]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/exec.c
Switch proc/self to nd_set_link()
[karo-tx-linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
69
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         if (!fmt)
78                 return -EINVAL;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83         return 0;       
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct file *file;
111         char *tmp = getname(library);
112         int error = PTR_ERR(tmp);
113
114         if (IS_ERR(tmp))
115                 goto out;
116
117         file = do_filp_open(AT_FDCWD, tmp,
118                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119                                 MAY_READ | MAY_EXEC | MAY_OPEN);
120         putname(tmp);
121         error = PTR_ERR(file);
122         if (IS_ERR(file))
123                 goto out;
124
125         error = -EINVAL;
126         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127                 goto exit;
128
129         error = -EACCES;
130         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131                 goto exit;
132
133         fsnotify_open(file->f_path.dentry);
134
135         error = -ENOEXEC;
136         if(file->f_op) {
137                 struct linux_binfmt * fmt;
138
139                 read_lock(&binfmt_lock);
140                 list_for_each_entry(fmt, &formats, lh) {
141                         if (!fmt->load_shlib)
142                                 continue;
143                         if (!try_module_get(fmt->module))
144                                 continue;
145                         read_unlock(&binfmt_lock);
146                         error = fmt->load_shlib(file);
147                         read_lock(&binfmt_lock);
148                         put_binfmt(fmt);
149                         if (error != -ENOEXEC)
150                                 break;
151                 }
152                 read_unlock(&binfmt_lock);
153         }
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163                 int write)
164 {
165         struct page *page;
166         int ret;
167
168 #ifdef CONFIG_STACK_GROWSUP
169         if (write) {
170                 ret = expand_stack_downwards(bprm->vma, pos);
171                 if (ret < 0)
172                         return NULL;
173         }
174 #endif
175         ret = get_user_pages(current, bprm->mm, pos,
176                         1, write, 1, &page, NULL);
177         if (ret <= 0)
178                 return NULL;
179
180         if (write) {
181                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182                 struct rlimit *rlim;
183
184                 /*
185                  * We've historically supported up to 32 pages (ARG_MAX)
186                  * of argument strings even with small stacks
187                  */
188                 if (size <= ARG_MAX)
189                         return page;
190
191                 /*
192                  * Limit to 1/4-th the stack size for the argv+env strings.
193                  * This ensures that:
194                  *  - the remaining binfmt code will not run out of stack space,
195                  *  - the program will have a reasonable amount of stack left
196                  *    to work from.
197                  */
198                 rlim = current->signal->rlim;
199                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200                         put_page(page);
201                         return NULL;
202                 }
203         }
204
205         return page;
206 }
207
208 static void put_arg_page(struct page *page)
209 {
210         put_page(page);
211 }
212
213 static void free_arg_page(struct linux_binprm *bprm, int i)
214 {
215 }
216
217 static void free_arg_pages(struct linux_binprm *bprm)
218 {
219 }
220
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222                 struct page *page)
223 {
224         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 }
226
227 static int __bprm_mm_init(struct linux_binprm *bprm)
228 {
229         int err;
230         struct vm_area_struct *vma = NULL;
231         struct mm_struct *mm = bprm->mm;
232
233         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234         if (!vma)
235                 return -ENOMEM;
236
237         down_write(&mm->mmap_sem);
238         vma->vm_mm = mm;
239
240         /*
241          * Place the stack at the largest stack address the architecture
242          * supports. Later, we'll move this to an appropriate place. We don't
243          * use STACK_TOP because that can depend on attributes which aren't
244          * configured yet.
245          */
246         vma->vm_end = STACK_TOP_MAX;
247         vma->vm_start = vma->vm_end - PAGE_SIZE;
248         vma->vm_flags = VM_STACK_FLAGS;
249         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250         err = insert_vm_struct(mm, vma);
251         if (err)
252                 goto err;
253
254         mm->stack_vm = mm->total_vm = 1;
255         up_write(&mm->mmap_sem);
256         bprm->p = vma->vm_end - sizeof(void *);
257         return 0;
258 err:
259         up_write(&mm->mmap_sem);
260         bprm->vma = NULL;
261         kmem_cache_free(vm_area_cachep, vma);
262         return err;
263 }
264
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267         return len <= MAX_ARG_STRLEN;
268 }
269
270 #else
271
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273                 int write)
274 {
275         struct page *page;
276
277         page = bprm->page[pos / PAGE_SIZE];
278         if (!page && write) {
279                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280                 if (!page)
281                         return NULL;
282                 bprm->page[pos / PAGE_SIZE] = page;
283         }
284
285         return page;
286 }
287
288 static void put_arg_page(struct page *page)
289 {
290 }
291
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294         if (bprm->page[i]) {
295                 __free_page(bprm->page[i]);
296                 bprm->page[i] = NULL;
297         }
298 }
299
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302         int i;
303
304         for (i = 0; i < MAX_ARG_PAGES; i++)
305                 free_arg_page(bprm, i);
306 }
307
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309                 struct page *page)
310 {
311 }
312
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316         return 0;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321         return len <= bprm->p;
322 }
323
324 #endif /* CONFIG_MMU */
325
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334         int err;
335         struct mm_struct *mm = NULL;
336
337         bprm->mm = mm = mm_alloc();
338         err = -ENOMEM;
339         if (!mm)
340                 goto err;
341
342         err = init_new_context(current, mm);
343         if (err)
344                 goto err;
345
346         err = __bprm_mm_init(bprm);
347         if (err)
348                 goto err;
349
350         return 0;
351
352 err:
353         if (mm) {
354                 bprm->mm = NULL;
355                 mmdrop(mm);
356         }
357
358         return err;
359 }
360
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366         int i = 0;
367
368         if (argv != NULL) {
369                 for (;;) {
370                         char __user * p;
371
372                         if (get_user(p, argv))
373                                 return -EFAULT;
374                         if (!p)
375                                 break;
376                         argv++;
377                         if (i++ >= max)
378                                 return -E2BIG;
379                         cond_resched();
380                 }
381         }
382         return i;
383 }
384
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391                         struct linux_binprm *bprm)
392 {
393         struct page *kmapped_page = NULL;
394         char *kaddr = NULL;
395         unsigned long kpos = 0;
396         int ret;
397
398         while (argc-- > 0) {
399                 char __user *str;
400                 int len;
401                 unsigned long pos;
402
403                 if (get_user(str, argv+argc) ||
404                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405                         ret = -EFAULT;
406                         goto out;
407                 }
408
409                 if (!valid_arg_len(bprm, len)) {
410                         ret = -E2BIG;
411                         goto out;
412                 }
413
414                 /* We're going to work our way backwords. */
415                 pos = bprm->p;
416                 str += len;
417                 bprm->p -= len;
418
419                 while (len > 0) {
420                         int offset, bytes_to_copy;
421
422                         offset = pos % PAGE_SIZE;
423                         if (offset == 0)
424                                 offset = PAGE_SIZE;
425
426                         bytes_to_copy = offset;
427                         if (bytes_to_copy > len)
428                                 bytes_to_copy = len;
429
430                         offset -= bytes_to_copy;
431                         pos -= bytes_to_copy;
432                         str -= bytes_to_copy;
433                         len -= bytes_to_copy;
434
435                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436                                 struct page *page;
437
438                                 page = get_arg_page(bprm, pos, 1);
439                                 if (!page) {
440                                         ret = -E2BIG;
441                                         goto out;
442                                 }
443
444                                 if (kmapped_page) {
445                                         flush_kernel_dcache_page(kmapped_page);
446                                         kunmap(kmapped_page);
447                                         put_arg_page(kmapped_page);
448                                 }
449                                 kmapped_page = page;
450                                 kaddr = kmap(kmapped_page);
451                                 kpos = pos & PAGE_MASK;
452                                 flush_arg_page(bprm, kpos, kmapped_page);
453                         }
454                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455                                 ret = -EFAULT;
456                                 goto out;
457                         }
458                 }
459         }
460         ret = 0;
461 out:
462         if (kmapped_page) {
463                 flush_kernel_dcache_page(kmapped_page);
464                 kunmap(kmapped_page);
465                 put_arg_page(kmapped_page);
466         }
467         return ret;
468 }
469
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 {
475         int r;
476         mm_segment_t oldfs = get_fs();
477         set_fs(KERNEL_DS);
478         r = copy_strings(argc, (char __user * __user *)argv, bprm);
479         set_fs(oldfs);
480         return r;
481 }
482 EXPORT_SYMBOL(copy_strings_kernel);
483
484 #ifdef CONFIG_MMU
485
486 /*
487  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
488  * the binfmt code determines where the new stack should reside, we shift it to
489  * its final location.  The process proceeds as follows:
490  *
491  * 1) Use shift to calculate the new vma endpoints.
