4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
65 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 if (WARN_ON(!fmt->load_binary))
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
102 bool path_noexec(const struct path *path)
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 struct linux_binfmt *fmt;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
133 error = PTR_ERR(file);
138 if (!S_ISREG(file_inode(file)->i_mode))
142 if (path_noexec(&file->f_path))
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
153 if (!try_module_get(fmt->module))
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
159 if (error != -ENOEXEC)
162 read_unlock(&binfmt_lock);
168 #endif /* #ifdef CONFIG_USELIB */
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
194 unsigned int gup_flags = FOLL_FORCE;
196 #ifdef CONFIG_STACK_GROWSUP
198 ret = expand_downwards(bprm->vma, pos);
205 gup_flags |= FOLL_WRITE;
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
220 acct_arg_size(bprm, size / PAGE_SIZE);
223 * We've historically supported up to 32 pages (ARG_MAX)
224 * of argument strings even with small stacks
230 * Limit to 1/4-th the stack size for the argv+env strings.
232 * - the remaining binfmt code will not run out of stack space,
233 * - the program will have a reasonable amount of stack left
236 rlim = current->signal->rlim;
237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
246 static void put_arg_page(struct page *page)
251 static void free_arg_pages(struct linux_binprm *bprm)
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
261 static int __bprm_mm_init(struct linux_binprm *bprm)
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
271 if (down_write_killable(&mm->mmap_sem)) {
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 vma->vm_end = STACK_TOP_MAX;
285 vma->vm_start = vma->vm_end - PAGE_SIZE;
286 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 INIT_LIST_HEAD(&vma->anon_vma_chain);
290 err = insert_vm_struct(mm, vma);
294 mm->stack_vm = mm->total_vm = 1;
295 arch_bprm_mm_init(mm, vma);
296 up_write(&mm->mmap_sem);
297 bprm->p = vma->vm_end - sizeof(void *);
300 up_write(&mm->mmap_sem);
303 kmem_cache_free(vm_area_cachep, vma);
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
309 return len <= MAX_ARG_STRLEN;
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 bprm->page[pos / PAGE_SIZE] = page;
334 static void put_arg_page(struct page *page)
338 static void free_arg_page(struct linux_binprm *bprm, int i)
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
346 static void free_arg_pages(struct linux_binprm *bprm)
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359 static int __bprm_mm_init(struct linux_binprm *bprm)
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
367 return len <= bprm->p;
370 #endif /* CONFIG_MMU */
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
378 static int bprm_mm_init(struct linux_binprm *bprm)
381 struct mm_struct *mm = NULL;
383 bprm->mm = mm = mm_alloc();
388 err = __bprm_mm_init(bprm);
403 struct user_arg_ptr {
408 const char __user *const __user *native;
410 const compat_uptr_t __user *compat;
415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
417 const char __user *native;
420 if (unlikely(argv.is_compat)) {
421 compat_uptr_t compat;
423 if (get_user(compat, argv.ptr.compat + nr))
424 return ERR_PTR(-EFAULT);
426 return compat_ptr(compat);
430 if (get_user(native, argv.ptr.native + nr))
431 return ERR_PTR(-EFAULT);
437 * count() counts the number of strings in array ARGV.
439 static int count(struct user_arg_ptr argv, int max)
443 if (argv.ptr.native != NULL) {
445 const char __user *p = get_user_arg_ptr(argv, i);
457 if (fatal_signal_pending(current))
458 return -ERESTARTNOHAND;
466 * 'copy_strings()' copies argument/environment strings from the old
467 * processes's memory to the new process's stack. The call to get_user_pages()
468 * ensures the destination page is created and not swapped out.
