]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/exec.c
Merge uncontroversial parts of branch 'readlink' of git://git.kernel.org/pub/scm...
[karo-tx-linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194         unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197         if (write) {
198                 ret = expand_downwards(bprm->vma, pos);
199                 if (ret < 0)
200                         return NULL;
201         }
202 #endif
203
204         if (write)
205                 gup_flags |= FOLL_WRITE;
206
207         /*
208          * We are doing an exec().  'current' is the process
209          * doing the exec and bprm->mm is the new process's mm.
210          */
211         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212                         &page, NULL, NULL);
213         if (ret <= 0)
214                 return NULL;
215
216         if (write) {
217                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218                 struct rlimit *rlim;
219
220                 acct_arg_size(bprm, size / PAGE_SIZE);
221
222                 /*
223                  * We've historically supported up to 32 pages (ARG_MAX)
224                  * of argument strings even with small stacks
225                  */
226                 if (size <= ARG_MAX)
227                         return page;
228
229                 /*
230                  * Limit to 1/4-th the stack size for the argv+env strings.
231                  * This ensures that:
232                  *  - the remaining binfmt code will not run out of stack space,
233                  *  - the program will have a reasonable amount of stack left
234                  *    to work from.
235                  */
236                 rlim = current->signal->rlim;
237                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238                         put_page(page);
239                         return NULL;
240                 }
241         }
242
243         return page;
244 }
245
246 static void put_arg_page(struct page *page)
247 {
248         put_page(page);
249 }
250
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256                 struct page *page)
257 {
258         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263         int err;
264         struct vm_area_struct *vma = NULL;
265         struct mm_struct *mm = bprm->mm;
266
267         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268         if (!vma)
269                 return -ENOMEM;
270
271         if (down_write_killable(&mm->mmap_sem)) {
272                 err = -EINTR;
273                 goto err_free;
274         }
275         vma->vm_mm = mm;
276
277         /*
278          * Place the stack at the largest stack address the architecture
279          * supports. Later, we'll move this to an appropriate place. We don't
280          * use STACK_TOP because that can depend on attributes which aren't
281          * configured yet.
282          */
283         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284         vma->vm_end = STACK_TOP_MAX;
285         vma->vm_start = vma->vm_end - PAGE_SIZE;
286         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288         INIT_LIST_HEAD(&vma->anon_vma_chain);
289
290         err = insert_vm_struct(mm, vma);
291         if (err)
292                 goto err;
293
294         mm->stack_vm = mm->total_vm = 1;
295         arch_bprm_mm_init(mm, vma);
296         up_write(&mm->mmap_sem);
297         bprm->p = vma->vm_end - sizeof(void *);
298         return 0;
299 err:
300         up_write(&mm->mmap_sem);
301 err_free:
302         bprm->vma = NULL;
303         kmem_cache_free(vm_area_cachep, vma);
304         return err;
305 }
306
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309         return len <= MAX_ARG_STRLEN;
310 }
311
312 #else
313
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319                 int write)
320 {
321         struct page *page;
322
323         page = bprm->page[pos / PAGE_SIZE];
324         if (!page && write) {
325                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326                 if (!page)
327                         return NULL;
328                 bprm->page[pos / PAGE_SIZE] = page;
329         }
330
331         return page;
332 }
333
334 static void put_arg_page(struct page *page)
335 {
336 }
337
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340         if (bprm->page[i]) {
341                 __free_page(bprm->page[i]);
342                 bprm->page[i] = NULL;
343         }
344 }
345
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348         int i;
349
350         for (i = 0; i < MAX_ARG_PAGES; i++)
351                 free_arg_page(bprm, i);
352 }
353
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355                 struct page *page)
356 {
357 }
358
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362         return 0;
363 }
364
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367         return len <= bprm->p;
368 }
369
370 #endif /* CONFIG_MMU */
371
372 /*
373  * Create a new mm_struct and populate it with a temporary stack
374  * vm_area_struct.  We don't have enough context at this point to set the stack
375  * flags, permissions, and offset, so we use temporary values.  We'll update
376  * them later in setup_arg_pages().
377  */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380         int err;
381         struct mm_struct *mm = NULL;
382
383         bprm->mm = mm = mm_alloc();
384         err = -ENOMEM;
385         if (!mm)
386                 goto err;
387
388         err = __bprm_mm_init(bprm);
389         if (err)
390                 goto err;
391
392         return 0;
393
394 err:
395         if (mm) {
396                 bprm->mm = NULL;
397                 mmdrop(mm);
398         }
399
400         return err;
401 }
402
403 struct user_arg_ptr {
404 #ifdef CONFIG_COMPAT
405         bool is_compat;
406 #endif
407         union {
408                 const char __user *const __user *native;
409 #ifdef CONFIG_COMPAT
410                 const compat_uptr_t __user *compat;
411 #endif
412         } ptr;
413 };
414
415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416 {
417         const char __user *native;
418
419 #ifdef CONFIG_COMPAT
420         if (unlikely(argv.is_compat)) {
421                 compat_uptr_t compat;
422
423                 if (get_user(compat, argv.ptr.compat + nr))
424                         return ERR_PTR(-EFAULT);
425
426                 return compat_ptr(compat);
427         }
428 #endif
429
430         if (get_user(native, argv.ptr.native + nr))
431                 return ERR_PTR(-EFAULT);
432
433         return native;
434 }
435
436 /*
437  * count() counts the number of strings in array ARGV.
438  */
439 static int count(struct user_arg_ptr argv, int max)
440 {
441         int i = 0;
442
443         if (argv.ptr.native != NULL) {
444                 for (;;) {
445                         const char __user *p = get_user_arg_ptr(argv, i);
446
447                         if (!p)
448                                 break;
449
450                         if (IS_ERR(p))
451                                 return -EFAULT;
452
453                         if (i >= max)
454                                 return -E2BIG;
455                         ++i;
456
457                         if (fatal_signal_pending(current))
458                                 return -ERESTARTNOHAND;
459                         cond_resched();
460                 }
461         }
462         return i;
463 }
464
465 /*
466  * 'copy_strings()' copies argument/environment strings from the old
467  * processes's memory to the new process's stack.  The call to get_user_pages()
468  * ensures the destination page is created and not swapped out.