492  * 2) Extend vma to cover both the old and new ranges.  This ensures the
493  *    arguments passed to subsequent functions are consistent.
494  * 3) Move vma's page tables to the new range.
495  * 4) Free up any cleared pgd range.
496  * 5) Shrink the vma to cover only the new range.
497  */
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 {
500         struct mm_struct *mm = vma->vm_mm;
501         unsigned long old_start = vma->vm_start;
502         unsigned long old_end = vma->vm_end;
503         unsigned long length = old_end - old_start;
504         unsigned long new_start = old_start - shift;
505         unsigned long new_end = old_end - shift;
506         struct mmu_gather *tlb;
507
508         BUG_ON(new_start > new_end);
509
510         /*
511          * ensure there are no vmas between where we want to go
512          * and where we are
513          */
514         if (vma != find_vma(mm, new_start))
515                 return -EFAULT;
516
517         /*
518          * cover the whole range: [new_start, old_end)
519          */
520         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
521
522         /*
523          * move the page tables downwards, on failure we rely on
524          * process cleanup to remove whatever mess we made.
525          */
526         if (length != move_page_tables(vma, old_start,
527                                        vma, new_start, length))
528                 return -ENOMEM;
529
530         lru_add_drain();
531         tlb = tlb_gather_mmu(mm, 0);
532         if (new_end > old_start) {
533                 /*
534                  * when the old and new regions overlap clear from new_end.
535                  */
536                 free_pgd_range(tlb, new_end, old_end, new_end,
537                         vma->vm_next ? vma->vm_next->vm_start : 0);
538         } else {
539                 /*
540                  * otherwise, clean from old_start; this is done to not touch
541                  * the address space in [new_end, old_start) some architectures
542                  * have constraints on va-space that make this illegal (IA64) -
543                  * for the others its just a little faster.
544                  */
545                 free_pgd_range(tlb, old_start, old_end, new_end,
546                         vma->vm_next ? vma->vm_next->vm_start : 0);
547         }
548         tlb_finish_mmu(tlb, new_end, old_end);
549
550         /*
551          * shrink the vma to just the new range.
552          */
553         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
554
555         return 0;
556 }
557
558 #define EXTRA_STACK_VM_PAGES    20      /* random */
559
560 /*
561  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562  * the stack is optionally relocated, and some extra space is added.
563  */
564 int setup_arg_pages(struct linux_binprm *bprm,
565                     unsigned long stack_top,
566                     int executable_stack)
567 {
568         unsigned long ret;
569         unsigned long stack_shift;
570         struct mm_struct *mm = current->mm;
571         struct vm_area_struct *vma = bprm->vma;
572         struct vm_area_struct *prev = NULL;
573         unsigned long vm_flags;
574         unsigned long stack_base;
575         unsigned long stack_size;
576         unsigned long stack_expand;
577         unsigned long rlim_stack;
578
579 #ifdef CONFIG_STACK_GROWSUP
580         /* Limit stack size to 1GB */
581         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
582         if (stack_base > (1 << 30))
583                 stack_base = 1 << 30;
584
585         /* Make sure we didn't let the argument array grow too large. */
586         if (vma->vm_end - vma->vm_start > stack_base)
587                 return -ENOMEM;
588
589         stack_base = PAGE_ALIGN(stack_top - stack_base);
590
591         stack_shift = vma->vm_start - stack_base;
592         mm->arg_start = bprm->p - stack_shift;
593         bprm->p = vma->vm_end - stack_shift;
594 #else
595         stack_top = arch_align_stack(stack_top);
596         stack_top = PAGE_ALIGN(stack_top);
597         stack_shift = vma->vm_end - stack_top;
598
599         bprm->p -= stack_shift;
600         mm->arg_start = bprm->p;
601 #endif
602
603         if (bprm->loader)
604                 bprm->loader -= stack_shift;
605         bprm->exec -= stack_shift;
606
607         down_write(&mm->mmap_sem);
608         vm_flags = VM_STACK_FLAGS;
609
610         /*
611          * Adjust stack execute permissions; explicitly enable for
612          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613          * (arch default) otherwise.
614          */
615         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616                 vm_flags |= VM_EXEC;
617         else if (executable_stack == EXSTACK_DISABLE_X)
618                 vm_flags &= ~VM_EXEC;
619         vm_flags |= mm->def_flags;
620
621         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622                         vm_flags);
623         if (ret)
624                 goto out_unlock;
625         BUG_ON(prev != vma);
626
627         /* Move stack pages down in memory. */
628         if (stack_shift) {
629                 ret = shift_arg_pages(vma, stack_shift);
630                 if (ret)
631                         goto out_unlock;
632         }
633
634         stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635         stack_size = vma->vm_end - vma->vm_start;
636         /*
637          * Align this down to a page boundary as expand_stack
638          * will align it up.