470 static int copy_strings(int argc, struct user_arg_ptr argv,
471 struct linux_binprm *bprm)
473 struct page *kmapped_page = NULL;
475 unsigned long kpos = 0;
479 const char __user *str;
484 str = get_user_arg_ptr(argv, argc);
488 len = strnlen_user(str, MAX_ARG_STRLEN);
493 if (!valid_arg_len(bprm, len))
496 /* We're going to work our way backwords. */
502 int offset, bytes_to_copy;
504 if (fatal_signal_pending(current)) {
505 ret = -ERESTARTNOHAND;
510 offset = pos % PAGE_SIZE;
514 bytes_to_copy = offset;
515 if (bytes_to_copy > len)
518 offset -= bytes_to_copy;
519 pos -= bytes_to_copy;
520 str -= bytes_to_copy;
521 len -= bytes_to_copy;
523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 page = get_arg_page(bprm, pos, 1);
533 flush_kernel_dcache_page(kmapped_page);
534 kunmap(kmapped_page);
535 put_arg_page(kmapped_page);
538 kaddr = kmap(kmapped_page);
539 kpos = pos & PAGE_MASK;
540 flush_arg_page(bprm, kpos, kmapped_page);
542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
551 flush_kernel_dcache_page(kmapped_page);
552 kunmap(kmapped_page);
553 put_arg_page(kmapped_page);
559 * Like copy_strings, but get argv and its values from kernel memory.
561 int copy_strings_kernel(int argc, const char *const *__argv,
562 struct linux_binprm *bprm)
565 mm_segment_t oldfs = get_fs();
566 struct user_arg_ptr argv = {
567 .ptr.native = (const char __user *const __user *)__argv,
571 r = copy_strings(argc, argv, bprm);
576 EXPORT_SYMBOL(copy_strings_kernel);
581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
582 * the binfmt code determines where the new stack should reside, we shift it to
583 * its final location. The process proceeds as follows:
585 * 1) Use shift to calculate the new vma endpoints.
586 * 2) Extend vma to cover both the old and new ranges. This ensures the
587 * arguments passed to subsequent functions are consistent.
588 * 3) Move vma's page tables to the new range.
589 * 4) Free up any cleared pgd range.
590 * 5) Shrink the vma to cover only the new range.
592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
594 struct mm_struct *mm = vma->vm_mm;
595 unsigned long old_start = vma->vm_start;
596 unsigned long old_end = vma->vm_end;
597 unsigned long length = old_end - old_start;
598 unsigned long new_start = old_start - shift;
599 unsigned long new_end = old_end - shift;
600 struct mmu_gather tlb;
602 BUG_ON(new_start > new_end);
605 * ensure there are no vmas between where we want to go
608 if (vma != find_vma(mm, new_start))
612 * cover the whole range: [new_start, old_end)
614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
618 * move the page tables downwards, on failure we rely on
619 * process cleanup to remove whatever mess we made.
621 if (length != move_page_tables(vma, old_start,
622 vma, new_start, length, false))
626 tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 if (new_end > old_start) {
629 * when the old and new regions overlap clear from new_end.
631 free_pgd_range(&tlb, new_end, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
635 * otherwise, clean from old_start; this is done to not touch
636 * the address space in [new_end, old_start) some architectures
637 * have constraints on va-space that make this illegal (IA64) -
638 * for the others its just a little faster.
640 free_pgd_range(&tlb, old_start, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
643 tlb_finish_mmu(&tlb, old_start, old_end);
646 * Shrink the vma to just the new range. Always succeeds.
648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655 * the stack is optionally relocated, and some extra space is added.
657 int setup_arg_pages(struct linux_binprm *bprm,
658 unsigned long stack_top,
659 int executable_stack)
662 unsigned long stack_shift;
663 struct mm_struct *mm = current->mm;
664 struct vm_area_struct *vma = bprm->vma;
665 struct vm_area_struct *prev = NULL;
666 unsigned long vm_flags;
667 unsigned long stack_base;
668 unsigned long stack_size;
669 unsigned long stack_expand;
670 unsigned long rlim_stack;
672 #ifdef CONFIG_STACK_GROWSUP
673 /* Limit stack size */
674 stack_base = rlimit_max(RLIMIT_STACK);
675 if (stack_base > STACK_SIZE_MAX)
676 stack_base = STACK_SIZE_MAX;
678 /* Add space for stack randomization. */
679 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
685 stack_base = PAGE_ALIGN(stack_top - stack_base);
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
698 stack_shift = vma->vm_end - stack_top;
700 bprm->p -= stack_shift;
701 mm->arg_start = bprm->p;
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
708 if (down_write_killable(&mm->mmap_sem))
711 vm_flags = VM_STACK_FLAGS;
714 * Adjust stack execute permissions; explicitly enable for
715 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716 * (arch default) otherwise.