469  */
470 static int copy_strings(int argc, struct user_arg_ptr argv,
471                         struct linux_binprm *bprm)
472 {
473         struct page *kmapped_page = NULL;
474         char *kaddr = NULL;
475         unsigned long kpos = 0;
476         int ret;
477
478         while (argc-- > 0) {
479                 const char __user *str;
480                 int len;
481                 unsigned long pos;
482
483                 ret = -EFAULT;
484                 str = get_user_arg_ptr(argv, argc);
485                 if (IS_ERR(str))
486                         goto out;
487
488                 len = strnlen_user(str, MAX_ARG_STRLEN);
489                 if (!len)
490                         goto out;
491
492                 ret = -E2BIG;
493                 if (!valid_arg_len(bprm, len))
494                         goto out;
495
496                 /* We're going to work our way backwords. */
497                 pos = bprm->p;
498                 str += len;
499                 bprm->p -= len;
500
501                 while (len > 0) {
502                         int offset, bytes_to_copy;
503
504                         if (fatal_signal_pending(current)) {
505                                 ret = -ERESTARTNOHAND;
506                                 goto out;
507                         }
508                         cond_resched();
509
510                         offset = pos % PAGE_SIZE;
511                         if (offset == 0)
512                                 offset = PAGE_SIZE;
513
514                         bytes_to_copy = offset;
515                         if (bytes_to_copy > len)
516                                 bytes_to_copy = len;
517
518                         offset -= bytes_to_copy;
519                         pos -= bytes_to_copy;
520                         str -= bytes_to_copy;
521                         len -= bytes_to_copy;
522
523                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524                                 struct page *page;
525
526                                 page = get_arg_page(bprm, pos, 1);
527                                 if (!page) {
528                                         ret = -E2BIG;
529                                         goto out;
530                                 }
531
532                                 if (kmapped_page) {
533                                         flush_kernel_dcache_page(kmapped_page);
534                                         kunmap(kmapped_page);
535                                         put_arg_page(kmapped_page);
536                                 }
537                                 kmapped_page = page;
538                                 kaddr = kmap(kmapped_page);
539                                 kpos = pos & PAGE_MASK;
540                                 flush_arg_page(bprm, kpos, kmapped_page);
541                         }
542                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543                                 ret = -EFAULT;
544                                 goto out;
545                         }
546                 }
547         }
548         ret = 0;
549 out:
550         if (kmapped_page) {
551                 flush_kernel_dcache_page(kmapped_page);
552                 kunmap(kmapped_page);
553                 put_arg_page(kmapped_page);
554         }
555         return ret;
556 }
557
558 /*
559  * Like copy_strings, but get argv and its values from kernel memory.
560  */
561 int copy_strings_kernel(int argc, const char *const *__argv,
562                         struct linux_binprm *bprm)
563 {
564         int r;
565         mm_segment_t oldfs = get_fs();
566         struct user_arg_ptr argv = {
567                 .ptr.native = (const char __user *const  __user *)__argv,
568         };
569
570         set_fs(KERNEL_DS);
571         r = copy_strings(argc, argv, bprm);
572         set_fs(oldfs);
573
574         return r;
575 }
576 EXPORT_SYMBOL(copy_strings_kernel);
577
578 #ifdef CONFIG_MMU
579
580 /*
581  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
582  * the binfmt code determines where the new stack should reside, we shift it to
583  * its final location.  The process proceeds as follows:
584  *
585  * 1) Use shift to calculate the new vma endpoints.
586  * 2) Extend vma to cover both the old and new ranges.  This ensures the
587  *    arguments passed to subsequent functions are consistent.
588  * 3) Move vma's page tables to the new range.
589  * 4) Free up any cleared pgd range.
590  * 5) Shrink the vma to cover only the new range.
591  */
592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593 {
594         struct mm_struct *mm = vma->vm_mm;
595         unsigned long old_start = vma->vm_start;
596         unsigned long old_end = vma->vm_end;
597         unsigned long length = old_end - old_start;
598         unsigned long new_start = old_start - shift;
599         unsigned long new_end = old_end - shift;
600         struct mmu_gather tlb;
601
602         BUG_ON(new_start > new_end);
603
604         /*
605          * ensure there are no vmas between where we want to go
606          * and where we are
607          */
608         if (vma != find_vma(mm, new_start))
609                 return -EFAULT;
610
611         /*
612          * cover the whole range: [new_start, old_end)
613          */
614         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615                 return -ENOMEM;
616
617         /*
618          * move the page tables downwards, on failure we rely on
619          * process cleanup to remove whatever mess we made.
620          */
621         if (length != move_page_tables(vma, old_start,
622                                        vma, new_start, length, false))
623                 return -ENOMEM;
624
625         lru_add_drain();
626         tlb_gather_mmu(&tlb, mm, old_start, old_end);
627         if (new_end > old_start) {
628                 /*
629                  * when the old and new regions overlap clear from new_end.
630                  */
631                 free_pgd_range(&tlb, new_end, old_end, new_end,
632                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633         } else {
634                 /*
635                  * otherwise, clean from old_start; this is done to not touch
636                  * the address space in [new_end, old_start) some architectures
637                  * have constraints on va-space that make this illegal (IA64) -
638                  * for the others its just a little faster.
639                  */
640                 free_pgd_range(&tlb, old_start, old_end, new_end,
641                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642         }
643         tlb_finish_mmu(&tlb, old_start, old_end);
644
645         /*
646          * Shrink the vma to just the new range.  Always succeeds.
647          */
648         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649
650         return 0;
651 }
652
653 /*
654  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655  * the stack is optionally relocated, and some extra space is added.