639          */
640         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
641 #ifdef CONFIG_STACK_GROWSUP
642         if (stack_size + stack_expand > rlim_stack)
643                 stack_base = vma->vm_start + rlim_stack;
644         else
645                 stack_base = vma->vm_end + stack_expand;
646 #else
647         if (stack_size + stack_expand > rlim_stack)
648                 stack_base = vma->vm_end - rlim_stack;
649         else
650                 stack_base = vma->vm_start - stack_expand;
651 #endif
652         ret = expand_stack(vma, stack_base);
653         if (ret)
654                 ret = -EFAULT;
655
656 out_unlock:
657         up_write(&mm->mmap_sem);
658         return ret;
659 }
660 EXPORT_SYMBOL(setup_arg_pages);
661
662 #endif /* CONFIG_MMU */
663
664 struct file *open_exec(const char *name)
665 {
666         struct file *file;
667         int err;
668
669         file = do_filp_open(AT_FDCWD, name,
670                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
671                                 MAY_EXEC | MAY_OPEN);
672         if (IS_ERR(file))
673                 goto out;
674
675         err = -EACCES;
676         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
677                 goto exit;
678
679         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
680                 goto exit;
681
682         fsnotify_open(file->f_path.dentry);
683
684         err = deny_write_access(file);
685         if (err)
686                 goto exit;
687
688 out:
689         return file;
690
691 exit:
692         fput(file);
693         return ERR_PTR(err);
694 }
695 EXPORT_SYMBOL(open_exec);
696
697 int kernel_read(struct file *file, loff_t offset,
698                 char *addr, unsigned long count)
699 {
700         mm_segment_t old_fs;
701         loff_t pos = offset;
702         int result;
703
704         old_fs = get_fs();
705         set_fs(get_ds());
706         /* The cast to a user pointer is valid due to the set_fs() */
707         result = vfs_read(file, (void __user *)addr, count, &pos);
708         set_fs(old_fs);
709         return result;
710 }
711
712 EXPORT_SYMBOL(kernel_read);
713
714 static int exec_mmap(struct mm_struct *mm)
715 {
716         struct task_struct *tsk;
717         struct mm_struct * old_mm, *active_mm;
718
719         /* Notify parent that we're no longer interested in the old VM */
720         tsk = current;
721         old_mm = current->mm;
722         mm_release(tsk, old_mm);
723
724         if (old_mm) {
725                 /*
726                  * Make sure that if there is a core dump in progress
727                  * for the old mm, we get out and die instead of going
728                  * through with the exec.  We must hold mmap_sem around
729                  * checking core_state and changing tsk->mm.
730                  */
731                 down_read(&old_mm->mmap_sem);
732                 if (unlikely(old_mm->core_state)) {
733                         up_read(&old_mm->mmap_sem);
734                         return -EINTR;
735                 }
736         }
737         task_lock(tsk);
738         active_mm = tsk->active_mm;
739         tsk->mm = mm;
740         tsk->active_mm = mm;
741         activate_mm(active_mm, mm);
742         task_unlock(tsk);
743         arch_pick_mmap_layout(mm);
744         if (old_mm) {
745                 up_read(&old_mm->mmap_sem);
746                 BUG_ON(active_mm != old_mm);
747                 mm_update_next_owner(old_mm);
748                 mmput(old_mm);
749                 return 0;
750         }
751         mmdrop(active_mm);
752         return 0;
753 }
754
755 /*
756  * This function makes sure the current process has its own signal table,
757  * so that flush_signal_handlers can later reset the handlers without
758  * disturbing other processes.  (Other processes might share the signal
759  * table via the CLONE_SIGHAND option to clone().)
760  */
761 static int de_thread(struct task_struct *tsk)
762 {
763         struct signal_struct *sig = tsk->signal;
764         struct sighand_struct *oldsighand = tsk->sighand;
765         spinlock_t *lock = &oldsighand->siglock;
766         int count;
767
768         if (thread_group_empty(tsk))
769                 goto no_thread_group;
770
771         /*
772          * Kill all other threads in the thread group.
773          */
774         spin_lock_irq(lock);
775         if (signal_group_exit(sig)) {
776                 /*
777                  * Another group action in progress, just
778                  * return so that the signal is processed.
779                  */
780                 spin_unlock_irq(lock);
781                 return -EAGAIN;
782         }
783         sig->group_exit_task = tsk;
784         zap_other_threads(tsk);
785
786         /* Account for the thread group leader hanging around: */
787         count = thread_group_leader(tsk) ? 1 : 2;
788         sig->notify_count = count;
789         while (atomic_read(&sig->count) > count) {
790                 __set_current_state(TASK_UNINTERRUPTIBLE);
791                 spin_unlock_irq(lock);
792                 schedule();
793                 spin_lock_irq(lock);
794         }
795         spin_unlock_irq(lock);
796
797         /*
798          * At this point all other threads have exited, all we have to
799          * do is to wait for the thread group leader to become inactive,
800          * and to assume its PID:
801          */
802         if (!thread_group_leader(tsk)) {
803                 struct task_struct *leader = tsk->group_leader;
804
805                 sig->notify_count = -1; /* for exit_notify() */
806                 for (;;) {
807                         write_lock_irq(&tasklist_lock);
808                         if (likely(leader->exit_state))
809                                 break;
810                         __set_current_state(TASK_UNINTERRUPTIBLE);
811                         write_unlock_irq(&tasklist_lock);
812                         schedule();
813                 }
814
815                 /*
816                  * The only record we have of the real-time age of a
817                  * process, regardless of execs it's done, is start_time.
818                  * All the past CPU time is accumulated in signal_struct
819                  * from sister threads now dead.  But in this non-leader
820                  * exec, nothing survives from the original leader thread,
821                  * whose birth marks the true age of this process now.
822                  * When we take on its identity by switching to its PID, we
823                  * also take its birthdate (always earlier than our own).
824                  */
825                 tsk->start_time = leader->start_time;
826
827                 BUG_ON(!same_thread_group(leader, tsk));
828                 BUG_ON(has_group_leader_pid(tsk));
829                 /*
830                  * An exec() starts a new thread group with the
831                  * TGID of the previous thread group. Rehash the
832                  * two threads with a switched PID, and release
833                  * the former thread group leader:
834                  */
835
836                 /* Become a process group leader with the old leader's pid.
837                  * The old leader becomes a thread of the this thread group.
838                  * Note: The old leader also uses this pid until release_task
839                  *       is called.  Odd but simple and correct.
840                  */
841                 detach_pid(tsk, PIDTYPE_PID);
842                 tsk->pid = leader->pid;
843                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
844                 transfer_pid(leader, tsk, PIDTYPE_PGID);
845                 transfer_pid(leader, tsk, PIDTYPE_SID);
846                 list_replace_rcu(&leader->tasks, &tsk->tasks);
847
848                 tsk->group_leader = tsk;
849                 leader->group_leader = tsk;
850
851                 tsk->exit_signal = SIGCHLD;
852
853                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
854                 leader->exit_state = EXIT_DEAD;
855                 write_unlock_irq(&tasklist_lock);
856
857                 release_task(leader);
858         }
859
860         sig->group_exit_task = NULL;
861         sig->notify_count = 0;
862
863 no_thread_group:
864         if (current->mm)
865                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
866
867         exit_itimers(sig);
868         flush_itimer_signals();
869
870         if (atomic_read(&oldsighand->count) != 1) {
871                 struct sighand_struct *newsighand;
872                 /*
873                  * This ->sighand is shared with the CLONE_SIGHAND
874                  * but not CLONE_THREAD task, switch to the new one.
