4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
59 #include <linux/kmod.h>
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
66 EXPORT_SYMBOL(suid_dumpable);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static struct linux_binfmt *formats;
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 struct linux_binfmt ** tmp = &formats;
80 write_lock(&binfmt_lock);
83 write_unlock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(register_binfmt);
96 int unregister_binfmt(struct linux_binfmt * fmt)
98 struct linux_binfmt ** tmp = &formats;
100 write_lock(&binfmt_lock);
105 write_unlock(&binfmt_lock);
110 write_unlock(&binfmt_lock);
114 EXPORT_SYMBOL(unregister_binfmt);
116 static inline void put_binfmt(struct linux_binfmt * fmt)
118 module_put(fmt->module);
122 * Note that a shared library must be both readable and executable due to
125 * Also note that we take the address to load from from the file itself.
127 asmlinkage long sys_uselib(const char __user * library)
133 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
138 if (nd.mnt->mnt_flags & MNT_NOEXEC)
141 if (!S_ISREG(nd.dentry->d_inode->i_mode))
144 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
148 file = nameidata_to_filp(&nd, O_RDONLY);
149 error = PTR_ERR(file);
155 struct linux_binfmt * fmt;
157 read_lock(&binfmt_lock);
158 for (fmt = formats ; fmt ; fmt = fmt->next) {
159 if (!fmt->load_shlib)
161 if (!try_module_get(fmt->module))
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
167 if (error != -ENOEXEC)
170 read_unlock(&binfmt_lock);
176 release_open_intent(&nd);
182 * count() counts the number of strings in array ARGV.
184 static int count(char __user * __user * argv, int max)
192 if (get_user(p, argv))
206 * 'copy_strings()' copies argument/environment strings from user
207 * memory to free pages in kernel mem. These are in a format ready
208 * to be put directly into the top of new user memory.
210 static int copy_strings(int argc, char __user * __user * argv,
211 struct linux_binprm *bprm)
213 struct page *kmapped_page = NULL;
222 if (get_user(str, argv+argc) ||
223 !(len = strnlen_user(str, bprm->p))) {
234 /* XXX: add architecture specific overflow check here. */
239 int offset, bytes_to_copy;
242 offset = pos % PAGE_SIZE;
244 page = bprm->page[i];
247 page = alloc_page(GFP_HIGHUSER);
248 bprm->page[i] = page;
256 if (page != kmapped_page) {
258 kunmap(kmapped_page);
260 kaddr = kmap(kmapped_page);
263 memset(kaddr, 0, offset);
264 bytes_to_copy = PAGE_SIZE - offset;
265 if (bytes_to_copy > len) {
268 memset(kaddr+offset+len, 0,
269 PAGE_SIZE-offset-len);
271 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
277 pos += bytes_to_copy;
278 str += bytes_to_copy;
279 len -= bytes_to_copy;
285 kunmap(kmapped_page);
290 * Like copy_strings, but get argv and its values from kernel memory.
292 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
295 mm_segment_t oldfs = get_fs();
297 r = copy_strings(argc, (char __user * __user *)argv, bprm);
302 EXPORT_SYMBOL(copy_strings_kernel);
306 * This routine is used to map in a page into an address space: needed by
307 * execve() for the initial stack and environment pages.
309 * vma->vm_mm->mmap_sem is held for writing.
