2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
61 struct inode *inode = mapping->host;
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
70 * Called at the last iput() if i_nlink is zero.
72 void ext2_evict_inode(struct inode * inode)
74 struct ext2_block_alloc_info *rsv;
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
79 dquot_initialize(inode);
84 truncate_inode_pages(&inode->i_data, 0);
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
94 ext2_truncate_blocks(inode, 0);
97 invalidate_inode_buffers(inode);
100 ext2_discard_reservation(inode);
101 rsv = EXT2_I(inode)->i_block_alloc_info;
102 EXT2_I(inode)->i_block_alloc_info = NULL;
107 ext2_free_inode(inode);
113 struct buffer_head *bh;
116 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
118 p->key = *(p->p = v);
122 static inline int verify_chain(Indirect *from, Indirect *to)
124 while (from <= to && from->key == *from->p)
130 * ext2_block_to_path - parse the block number into array of offsets
131 * @inode: inode in question (we are only interested in its superblock)
132 * @i_block: block number to be parsed
133 * @offsets: array to store the offsets in
134 * @boundary: set this non-zero if the referred-to block is likely to be
135 * followed (on disk) by an indirect block.
136 * To store the locations of file's data ext2 uses a data structure common
137 * for UNIX filesystems - tree of pointers anchored in the inode, with
138 * data blocks at leaves and indirect blocks in intermediate nodes.
139 * This function translates the block number into path in that tree -
140 * return value is the path length and @offsets[n] is the offset of
141 * pointer to (n+1)th node in the nth one. If @block is out of range
142 * (negative or too large) warning is printed and zero returned.
144 * Note: function doesn't find node addresses, so no IO is needed. All
145 * we need to know is the capacity of indirect blocks (taken from the
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
159 static int ext2_block_to_path(struct inode *inode,
160 long i_block, int offsets[4], int *boundary)
162 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
163 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
164 const long direct_blocks = EXT2_NDIR_BLOCKS,
165 indirect_blocks = ptrs,
166 double_blocks = (1 << (ptrs_bits * 2));
171 ext2_msg(inode->i_sb, KERN_WARNING,
172 "warning: %s: block < 0", __func__);
173 } else if (i_block < direct_blocks) {
174 offsets[n++] = i_block;
175 final = direct_blocks;
176 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
177 offsets[n++] = EXT2_IND_BLOCK;
178 offsets[n++] = i_block;
180 } else if ((i_block -= indirect_blocks) < double_blocks) {
181 offsets[n++] = EXT2_DIND_BLOCK;
182 offsets[n++] = i_block >> ptrs_bits;
183 offsets[n++] = i_block & (ptrs - 1);
185 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
186 offsets[n++] = EXT2_TIND_BLOCK;
187 offsets[n++] = i_block >> (ptrs_bits * 2);
188 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
189 offsets[n++] = i_block & (ptrs - 1);
192 ext2_msg(inode->i_sb, KERN_WARNING,
193 "warning: %s: block is too big", __func__);
196 *boundary = final - 1 - (i_block & (ptrs - 1));
202 * ext2_get_branch - read the chain of indirect blocks leading to data
203 * @inode: inode in question
204 * @depth: depth of the chain (1 - direct pointer, etc.)
205 * @offsets: offsets of pointers in inode/indirect blocks
206 * @chain: place to store the result
207 * @err: here we store the error value
209 * Function fills the array of triples <key, p, bh> and returns %NULL
210 * if everything went OK or the pointer to the last filled triple
211 * (incomplete one) otherwise. Upon the return chain[i].key contains
212 * the number of (i+1)-th block in the chain (as it is stored in memory,
213 * i.e. little-endian 32-bit), chain[i].p contains the address of that
214 * number (it points into struct inode for i==0 and into the bh->b_data
215 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 * block for i>0 and NULL for i==0. In other words, it holds the block
217 * numbers of the chain, addresses they were taken from (and where we can
218 * verify that chain did not change) and buffer_heads hosting these
221 * Function stops when it stumbles upon zero pointer (absent block)
222 * (pointer to last triple returned, *@err == 0)
223 * or when it gets an IO error reading an indirect block
224 * (ditto, *@err == -EIO)
225 * or when it notices that chain had been changed while it was reading
226 * (ditto, *@err == -EAGAIN)
227 * or when it reads all @depth-1 indirect blocks successfully and finds
228 * the whole chain, all way to the data (returns %NULL, *err == 0).