718 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
720 else if (executable_stack == EXSTACK_DISABLE_X)
721 vm_flags &= ~VM_EXEC;
722 vm_flags |= mm->def_flags;
723 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
725 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
731 /* Move stack pages down in memory. */
733 ret = shift_arg_pages(vma, stack_shift);
738 /* mprotect_fixup is overkill to remove the temporary stack flags */
739 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
741 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742 stack_size = vma->vm_end - vma->vm_start;
744 * Align this down to a page boundary as expand_stack
747 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748 #ifdef CONFIG_STACK_GROWSUP
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_start + rlim_stack;
752 stack_base = vma->vm_end + stack_expand;
754 if (stack_size + stack_expand > rlim_stack)
755 stack_base = vma->vm_end - rlim_stack;
757 stack_base = vma->vm_start - stack_expand;
759 current->mm->start_stack = bprm->p;
760 ret = expand_stack(vma, stack_base);
765 up_write(&mm->mmap_sem);
768 EXPORT_SYMBOL(setup_arg_pages);
773 * Transfer the program arguments and environment from the holding pages
774 * onto the stack. The provided stack pointer is adjusted accordingly.
776 int transfer_args_to_stack(struct linux_binprm *bprm,
777 unsigned long *sp_location)
779 unsigned long index, stop, sp;
782 stop = bprm->p >> PAGE_SHIFT;
785 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787 char *src = kmap(bprm->page[index]) + offset;
788 sp -= PAGE_SIZE - offset;
789 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
791 kunmap(bprm->page[index]);
801 EXPORT_SYMBOL(transfer_args_to_stack);
803 #endif /* CONFIG_MMU */
805 static struct file *do_open_execat(int fd, struct filename *name, int flags)
809 struct open_flags open_exec_flags = {
810 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811 .acc_mode = MAY_EXEC,
812 .intent = LOOKUP_OPEN,
813 .lookup_flags = LOOKUP_FOLLOW,
816 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817 return ERR_PTR(-EINVAL);
818 if (flags & AT_SYMLINK_NOFOLLOW)
819 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820 if (flags & AT_EMPTY_PATH)
821 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
823 file = do_filp_open(fd, name, &open_exec_flags);
828 if (!S_ISREG(file_inode(file)->i_mode))
831 if (path_noexec(&file->f_path))
834 err = deny_write_access(file);
838 if (name->name[0] != '\0')
849 struct file *open_exec(const char *name)
851 struct filename *filename = getname_kernel(name);
852 struct file *f = ERR_CAST(filename);
854 if (!IS_ERR(filename)) {
855 f = do_open_execat(AT_FDCWD, filename, 0);
860 EXPORT_SYMBOL(open_exec);
862 int kernel_read(struct file *file, loff_t offset,
863 char *addr, unsigned long count)
871 /* The cast to a user pointer is valid due to the set_fs() */
872 result = vfs_read(file, (void __user *)addr, count, &pos);
877 EXPORT_SYMBOL(kernel_read);
879 int kernel_read_file(struct file *file, void **buf, loff_t *size,
880 loff_t max_size, enum kernel_read_file_id id)
886 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
889 ret = security_kernel_read_file(file, id);
893 ret = deny_write_access(file);
897 i_size = i_size_read(file_inode(file));
898 if (max_size > 0 && i_size > max_size) {
907 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908 *buf = vmalloc(i_size);
915 while (pos < i_size) {
916 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
933 ret = security_kernel_post_read_file(file, *buf, i_size, id);
939 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
946 allow_write_access(file);
949 EXPORT_SYMBOL_GPL(kernel_read_file);
