
1228 * cred_guard_mutex must be held at least to this point to prevent
1229 * ptrace_attach() from altering our determination of the task's
1230 * credentials; any time after this it may be unlocked.
1232 security_bprm_committed_creds(bprm);
1233 mutex_unlock(¤t->signal->cred_guard_mutex);
1235 EXPORT_SYMBOL(install_exec_creds);
1238 * determine how safe it is to execute the proposed program
1239 * - the caller must hold ->cred_guard_mutex to protect against
1240 * PTRACE_ATTACH or seccomp thread-sync
1242 static void check_unsafe_exec(struct linux_binprm *bprm)
1244 struct task_struct *p = current, *t;
1248 if (p->ptrace & PT_PTRACE_CAP)
1249 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1251 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1255 * This isn't strictly necessary, but it makes it harder for LSMs to
1258 if (task_no_new_privs(current))
1259 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1263 spin_lock(&p->fs->lock);
1265 while_each_thread(p, t) {
1271 if (p->fs->users > n_fs)
1272 bprm->unsafe |= LSM_UNSAFE_SHARE;
1275 spin_unlock(&p->fs->lock);
1278 static void bprm_fill_uid(struct linux_binprm *bprm)
1280 struct inode *inode;
1285 /* clear any previous set[ug]id data from a previous binary */
1286 bprm->cred->euid = current_euid();
1287 bprm->cred->egid = current_egid();
1289 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1292 if (task_no_new_privs(current))
1295 inode = file_inode(bprm->file);
1296 mode = READ_ONCE(inode->i_mode);
1297 if (!(mode & (S_ISUID|S_ISGID)))
1300 /* Be careful if suid/sgid is set */
1301 mutex_lock(&inode->i_mutex);
1303 /* reload atomically mode/uid/gid now that lock held */
1304 mode = inode->i_mode;
1307 mutex_unlock(&inode->i_mutex);
1309 /* We ignore suid/sgid if there are no mappings for them in the ns */
1310 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1311 !kgid_has_mapping(bprm->cred->user_ns, gid))
1314 if (mode & S_ISUID) {
1315 bprm->per_clear |= PER_CLEAR_ON_SETID;
1316 bprm->cred->euid = uid;
1319 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1320 bprm->per_clear |= PER_CLEAR_ON_SETID;
1321 bprm->cred->egid = gid;
1326 * Fill the binprm structure from the inode.
1327 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1329 * This may be called multiple times for binary chains (scripts for example).
1331 int prepare_binprm(struct linux_binprm *bprm)
1335 bprm_fill_uid(bprm);
1337 /* fill in binprm security blob */
1338 retval = security_bprm_set_creds(bprm);
1341 bprm->cred_prepared = 1;
1343 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1344 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1347 EXPORT_SYMBOL(prepare_binprm);
1350 * Arguments are '\0' separated strings found at the location bprm->p
1351 * points to; chop off the first by relocating brpm->p to right after
1352 * the first '\0' encountered.
1354 int remove_arg_zero(struct linux_binprm *bprm)
1357 unsigned long offset;
1365 offset = bprm->p & ~PAGE_MASK;
1366 page = get_arg_page(bprm, bprm->p, 0);
1371 kaddr = kmap_atomic(page);
1373 for (; offset < PAGE_SIZE && kaddr[offset];
1374 offset++, bprm->p++)
1377 kunmap_atomic(kaddr);
1380 if (offset == PAGE_SIZE)
1381 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1382 } while (offset == PAGE_SIZE);
1391 EXPORT_SYMBOL(remove_arg_zero);
1393 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1395 * cycle the list of binary formats handler, until one recognizes the image
1397 int search_binary_handler(struct linux_binprm *bprm)
1399 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1400 struct linux_binfmt *fmt;
1403 /* This allows 4 levels of binfmt rewrites before failing hard. */
1404 if (bprm->recursion_depth > 5)
1407 retval = security_bprm_check(bprm);
1413 read_lock(&binfmt_lock);
1414 list_for_each_entry(fmt, &formats, lh) {
1415 if (!try_module_get(fmt->module))
1417 read_unlock(&binfmt_lock);
1418 bprm->recursion_depth++;
1419 retval = fmt->load_binary(bprm);
1420 read_lock(&binfmt_lock);
1422 bprm->recursion_depth--;
1423 if (retval < 0 && !bprm->mm) {
1424 /* we got to flush_old_exec() and failed after it */
1425 read_unlock(&binfmt_lock);
1426 force_sigsegv(SIGSEGV, current);
1429 if (retval != -ENOEXEC || !bprm->file) {
1430 read_unlock(&binfmt_lock);
1434 read_unlock(&binfmt_lock);
1437 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1438 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1440 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1448 EXPORT_SYMBOL(search_binary_handler);
1450 static int exec_binprm(struct linux_binprm *bprm)
1452 pid_t old_pid, old_vpid;
1455 /* Need to fetch pid before load_binary changes it */
1456 old_pid = current->pid;
1458 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1461 ret = search_binary_handler(bprm);
1464 trace_sched_process_exec(current, old_pid, bprm);
1465 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1466 proc_exec_connector(current);
1473 * sys_execve() executes a new program.