875                  */
876                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
877                 if (!newsighand)
878                         return -ENOMEM;
879
880                 atomic_set(&newsighand->count, 1);
881                 memcpy(newsighand->action, oldsighand->action,
882                        sizeof(newsighand->action));
883
884                 write_lock_irq(&tasklist_lock);
885                 spin_lock(&oldsighand->siglock);
886                 rcu_assign_pointer(tsk->sighand, newsighand);
887                 spin_unlock(&oldsighand->siglock);
888                 write_unlock_irq(&tasklist_lock);
889
890                 __cleanup_sighand(oldsighand);
891         }
892
893         BUG_ON(!thread_group_leader(tsk));
894         return 0;
895 }
896
897 /*
898  * These functions flushes out all traces of the currently running executable
899  * so that a new one can be started
900  */
901 static void flush_old_files(struct files_struct * files)
902 {
903         long j = -1;
904         struct fdtable *fdt;
905
906         spin_lock(&files->file_lock);
907         for (;;) {
908                 unsigned long set, i;
909
910                 j++;
911                 i = j * __NFDBITS;
912                 fdt = files_fdtable(files);
913                 if (i >= fdt->max_fds)
914                         break;
915                 set = fdt->close_on_exec->fds_bits[j];
916                 if (!set)
917                         continue;
918                 fdt->close_on_exec->fds_bits[j] = 0;
919                 spin_unlock(&files->file_lock);
920                 for ( ; set ; i++,set >>= 1) {
921                         if (set & 1) {
922                                 sys_close(i);
923                         }
924                 }
925                 spin_lock(&files->file_lock);
926
927         }
928         spin_unlock(&files->file_lock);
929 }
930
931 char *get_task_comm(char *buf, struct task_struct *tsk)
932 {
933         /* buf must be at least sizeof(tsk->comm) in size */
934         task_lock(tsk);
935         strncpy(buf, tsk->comm, sizeof(tsk->comm));
936         task_unlock(tsk);
937         return buf;
938 }
939
940 void set_task_comm(struct task_struct *tsk, char *buf)
941 {
942         task_lock(tsk);
943         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
944         task_unlock(tsk);
945         perf_event_comm(tsk);
946 }
947
948 int flush_old_exec(struct linux_binprm * bprm)
949 {
950         int retval;
951
952         /*
953          * Make sure we have a private signal table and that
954          * we are unassociated from the previous thread group.
955          */
956         retval = de_thread(current);
957         if (retval)
958                 goto out;
959
960         set_mm_exe_file(bprm->mm, bprm->file);
961
962         /*
963          * Release all of the old mmap stuff
964          */
965         retval = exec_mmap(bprm->mm);
966         if (retval)
967                 goto out;
968
969         bprm->mm = NULL;                /* We're using it now */
970
971         current->flags &= ~PF_RANDOMIZE;
972         flush_thread();
973         current->personality &= ~bprm->per_clear;
974
975         return 0;
976
977 out:
978         return retval;
979 }
980 EXPORT_SYMBOL(flush_old_exec);
981
982 void setup_new_exec(struct linux_binprm * bprm)
983 {
984         int i, ch;
985         char * name;
986         char tcomm[sizeof(current->comm)];
987
988         arch_pick_mmap_layout(current->mm);
989
990         /* This is the point of no return */
991         current->sas_ss_sp = current->sas_ss_size = 0;
992
993         if (current_euid() == current_uid() && current_egid() == current_gid())
994                 set_dumpable(current->mm, 1);
995         else
996                 set_dumpable(current->mm, suid_dumpable);
997
998         name = bprm->filename;
999
1000         /* Copies the binary name from after last slash */
1001         for (i=0; (ch = *(name++)) != '\0';) {
1002                 if (ch == '/')
1003                         i = 0; /* overwrite what we wrote */
1004                 else
1005                         if (i < (sizeof(tcomm) - 1))
1006                                 tcomm[i++] = ch;
1007         }
1008         tcomm[i] = '\0';
1009         set_task_comm(current, tcomm);
1010
1011         /* Set the new mm task size. We have to do that late because it may
1012          * depend on TIF_32BIT which is only updated in flush_thread() on
1013          * some architectures like powerpc
1014          */
1015         current->mm->task_size = TASK_SIZE;
1016
1017         /* install the new credentials */
1018         if (bprm->cred->uid != current_euid() ||
1019             bprm->cred->gid != current_egid()) {
1020                 current->pdeath_signal = 0;
1021         } else if (file_permission(bprm->file, MAY_READ) ||
1022                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1023                 set_dumpable(current->mm, suid_dumpable);
1024         }
1025
1026         /*
1027          * Flush performance counters when crossing a
1028          * security domain:
1029          */
1030         if (!get_dumpable(current->mm))
1031                 perf_event_exit_task(current);
1032
1033         /* An exec changes our domain. We are no longer part of the thread
1034            group */
1035
1036         current->self_exec_id++;
1037                         
1038         flush_signal_handlers(current, 0);
1039         flush_old_files(current->files);
1040 }
1041 EXPORT_SYMBOL(setup_new_exec);
1042
1043 /*
1044  * Prepare credentials and lock ->cred_guard_mutex.
1045  * install_exec_creds() commits the new creds and drops the lock.
1046  * Or, if exec fails before, free_bprm() should release ->cred and
1047  * and unlock.
1048  */
1049 int prepare_bprm_creds(struct linux_binprm *bprm)
1050 {
1051         if (mutex_lock_interruptible(&current->cred_guard_mutex))
1052                 return -ERESTARTNOINTR;
1053
1054         bprm->cred = prepare_exec_creds();
1055         if (likely(bprm->cred))
1056                 return 0;
1057
1058         mutex_unlock(&current->cred_guard_mutex);
1059         return -ENOMEM;
1060 }
1061
1062 void free_bprm(struct linux_binprm *bprm)
1063 {
1064         free_arg_pages(bprm);
1065         if (bprm->cred) {
1066                 mutex_unlock(&current->cred_guard_mutex);
1067                 abort_creds(bprm->cred);
1068         }
1069         kfree(bprm);
1070 }
1071
1072 /*
1073  * install the new credentials for this executable
1074  */
1075 void install_exec_creds(struct linux_binprm *bprm)
1076 {
1077         security_bprm_committing_creds(bprm);
1078
1079         commit_creds(bprm->cred);
1080         bprm->cred = NULL;
1081         /*
1082          * cred_guard_mutex must be held at least to this point to prevent
1083          * ptrace_attach() from altering our determination of the task's
1084          * credentials; any time after this it may be unlocked.