311 void install_arg_page(struct vm_area_struct *vma,
312 struct page *page, unsigned long address)
314 struct mm_struct *mm = vma->vm_mm;
318 if (unlikely(anon_vma_prepare(vma)))
321 flush_dcache_page(page);
322 pte = get_locked_pte(mm, address, &ptl);
325 if (!pte_none(*pte)) {
326 pte_unmap_unlock(pte, ptl);
329 inc_mm_counter(mm, anon_rss);
330 lru_cache_add_active(page);
331 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
332 page, vma->vm_page_prot))));
333 page_add_new_anon_rmap(page, vma, address);
334 pte_unmap_unlock(pte, ptl);
336 /* no need for flush_tlb */
340 force_sig(SIGKILL, current);
343 #define EXTRA_STACK_VM_PAGES 20 /* random */
345 int setup_arg_pages(struct linux_binprm *bprm,
346 unsigned long stack_top,
347 int executable_stack)
349 unsigned long stack_base;
350 struct vm_area_struct *mpnt;
351 struct mm_struct *mm = current->mm;
355 #ifdef CONFIG_STACK_GROWSUP
356 /* Move the argument and environment strings to the bottom of the
362 /* Start by shifting all the pages down */
364 for (j = 0; j < MAX_ARG_PAGES; j++) {
365 struct page *page = bprm->page[j];
368 bprm->page[i++] = page;
371 /* Now move them within their pages */
372 offset = bprm->p % PAGE_SIZE;
373 to = kmap(bprm->page[0]);
374 for (j = 1; j < i; j++) {
375 memmove(to, to + offset, PAGE_SIZE - offset);
376 from = kmap(bprm->page[j]);
377 memcpy(to + PAGE_SIZE - offset, from, offset);
378 kunmap(bprm->page[j - 1]);
381 memmove(to, to + offset, PAGE_SIZE - offset);
382 kunmap(bprm->page[j - 1]);
384 /* Limit stack size to 1GB */
385 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
386 if (stack_base > (1 << 30))
387 stack_base = 1 << 30;
388 stack_base = PAGE_ALIGN(stack_top - stack_base);
390 /* Adjust bprm->p to point to the end of the strings. */
391 bprm->p = stack_base + PAGE_SIZE * i - offset;
393 mm->arg_start = stack_base;
394 arg_size = i << PAGE_SHIFT;
396 /* zero pages that were copied above */
397 while (i < MAX_ARG_PAGES)
398 bprm->page[i++] = NULL;
400 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
401 stack_base = PAGE_ALIGN(stack_base);
402 bprm->p += stack_base;
403 mm->arg_start = bprm->p;
404 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
407 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
410 bprm->loader += stack_base;
411 bprm->exec += stack_base;
413 mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
417 down_write(&mm->mmap_sem);
420 #ifdef CONFIG_STACK_GROWSUP
421 mpnt->vm_start = stack_base;
422 mpnt->vm_end = stack_base + arg_size;
424 mpnt->vm_end = stack_top;
425 mpnt->vm_start = mpnt->vm_end - arg_size;
427 /* Adjust stack execute permissions; explicitly enable
428 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
429 * and leave alone (arch default) otherwise. */
430 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
431 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
432 else if (executable_stack == EXSTACK_DISABLE_X)
433 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
435 mpnt->vm_flags = VM_STACK_FLAGS;
436 mpnt->vm_flags |= mm->def_flags;
437 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
438 if ((ret = insert_vm_struct(mm, mpnt))) {
439 up_write(&mm->mmap_sem);
440 kmem_cache_free(vm_area_cachep, mpnt);
443 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
446 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
447 struct page *page = bprm->page[i];
449 bprm->page[i] = NULL;
450 install_arg_page(mpnt, page, stack_base);
452 stack_base += PAGE_SIZE;
454 up_write(&mm->mmap_sem);
459 EXPORT_SYMBOL(setup_arg_pages);
461 #define free_arg_pages(bprm) do { } while (0)
465 static inline void free_arg_pages(struct linux_binprm *bprm)
469 for (i = 0; i < MAX_ARG_PAGES; i++) {
471 __free_page(bprm->page[i]);
472 bprm->page[i] = NULL;
476 #endif /* CONFIG_MMU */
478 struct file *open_exec(const char *name)
484 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
488 struct inode *inode = nd.dentry->d_inode;
489 file = ERR_PTR(-EACCES);
490 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
491 S_ISREG(inode->i_mode)) {
492 int err = vfs_permission(&nd, MAY_EXEC);
495 file = nameidata_to_filp(&nd, O_RDONLY);
497 err = deny_write_access(file);
507 release_open_intent(&nd);
513 EXPORT_SYMBOL(open_exec);
515 int kernel_read(struct file *file, unsigned long offset,
516 char *addr, unsigned long count)
524 /* The cast to a user pointer is valid due to the set_fs() */
525 result = vfs_read(file, (void __user *)addr, count, &pos);
530 EXPORT_SYMBOL(kernel_read);
532 static int exec_mmap(struct mm_struct *mm)
534 struct task_struct *tsk;
535 struct mm_struct * old_mm, *active_mm;
537 /* Notify parent that we're no longer interested in the old VM */
539 old_mm = current->mm;
540 mm_release(tsk, old_mm);
544 * Make sure that if there is a core dump in progress
545 * for the old mm, we get out and die instead of going
546 * through with the exec. We must hold mmap_sem around
547 * checking core_waiters and changing tsk->mm. The
548 * core-inducing thread will increment core_waiters for
549 * each thread whose ->mm == old_mm.