951 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952 loff_t max_size, enum kernel_read_file_id id)
960 file = filp_open(path, O_RDONLY, 0);
962 return PTR_ERR(file);
964 ret = kernel_read_file(file, buf, size, max_size, id);
968 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
970 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971 enum kernel_read_file_id id)
973 struct fd f = fdget(fd);
979 ret = kernel_read_file(f.file, buf, size, max_size, id);
984 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
986 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
988 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
990 flush_icache_range(addr, addr + len);
993 EXPORT_SYMBOL(read_code);
995 static int exec_mmap(struct mm_struct *mm)
997 struct task_struct *tsk;
998 struct mm_struct *old_mm, *active_mm;
1000 /* Notify parent that we're no longer interested in the old VM */
1002 old_mm = current->mm;
1003 mm_release(tsk, old_mm);
1006 sync_mm_rss(old_mm);
1008 * Make sure that if there is a core dump in progress
1009 * for the old mm, we get out and die instead of going
1010 * through with the exec. We must hold mmap_sem around
1011 * checking core_state and changing tsk->mm.
1013 down_read(&old_mm->mmap_sem);
1014 if (unlikely(old_mm->core_state)) {
1015 up_read(&old_mm->mmap_sem);
1020 active_mm = tsk->active_mm;
1022 tsk->active_mm = mm;
1023 activate_mm(active_mm, mm);
1024 tsk->mm->vmacache_seqnum = 0;
1025 vmacache_flush(tsk);
1028 up_read(&old_mm->mmap_sem);
1029 BUG_ON(active_mm != old_mm);
1030 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031 mm_update_next_owner(old_mm);
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes. (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1045 static int de_thread(struct task_struct *tsk)
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1055 * Kill all other threads in the thread group.
1057 spin_lock_irq(lock);
1058 if (signal_group_exit(sig)) {
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1063 spin_unlock_irq(lock);
1067 sig->group_exit_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1076 if (unlikely(__fatal_signal_pending(tsk)))
1078 spin_lock_irq(lock);
1080 spin_unlock_irq(lock);
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1091 threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exit_task
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 threadgroup_change_end(tsk);
1104 if (unlikely(__fatal_signal_pending(tsk)))
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1118 tsk->start_time = leader->start_time;
1119 tsk->real_start_time = leader->real_start_time;
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 BUG_ON(has_group_leader_pid(tsk));
1124 * An exec() starts a new thread group with the
1125 * TGID of the previous thread group. Rehash the
1126 * two threads with a switched PID, and release
1127 * the former thread group leader:
1130 /* Become a process group leader with the old leader's pid.
1131 * The old leader becomes a thread of the this thread group.
1132 * Note: The old leader also uses this pid until release_task
1133 * is called. Odd but simple and correct.
1135 tsk->pid = leader->pid;
1136 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer wont't block again waiting for this thread.
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 threadgroup_change_end(tsk);
1162 release_task(leader);
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1172 #ifdef CONFIG_POSIX_TIMERS
1174 flush_itimer_signals();
1177 if (atomic_read(&oldsighand->count) != 1) {
1178 struct sighand_struct *newsighand;
1180 * This ->sighand is shared with the CLONE_SIGHAND
1181 * but not CLONE_THREAD task, switch to the new one.