1085          */
1086         security_bprm_committed_creds(bprm);
1087         mutex_unlock(&current->cred_guard_mutex);
1088 }
1089 EXPORT_SYMBOL(install_exec_creds);
1090
1091 /*
1092  * determine how safe it is to execute the proposed program
1093  * - the caller must hold current->cred_guard_mutex to protect against
1094  *   PTRACE_ATTACH
1095  */
1096 int check_unsafe_exec(struct linux_binprm *bprm)
1097 {
1098         struct task_struct *p = current, *t;
1099         unsigned n_fs;
1100         int res = 0;
1101
1102         bprm->unsafe = tracehook_unsafe_exec(p);
1103
1104         n_fs = 1;
1105         write_lock(&p->fs->lock);
1106         rcu_read_lock();
1107         for (t = next_thread(p); t != p; t = next_thread(t)) {
1108                 if (t->fs == p->fs)
1109                         n_fs++;
1110         }
1111         rcu_read_unlock();
1112
1113         if (p->fs->users > n_fs) {
1114                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1115         } else {
1116                 res = -EAGAIN;
1117                 if (!p->fs->in_exec) {
1118                         p->fs->in_exec = 1;
1119                         res = 1;
1120                 }
1121         }
1122         write_unlock(&p->fs->lock);
1123
1124         return res;
1125 }
1126
1127 /* 
1128  * Fill the binprm structure from the inode. 
1129  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1130  *
1131  * This may be called multiple times for binary chains (scripts for example).
1132  */
1133 int prepare_binprm(struct linux_binprm *bprm)
1134 {
1135         umode_t mode;
1136         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1137         int retval;
1138
1139         mode = inode->i_mode;
1140         if (bprm->file->f_op == NULL)
1141                 return -EACCES;
1142
1143         /* clear any previous set[ug]id data from a previous binary */
1144         bprm->cred->euid = current_euid();
1145         bprm->cred->egid = current_egid();
1146
1147         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1148                 /* Set-uid? */
1149                 if (mode & S_ISUID) {
1150                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1151                         bprm->cred->euid = inode->i_uid;
1152                 }
1153
1154                 /* Set-gid? */
1155                 /*
1156                  * If setgid is set but no group execute bit then this
1157                  * is a candidate for mandatory locking, not a setgid
1158                  * executable.
1159                  */
1160                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1161                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1162                         bprm->cred->egid = inode->i_gid;
1163                 }
1164         }
1165
1166         /* fill in binprm security blob */
1167         retval = security_bprm_set_creds(bprm);
1168         if (retval)
1169                 return retval;
1170         bprm->cred_prepared = 1;
1171
1172         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1173         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1174 }
1175
1176 EXPORT_SYMBOL(prepare_binprm);
1177
1178 /*
1179  * Arguments are '\0' separated strings found at the location bprm->p
1180  * points to; chop off the first by relocating brpm->p to right after
1181  * the first '\0' encountered.
1182  */
1183 int remove_arg_zero(struct linux_binprm *bprm)
1184 {
1185         int ret = 0;
1186         unsigned long offset;
1187         char *kaddr;
1188         struct page *page;
1189
1190         if (!bprm->argc)
1191                 return 0;
1192
1193         do {
1194                 offset = bprm->p & ~PAGE_MASK;
1195                 page = get_arg_page(bprm, bprm->p, 0);
1196                 if (!page) {
1197                         ret = -EFAULT;
1198                         goto out;
1199                 }
1200                 kaddr = kmap_atomic(page, KM_USER0);
1201
1202                 for (; offset < PAGE_SIZE && kaddr[offset];
1203                                 offset++, bprm->p++)
1204                         ;
1205
1206                 kunmap_atomic(kaddr, KM_USER0);
1207                 put_arg_page(page);
1208
1209                 if (offset == PAGE_SIZE)
1210                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1211         } while (offset == PAGE_SIZE);
1212
1213         bprm->p++;
1214         bprm->argc--;
1215         ret = 0;
1216
1217 out:
1218         return ret;
1219 }
1220 EXPORT_SYMBOL(remove_arg_zero);
1221
1222 /*
1223  * cycle the list of binary formats handler, until one recognizes the image
1224  */
1225 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1226 {
1227         unsigned int depth = bprm->recursion_depth;
1228         int try,retval;
1229         struct linux_binfmt *fmt;
1230
1231         retval = security_bprm_check(bprm);
1232         if (retval)
1233                 return retval;
1234         retval = ima_bprm_check(bprm);
1235         if (retval)
1236                 return retval;
1237
1238         /* kernel module loader fixup */
1239         /* so we don't try to load run modprobe in kernel space. */
1240         set_fs(USER_DS);
1241
1242         retval = audit_bprm(bprm);
1243         if (retval)
1244                 return retval;
1245
1246         retval = -ENOENT;
1247         for (try=0; try<2; try++) {
1248                 read_lock(&binfmt_lock);
1249                 list_for_each_entry(fmt, &formats, lh) {
1250                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1251                         if (!fn)
1252                                 continue;
1253                         if (!try_module_get(fmt->module))
1254                                 continue;
1255                         read_unlock(&binfmt_lock);
1256                         retval = fn(bprm, regs);
1257                         /*
1258                          * Restore the depth counter to its starting value
1259                          * in this call, so we don't have to rely on every
1260                          * load_binary function to restore it on return.
1261                          */
1262                         bprm->recursion_depth = depth;
1263                         if (retval >= 0) {
1264                                 if (depth == 0)
1265                                         tracehook_report_exec(fmt, bprm, regs);
1266                                 put_binfmt(fmt);
1267                                 allow_write_access(bprm->file);
1268                                 if (bprm->file)
1269                                         fput(bprm->file);
1270                                 bprm->file = NULL;
1271                                 current->did_exec = 1;
1272                                 proc_exec_connector(current);
1273                                 return retval;
1274                         }
1275                         read_lock(&binfmt_lock);
1276                         put_binfmt(fmt);
1277                         if (retval != -ENOEXEC || bprm->mm == NULL)
1278                                 break;
1279                         if (!bprm->file) {
1280                                 read_unlock(&binfmt_lock);
1281                                 return retval;
1282                         }
1283                 }
1284                 read_unlock(&binfmt_lock);
1285                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1286                         break;
1287 #ifdef CONFIG_MODULES
1288                 } else {
1289 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1290                         if (printable(bprm->buf[0]) &&
1291                             printable(bprm->buf[1]) &&
1292                             printable(bprm->buf[2]) &&
1293                             printable(bprm->buf[3]))
1294                                 break; /* -ENOEXEC */
1295                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1296 #endif
1297                 }
1298         }
1299         return retval;
1300 }
1301
1302 EXPORT_SYMBOL(search_binary_handler);
1303
1304 /*
1305  * sys_execve() executes a new program.