230 static Indirect *ext2_get_branch(struct inode *inode,
236 struct super_block *sb = inode->i_sb;
238 struct buffer_head *bh;
241 /* i_data is not going away, no lock needed */
242 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
246 bh = sb_bread(sb, le32_to_cpu(p->key));
249 read_lock(&EXT2_I(inode)->i_meta_lock);
250 if (!verify_chain(chain, p))
252 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
253 read_unlock(&EXT2_I(inode)->i_meta_lock);
260 read_unlock(&EXT2_I(inode)->i_meta_lock);
271 * ext2_find_near - find a place for allocation with sufficient locality
273 * @ind: descriptor of indirect block.
275 * This function returns the preferred place for block allocation.
276 * It is used when heuristic for sequential allocation fails.
278 * + if there is a block to the left of our position - allocate near it.
279 * + if pointer will live in indirect block - allocate near that block.
280 * + if pointer will live in inode - allocate in the same cylinder group.
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group. The PID is used here so that functionally related
285 * files will be close-by on-disk.
287 * Caller must make sure that @ind is valid and will stay that way.
290 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
292 struct ext2_inode_info *ei = EXT2_I(inode);
293 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
295 ext2_fsblk_t bg_start;
298 /* Try to find previous block */
299 for (p = ind->p - 1; p >= start; p--)
301 return le32_to_cpu(*p);
303 /* No such thing, so let's try location of indirect block */
305 return ind->bh->b_blocknr;
308 * It is going to be refered from inode itself? OK, just put it into
309 * the same cylinder group then.
311 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
312 colour = (current->pid % 16) *
313 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
314 return bg_start + colour;
318 * ext2_find_goal - find a preferred place for allocation.
320 * @block: block we want
321 * @partial: pointer to the last triple within a chain
323 * Returns preferred place for a block (the goal).
326 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
329 struct ext2_block_alloc_info *block_i;
331 block_i = EXT2_I(inode)->i_block_alloc_info;
334 * try the heuristic for sequential allocation,
335 * failing that at least try to get decent locality.
337 if (block_i && (block == block_i->last_alloc_logical_block + 1)
338 && (block_i->last_alloc_physical_block != 0)) {
339 return block_i->last_alloc_physical_block + 1;
342 return ext2_find_near(inode, partial);
346 * ext2_blks_to_allocate: Look up the block map and count the number
347 * of direct blocks need to be allocated for the given branch.
349 * @branch: chain of indirect blocks
350 * @k: number of blocks need for indirect blocks
351 * @blks: number of data blocks to be mapped.
352 * @blocks_to_boundary: the offset in the indirect block
354 * return the total number of blocks to be allocate, including the
355 * direct and indirect blocks.
358 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
359 int blocks_to_boundary)
361 unsigned long count = 0;
364 * Simple case, [t,d]Indirect block(s) has not allocated yet
365 * then it's clear blocks on that path have not allocated
368 /* right now don't hanel cross boundary allocation */
369 if (blks < blocks_to_boundary + 1)
372 count += blocks_to_boundary + 1;
377 while (count < blks && count <= blocks_to_boundary
378 && le32_to_cpu(*(branch[0].p + count)) == 0) {
385 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 * @indirect_blks: the number of blocks need to allocate for indirect
389 * @new_blocks: on return it will store the new block numbers for
390 * the indirect blocks(if needed) and the first direct block,
391 * @blks: on return it will store the total number of allocated
394 static int ext2_alloc_blocks(struct inode *inode,
395 ext2_fsblk_t goal, int indirect_blks, int blks,
396 ext2_fsblk_t new_blocks[4], int *err)
399 unsigned long count = 0;
401 ext2_fsblk_t current_block = 0;
405 * Here we try to allocate the requested multiple blocks at once,
406 * on a best-effort basis.
407 * To build a branch, we should allocate blocks for
408 * the indirect blocks(if not allocated yet), and at least
409 * the first direct block of this branch. That's the
410 * minimum number of blocks need to allocate(required)
412 target = blks + indirect_blks;
416 /* allocating blocks for indirect blocks and direct blocks */
417 current_block = ext2_new_blocks(inode,goal,&count,err);
422 /* allocate blocks for indirect blocks */
423 while (index < indirect_blks && count) {
424 new_blocks[index++] = current_block++;
432 /* save the new block number for the first direct block */
433 new_blocks[index] = current_block;
435 /* total number of blocks allocated for direct blocks */
440 for (i = 0; i <index; i++)
441 ext2_free_blocks(inode, new_blocks[i], 1);
443 mark_inode_dirty(inode);
448 * ext2_alloc_branch - allocate and set up a chain of blocks.
450 * @num: depth of the chain (number of blocks to allocate)
451 * @offsets: offsets (in the blocks) to store the pointers to next.
452 * @branch: place to store the chain in.
454 * This function allocates @num blocks, zeroes out all but the last one,
455 * links them into chain and (if we are synchronous) writes them to disk.