1183 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1187 atomic_set(&newsighand->count, 1);
1188 memcpy(newsighand->action, oldsighand->action,
1189 sizeof(newsighand->action));
1191 write_lock_irq(&tasklist_lock);
1192 spin_lock(&oldsighand->siglock);
1193 rcu_assign_pointer(tsk->sighand, newsighand);
1194 spin_unlock(&oldsighand->siglock);
1195 write_unlock_irq(&tasklist_lock);
1197 __cleanup_sighand(oldsighand);
1200 BUG_ON(!thread_group_leader(tsk));
1204 /* protects against exit_notify() and __exit_signal() */
1205 read_lock(&tasklist_lock);
1206 sig->group_exit_task = NULL;
1207 sig->notify_count = 0;
1208 read_unlock(&tasklist_lock);
1212 char *get_task_comm(char *buf, struct task_struct *tsk)
1214 /* buf must be at least sizeof(tsk->comm) in size */
1216 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1220 EXPORT_SYMBOL_GPL(get_task_comm);
1223 * These functions flushes out all traces of the currently running executable
1224 * so that a new one can be started
1227 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230 trace_task_rename(tsk, buf);
1231 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1233 perf_event_comm(tsk, exec);
1236 int flush_old_exec(struct linux_binprm * bprm)
1241 * Make sure we have a private signal table and that
1242 * we are unassociated from the previous thread group.
1244 retval = de_thread(current);
1249 * Must be called _before_ exec_mmap() as bprm->mm is
1250 * not visibile until then. This also enables the update
1253 set_mm_exe_file(bprm->mm, bprm->file);
1256 * Release all of the old mmap stuff
1258 acct_arg_size(bprm, 0);
1259 retval = exec_mmap(bprm->mm);
1263 bprm->mm = NULL; /* We're using it now */
1266 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1267 PF_NOFREEZE | PF_NO_SETAFFINITY);
1269 current->personality &= ~bprm->per_clear;
1276 EXPORT_SYMBOL(flush_old_exec);
1278 void would_dump(struct linux_binprm *bprm, struct file *file)
1280 struct inode *inode = file_inode(file);
1281 if (inode_permission(inode, MAY_READ) < 0) {
1282 struct user_namespace *old, *user_ns;
1283 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1285 /* Ensure mm->user_ns contains the executable */
1286 user_ns = old = bprm->mm->user_ns;
1287 while ((user_ns != &init_user_ns) &&
1288 !privileged_wrt_inode_uidgid(user_ns, inode))
1289 user_ns = user_ns->parent;
1291 if (old != user_ns) {
1292 bprm->mm->user_ns = get_user_ns(user_ns);
1297 EXPORT_SYMBOL(would_dump);
1299 void setup_new_exec(struct linux_binprm * bprm)
1301 arch_pick_mmap_layout(current->mm);
1303 /* This is the point of no return */
1304 current->sas_ss_sp = current->sas_ss_size = 0;
1306 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1307 set_dumpable(current->mm, SUID_DUMP_USER);
1309 set_dumpable(current->mm, suid_dumpable);
1312 __set_task_comm(current, kbasename(bprm->filename), true);
1314 /* Set the new mm task size. We have to do that late because it may
1315 * depend on TIF_32BIT which is only updated in flush_thread() on
1316 * some architectures like powerpc
1318 current->mm->task_size = TASK_SIZE;
1320 /* install the new credentials */
1321 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1322 !gid_eq(bprm->cred->gid, current_egid())) {
1323 current->pdeath_signal = 0;
1325 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1326 set_dumpable(current->mm, suid_dumpable);
1329 /* An exec changes our domain. We are no longer part of the thread
1331 current->self_exec_id++;
1332 flush_signal_handlers(current, 0);
1333 do_close_on_exec(current->files);
1335 EXPORT_SYMBOL(setup_new_exec);
1338 * Prepare credentials and lock ->cred_guard_mutex.
1339 * install_exec_creds() commits the new creds and drops the lock.