1306  */
1307 int do_execve(char * filename,
1308         char __user *__user *argv,
1309         char __user *__user *envp,
1310         struct pt_regs * regs)
1311 {
1312         struct linux_binprm *bprm;
1313         struct file *file;
1314         struct files_struct *displaced;
1315         bool clear_in_exec;
1316         int retval;
1317
1318         retval = unshare_files(&displaced);
1319         if (retval)
1320                 goto out_ret;
1321
1322         retval = -ENOMEM;
1323         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1324         if (!bprm)
1325                 goto out_files;
1326
1327         retval = prepare_bprm_creds(bprm);
1328         if (retval)
1329                 goto out_free;
1330
1331         retval = check_unsafe_exec(bprm);
1332         if (retval < 0)
1333                 goto out_free;
1334         clear_in_exec = retval;
1335         current->in_execve = 1;
1336
1337         file = open_exec(filename);
1338         retval = PTR_ERR(file);
1339         if (IS_ERR(file))
1340                 goto out_unmark;
1341
1342         sched_exec();
1343
1344         bprm->file = file;
1345         bprm->filename = filename;
1346         bprm->interp = filename;
1347
1348         retval = bprm_mm_init(bprm);
1349         if (retval)
1350                 goto out_file;
1351
1352         bprm->argc = count(argv, MAX_ARG_STRINGS);
1353         if ((retval = bprm->argc) < 0)
1354                 goto out;
1355
1356         bprm->envc = count(envp, MAX_ARG_STRINGS);
1357         if ((retval = bprm->envc) < 0)
1358                 goto out;
1359
1360         retval = prepare_binprm(bprm);
1361         if (retval < 0)
1362                 goto out;
1363
1364         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1365         if (retval < 0)
1366                 goto out;
1367
1368         bprm->exec = bprm->p;
1369         retval = copy_strings(bprm->envc, envp, bprm);
1370         if (retval < 0)
1371                 goto out;
1372
1373         retval = copy_strings(bprm->argc, argv, bprm);
1374         if (retval < 0)
1375                 goto out;
1376
1377         current->flags &= ~PF_KTHREAD;
1378         retval = search_binary_handler(bprm,regs);
1379         if (retval < 0)
1380                 goto out;
1381
1382         current->stack_start = current->mm->start_stack;
1383
1384         /* execve succeeded */
1385         current->fs->in_exec = 0;
1386         current->in_execve = 0;
1387         acct_update_integrals(current);
1388         free_bprm(bprm);
1389         if (displaced)
1390                 put_files_struct(displaced);
1391         return retval;
1392
1393 out:
1394         if (bprm->mm)
1395                 mmput (bprm->mm);
1396
1397 out_file:
1398         if (bprm->file) {
1399                 allow_write_access(bprm->file);
1400                 fput(bprm->file);
1401         }
1402
1403 out_unmark:
1404         if (clear_in_exec)
1405                 current->fs->in_exec = 0;
1406         current->in_execve = 0;
1407
1408 out_free:
1409         free_bprm(bprm);
1410
1411 out_files:
1412         if (displaced)
1413                 reset_files_struct(displaced);
1414 out_ret:
1415         return retval;
1416 }
1417
1418 void set_binfmt(struct linux_binfmt *new)
1419 {
1420         struct mm_struct *mm = current->mm;
1421
1422         if (mm->binfmt)
1423                 module_put(mm->binfmt->module);
1424
1425         mm->binfmt = new;
1426         if (new)
1427                 __module_get(new->module);
1428 }
1429
1430 EXPORT_SYMBOL(set_binfmt);
1431
1432 /* format_corename will inspect the pattern parameter, and output a
1433  * name into corename, which must have space for at least
1434  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1435  */
1436 static int format_corename(char *corename, long signr)
1437 {
1438         const struct cred *cred = current_cred();
1439         const char *pat_ptr = core_pattern;
1440         int ispipe = (*pat_ptr == '|');
1441         char *out_ptr = corename;
1442         char *const out_end = corename + CORENAME_MAX_SIZE;
1443         int rc;
1444         int pid_in_pattern = 0;
1445
1446         /* Repeat as long as we have more pattern to process and more output
1447            space */
1448         while (*pat_ptr) {
1449                 if (*pat_ptr != '%') {
1450                         if (out_ptr == out_end)
1451                                 goto out;
1452                         *out_ptr++ = *pat_ptr++;
1453                 } else {
1454                         switch (*++pat_ptr) {
1455                         case 0:
1456                                 goto out;
1457                         /* Double percent, output one percent */
1458                         case '%':
1459                                 if (out_ptr == out_end)
1460                                         goto out;
1461                                 *out_ptr++ = '%';
1462                                 break;
1463                         /* pid */
1464                         case 'p':
1465                                 pid_in_pattern = 1;
1466                                 rc = snprintf(out_ptr, out_end - out_ptr,
1467                                               "%d", task_tgid_vnr(current));
1468                                 if (rc > out_end - out_ptr)
1469                                         goto out;
1470                                 out_ptr += rc;
1471                                 break;
1472                         /* uid */
1473                         case 'u':
1474                                 rc = snprintf(out_ptr, out_end - out_ptr,
1475                                               "%d", cred->uid);
1476                                 if (rc > out_end - out_ptr)
1477                                         goto out;
1478                                 out_ptr += rc;
1479                                 break;
1480                         /* gid */
1481                         case 'g':
1482                                 rc = snprintf(out_ptr, out_end - out_ptr,
1483                                               "%d", cred->gid);
1484                                 if (rc > out_end - out_ptr)
1485                                         goto out;
1486                                 out_ptr += rc;
1487                                 break;
1488                         /* signal that caused the coredump */
1489                         case 's':
1490                                 rc = snprintf(out_ptr, out_end - out_ptr,
1491                                               "%ld", signr);
1492                                 if (rc > out_end - out_ptr)
1493                                         goto out;
1494                                 out_ptr += rc;
1495                                 break;
1496                         /* UNIX time of coredump */
1497                         case 't': {
1498                                 struct timeval tv;
1499                                 do_gettimeofday(&tv);
1500                                 rc = snprintf(out_ptr, out_end - out_ptr,
1501                                               "%lu", tv.tv_sec);
1502                                 if (rc > out_end - out_ptr)
1503                                         goto out;
1504                                 out_ptr += rc;
1505                                 break;
1506                         }
1507                         /* hostname */
1508                         case 'h':
1509                                 down_read(&uts_sem);
1510                                 rc = snprintf(out_ptr, out_end - out_ptr,
1511                                               "%s", utsname()->nodename);
1512                                 up_read(&uts_sem);
1513                                 if (rc > out_end - out_ptr)
1514                                         goto out;
1515                                 out_ptr += rc;
1516                                 break;
1517                         /* executable */
1518                         case 'e':
1519                                 rc = snprintf(out_ptr, out_end - out_ptr,