551 down_read(&old_mm->mmap_sem);
552 if (unlikely(old_mm->core_waiters)) {
553 up_read(&old_mm->mmap_sem);
558 active_mm = tsk->active_mm;
561 activate_mm(active_mm, mm);
563 arch_pick_mmap_layout(mm);
565 up_read(&old_mm->mmap_sem);
566 BUG_ON(active_mm != old_mm);
575 * This function makes sure the current process has its own signal table,
576 * so that flush_signal_handlers can later reset the handlers without
577 * disturbing other processes. (Other processes might share the signal
578 * table via the CLONE_SIGHAND option to clone().)
580 static int de_thread(struct task_struct *tsk)
582 struct signal_struct *sig = tsk->signal;
583 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
584 spinlock_t *lock = &oldsighand->siglock;
585 struct task_struct *leader = NULL;
589 * Tell all the sighand listeners that this sighand has
590 * been detached. The signalfd_detach() function grabs the
591 * sighand lock, if signal listeners are present on the sighand.
593 signalfd_detach(tsk);
596 * If we don't share sighandlers, then we aren't sharing anything
597 * and we can just re-use it all.
599 if (atomic_read(&oldsighand->count) <= 1) {
600 BUG_ON(atomic_read(&sig->count) != 1);
605 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
609 if (thread_group_empty(tsk))
610 goto no_thread_group;
613 * Kill all other threads in the thread group.
614 * We must hold tasklist_lock to call zap_other_threads.
616 read_lock(&tasklist_lock);
618 if (sig->flags & SIGNAL_GROUP_EXIT) {
620 * Another group action in progress, just
621 * return so that the signal is processed.
623 spin_unlock_irq(lock);
624 read_unlock(&tasklist_lock);
625 kmem_cache_free(sighand_cachep, newsighand);
630 * child_reaper ignores SIGKILL, change it now.
631 * Reparenting needs write_lock on tasklist_lock,
632 * so it is safe to do it under read_lock.
634 if (unlikely(tsk->group_leader == child_reaper(tsk)))
635 tsk->nsproxy->pid_ns->child_reaper = tsk;
637 zap_other_threads(tsk);
638 read_unlock(&tasklist_lock);
641 * Account for the thread group leader hanging around:
644 if (!thread_group_leader(tsk)) {
647 * The SIGALRM timer survives the exec, but needs to point
648 * at us as the new group leader now. We have a race with
649 * a timer firing now getting the old leader, so we need to
650 * synchronize with any firing (by calling del_timer_sync)
651 * before we can safely let the old group leader die.
654 spin_unlock_irq(lock);
655 if (hrtimer_cancel(&sig->real_timer))
656 hrtimer_restart(&sig->real_timer);
659 while (atomic_read(&sig->count) > count) {
660 sig->group_exit_task = tsk;
661 sig->notify_count = count;
662 __set_current_state(TASK_UNINTERRUPTIBLE);
663 spin_unlock_irq(lock);
667 sig->group_exit_task = NULL;
668 sig->notify_count = 0;
669 spin_unlock_irq(lock);
672 * At this point all other threads have exited, all we have to
673 * do is to wait for the thread group leader to become inactive,
674 * and to assume its PID:
676 if (!thread_group_leader(tsk)) {
678 * Wait for the thread group leader to be a zombie.
679 * It should already be zombie at this point, most
682 leader = tsk->group_leader;
683 while (leader->exit_state != EXIT_ZOMBIE)
687 * The only record we have of the real-time age of a
688 * process, regardless of execs it's done, is start_time.
689 * All the past CPU time is accumulated in signal_struct
690 * from sister threads now dead. But in this non-leader
691 * exec, nothing survives from the original leader thread,
692 * whose birth marks the true age of this process now.
693 * When we take on its identity by switching to its PID, we
694 * also take its birthdate (always earlier than our own).
696 tsk->start_time = leader->start_time;
698 write_lock_irq(&tasklist_lock);
700 BUG_ON(leader->tgid != tsk->tgid);
701 BUG_ON(tsk->pid == tsk->tgid);
703 * An exec() starts a new thread group with the
704 * TGID of the previous thread group. Rehash the
705 * two threads with a switched PID, and release
706 * the former thread group leader:
709 /* Become a process group leader with the old leader's pid.
710 * The old leader becomes a thread of the this thread group.