1475 static int do_execveat_common(int fd, struct filename *filename,
1476 struct user_arg_ptr argv,
1477 struct user_arg_ptr envp,
1480 char *pathbuf = NULL;
1481 struct linux_binprm *bprm;
1483 struct files_struct *displaced;
1486 if (IS_ERR(filename))
1487 return PTR_ERR(filename);
1490 * We move the actual failure in case of RLIMIT_NPROC excess from
1491 * set*uid() to execve() because too many poorly written programs
1492 * don't check setuid() return code. Here we additionally recheck
1493 * whether NPROC limit is still exceeded.
1495 if ((current->flags & PF_NPROC_EXCEEDED) &&
1496 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1501 /* We're below the limit (still or again), so we don't want to make
1502 * further execve() calls fail. */
1503 current->flags &= ~PF_NPROC_EXCEEDED;
1505 retval = unshare_files(&displaced);
1510 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514 retval = prepare_bprm_creds(bprm);
1518 check_unsafe_exec(bprm);
1519 current->in_execve = 1;
1521 file = do_open_execat(fd, filename, flags);
1522 retval = PTR_ERR(file);
1529 if (fd == AT_FDCWD || filename->name[0] == '/') {
1530 bprm->filename = filename->name;
1532 if (filename->name[0] == '\0')
1533 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1535 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1536 fd, filename->name);
1542 * Record that a name derived from an O_CLOEXEC fd will be
1543 * inaccessible after exec. Relies on having exclusive access to
1544 * current->files (due to unshare_files above).
1546 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1547 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1548 bprm->filename = pathbuf;
1550 bprm->interp = bprm->filename;
1552 retval = bprm_mm_init(bprm);
1556 bprm->argc = count(argv, MAX_ARG_STRINGS);
1557 if ((retval = bprm->argc) < 0)
1560 bprm->envc = count(envp, MAX_ARG_STRINGS);
1561 if ((retval = bprm->envc) < 0)
1564 retval = prepare_binprm(bprm);
1568 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1572 bprm->exec = bprm->p;
1573 retval = copy_strings(bprm->envc, envp, bprm);
1577 retval = copy_strings(bprm->argc, argv, bprm);
1581 retval = exec_binprm(bprm);
1585 /* execve succeeded */
1586 current->fs->in_exec = 0;
1587 current->in_execve = 0;
1588 acct_update_integrals(current);
1589 task_numa_free(current);
1594 put_files_struct(displaced);
1599 acct_arg_size(bprm, 0);
1604 current->fs->in_exec = 0;
1605 current->in_execve = 0;
1613 reset_files_struct(displaced);
1619 int do_execve(struct filename *filename,
1620 const char __user *const __user *__argv,
1621 const char __user *const __user *__envp)
1623 struct user_arg_ptr argv = { .ptr.native = __argv };
1624 struct user_arg_ptr envp = { .ptr.native = __envp };
1625 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1628 int do_execveat(int fd, struct filename *filename,
1629 const char __user *const __user *__argv,
1630 const char __user *const __user *__envp,
1633 struct user_arg_ptr argv = { .ptr.native = __argv };
1634 struct user_arg_ptr envp = { .ptr.native = __envp };
1636 return do_execveat_common(fd, filename, argv, envp, flags);
1639 #ifdef CONFIG_COMPAT
1640 static int compat_do_execve(struct filename *filename,
1641 const compat_uptr_t __user *__argv,
1642 const compat_uptr_t __user *__envp)
1644 struct user_arg_ptr argv = {
1646 .ptr.compat = __argv,
1648 struct user_arg_ptr envp = {
1650 .ptr.compat = __envp,
1652 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1655 static int compat_do_execveat(int fd, struct filename *filename,
1656 const compat_uptr_t __user *__argv,
1657 const compat_uptr_t __user *__envp,
1660 struct user_arg_ptr argv = {
1662 .ptr.compat = __argv,
1664 struct user_arg_ptr envp = {
1666 .ptr.compat = __envp,
1668 return do_execveat_common(fd, filename, argv, envp, flags);
1672 void set_binfmt(struct linux_binfmt *new)
1674 struct mm_struct *mm = current->mm;
1677 module_put(mm->binfmt->module);
1681 __module_get(new->module);
1683 EXPORT_SYMBOL(set_binfmt);
1686 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1688 void set_dumpable(struct mm_struct *mm, int value)
1690 unsigned long old, new;
1692 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1696 old = ACCESS_ONCE(mm->flags);
1697 new = (old & ~MMF_DUMPABLE_MASK) | value;
1698 } while (cmpxchg(&mm->flags, old, new) != old);
1701 SYSCALL_DEFINE3(execve,
1702 const char __user *, filename,
1703 const char __user *const __user *, argv,
1704 const char __user *const __user *, envp)
1706 return do_execve(getname(filename), argv, envp);
1709 SYSCALL_DEFINE5(execveat,
1710 int, fd, const char __user *, filename,
1711 const char __user *const __user *, argv,
1712 const char __user *const __user *, envp,
1715 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1717 return do_execveat(fd,
1718 getname_flags(filename, lookup_flags, NULL),
1722 #ifdef CONFIG_COMPAT
1723 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1724 const compat_uptr_t __user *, argv,
1725 const compat_uptr_t __user *, envp)
1727 return compat_do_execve(getname(filename), argv, envp);
1730 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1731 const char __user *, filename,
1732 const compat_uptr_t __user *, argv,
1733 const compat_uptr_t __user *, envp,
1736 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1738 return compat_do_execveat(fd,
1739 getname_flags(filename, lookup_flags, NULL),