1520                                               "%s", current->comm);
1521                                 if (rc > out_end - out_ptr)
1522                                         goto out;
1523                                 out_ptr += rc;
1524                                 break;
1525                         /* core limit size */
1526                         case 'c':
1527                                 rc = snprintf(out_ptr, out_end - out_ptr,
1528                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1529                                 if (rc > out_end - out_ptr)
1530                                         goto out;
1531                                 out_ptr += rc;
1532                                 break;
1533                         default:
1534                                 break;
1535                         }
1536                         ++pat_ptr;
1537                 }
1538         }
1539         /* Backward compatibility with core_uses_pid:
1540          *
1541          * If core_pattern does not include a %p (as is the default)
1542          * and core_uses_pid is set, then .%pid will be appended to
1543          * the filename. Do not do this for piped commands. */
1544         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1545                 rc = snprintf(out_ptr, out_end - out_ptr,
1546                               ".%d", task_tgid_vnr(current));
1547                 if (rc > out_end - out_ptr)
1548                         goto out;
1549                 out_ptr += rc;
1550         }
1551 out:
1552         *out_ptr = 0;
1553         return ispipe;
1554 }
1555
1556 static int zap_process(struct task_struct *start)
1557 {
1558         struct task_struct *t;
1559         int nr = 0;
1560
1561         start->signal->flags = SIGNAL_GROUP_EXIT;
1562         start->signal->group_stop_count = 0;
1563
1564         t = start;
1565         do {
1566                 if (t != current && t->mm) {
1567                         sigaddset(&t->pending.signal, SIGKILL);
1568                         signal_wake_up(t, 1);
1569                         nr++;
1570                 }
1571         } while_each_thread(start, t);
1572
1573         return nr;
1574 }
1575
1576 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1577                                 struct core_state *core_state, int exit_code)
1578 {
1579         struct task_struct *g, *p;
1580         unsigned long flags;
1581         int nr = -EAGAIN;
1582
1583         spin_lock_irq(&tsk->sighand->siglock);
1584         if (!signal_group_exit(tsk->signal)) {
1585                 mm->core_state = core_state;
1586                 tsk->signal->group_exit_code = exit_code;
1587                 nr = zap_process(tsk);
1588         }
1589         spin_unlock_irq(&tsk->sighand->siglock);
1590         if (unlikely(nr < 0))
1591                 return nr;
1592
1593         if (atomic_read(&mm->mm_users) == nr + 1)
1594                 goto done;
1595         /*
1596          * We should find and kill all tasks which use this mm, and we should
1597          * count them correctly into ->nr_threads. We don't take tasklist
1598          * lock, but this is safe wrt:
1599          *
1600          * fork:
1601          *      None of sub-threads can fork after zap_process(leader). All
1602          *      processes which were created before this point should be
1603          *      visible to zap_threads() because copy_process() adds the new
1604          *      process to the tail of init_task.tasks list, and lock/unlock
1605          *      of ->siglock provides a memory barrier.
1606          *
1607          * do_exit:
1608          *      The caller holds mm->mmap_sem. This means that the task which
1609          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1610          *      its ->mm.
1611          *
1612          * de_thread:
1613          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1614          *      we must see either old or new leader, this does not matter.
1615          *      However, it can change p->sighand, so lock_task_sighand(p)
1616          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1617          *      it can't fail.
1618          *
1619          *      Note also that "g" can be the old leader with ->mm == NULL
1620          *      and already unhashed and thus removed from ->thread_group.
1621          *      This is OK, __unhash_process()->list_del_rcu() does not
1622          *      clear the ->next pointer, we will find the new leader via
1623          *      next_thread().
1624          */
1625         rcu_read_lock();
1626         for_each_process(g) {
1627                 if (g == tsk->group_leader)
1628                         continue;
1629                 if (g->flags & PF_KTHREAD)
1630                         continue;
1631                 p = g;
1632                 do {
1633                         if (p->mm) {
1634                                 if (unlikely(p->mm == mm)) {
1635                                         lock_task_sighand(p, &flags);
1636                                         nr += zap_process(p);
1637                                         unlock_task_sighand(p, &flags);
1638                                 }
1639                                 break;
1640                         }
1641                 } while_each_thread(g, p);
1642         }
1643         rcu_read_unlock();
1644 done:
1645         atomic_set(&core_state->nr_threads, nr);
1646         return nr;
1647 }
1648
1649 static int coredump_wait(int exit_code, struct core_state *core_state)
1650 {
1651         struct task_struct *tsk = current;
1652         struct mm_struct *mm = tsk->mm;
1653         struct completion *vfork_done;
1654         int core_waiters;
1655
1656         init_completion(&core_state->startup);
1657         core_state->dumper.task = tsk;
1658         core_state->dumper.next = NULL;
1659         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1660         up_write(&mm->mmap_sem);
1661
1662         if (unlikely(core_waiters < 0))
1663                 goto fail;
1664
1665         /*
1666          * Make sure nobody is waiting for us to release the VM,
1667          * otherwise we can deadlock when we wait on each other
1668          */
1669         vfork_done = tsk->vfork_done;
1670         if (vfork_done) {
1671                 tsk->vfork_done = NULL;
1672                 complete(vfork_done);
1673         }
1674
1675         if (core_waiters)
1676                 wait_for_completion(&core_state->startup);
1677 fail:
1678         return core_waiters;
1679 }
1680
1681 static void coredump_finish(struct mm_struct *mm)
1682 {
1683         struct core_thread *curr, *next;
1684         struct task_struct *task;
1685
1686         next = mm->core_state->dumper.next;
1687         while ((curr = next) != NULL) {
1688                 next = curr->next;
1689                 task = curr->task;
1690                 /*
1691                  * see exit_mm(), curr->task must not see
1692                  * ->task == NULL before we read ->next.
1693                  */
1694                 smp_mb();
1695                 curr->task = NULL;
1696                 wake_up_process(task);
1697         }
1698
1699         mm->core_state = NULL;
1700 }
1701
1702 /*
1703  * set_dumpable converts traditional three-value dumpable to two flags and
1704  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1705  * these bits are not changed atomically.  So get_dumpable can observe the
1706  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1707  * return either old dumpable or new one by paying attention to the order of
1708  * modifying the bits.
1709  *
1710  * dumpable |   mm->flags (binary)
1711  * old  new | initial interim  final
1712  * ---------+-----------------------
1713  *  0    1  |   00      01      01
1714  *  0    2  |   00      10(*)   11
1715  *  1    0  |   01      00      00
1716  *  1    2  |   01      11      11
1717  *  2    0  |   11      10(*)   00
1718  *  2    1  |   11      11      01
1719  *
1720  * (*) get_dumpable regards interim value of 10 as 11.