711 * Note: The old leader also uses this pid until release_task
712 * is called. Odd but simple and correct.
714 detach_pid(tsk, PIDTYPE_PID);
715 tsk->pid = leader->pid;
716 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
717 transfer_pid(leader, tsk, PIDTYPE_PGID);
718 transfer_pid(leader, tsk, PIDTYPE_SID);
719 list_replace_rcu(&leader->tasks, &tsk->tasks);
721 tsk->group_leader = tsk;
722 leader->group_leader = tsk;
724 tsk->exit_signal = SIGCHLD;
726 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
727 leader->exit_state = EXIT_DEAD;
729 write_unlock_irq(&tasklist_lock);
733 * There may be one thread left which is just exiting,
734 * but it's safe to stop telling the group to kill themselves.
741 release_task(leader);
743 BUG_ON(atomic_read(&sig->count) != 1);
745 if (atomic_read(&oldsighand->count) == 1) {
747 * Now that we nuked the rest of the thread group,
748 * it turns out we are not sharing sighand any more either.
749 * So we can just keep it.
751 kmem_cache_free(sighand_cachep, newsighand);
754 * Move our state over to newsighand and switch it in.
756 atomic_set(&newsighand->count, 1);
757 memcpy(newsighand->action, oldsighand->action,
758 sizeof(newsighand->action));
760 write_lock_irq(&tasklist_lock);
761 spin_lock(&oldsighand->siglock);
762 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
764 rcu_assign_pointer(tsk->sighand, newsighand);
767 spin_unlock(&newsighand->siglock);
768 spin_unlock(&oldsighand->siglock);
769 write_unlock_irq(&tasklist_lock);
771 __cleanup_sighand(oldsighand);
774 BUG_ON(!thread_group_leader(tsk));
779 * These functions flushes out all traces of the currently running executable
780 * so that a new one can be started
783 static void flush_old_files(struct files_struct * files)
788 spin_lock(&files->file_lock);
790 unsigned long set, i;
794 fdt = files_fdtable(files);
795 if (i >= fdt->max_fds)
797 set = fdt->close_on_exec->fds_bits[j];
800 fdt->close_on_exec->fds_bits[j] = 0;
801 spin_unlock(&files->file_lock);
802 for ( ; set ; i++,set >>= 1) {
807 spin_lock(&files->file_lock);
810 spin_unlock(&files->file_lock);
813 void get_task_comm(char *buf, struct task_struct *tsk)
815 /* buf must be at least sizeof(tsk->comm) in size */
817 strncpy(buf, tsk->comm, sizeof(tsk->comm));
821 void set_task_comm(struct task_struct *tsk, char *buf)
824 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
828 int flush_old_exec(struct linux_binprm * bprm)
832 struct files_struct *files;
833 char tcomm[sizeof(current->comm)];
836 * Make sure we have a private signal table and that
837 * we are unassociated from the previous thread group.
839 retval = de_thread(current);
844 * Make sure we have private file handles. Ask the
845 * fork helper to do the work for us and the exit
846 * helper to do the cleanup of the old one.
848 files = current->files; /* refcounted so safe to hold */
849 retval = unshare_files();
853 * Release all of the old mmap stuff
855 retval = exec_mmap(bprm->mm);
859 bprm->mm = NULL; /* We're using it now */
861 /* This is the point of no return */
862 put_files_struct(files);
864 current->sas_ss_sp = current->sas_ss_size = 0;
866 if (current->euid == current->uid && current->egid == current->gid)
867 current->mm->dumpable = 1;
869 current->mm->dumpable = suid_dumpable;
871 name = bprm->filename;
873 /* Copies the binary name from after last slash */
874 for (i=0; (ch = *(name++)) != '\0';) {
876 i = 0; /* overwrite what we wrote */
878 if (i < (sizeof(tcomm) - 1))
882 set_task_comm(current, tcomm);
884 current->flags &= ~PF_RANDOMIZE;
887 /* Set the new mm task size. We have to do that late because it may
888 * depend on TIF_32BIT which is only updated in flush_thread() on
889 * some architectures like powerpc
891 current->mm->task_size = TASK_SIZE;
893 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
894 file_permission(bprm->file, MAY_READ) ||
895 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
897 current->mm->dumpable = suid_dumpable;
900 /* An exec changes our domain. We are no longer part of the thread
903 current->self_exec_id++;
905 flush_signal_handlers(current, 0);
906 flush_old_files(current->files);
911 reset_files_struct(current, files);
916 EXPORT_SYMBOL(flush_old_exec);
919 * Fill the binprm structure from the inode.