1340 * Or, if exec fails before, free_bprm() should release ->cred and
1343 int prepare_bprm_creds(struct linux_binprm *bprm)
1345 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1346 return -ERESTARTNOINTR;
1348 bprm->cred = prepare_exec_creds();
1349 if (likely(bprm->cred))
1352 mutex_unlock(¤t->signal->cred_guard_mutex);
1356 static void free_bprm(struct linux_binprm *bprm)
1358 free_arg_pages(bprm);
1360 mutex_unlock(¤t->signal->cred_guard_mutex);
1361 abort_creds(bprm->cred);
1364 allow_write_access(bprm->file);
1367 /* If a binfmt changed the interp, free it. */
1368 if (bprm->interp != bprm->filename)
1369 kfree(bprm->interp);
1373 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1375 /* If a binfmt changed the interp, free it first. */
1376 if (bprm->interp != bprm->filename)
1377 kfree(bprm->interp);
1378 bprm->interp = kstrdup(interp, GFP_KERNEL);
1383 EXPORT_SYMBOL(bprm_change_interp);
1386 * install the new credentials for this executable
1388 void install_exec_creds(struct linux_binprm *bprm)
1390 security_bprm_committing_creds(bprm);
1392 commit_creds(bprm->cred);
1396 * Disable monitoring for regular users
1397 * when executing setuid binaries. Must
1398 * wait until new credentials are committed
1399 * by commit_creds() above
1401 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1402 perf_event_exit_task(current);
1404 * cred_guard_mutex must be held at least to this point to prevent
1405 * ptrace_attach() from altering our determination of the task's
1406 * credentials; any time after this it may be unlocked.
1408 security_bprm_committed_creds(bprm);
1409 mutex_unlock(¤t->signal->cred_guard_mutex);
1411 EXPORT_SYMBOL(install_exec_creds);
1414 * determine how safe it is to execute the proposed program
1415 * - the caller must hold ->cred_guard_mutex to protect against
1416 * PTRACE_ATTACH or seccomp thread-sync
1418 static void check_unsafe_exec(struct linux_binprm *bprm)
1420 struct task_struct *p = current, *t;
1424 if (ptracer_capable(p, current_user_ns()))
1425 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1427 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1431 * This isn't strictly necessary, but it makes it harder for LSMs to
1434 if (task_no_new_privs(current))
1435 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1439 spin_lock(&p->fs->lock);
1441 while_each_thread(p, t) {
1447 if (p->fs->users > n_fs)
1448 bprm->unsafe |= LSM_UNSAFE_SHARE;
1451 spin_unlock(&p->fs->lock);
1454 static void bprm_fill_uid(struct linux_binprm *bprm)
1456 struct inode *inode;
1462 * Since this can be called multiple times (via prepare_binprm),
1463 * we must clear any previous work done when setting set[ug]id
1464 * bits from any earlier bprm->file uses (for example when run
1465 * first for a setuid script then again for its interpreter).
1467 bprm->cred->euid = current_euid();
1468 bprm->cred->egid = current_egid();
1470 if (!mnt_may_suid(bprm->file->f_path.mnt))
1473 if (task_no_new_privs(current))
1476 inode = file_inode(bprm->file);
1477 mode = READ_ONCE(inode->i_mode);
1478 if (!(mode & (S_ISUID|S_ISGID)))
1481 /* Be careful if suid/sgid is set */
1484 /* reload atomically mode/uid/gid now that lock held */
1485 mode = inode->i_mode;
1488 inode_unlock(inode);
1490 /* We ignore suid/sgid if there are no mappings for them in the ns */
1491 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1492 !kgid_has_mapping(bprm->cred->user_ns, gid))
1495 if (mode & S_ISUID) {
1496 bprm->per_clear |= PER_CLEAR_ON_SETID;
1497 bprm->cred->euid = uid;
1500 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1501 bprm->per_clear |= PER_CLEAR_ON_SETID;
1502 bprm->cred->egid = gid;
1507 * Fill the binprm structure from the inode.
1508 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1510 * This may be called multiple times for binary chains (scripts for example).
1512 int prepare_binprm(struct linux_binprm *bprm)
1516 bprm_fill_uid(bprm);
1518 /* fill in binprm security blob */
1519 retval = security_bprm_set_creds(bprm);
1522 bprm->cred_prepared = 1;
1524 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1525 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1528 EXPORT_SYMBOL(prepare_binprm);
1531 * Arguments are '\0' separated strings found at the location bprm->p
1532 * points to; chop off the first by relocating brpm->p to right after
1533 * the first '\0' encountered.