656  */
657 int setup_arg_pages(struct linux_binprm *bprm,
658                     unsigned long stack_top,
659                     int executable_stack)
660 {
661         unsigned long ret;
662         unsigned long stack_shift;
663         struct mm_struct *mm = current->mm;
664         struct vm_area_struct *vma = bprm->vma;
665         struct vm_area_struct *prev = NULL;
666         unsigned long vm_flags;
667         unsigned long stack_base;
668         unsigned long stack_size;
669         unsigned long stack_expand;
670         unsigned long rlim_stack;
671
672 #ifdef CONFIG_STACK_GROWSUP
673         /* Limit stack size */
674         stack_base = rlimit_max(RLIMIT_STACK);
675         if (stack_base > STACK_SIZE_MAX)
676                 stack_base = STACK_SIZE_MAX;
677
678         /* Add space for stack randomization. */
679         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680
681         /* Make sure we didn't let the argument array grow too large. */
682         if (vma->vm_end - vma->vm_start > stack_base)
683                 return -ENOMEM;
684
685         stack_base = PAGE_ALIGN(stack_top - stack_base);
686
687         stack_shift = vma->vm_start - stack_base;
688         mm->arg_start = bprm->p - stack_shift;
689         bprm->p = vma->vm_end - stack_shift;
690 #else
691         stack_top = arch_align_stack(stack_top);
692         stack_top = PAGE_ALIGN(stack_top);
693
694         if (unlikely(stack_top < mmap_min_addr) ||
695             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696                 return -ENOMEM;
697
698         stack_shift = vma->vm_end - stack_top;
699
700         bprm->p -= stack_shift;
701         mm->arg_start = bprm->p;
702 #endif
703
704         if (bprm->loader)
705                 bprm->loader -= stack_shift;
706         bprm->exec -= stack_shift;
707
708         if (down_write_killable(&mm->mmap_sem))
709                 return -EINTR;
710
711         vm_flags = VM_STACK_FLAGS;
712
713         /*
714          * Adjust stack execute permissions; explicitly enable for
715          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716          * (arch default) otherwise.
717          */
718         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
719                 vm_flags |= VM_EXEC;
720         else if (executable_stack == EXSTACK_DISABLE_X)
721                 vm_flags &= ~VM_EXEC;
722         vm_flags |= mm->def_flags;
723         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
724
725         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
726                         vm_flags);
727         if (ret)
728                 goto out_unlock;
729         BUG_ON(prev != vma);
730
731         /* Move stack pages down in memory. */
732         if (stack_shift) {
733                 ret = shift_arg_pages(vma, stack_shift);
734                 if (ret)
735                         goto out_unlock;
736         }
737
738         /* mprotect_fixup is overkill to remove the temporary stack flags */
739         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
740
741         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742         stack_size = vma->vm_end - vma->vm_start;
743         /*
744          * Align this down to a page boundary as expand_stack
745          * will align it up.
746          */
747         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748 #ifdef CONFIG_STACK_GROWSUP
749         if (stack_size + stack_expand > rlim_stack)
750                 stack_base = vma->vm_start + rlim_stack;
751         else
752                 stack_base = vma->vm_end + stack_expand;
753 #else
754         if (stack_size + stack_expand > rlim_stack)
755                 stack_base = vma->vm_end - rlim_stack;
756         else
757                 stack_base = vma->vm_start - stack_expand;
758 #endif
759         current->mm->start_stack = bprm->p;
760         ret = expand_stack(vma, stack_base);
761         if (ret)
762                 ret = -EFAULT;
763
764 out_unlock:
765         up_write(&mm->mmap_sem);
766         return ret;
767 }
768 EXPORT_SYMBOL(setup_arg_pages);
769
770 #else
771
772 /*
773  * Transfer the program arguments and environment from the holding pages
774  * onto the stack. The provided stack pointer is adjusted accordingly.
775  */
776 int transfer_args_to_stack(struct linux_binprm *bprm,
777                            unsigned long *sp_location)
778 {
779         unsigned long index, stop, sp;
780         int ret = 0;
781
782         stop = bprm->p >> PAGE_SHIFT;
783         sp = *sp_location;
784
785         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787                 char *src = kmap(bprm->page[index]) + offset;
788                 sp -= PAGE_SIZE - offset;
789                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
790                         ret = -EFAULT;
791                 kunmap(bprm->page[index]);
792                 if (ret)
793                         goto out;
794         }
795
796         *sp_location = sp;
797
798 out:
799         return ret;
800 }
801 EXPORT_SYMBOL(transfer_args_to_stack);
802
803 #endif /* CONFIG_MMU */
804
805 static struct file *do_open_execat(int fd, struct filename *name, int flags)
806 {
807         struct file *file;
808         int err;
809         struct open_flags open_exec_flags = {
810                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811                 .acc_mode = MAY_EXEC,
812                 .intent = LOOKUP_OPEN,
813                 .lookup_flags = LOOKUP_FOLLOW,
814         };
815
816         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817                 return ERR_PTR(-EINVAL);
818         if (flags & AT_SYMLINK_NOFOLLOW)
819                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820         if (flags & AT_EMPTY_PATH)
821                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
822
823         file = do_filp_open(fd, name, &open_exec_flags);
824         if (IS_ERR(file))
825                 goto out;
826
827         err = -EACCES;
828         if (!S_ISREG(file_inode(file)->i_mode))
829                 goto exit;
830
831         if (path_noexec(&file->f_path))
832                 goto exit;
833
834         err = deny_write_access(file);
835         if (err)
836                 goto exit;
837
838         if (name->name[0] != '\0')
839                 fsnotify_open(file);
840
841 out:
842         return file;
843
844 exit:
845         fput(file);
846         return ERR_PTR(err);
847 }
848
849 struct file *open_exec(const char *name)
850 {
851         struct filename *filename = getname_kernel(name);
852         struct file *f = ERR_CAST(filename);
853
854         if (!IS_ERR(filename)) {
855                 f = do_open_execat(AT_FDCWD, filename, 0);
856                 putname(filename);
857         }
858         return f;
859 }
860 EXPORT_SYMBOL(open_exec);
861
862 int kernel_read(struct file *file, loff_t offset,
863                 char *addr, unsigned long count)
864 {
865         mm_segment_t old_fs;
866         loff_t pos = offset;
867         int result;
868
869         old_fs = get_fs();
870         set_fs(get_ds());
871         /* The cast to a user pointer is valid due to the set_fs() */
872         result = vfs_read(file, (void __user *)addr, count, &pos);
873         set_fs(old_fs);
874         return result;
875 }
876
877 EXPORT_SYMBOL(kernel_read);
878
879 int kernel_read_file(struct file *file, void **buf, loff_t *size,
880                      loff_t max_size, enum kernel_read_file_id id)
881 {
882         loff_t i_size, pos;
883         ssize_t bytes = 0;
884         int ret;
885
886         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
887                 return -EINVAL;
888