920 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
922 int prepare_binprm(struct linux_binprm *bprm)
925 struct inode * inode = bprm->file->f_path.dentry->d_inode;
928 mode = inode->i_mode;
929 if (bprm->file->f_op == NULL)
932 bprm->e_uid = current->euid;
933 bprm->e_gid = current->egid;
935 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
937 if (mode & S_ISUID) {
938 current->personality &= ~PER_CLEAR_ON_SETID;
939 bprm->e_uid = inode->i_uid;
944 * If setgid is set but no group execute bit then this
945 * is a candidate for mandatory locking, not a setgid
948 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
949 current->personality &= ~PER_CLEAR_ON_SETID;
950 bprm->e_gid = inode->i_gid;
954 /* fill in binprm security blob */
955 retval = security_bprm_set(bprm);
959 memset(bprm->buf,0,BINPRM_BUF_SIZE);
960 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
963 EXPORT_SYMBOL(prepare_binprm);
965 static int unsafe_exec(struct task_struct *p)
968 if (p->ptrace & PT_PTRACED) {
969 if (p->ptrace & PT_PTRACE_CAP)
970 unsafe |= LSM_UNSAFE_PTRACE_CAP;
972 unsafe |= LSM_UNSAFE_PTRACE;
974 if (atomic_read(&p->fs->count) > 1 ||
975 atomic_read(&p->files->count) > 1 ||
976 atomic_read(&p->sighand->count) > 1)
977 unsafe |= LSM_UNSAFE_SHARE;
982 void compute_creds(struct linux_binprm *bprm)
986 if (bprm->e_uid != current->uid)
991 unsafe = unsafe_exec(current);
992 security_bprm_apply_creds(bprm, unsafe);
993 task_unlock(current);
994 security_bprm_post_apply_creds(bprm);
996 EXPORT_SYMBOL(compute_creds);
999 * Arguments are '\0' separated strings found at the location bprm->p
1000 * points to; chop off the first by relocating brpm->p to right after
1001 * the first '\0' encountered.
1003 void remove_arg_zero(struct linux_binprm *bprm)
1009 unsigned long offset;
1010 unsigned long index;
1014 offset = bprm->p & ~PAGE_MASK;
1015 index = bprm->p >> PAGE_SHIFT;
1017 page = bprm->page[index];
1018 kaddr = kmap_atomic(page, KM_USER0);
1020 /* run through page until we reach end or find NUL */
1022 ch = *(kaddr + offset);
1024 /* discard that character... */
1027 } while (offset < PAGE_SIZE && ch != '\0');
1029 kunmap_atomic(kaddr, KM_USER0);
1031 /* free the old page */
1032 if (offset == PAGE_SIZE) {
1034 bprm->page[index] = NULL;
1036 } while (ch != '\0');
1041 EXPORT_SYMBOL(remove_arg_zero);
1044 * cycle the list of binary formats handler, until one recognizes the image
1046 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1049 struct linux_binfmt *fmt;
1051 /* handle /sbin/loader.. */
1053 struct exec * eh = (struct exec *) bprm->buf;
1055 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1056 (eh->fh.f_flags & 0x3000) == 0x3000)
1059 unsigned long loader;
1061 allow_write_access(bprm->file);
1065 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1067 file = open_exec("/sbin/loader");
1068 retval = PTR_ERR(file);
1072 /* Remember if the application is TASO. */
1073 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1076 bprm->loader = loader;
1077 retval = prepare_binprm(bprm);
1080 /* should call search_binary_handler recursively here,
1081 but it does not matter */
1085 retval = security_bprm_check(bprm);
1089 /* kernel module loader fixup */
1090 /* so we don't try to load run modprobe in kernel space. */
1093 retval = audit_bprm(bprm);
1098 for (try=0; try<2; try++) {
1099 read_lock(&binfmt_lock);
1100 for (fmt = formats ; fmt ; fmt = fmt->next) {
1101 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1104 if (!try_module_get(fmt->module))
1106 read_unlock(&binfmt_lock);
1107 retval = fn(bprm, regs);
1110 allow_write_access(bprm->file);
1114 current->did_exec = 1;
1115 proc_exec_connector(current);
1118 read_lock(&binfmt_lock);
1120 if (retval != -ENOEXEC || bprm->mm == NULL)
1123 read_unlock(&binfmt_lock);
1127 read_unlock(&binfmt_lock);
1128 if (retval != -ENOEXEC || bprm->mm == NULL) {
1132 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1133 if (printable(bprm->buf[0]) &&
1134 printable(bprm->buf[1]) &&
1135 printable(bprm->buf[2]) &&
1136 printable(bprm->buf[3]))
1137 break; /* -ENOEXEC */
1138 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1145 EXPORT_SYMBOL(search_binary_handler);
1148 * sys_execve() executes a new program.