1535 int remove_arg_zero(struct linux_binprm *bprm)
1538 unsigned long offset;
1546 offset = bprm->p & ~PAGE_MASK;
1547 page = get_arg_page(bprm, bprm->p, 0);
1552 kaddr = kmap_atomic(page);
1554 for (; offset < PAGE_SIZE && kaddr[offset];
1555 offset++, bprm->p++)
1558 kunmap_atomic(kaddr);
1560 } while (offset == PAGE_SIZE);
1569 EXPORT_SYMBOL(remove_arg_zero);
1571 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1573 * cycle the list of binary formats handler, until one recognizes the image
1575 int search_binary_handler(struct linux_binprm *bprm)
1577 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1578 struct linux_binfmt *fmt;
1581 /* This allows 4 levels of binfmt rewrites before failing hard. */
1582 if (bprm->recursion_depth > 5)
1585 retval = security_bprm_check(bprm);
1591 read_lock(&binfmt_lock);
1592 list_for_each_entry(fmt, &formats, lh) {
1593 if (!try_module_get(fmt->module))
1595 read_unlock(&binfmt_lock);
1596 bprm->recursion_depth++;
1597 retval = fmt->load_binary(bprm);
1598 read_lock(&binfmt_lock);
1600 bprm->recursion_depth--;
1601 if (retval < 0 && !bprm->mm) {
1602 /* we got to flush_old_exec() and failed after it */
1603 read_unlock(&binfmt_lock);
1604 force_sigsegv(SIGSEGV, current);
1607 if (retval != -ENOEXEC || !bprm->file) {
1608 read_unlock(&binfmt_lock);
1612 read_unlock(&binfmt_lock);
1615 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1616 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1618 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1626 EXPORT_SYMBOL(search_binary_handler);
1628 static int exec_binprm(struct linux_binprm *bprm)
1630 pid_t old_pid, old_vpid;
1633 /* Need to fetch pid before load_binary changes it */
1634 old_pid = current->pid;
1636 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1639 ret = search_binary_handler(bprm);
1642 trace_sched_process_exec(current, old_pid, bprm);
1643 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1644 proc_exec_connector(current);
1651 * sys_execve() executes a new program.
1653 static int do_execveat_common(int fd, struct filename *filename,
1654 struct user_arg_ptr argv,
1655 struct user_arg_ptr envp,
1658 char *pathbuf = NULL;
1659 struct linux_binprm *bprm;
1661 struct files_struct *displaced;
1664 if (IS_ERR(filename))
1665 return PTR_ERR(filename);
1668 * We move the actual failure in case of RLIMIT_NPROC excess from
1669 * set*uid() to execve() because too many poorly written programs
1670 * don't check setuid() return code. Here we additionally recheck
1671 * whether NPROC limit is still exceeded.
1673 if ((current->flags & PF_NPROC_EXCEEDED) &&
1674 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1679 /* We're below the limit (still or again), so we don't want to make
1680 * further execve() calls fail. */
1681 current->flags &= ~PF_NPROC_EXCEEDED;
1683 retval = unshare_files(&displaced);
1688 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1692 retval = prepare_bprm_creds(bprm);
1696 check_unsafe_exec(bprm);
1697 current->in_execve = 1;
1699 file = do_open_execat(fd, filename, flags);
1700 retval = PTR_ERR(file);
1707 if (fd == AT_FDCWD || filename->name[0] == '/') {
1708 bprm->filename = filename->name;
1710 if (filename->name[0] == '\0')
1711 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1713 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1714 fd, filename->name);
1720 * Record that a name derived from an O_CLOEXEC fd will be
1721 * inaccessible after exec. Relies on having exclusive access to
1722 * current->files (due to unshare_files above).