456 * In other words, it prepares a branch that can be spliced onto the
457 * inode. It stores the information about that chain in the branch[], in
458 * the same format as ext2_get_branch() would do. We are calling it after
459 * we had read the existing part of chain and partial points to the last
460 * triple of that (one with zero ->key). Upon the exit we have the same
461 * picture as after the successful ext2_get_block(), except that in one
462 * place chain is disconnected - *branch->p is still zero (we did not
463 * set the last link), but branch->key contains the number that should
464 * be placed into *branch->p to fill that gap.
466 * If allocation fails we free all blocks we've allocated (and forget
467 * their buffer_heads) and return the error value the from failed
468 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 * as described above and return 0.
472 static int ext2_alloc_branch(struct inode *inode,
473 int indirect_blks, int *blks, ext2_fsblk_t goal,
474 int *offsets, Indirect *branch)
476 int blocksize = inode->i_sb->s_blocksize;
479 struct buffer_head *bh;
481 ext2_fsblk_t new_blocks[4];
482 ext2_fsblk_t current_block;
484 num = ext2_alloc_blocks(inode, goal, indirect_blks,
485 *blks, new_blocks, &err);
489 branch[0].key = cpu_to_le32(new_blocks[0]);
491 * metadata blocks and data blocks are allocated.
493 for (n = 1; n <= indirect_blks; n++) {
495 * Get buffer_head for parent block, zero it out
496 * and set the pointer to new one, then send
499 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
502 memset(bh->b_data, 0, blocksize);
503 branch[n].p = (__le32 *) bh->b_data + offsets[n];
504 branch[n].key = cpu_to_le32(new_blocks[n]);
505 *branch[n].p = branch[n].key;
506 if ( n == indirect_blks) {
507 current_block = new_blocks[n];
509 * End of chain, update the last new metablock of
510 * the chain to point to the new allocated
511 * data blocks numbers
513 for (i=1; i < num; i++)
514 *(branch[n].p + i) = cpu_to_le32(++current_block);
516 set_buffer_uptodate(bh);
518 mark_buffer_dirty_inode(bh, inode);
519 /* We used to sync bh here if IS_SYNC(inode).
520 * But we now rely upon generic_write_sync()
521 * and b_inode_buffers. But not for directories.
523 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
524 sync_dirty_buffer(bh);
531 * ext2_splice_branch - splice the allocated branch onto inode.
533 * @block: (logical) number of block we are adding
534 * @where: location of missing link
535 * @num: number of indirect blocks we are adding
536 * @blks: number of direct blocks we are adding
538 * This function fills the missing link and does all housekeeping needed in
539 * inode (->i_blocks, etc.). In case of success we end up with the full
540 * chain to new block and return 0.
542 static void ext2_splice_branch(struct inode *inode,
543 long block, Indirect *where, int num, int blks)
546 struct ext2_block_alloc_info *block_i;
547 ext2_fsblk_t current_block;
549 block_i = EXT2_I(inode)->i_block_alloc_info;
551 /* XXX LOCKING probably should have i_meta_lock ?*/
554 *where->p = where->key;
557 * Update the host buffer_head or inode to point to more just allocated
558 * direct blocks blocks
560 if (num == 0 && blks > 1) {
561 current_block = le32_to_cpu(where->key) + 1;
562 for (i = 1; i < blks; i++)
563 *(where->p + i ) = cpu_to_le32(current_block++);
567 * update the most recently allocated logical & physical block
568 * in i_block_alloc_info, to assist find the proper goal block for next
572 block_i->last_alloc_logical_block = block + blks - 1;
573 block_i->last_alloc_physical_block =
574 le32_to_cpu(where[num].key) + blks - 1;
577 /* We are done with atomic stuff, now do the rest of housekeeping */
579 /* had we spliced it onto indirect block? */
581 mark_buffer_dirty_inode(where->bh, inode);
583 inode->i_ctime = CURRENT_TIME_SEC;
584 mark_inode_dirty(inode);
588 * Allocation strategy is simple: if we have to allocate something, we will
589 * have to go the whole way to leaf. So let's do it before attaching anything
590 * to tree, set linkage between the newborn blocks, write them if sync is
591 * required, recheck the path, free and repeat if check fails, otherwise
592 * set the last missing link (that will protect us from any truncate-generated
593 * removals - all blocks on the path are immune now) and possibly force the
594 * write on the parent block.
595 * That has a nice additional property: no special recovery from the failed
596 * allocations is needed - we simply release blocks and do not touch anything
597 * reachable from inode.
599 * `handle' can be NULL if create == 0.
601 * return > 0, # of blocks mapped or allocated.
602 * return = 0, if plain lookup failed.
603 * return < 0, error case.