1150 int do_execve(char * filename,
1151 char __user *__user *argv,
1152 char __user *__user *envp,
1153 struct pt_regs * regs)
1155 struct linux_binprm *bprm;
1161 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1165 file = open_exec(filename);
1166 retval = PTR_ERR(file);
1172 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1175 bprm->filename = filename;
1176 bprm->interp = filename;
1177 bprm->mm = mm_alloc();
1182 retval = init_new_context(current, bprm->mm);
1186 bprm->argc = count(argv, bprm->p / sizeof(void *));
1187 if ((retval = bprm->argc) < 0)
1190 bprm->envc = count(envp, bprm->p / sizeof(void *));
1191 if ((retval = bprm->envc) < 0)
1194 retval = security_bprm_alloc(bprm);
1198 retval = prepare_binprm(bprm);
1202 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1206 bprm->exec = bprm->p;
1207 retval = copy_strings(bprm->envc, envp, bprm);
1211 retval = copy_strings(bprm->argc, argv, bprm);
1215 retval = search_binary_handler(bprm,regs);
1217 free_arg_pages(bprm);
1219 /* execve success */
1220 security_bprm_free(bprm);
1221 acct_update_integrals(current);
1227 /* Something went wrong, return the inode and free the argument pages*/
1228 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1229 struct page * page = bprm->page[i];
1235 security_bprm_free(bprm);
1243 allow_write_access(bprm->file);
1254 int set_binfmt(struct linux_binfmt *new)
1256 struct linux_binfmt *old = current->binfmt;
1259 if (!try_module_get(new->module))
1262 current->binfmt = new;
1264 module_put(old->module);
1268 EXPORT_SYMBOL(set_binfmt);
1270 /* format_corename will inspect the pattern parameter, and output a
1271 * name into corename, which must have space for at least
1272 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1274 static int format_corename(char *corename, const char *pattern, long signr)
1276 const char *pat_ptr = pattern;
1277 char *out_ptr = corename;
1278 char *const out_end = corename + CORENAME_MAX_SIZE;
1280 int pid_in_pattern = 0;
1283 if (*pattern == '|')
1286 /* Repeat as long as we have more pattern to process and more output
1289 if (*pat_ptr != '%') {
1290 if (out_ptr == out_end)
1292 *out_ptr++ = *pat_ptr++;
1294 switch (*++pat_ptr) {
1297 /* Double percent, output one percent */
1299 if (out_ptr == out_end)
1306 rc = snprintf(out_ptr, out_end - out_ptr,
1307 "%d", current->tgid);
1308 if (rc > out_end - out_ptr)
1314 rc = snprintf(out_ptr, out_end - out_ptr,
1315 "%d", current->uid);
1316 if (rc > out_end - out_ptr)
1322 rc = snprintf(out_ptr, out_end - out_ptr,
1323 "%d", current->gid);
1324 if (rc > out_end - out_ptr)
1328 /* signal that caused the coredump */
1330 rc = snprintf(out_ptr, out_end - out_ptr,
1332 if (rc > out_end - out_ptr)
1336 /* UNIX time of coredump */
1339 do_gettimeofday(&tv);
1340 rc = snprintf(out_ptr, out_end - out_ptr,
1342 if (rc > out_end - out_ptr)
1349 down_read(&uts_sem);
1350 rc = snprintf(out_ptr, out_end - out_ptr,
1351 "%s", utsname()->nodename);
1353 if (rc > out_end - out_ptr)
1359 rc = snprintf(out_ptr, out_end - out_ptr,
1360 "%s", current->comm);
1361 if (rc > out_end - out_ptr)
1371 /* Backward compatibility with core_uses_pid:
1373 * If core_pattern does not include a %p (as is the default)
1374 * and core_uses_pid is set, then .%pid will be appended to
1375 * the filename. Do not do this for piped commands. */
1376 if (!ispipe && !pid_in_pattern
1377 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1378 rc = snprintf(out_ptr, out_end - out_ptr,
1379 ".%d", current->tgid);
1380 if (rc > out_end - out_ptr)
1389 static void zap_process(struct task_struct *start)
1391 struct task_struct *t;
1393 start->signal->flags = SIGNAL_GROUP_EXIT;