889         ret = security_kernel_read_file(file, id);
890         if (ret)
891                 return ret;
892
893         ret = deny_write_access(file);
894         if (ret)
895                 return ret;
896
897         i_size = i_size_read(file_inode(file));
898         if (max_size > 0 && i_size > max_size) {
899                 ret = -EFBIG;
900                 goto out;
901         }
902         if (i_size <= 0) {
903                 ret = -EINVAL;
904                 goto out;
905         }
906
907         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908                 *buf = vmalloc(i_size);
909         if (!*buf) {
910                 ret = -ENOMEM;
911                 goto out;
912         }
913
914         pos = 0;
915         while (pos < i_size) {
916                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
917                                     i_size - pos);
918                 if (bytes < 0) {
919                         ret = bytes;
920                         goto out;
921                 }
922
923                 if (bytes == 0)
924                         break;
925                 pos += bytes;
926         }
927
928         if (pos != i_size) {
929                 ret = -EIO;
930                 goto out_free;
931         }
932
933         ret = security_kernel_post_read_file(file, *buf, i_size, id);
934         if (!ret)
935                 *size = pos;
936
937 out_free:
938         if (ret < 0) {
939                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
940                         vfree(*buf);
941                         *buf = NULL;
942                 }
943         }
944
945 out:
946         allow_write_access(file);
947         return ret;
948 }
949 EXPORT_SYMBOL_GPL(kernel_read_file);
950
951 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952                                loff_t max_size, enum kernel_read_file_id id)
953 {
954         struct file *file;
955         int ret;
956
957         if (!path || !*path)
958                 return -EINVAL;
959
960         file = filp_open(path, O_RDONLY, 0);
961         if (IS_ERR(file))
962                 return PTR_ERR(file);
963
964         ret = kernel_read_file(file, buf, size, max_size, id);
965         fput(file);
966         return ret;
967 }
968 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
969
970 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971                              enum kernel_read_file_id id)
972 {
973         struct fd f = fdget(fd);
974         int ret = -EBADF;
975
976         if (!f.file)
977                 goto out;
978
979         ret = kernel_read_file(f.file, buf, size, max_size, id);
980 out:
981         fdput(f);
982         return ret;
983 }
984 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
985
986 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
987 {
988         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
989         if (res > 0)
990                 flush_icache_range(addr, addr + len);
991         return res;
992 }
993 EXPORT_SYMBOL(read_code);
994
995 static int exec_mmap(struct mm_struct *mm)
996 {
997         struct task_struct *tsk;
998         struct mm_struct *old_mm, *active_mm;
999
1000         /* Notify parent that we're no longer interested in the old VM */
1001         tsk = current;
1002         old_mm = current->mm;
1003         mm_release(tsk, old_mm);
1004
1005         if (old_mm) {
1006                 sync_mm_rss(old_mm);
1007                 /*
1008                  * Make sure that if there is a core dump in progress
1009                  * for the old mm, we get out and die instead of going
1010                  * through with the exec.  We must hold mmap_sem around
1011                  * checking core_state and changing tsk->mm.
1012                  */
1013                 down_read(&old_mm->mmap_sem);
1014                 if (unlikely(old_mm->core_state)) {
1015                         up_read(&old_mm->mmap_sem);
1016                         return -EINTR;
1017                 }
1018         }
1019         task_lock(tsk);
1020         active_mm = tsk->active_mm;
1021         tsk->mm = mm;
1022         tsk->active_mm = mm;
1023         activate_mm(active_mm, mm);
1024         tsk->mm->vmacache_seqnum = 0;
1025         vmacache_flush(tsk);
1026         task_unlock(tsk);
1027         if (old_mm) {
1028                 up_read(&old_mm->mmap_sem);
1029                 BUG_ON(active_mm != old_mm);
1030                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031                 mm_update_next_owner(old_mm);
1032                 mmput(old_mm);
1033                 return 0;
1034         }
1035         mmdrop(active_mm);
1036         return 0;
1037 }
1038
1039 /*
1040  * This function makes sure the current process has its own signal table,
1041  * so that flush_signal_handlers can later reset the handlers without
1042  * disturbing other processes.  (Other processes might share the signal
1043  * table via the CLONE_SIGHAND option to clone().)
1044  */
1045 static int de_thread(struct task_struct *tsk)
1046 {
1047         struct signal_struct *sig = tsk->signal;
1048         struct sighand_struct *oldsighand = tsk->sighand;
1049         spinlock_t *lock = &oldsighand->siglock;
1050
1051         if (thread_group_empty(tsk))
1052                 goto no_thread_group;
1053
1054         /*
1055          * Kill all other threads in the thread group.
1056          */
1057         spin_lock_irq(lock);
1058         if (signal_group_exit(sig)) {
1059                 /*
1060                  * Another group action in progress, just
1061                  * return so that the signal is processed.
1062                  */
1063                 spin_unlock_irq(lock);
1064                 return -EAGAIN;
1065         }
1066
1067         sig->group_exit_task = tsk;
1068         sig->notify_count = zap_other_threads(tsk);
1069         if (!thread_group_leader(tsk))
1070                 sig->notify_count--;
1071
1072         while (sig->notify_count) {
1073                 __set_current_state(TASK_KILLABLE);
1074                 spin_unlock_irq(lock);
1075                 schedule();
1076                 if (unlikely(__fatal_signal_pending(tsk)))
1077                         goto killed;
1078                 spin_lock_irq(lock);
1079         }
1080         spin_unlock_irq(lock);
1081
1082         /*
1083          * At this point all other threads have exited, all we have to
1084          * do is to wait for the thread group leader to become inactive,
1085          * and to assume its PID:
1086          */
1087         if (!thread_group_leader(tsk)) {
1088                 struct task_struct *leader = tsk->group_leader;
1089
1090                 for (;;) {
1091                         threadgroup_change_begin(tsk);
1092                         write_lock_irq(&tasklist_lock);
1093                         /*
1094                          * Do this under tasklist_lock to ensure that
1095                          * exit_notify() can't miss ->group_exit_task
1096                          */
1097                         sig->notify_count = -1;
1098                         if (likely(leader->exit_state))
1099                                 break;
1100                         __set_current_state(TASK_KILLABLE);
1101                         write_unlock_irq(&tasklist_lock);
1102                         threadgroup_change_end(tsk);
1103                         schedule();
1104                         if (unlikely(__fatal_signal_pending(tsk)))
1105                                 goto killed;
1106                 }
1107
1108                 /*
1109                  * The only record we have of the real-time age of a
1110                  * process, regardless of execs it's done, is start_time.