1724 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1725 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1726 bprm->filename = pathbuf;
1728 bprm->interp = bprm->filename;
1730 retval = bprm_mm_init(bprm);
1734 bprm->argc = count(argv, MAX_ARG_STRINGS);
1735 if ((retval = bprm->argc) < 0)
1738 bprm->envc = count(envp, MAX_ARG_STRINGS);
1739 if ((retval = bprm->envc) < 0)
1742 retval = prepare_binprm(bprm);
1746 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1750 bprm->exec = bprm->p;
1751 retval = copy_strings(bprm->envc, envp, bprm);
1755 retval = copy_strings(bprm->argc, argv, bprm);
1759 would_dump(bprm, bprm->file);
1761 retval = exec_binprm(bprm);
1765 /* execve succeeded */
1766 current->fs->in_exec = 0;
1767 current->in_execve = 0;
1768 acct_update_integrals(current);
1769 task_numa_free(current);
1774 put_files_struct(displaced);
1779 acct_arg_size(bprm, 0);
1784 current->fs->in_exec = 0;
1785 current->in_execve = 0;
1793 reset_files_struct(displaced);
1799 int do_execve(struct filename *filename,
1800 const char __user *const __user *__argv,
1801 const char __user *const __user *__envp)
1803 struct user_arg_ptr argv = { .ptr.native = __argv };
1804 struct user_arg_ptr envp = { .ptr.native = __envp };
1805 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1808 int do_execveat(int fd, struct filename *filename,
1809 const char __user *const __user *__argv,
1810 const char __user *const __user *__envp,
1813 struct user_arg_ptr argv = { .ptr.native = __argv };
1814 struct user_arg_ptr envp = { .ptr.native = __envp };
1816 return do_execveat_common(fd, filename, argv, envp, flags);
1819 #ifdef CONFIG_COMPAT
1820 static int compat_do_execve(struct filename *filename,
1821 const compat_uptr_t __user *__argv,
1822 const compat_uptr_t __user *__envp)
1824 struct user_arg_ptr argv = {
1826 .ptr.compat = __argv,
1828 struct user_arg_ptr envp = {
1830 .ptr.compat = __envp,
1832 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1835 static int compat_do_execveat(int fd, struct filename *filename,
1836 const compat_uptr_t __user *__argv,
1837 const compat_uptr_t __user *__envp,
1840 struct user_arg_ptr argv = {
1842 .ptr.compat = __argv,
1844 struct user_arg_ptr envp = {
1846 .ptr.compat = __envp,
1848 return do_execveat_common(fd, filename, argv, envp, flags);
1852 void set_binfmt(struct linux_binfmt *new)
1854 struct mm_struct *mm = current->mm;
1857 module_put(mm->binfmt->module);
1861 __module_get(new->module);
1863 EXPORT_SYMBOL(set_binfmt);
1866 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1868 void set_dumpable(struct mm_struct *mm, int value)
1870 unsigned long old, new;
1872 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1876 old = ACCESS_ONCE(mm->flags);
1877 new = (old & ~MMF_DUMPABLE_MASK) | value;
1878 } while (cmpxchg(&mm->flags, old, new) != old);
1881 SYSCALL_DEFINE3(execve,
1882 const char __user *, filename,
1883 const char __user *const __user *, argv,
1884 const char __user *const __user *, envp)
1886 return do_execve(getname(filename), argv, envp);
1889 SYSCALL_DEFINE5(execveat,
1890 int, fd, const char __user *, filename,
1891 const char __user *const __user *, argv,
1892 const char __user *const __user *, envp,
1895 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1897 return do_execveat(fd,
1898 getname_flags(filename, lookup_flags, NULL),
1902 #ifdef CONFIG_COMPAT
1903 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1904 const compat_uptr_t __user *, argv,
1905 const compat_uptr_t __user *, envp)
1907 return compat_do_execve(getname(filename), argv, envp);
1910 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1911 const char __user *, filename,
1912 const compat_uptr_t __user *, argv,
1913 const compat_uptr_t __user *, envp,
1916 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1918 return compat_do_execveat(fd,
1919 getname_flags(filename, lookup_flags, NULL),