1721  */
1722 void set_dumpable(struct mm_struct *mm, int value)
1723 {
1724         switch (value) {
1725         case 0:
1726                 clear_bit(MMF_DUMPABLE, &mm->flags);
1727                 smp_wmb();
1728                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1729                 break;
1730         case 1:
1731                 set_bit(MMF_DUMPABLE, &mm->flags);
1732                 smp_wmb();
1733                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1734                 break;
1735         case 2:
1736                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1737                 smp_wmb();
1738                 set_bit(MMF_DUMPABLE, &mm->flags);
1739                 break;
1740         }
1741 }
1742
1743 int get_dumpable(struct mm_struct *mm)
1744 {
1745         int ret;
1746
1747         ret = mm->flags & 0x3;
1748         return (ret >= 2) ? 2 : ret;
1749 }
1750
1751 static void wait_for_dump_helpers(struct file *file)
1752 {
1753         struct pipe_inode_info *pipe;
1754
1755         pipe = file->f_path.dentry->d_inode->i_pipe;
1756
1757         pipe_lock(pipe);
1758         pipe->readers++;
1759         pipe->writers--;
1760
1761         while ((pipe->readers > 1) && (!signal_pending(current))) {
1762                 wake_up_interruptible_sync(&pipe->wait);
1763                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1764                 pipe_wait(pipe);
1765         }
1766
1767         pipe->readers--;
1768         pipe->writers++;
1769         pipe_unlock(pipe);
1770
1771 }
1772
1773
1774 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1775 {
1776         struct core_state core_state;
1777         char corename[CORENAME_MAX_SIZE + 1];
1778         struct mm_struct *mm = current->mm;
1779         struct linux_binfmt * binfmt;
1780         struct inode * inode;
1781         struct file * file;
1782         const struct cred *old_cred;
1783         struct cred *cred;
1784         int retval = 0;
1785         int flag = 0;
1786         int ispipe = 0;
1787         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1788         char **helper_argv = NULL;
1789         int helper_argc = 0;
1790         int dump_count = 0;
1791         static atomic_t core_dump_count = ATOMIC_INIT(0);
1792
1793         audit_core_dumps(signr);
1794
1795         binfmt = mm->binfmt;
1796         if (!binfmt || !binfmt->core_dump)
1797                 goto fail;
1798
1799         cred = prepare_creds();
1800         if (!cred) {
1801                 retval = -ENOMEM;
1802                 goto fail;
1803         }
1804
1805         down_write(&mm->mmap_sem);
1806         /*
1807          * If another thread got here first, or we are not dumpable, bail out.
1808          */
1809         if (mm->core_state || !get_dumpable(mm)) {
1810                 up_write(&mm->mmap_sem);
1811                 put_cred(cred);
1812                 goto fail;
1813         }
1814
1815         /*
1816          *      We cannot trust fsuid as being the "true" uid of the
1817          *      process nor do we know its entire history. We only know it
1818          *      was tainted so we dump it as root in mode 2.
1819          */
1820         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1821                 flag = O_EXCL;          /* Stop rewrite attacks */
1822                 cred->fsuid = 0;        /* Dump root private */
1823         }
1824
1825         retval = coredump_wait(exit_code, &core_state);
1826         if (retval < 0) {
1827                 put_cred(cred);
1828                 goto fail;
1829         }
1830
1831         old_cred = override_creds(cred);
1832
1833         /*
1834          * Clear any false indication of pending signals that might
1835          * be seen by the filesystem code called to write the core file.
1836          */
1837         clear_thread_flag(TIF_SIGPENDING);
1838
1839         /*
1840          * lock_kernel() because format_corename() is controlled by sysctl, which
1841          * uses lock_kernel()
1842          */
1843         lock_kernel();
1844         ispipe = format_corename(corename, signr);
1845         unlock_kernel();
1846
1847         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1848                 goto fail_unlock;
1849
1850         if (ispipe) {
1851                 if (core_limit == 0) {
1852                         /*
1853                          * Normally core limits are irrelevant to pipes, since
1854                          * we're not writing to the file system, but we use
1855                          * core_limit of 0 here as a speacial value. Any
1856                          * non-zero limit gets set to RLIM_INFINITY below, but
1857                          * a limit of 0 skips the dump.  This is a consistent
1858                          * way to catch recursive crashes.  We can still crash
1859                          * if the core_pattern binary sets RLIM_CORE =  !0
1860                          * but it runs as root, and can do lots of stupid things
1861                          * Note that we use task_tgid_vnr here to grab the pid
1862                          * of the process group leader.  That way we get the
1863                          * right pid if a thread in a multi-threaded
1864                          * core_pattern process dies.
1865                          */
1866                         printk(KERN_WARNING
1867                                 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1868                                 task_tgid_vnr(current), current->comm);
1869                         printk(KERN_WARNING "Aborting core\n");
1870                         goto fail_unlock;
1871                 }
1872
1873                 dump_count = atomic_inc_return(&core_dump_count);
1874                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1875                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1876                                task_tgid_vnr(current), current->comm);
1877                         printk(KERN_WARNING "Skipping core dump\n");
1878                         goto fail_dropcount;
1879                 }
1880
1881                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1882                 if (!helper_argv) {
1883                         printk(KERN_WARNING "%s failed to allocate memory\n",
1884                                __func__);
1885                         goto fail_dropcount;
1886                 }
1887
1888                 core_limit = RLIM_INFINITY;
1889
1890                 /* SIGPIPE can happen, but it's just never processed */
1891                 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1892                                 &file)) {
1893                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1894                                corename);
1895                         goto fail_dropcount;
1896                 }
1897         } else
1898                 file = filp_open(corename,
1899                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1900                                  0600);
1901         if (IS_ERR(file))
1902                 goto fail_dropcount;
1903         inode = file->f_path.dentry->d_inode;
1904         if (inode->i_nlink > 1)
1905                 goto close_fail;        /* multiple links - don't dump */
1906         if (!ispipe && d_unhashed(file->f_path.dentry))
1907                 goto close_fail;
1908
1909         /* AK: actually i see no reason to not allow this for named pipes etc.,
1910            but keep the previous behaviour for now. */
1911         if (!ispipe && !S_ISREG(inode->i_mode))
1912                 goto close_fail;
1913         /*
1914          * Dont allow local users get cute and trick others to coredump
1915          * into their pre-created files:
1916          */
1917         if (inode->i_uid != current_fsuid())
1918                 goto close_fail;
1919         if (!file->f_op)
1920                 goto close_fail;
1921         if (!file->f_op->write)
1922                 goto close_fail;
1923         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1924                 goto close_fail;
1925
1926         retval = binfmt->core_dump(signr, regs, file, core_limit);
1927
1928         if (retval)
1929                 current->signal->group_exit_code |= 0x80;
1930 close_fail:
1931         if (ispipe && core_pipe_limit)
1932                 wait_for_dump_helpers(file);
1933         filp_close(file, NULL);
1934 fail_dropcount:
1935         if (dump_count)
1936                 atomic_dec(&core_dump_count);
1937 fail_unlock:
1938         if (helper_argv)
1939                 argv_free(helper_argv);
1940
1941         revert_creds(old_cred);
1942         put_cred(cred);
1943         coredump_finish(mm);
1944 fail:
1945         return;
1946 }