1111                  * All the past CPU time is accumulated in signal_struct
1112                  * from sister threads now dead.  But in this non-leader
1113                  * exec, nothing survives from the original leader thread,
1114                  * whose birth marks the true age of this process now.
1115                  * When we take on its identity by switching to its PID, we
1116                  * also take its birthdate (always earlier than our own).
1117                  */
1118                 tsk->start_time = leader->start_time;
1119                 tsk->real_start_time = leader->real_start_time;
1120
1121                 BUG_ON(!same_thread_group(leader, tsk));
1122                 BUG_ON(has_group_leader_pid(tsk));
1123                 /*
1124                  * An exec() starts a new thread group with the
1125                  * TGID of the previous thread group. Rehash the
1126                  * two threads with a switched PID, and release
1127                  * the former thread group leader:
1128                  */
1129
1130                 /* Become a process group leader with the old leader's pid.
1131                  * The old leader becomes a thread of the this thread group.
1132                  * Note: The old leader also uses this pid until release_task
1133                  *       is called.  Odd but simple and correct.
1134                  */
1135                 tsk->pid = leader->pid;
1136                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138                 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141                 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143                 tsk->group_leader = tsk;
1144                 leader->group_leader = tsk;
1145
1146                 tsk->exit_signal = SIGCHLD;
1147                 leader->exit_signal = -1;
1148
1149                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150                 leader->exit_state = EXIT_DEAD;
1151
1152                 /*
1153                  * We are going to release_task()->ptrace_unlink() silently,
1154                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155                  * the tracer wont't block again waiting for this thread.
1156                  */
1157                 if (unlikely(leader->ptrace))
1158                         __wake_up_parent(leader, leader->parent);
1159                 write_unlock_irq(&tasklist_lock);
1160                 threadgroup_change_end(tsk);
1161
1162                 release_task(leader);
1163         }
1164
1165         sig->group_exit_task = NULL;
1166         sig->notify_count = 0;
1167
1168 no_thread_group:
1169         /* we have changed execution domain */
1170         tsk->exit_signal = SIGCHLD;
1171
1172 #ifdef CONFIG_POSIX_TIMERS
1173         exit_itimers(sig);
1174         flush_itimer_signals();
1175 #endif
1176
1177         if (atomic_read(&oldsighand->count) != 1) {
1178                 struct sighand_struct *newsighand;
1179                 /*
1180                  * This ->sighand is shared with the CLONE_SIGHAND
1181                  * but not CLONE_THREAD task, switch to the new one.
1182                  */
1183                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1184                 if (!newsighand)
1185                         return -ENOMEM;
1186
1187                 atomic_set(&newsighand->count, 1);
1188                 memcpy(newsighand->action, oldsighand->action,
1189                        sizeof(newsighand->action));
1190
1191                 write_lock_irq(&tasklist_lock);
1192                 spin_lock(&oldsighand->siglock);
1193                 rcu_assign_pointer(tsk->sighand, newsighand);
1194                 spin_unlock(&oldsighand->siglock);
1195                 write_unlock_irq(&tasklist_lock);
1196
1197                 __cleanup_sighand(oldsighand);
1198         }
1199
1200         BUG_ON(!thread_group_leader(tsk));
1201         return 0;
1202
1203 killed:
1204         /* protects against exit_notify() and __exit_signal() */
1205         read_lock(&tasklist_lock);
1206         sig->group_exit_task = NULL;
1207         sig->notify_count = 0;
1208         read_unlock(&tasklist_lock);
1209         return -EAGAIN;
1210 }
1211
1212 char *get_task_comm(char *buf, struct task_struct *tsk)
1213 {
1214         /* buf must be at least sizeof(tsk->comm) in size */
1215         task_lock(tsk);
1216         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1217         task_unlock(tsk);
1218         return buf;
1219 }
1220 EXPORT_SYMBOL_GPL(get_task_comm);
1221
1222 /*
1223  * These functions flushes out all traces of the currently running executable
1224  * so that a new one can be started
1225  */
1226
1227 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228 {
1229         task_lock(tsk);
1230         trace_task_rename(tsk, buf);
1231         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1232         task_unlock(tsk);
1233         perf_event_comm(tsk, exec);
1234 }
1235
1236 int flush_old_exec(struct linux_binprm * bprm)
1237 {
1238         int retval;
1239
1240         /*
1241          * Make sure we have a private signal table and that
1242          * we are unassociated from the previous thread group.
1243          */
1244         retval = de_thread(current);
1245         if (retval)
1246                 goto out;
1247
1248         /*
1249          * Must be called _before_ exec_mmap() as bprm->mm is
1250          * not visibile until then. This also enables the update
1251          * to be lockless.
1252          */
1253         set_mm_exe_file(bprm->mm, bprm->file);
1254
1255         /*
1256          * Release all of the old mmap stuff
1257          */
1258         acct_arg_size(bprm, 0);
1259         retval = exec_mmap(bprm->mm);
1260         if (retval)
1261                 goto out;
1262
1263         bprm->mm = NULL;                /* We're using it now */
1264
1265         set_fs(USER_DS);
1266         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1267                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1268         flush_thread();
1269         current->personality &= ~bprm->per_clear;
1270
1271         return 0;
1272
1273 out:
1274         return retval;
1275 }
1276 EXPORT_SYMBOL(flush_old_exec);
1277
1278 void would_dump(struct linux_binprm *bprm, struct file *file)
1279 {
1280         struct inode *inode = file_inode(file);
1281         if (inode_permission(inode, MAY_READ) < 0) {
1282                 struct user_namespace *old, *user_ns;
1283                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1284
1285                 /* Ensure mm->user_ns contains the executable */
1286                 user_ns = old = bprm->mm->user_ns;
1287                 while ((user_ns != &init_user_ns) &&
1288                        !privileged_wrt_inode_uidgid(user_ns, inode))
1289                         user_ns = user_ns->parent;
1290
1291                 if (old != user_ns) {
1292                         bprm->mm->user_ns = get_user_ns(user_ns);
1293                         put_user_ns(old);
1294                 }
1295         }
1296 }
1297 EXPORT_SYMBOL(would_dump);
1298
1299 void setup_new_exec(struct linux_binprm * bprm)
1300 {
1301         arch_pick_mmap_layout(current->mm);
1302
1303         /* This is the point of no return */
1304         current->sas_ss_sp = current->sas_ss_size = 0;
1305
1306         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1307                 set_dumpable(current->mm, SUID_DUMP_USER);
1308         else
1309                 set_dumpable(current->mm, suid_dumpable);
1310
1311         perf_event_exec();
1312         __set_task_comm(current, kbasename(bprm->filename), true);
1313
1314         /* Set the new mm task size. We have to do that late because it may
1315          * depend on TIF_32BIT which is only updated in flush_thread() on
1316          * some architectures like powerpc
1317          */
1318         current->mm->task_size = TASK_SIZE;
1319
1320         /* install the new credentials */
1321         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1322             !gid_eq(bprm->cred->gid, current_egid())) {
1323                 current->pdeath_signal = 0;
1324         } else {
1325                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1326                         set_dumpable(current->mm, suid_dumpable);
1327         }
1328
1329         /* An exec changes our domain. We are no longer part of the thread
1330            group */
1331         current->self_exec_id++;
1332         flush_signal_handlers(current, 0);
1333         do_close_on_exec(current->files);
1334 }
1335 EXPORT_SYMBOL(setup_new_exec);
1336
1337 /*
1338  * Prepare credentials and lock ->cred_guard_mutex.