1394 start->signal->group_stop_count = 0;
1398 if (t != current && t->mm) {
1399 t->mm->core_waiters++;
1400 sigaddset(&t->pending.signal, SIGKILL);
1401 signal_wake_up(t, 1);
1403 } while ((t = next_thread(t)) != start);
1406 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1409 struct task_struct *g, *p;
1410 unsigned long flags;
1413 spin_lock_irq(&tsk->sighand->siglock);
1414 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1415 tsk->signal->group_exit_code = exit_code;
1419 spin_unlock_irq(&tsk->sighand->siglock);
1423 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1427 for_each_process(g) {
1428 if (g == tsk->group_leader)
1436 * p->sighand can't disappear, but
1437 * may be changed by de_thread()
1439 lock_task_sighand(p, &flags);
1441 unlock_task_sighand(p, &flags);
1445 } while ((p = next_thread(p)) != g);
1449 return mm->core_waiters;
1452 static int coredump_wait(int exit_code)
1454 struct task_struct *tsk = current;
1455 struct mm_struct *mm = tsk->mm;
1456 struct completion startup_done;
1457 struct completion *vfork_done;
1460 init_completion(&mm->core_done);
1461 init_completion(&startup_done);
1462 mm->core_startup_done = &startup_done;
1464 core_waiters = zap_threads(tsk, mm, exit_code);
1465 up_write(&mm->mmap_sem);
1467 if (unlikely(core_waiters < 0))
1471 * Make sure nobody is waiting for us to release the VM,
1472 * otherwise we can deadlock when we wait on each other
1474 vfork_done = tsk->vfork_done;
1476 tsk->vfork_done = NULL;
1477 complete(vfork_done);
1481 wait_for_completion(&startup_done);
1483 BUG_ON(mm->core_waiters);
1484 return core_waiters;
1487 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1489 char corename[CORENAME_MAX_SIZE + 1];
1490 struct mm_struct *mm = current->mm;
1491 struct linux_binfmt * binfmt;
1492 struct inode * inode;
1495 int fsuid = current->fsuid;
1499 audit_core_dumps(signr);
1501 binfmt = current->binfmt;
1502 if (!binfmt || !binfmt->core_dump)
1504 down_write(&mm->mmap_sem);
1505 if (!mm->dumpable) {
1506 up_write(&mm->mmap_sem);
1511 * We cannot trust fsuid as being the "true" uid of the
1512 * process nor do we know its entire history. We only know it
1513 * was tainted so we dump it as root in mode 2.
1515 if (mm->dumpable == 2) { /* Setuid core dump mode */
1516 flag = O_EXCL; /* Stop rewrite attacks */
1517 current->fsuid = 0; /* Dump root private */
1521 retval = coredump_wait(exit_code);
1526 * Clear any false indication of pending signals that might
1527 * be seen by the filesystem code called to write the core file.
1529 clear_thread_flag(TIF_SIGPENDING);
1531 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1535 * lock_kernel() because format_corename() is controlled by sysctl, which
1536 * uses lock_kernel()
1539 ispipe = format_corename(corename, core_pattern, signr);
1542 /* SIGPIPE can happen, but it's just never processed */
1543 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1544 printk(KERN_INFO "Core dump to %s pipe failed\n",
1549 file = filp_open(corename,
1550 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1554 inode = file->f_path.dentry->d_inode;
1555 if (inode->i_nlink > 1)
1556 goto close_fail; /* multiple links - don't dump */
1557 if (!ispipe && d_unhashed(file->f_path.dentry))
1560 /* AK: actually i see no reason to not allow this for named pipes etc.,
1561 but keep the previous behaviour for now. */
1562 if (!ispipe && !S_ISREG(inode->i_mode))
1566 if (!file->f_op->write)
1568 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1571 retval = binfmt->core_dump(signr, regs, file);
1574 current->signal->group_exit_code |= 0x80;
1576 filp_close(file, NULL);
1578 current->fsuid = fsuid;
1579 complete_all(&mm->core_done);