1339  * install_exec_creds() commits the new creds and drops the lock.
1340  * Or, if exec fails before, free_bprm() should release ->cred and
1341  * and unlock.
1342  */
1343 int prepare_bprm_creds(struct linux_binprm *bprm)
1344 {
1345         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1346                 return -ERESTARTNOINTR;
1347
1348         bprm->cred = prepare_exec_creds();
1349         if (likely(bprm->cred))
1350                 return 0;
1351
1352         mutex_unlock(&current->signal->cred_guard_mutex);
1353         return -ENOMEM;
1354 }
1355
1356 static void free_bprm(struct linux_binprm *bprm)
1357 {
1358         free_arg_pages(bprm);
1359         if (bprm->cred) {
1360                 mutex_unlock(&current->signal->cred_guard_mutex);
1361                 abort_creds(bprm->cred);
1362         }
1363         if (bprm->file) {
1364                 allow_write_access(bprm->file);
1365                 fput(bprm->file);
1366         }
1367         /* If a binfmt changed the interp, free it. */
1368         if (bprm->interp != bprm->filename)
1369                 kfree(bprm->interp);
1370         kfree(bprm);
1371 }
1372
1373 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1374 {
1375         /* If a binfmt changed the interp, free it first. */
1376         if (bprm->interp != bprm->filename)
1377                 kfree(bprm->interp);
1378         bprm->interp = kstrdup(interp, GFP_KERNEL);
1379         if (!bprm->interp)
1380                 return -ENOMEM;
1381         return 0;
1382 }
1383 EXPORT_SYMBOL(bprm_change_interp);
1384
1385 /*
1386  * install the new credentials for this executable
1387  */
1388 void install_exec_creds(struct linux_binprm *bprm)
1389 {
1390         security_bprm_committing_creds(bprm);
1391
1392         commit_creds(bprm->cred);
1393         bprm->cred = NULL;
1394
1395         /*
1396          * Disable monitoring for regular users
1397          * when executing setuid binaries. Must
1398          * wait until new credentials are committed
1399          * by commit_creds() above
1400          */
1401         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1402                 perf_event_exit_task(current);
1403         /*
1404          * cred_guard_mutex must be held at least to this point to prevent
1405          * ptrace_attach() from altering our determination of the task's
1406          * credentials; any time after this it may be unlocked.
1407          */
1408         security_bprm_committed_creds(bprm);
1409         mutex_unlock(&current->signal->cred_guard_mutex);
1410 }
1411 EXPORT_SYMBOL(install_exec_creds);
1412
1413 /*
1414  * determine how safe it is to execute the proposed program
1415  * - the caller must hold ->cred_guard_mutex to protect against
1416  *   PTRACE_ATTACH or seccomp thread-sync
1417  */
1418 static void check_unsafe_exec(struct linux_binprm *bprm)
1419 {
1420         struct task_struct *p = current, *t;
1421         unsigned n_fs;
1422
1423         if (p->ptrace) {
1424                 if (ptracer_capable(p, current_user_ns()))
1425                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1426                 else
1427                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1428         }
1429
1430         /*
1431          * This isn't strictly necessary, but it makes it harder for LSMs to
1432          * mess up.
1433          */
1434         if (task_no_new_privs(current))
1435                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1436
1437         t = p;
1438         n_fs = 1;
1439         spin_lock(&p->fs->lock);
1440         rcu_read_lock();
1441         while_each_thread(p, t) {
1442                 if (t->fs == p->fs)
1443                         n_fs++;
1444         }
1445         rcu_read_unlock();
1446
1447         if (p->fs->users > n_fs)
1448                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1449         else
1450                 p->fs->in_exec = 1;
1451         spin_unlock(&p->fs->lock);
1452 }
1453
1454 static void bprm_fill_uid(struct linux_binprm *bprm)
1455 {
1456         struct inode *inode;
1457         unsigned int mode;
1458         kuid_t uid;
1459         kgid_t gid;
1460
1461         /*
1462          * Since this can be called multiple times (via prepare_binprm),
1463          * we must clear any previous work done when setting set[ug]id
1464          * bits from any earlier bprm->file uses (for example when run
1465          * first for a setuid script then again for its interpreter).
1466          */
1467         bprm->cred->euid = current_euid();
1468         bprm->cred->egid = current_egid();
1469
1470         if (!mnt_may_suid(bprm->file->f_path.mnt))
1471                 return;
1472
1473         if (task_no_new_privs(current))
1474                 return;
1475
1476         inode = file_inode(bprm->file);
1477         mode = READ_ONCE(inode->i_mode);
1478         if (!(mode & (S_ISUID|S_ISGID)))
1479                 return;
1480
1481         /* Be careful if suid/sgid is set */
1482         inode_lock(inode);
1483
1484         /* reload atomically mode/uid/gid now that lock held */
1485         mode = inode->i_mode;
1486         uid = inode->i_uid;
1487         gid = inode->i_gid;
1488         inode_unlock(inode);
1489
1490         /* We ignore suid/sgid if there are no mappings for them in the ns */
1491         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1492                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1493                 return;
1494
1495         if (mode & S_ISUID) {
1496                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1497                 bprm->cred->euid = uid;
1498         }
1499
1500         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1501                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1502                 bprm->cred->egid = gid;
1503         }
1504 }
1505
1506 /*
1507  * Fill the binprm structure from the inode.
1508  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1509  *
1510  * This may be called multiple times for binary chains (scripts for example).
1511  */
1512 int prepare_binprm(struct linux_binprm *bprm)
1513 {
1514         int retval;
1515
1516         bprm_fill_uid(bprm);
1517
1518         /* fill in binprm security blob */
1519         retval = security_bprm_set_creds(bprm);
1520         if (retval)
1521                 return retval;
1522         bprm->cred_prepared = 1;
1523
1524         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1525         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1526 }
1527
1528 EXPORT_SYMBOL(prepare_binprm);
1529
1530 /*
1531  * Arguments are '\0' separated strings found at the location bprm->p
1532  * points to; chop off the first by relocating brpm->p to right after
1533  * the first '\0' encountered.
1534  */
1535 int remove_arg_zero(struct linux_binprm *bprm)
1536 {
1537         int ret = 0;
1538         unsigned long offset;
1539         char *kaddr;
1540         struct page *page;
1541
1542         if (!bprm->argc)
1543                 return 0;
1544
1545         do {
1546                 offset = bprm->p & ~PAGE_MASK;
1547                 page = get_arg_page(bprm, bprm->p, 0);
1548                 if (!page) {
1549                         ret = -EFAULT;
1550                         goto out;
1551                 }
1552                 kaddr = kmap_atomic(page);
1553
1554                 for (; offset < PAGE_SIZE && kaddr[offset];
1555                                 offset++, bprm->p++)
1556                         ;
1557
1558                 kunmap_atomic(kaddr);
1559                 put_arg_page(page);
1560         } while (offset == PAGE_SIZE);
1561
1562         bprm->p++;
1563         bprm->argc--;
1564         ret = 0;
1565
1566 out:
1567         return ret;
1568 }
1569 EXPORT_SYMBOL(remove_arg_zero);
1570
1571 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1572 /*
1573  * cycle the list of binary formats handler, until one recognizes the image
1574  */
1575 int search_binary_handler(struct linux_binprm *bprm)
1576 {
1577         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1578         struct linux_binfmt *fmt;
1579         int retval;
1580
1581         /* This allows 4 levels of binfmt rewrites before failing hard. */
1582         if (bprm->recursion_depth > 5)
1583                 return -ELOOP;
1584
1585         retval = security_bprm_check(bprm);
1586         if (retval)
1587                 return retval;
1588
1589         retval = -ENOENT;
1590  retry:
1591         read_lock(&binfmt_lock);
1592         list_for_each_entry(fmt, &formats, lh) {
1593                 if (!try_module_get(fmt->module))
1594                         continue;
1595                 read_unlock(&binfmt_lock);
1596                 bprm->recursion_depth++;
1597                 retval = fmt->load_binary(bprm);
1598                 read_lock(&binfmt_lock);
1599                 put_binfmt(fmt);
1600                 bprm->recursion_depth--;
1601                 if (retval < 0 && !bprm->mm) {
1602                         /* we got to flush_old_exec() and failed after it */
1603                         read_unlock(&binfmt_lock);
1604                         force_sigsegv(SIGSEGV, current);
1605                         return retval;
1606                 }
1607                 if (retval != -ENOEXEC || !bprm->file) {
1608                         read_unlock(&binfmt_lock);
1609                         return retval;
1610                 }
1611         }
1612         read_unlock(&binfmt_lock);
1613
1614         if (need_retry) {
1615                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1616                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1617                         return retval;
1618                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1619                         return retval;
1620                 need_retry = false;
1621                 goto retry;
1622         }
1623
1624         return retval;
1625 }
1626 EXPORT_SYMBOL(search_binary_handler);
1627
1628 static int exec_binprm(struct linux_binprm *bprm)
1629 {
1630         pid_t old_pid, old_vpid;
1631         int ret;
1632
1633         /* Need to fetch pid before load_binary changes it */
1634         old_pid = current->pid;
1635         rcu_read_lock();
1636         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1637         rcu_read_unlock();
1638
1639         ret = search_binary_handler(bprm);
1640         if (ret >= 0) {
1641                 audit_bprm(bprm);
1642                 trace_sched_process_exec(current, old_pid, bprm);
1643                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1644                 proc_exec_connector(current);
1645         }
1646
1647         return ret;
1648 }
1649
1650 /*
1651  * sys_execve() executes a new program.
1652  */
1653 static int do_execveat_common(int fd, struct filename *filename,
1654                               struct user_arg_ptr argv,
1655                               struct user_arg_ptr envp,
1656                               int flags)
1657 {
1658         char *pathbuf = NULL;
1659         struct linux_binprm *bprm;
1660         struct file *file;
1661         struct files_struct *displaced;
1662         int retval;
1663
1664         if (IS_ERR(filename))
1665                 return PTR_ERR(filename);
1666
1667         /*
1668          * We move the actual failure in case of RLIMIT_NPROC excess from
1669          * set*uid() to execve() because too many poorly written programs
1670          * don't check setuid() return code.  Here we additionally recheck
1671          * whether NPROC limit is still exceeded.
1672          */
1673         if ((current->flags & PF_NPROC_EXCEEDED) &&
1674             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1675                 retval = -EAGAIN;
1676                 goto out_ret;
1677         }
1678
1679         /* We're below the limit (still or again), so we don't want to make
1680          * further execve() calls fail. */
1681         current->flags &= ~PF_NPROC_EXCEEDED;
1682
1683         retval = unshare_files(&displaced);
1684         if (retval)
1685                 goto out_ret;
1686
1687         retval = -ENOMEM;
1688         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1689         if (!bprm)
1690                 goto out_files;
1691
1692         retval = prepare_bprm_creds(bprm);
1693         if (retval)
1694                 goto out_free;
1695
1696         check_unsafe_exec(bprm);
1697         current->in_execve = 1;
1698
1699         file = do_open_execat(fd, filename, flags);
1700         retval = PTR_ERR(file);
1701         if (IS_ERR(file))
1702                 goto out_unmark;
1703
1704         sched_exec();
1705
1706         bprm->file = file;
1707         if (fd == AT_FDCWD || filename->name[0] == '/') {
1708                 bprm->filename = filename->name;
1709         } else {
1710                 if (filename->name[0] == '\0')
1711                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1712                 else
1713                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1714                                             fd, filename->name);
1715                 if (!pathbuf) {
1716                         retval = -ENOMEM;
1717                         goto out_unmark;
1718                 }
1719                 /*
1720                  * Record that a name derived from an O_CLOEXEC fd will be
1721                  * inaccessible after exec. Relies on having exclusive access to
1722                  * current->files (due to unshare_files above).
1723                  */
1724                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1725                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1726                 bprm->filename = pathbuf;
1727         }
1728         bprm->interp = bprm->filename;
1729
1730         retval = bprm_mm_init(bprm);
1731         if (retval)
1732                 goto out_unmark;
1733
1734         bprm->argc = count(argv, MAX_ARG_STRINGS);
1735         if ((retval = bprm->argc) < 0)
1736                 goto out;
1737
1738         bprm->envc = count(envp, MAX_ARG_STRINGS);
1739         if ((retval = bprm->envc) < 0)
1740                 goto out;
1741
1742         retval = prepare_binprm(bprm);
1743         if (retval < 0)
1744                 goto out;
1745
1746         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1747         if (retval < 0)
1748                 goto out;
1749
1750         bprm->exec = bprm->p;
1751         retval = copy_strings(bprm->envc, envp, bprm);
1752         if (retval < 0)
1753                 goto out;
1754
1755         retval = copy_strings(bprm->argc, argv, bprm);
1756         if (retval < 0)
1757                 goto out;
1758
1759         would_dump(bprm, bprm->file);
1760
1761         retval = exec_binprm(bprm);
1762         if (retval < 0)
1763                 goto out;
1764
1765         /* execve succeeded */
1766         current->fs->in_exec = 0;
1767         current->in_execve = 0;
1768         acct_update_integrals(current);
1769         task_numa_free(current);
1770         free_bprm(bprm);
1771         kfree(pathbuf);
1772         putname(filename);
1773         if (displaced)
1774                 put_files_struct(displaced);
1775         return retval;
1776
1777 out:
1778         if (bprm->mm) {
1779                 acct_arg_size(bprm, 0);
1780                 mmput(bprm->mm);
1781         }
1782
1783 out_unmark:
1784         current->fs->in_exec = 0;
1785         current->in_execve = 0;
1786
1787 out_free:
1788         free_bprm(bprm);
1789         kfree(pathbuf);
1790
1791 out_files:
1792         if (displaced)
1793                 reset_files_struct(displaced);
1794 out_ret:
1795         putname(filename);
1796         return retval;
1797 }
1798
1799 int do_execve(struct filename *filename,
1800         const char __user *const __user *__argv,
1801         const char __user *const __user *__envp)
1802 {
1803         struct user_arg_ptr argv = { .ptr.native = __argv };
1804         struct user_arg_ptr envp = { .ptr.native = __envp };
1805         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1806 }
1807
1808 int do_execveat(int fd, struct filename *filename,
1809                 const char __user *const __user *__argv,
1810                 const char __user *const __user *__envp,
1811                 int flags)
1812 {
1813         struct user_arg_ptr argv = { .ptr.native = __argv };
1814         struct user_arg_ptr envp = { .ptr.native = __envp };
1815
1816         return do_execveat_common(fd, filename, argv, envp, flags);
1817 }
1818
1819 #ifdef CONFIG_COMPAT
1820 static int compat_do_execve(struct filename *filename,
1821         const compat_uptr_t __user *__argv,
1822         const compat_uptr_t __user *__envp)
1823 {
1824         struct user_arg_ptr argv = {
1825                 .is_compat = true,
1826                 .ptr.compat = __argv,
1827         };
1828         struct user_arg_ptr envp = {
1829                 .is_compat = true,
1830                 .ptr.compat = __envp,
1831         };
1832         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1833 }
1834
1835 static int compat_do_execveat(int fd, struct filename *filename,
1836                               const compat_uptr_t __user *__argv,
1837                               const compat_uptr_t __user *__envp,
1838                               int flags)
1839 {
1840         struct user_arg_ptr argv = {
1841                 .is_compat = true,
1842                 .ptr.compat = __argv,
1843         };
1844         struct user_arg_ptr envp = {
1845                 .is_compat = true,
1846                 .ptr.compat = __envp,
1847         };
1848         return do_execveat_common(fd, filename, argv, envp, flags);
1849 }
1850 #endif
1851
1852 void set_binfmt(struct linux_binfmt *new)
1853 {
1854         struct mm_struct *mm = current->mm;
1855
1856         if (mm->binfmt)
1857                 module_put(mm->binfmt->module);
1858
1859         mm->binfmt = new;
1860         if (new)
1861                 __module_get(new->module);
1862 }
1863 EXPORT_SYMBOL(set_binfmt);
1864
1865 /*
1866  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1867  */
1868 void set_dumpable(struct mm_struct *mm, int value)
1869 {
1870         unsigned long old, new;
1871
1872         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1873                 return;
1874
1875         do {
1876                 old = ACCESS_ONCE(mm->flags);
1877                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1878         } while (cmpxchg(&mm->flags, old, new) != old);
1879 }
1880
1881 SYSCALL_DEFINE3(execve,
1882                 const char __user *, filename,
1883                 const char __user *const __user *, argv,
1884                 const char __user *const __user *, envp)
1885 {
1886         return do_execve(getname(filename), argv, envp);
1887 }
1888
1889 SYSCALL_DEFINE5(execveat,
1890                 int, fd, const char __user *, filename,
1891                 const char __user *const __user *, argv,
1892                 const char __user *const __user *, envp,
1893                 int, flags)
1894 {
1895         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1896
1897         return do_execveat(fd,
1898                            getname_flags(filename, lookup_flags, NULL),
1899                            argv, envp, flags);
1900 }
1901
1902 #ifdef CONFIG_COMPAT
1903 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1904         const compat_uptr_t __user *, argv,
1905         const compat_uptr_t __user *, envp)
1906 {
1907         return compat_do_execve(getname(filename), argv, envp);
1908 }
1909
1910 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1911                        const char __user *, filename,
1912                        const compat_uptr_t __user *, argv,
1913                        const compat_uptr_t __user *, envp,
1914                        int,  flags)
1915 {
1916         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1917
1918         return compat_do_execveat(fd,
1919                                   getname_flags(filename, lookup_flags, NULL),
1920                                   argv, envp, flags);
1921 }
1922 #endif