605 static int ext2_get_blocks(struct inode *inode,
606 sector_t iblock, unsigned long maxblocks,
607 struct buffer_head *bh_result,
616 int blocks_to_boundary = 0;
618 struct ext2_inode_info *ei = EXT2_I(inode);
620 ext2_fsblk_t first_block = 0;
622 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
627 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
628 /* Simplest case - block found, no allocation needed */
630 first_block = le32_to_cpu(chain[depth - 1].key);
631 clear_buffer_new(bh_result); /* What's this do? */
634 while (count < maxblocks && count <= blocks_to_boundary) {
637 if (!verify_chain(chain, chain + depth - 1)) {
639 * Indirect block might be removed by
640 * truncate while we were reading it.
641 * Handling of that case: forget what we've
642 * got now, go to reread.
648 blk = le32_to_cpu(*(chain[depth-1].p + count));
649 if (blk == first_block + count)
658 /* Next simple case - plain lookup or failed read of indirect block */
659 if (!create || err == -EIO)
662 mutex_lock(&ei->truncate_mutex);
664 * If the indirect block is missing while we are reading
665 * the chain(ext2_get_branch() returns -EAGAIN err), or
666 * if the chain has been changed after we grab the semaphore,
667 * (either because another process truncated this branch, or
668 * another get_block allocated this branch) re-grab the chain to see if
669 * the request block has been allocated or not.
671 * Since we already block the truncate/other get_block
672 * at this point, we will have the current copy of the chain when we
673 * splice the branch into the tree.
675 if (err == -EAGAIN || !verify_chain(chain, partial)) {
676 while (partial > chain) {
680 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
683 mutex_unlock(&ei->truncate_mutex);
686 clear_buffer_new(bh_result);
692 * Okay, we need to do block allocation. Lazily initialize the block
693 * allocation info here if necessary
695 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
696 ext2_init_block_alloc_info(inode);
698 goal = ext2_find_goal(inode, iblock, partial);
700 /* the number of blocks need to allocate for [d,t]indirect blocks */
701 indirect_blks = (chain + depth) - partial - 1;
703 * Next look up the indirect map to count the totoal number of
704 * direct blocks to allocate for this branch.
706 count = ext2_blks_to_allocate(partial, indirect_blks,
707 maxblocks, blocks_to_boundary);
709 * XXX ???? Block out ext2_truncate while we alter the tree
711 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
712 offsets + (partial - chain), partial);
715 mutex_unlock(&ei->truncate_mutex);
719 if (ext2_use_xip(inode->i_sb)) {
721 * we need to clear the block
723 err = ext2_clear_xip_target (inode,
724 le32_to_cpu(chain[depth-1].key));
726 mutex_unlock(&ei->truncate_mutex);
731 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
732 mutex_unlock(&ei->truncate_mutex);
733 set_buffer_new(bh_result);
735 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
736 if (count > blocks_to_boundary)
737 set_buffer_boundary(bh_result);
739 /* Clean up and exit */
740 partial = chain + depth - 1; /* the whole chain */
742 while (partial > chain) {
749 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
751 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
752 int ret = ext2_get_blocks(inode, iblock, max_blocks,
755 bh_result->b_size = (ret << inode->i_blkbits);
762 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
765 return generic_block_fiemap(inode, fieinfo, start, len,
769 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
771 return block_write_full_page(page, ext2_get_block, wbc);
774 static int ext2_readpage(struct file *file, struct page *page)
776 return mpage_readpage(page, ext2_get_block);
780 ext2_readpages(struct file *file, struct address_space *mapping,
781 struct list_head *pages, unsigned nr_pages)
783 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
787 ext2_write_begin(struct file *file, struct address_space *mapping,
788 loff_t pos, unsigned len, unsigned flags,
789 struct page **pagep, void **fsdata)
793 ret = block_write_begin(mapping, pos, len, flags, pagep,
796 ext2_write_failed(mapping, pos + len);
800 static int ext2_write_end(struct file *file, struct address_space *mapping,
801 loff_t pos, unsigned len, unsigned copied,
802 struct page *page, void *fsdata)
806 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
808 ext2_write_failed(mapping, pos + len);
813 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
814 loff_t pos, unsigned len, unsigned flags,
815 struct page **pagep, void **fsdata)
819 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
822 ext2_write_failed(mapping, pos + len);
826 static int ext2_nobh_writepage(struct page *page,
827 struct writeback_control *wbc)
829 return nobh_writepage(page, ext2_get_block, wbc);
832 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
834 return generic_block_bmap(mapping,block,ext2_get_block);
838 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
839 loff_t offset, unsigned long nr_segs)
841 struct file *file = iocb->ki_filp;
842 struct address_space *mapping = file->f_mapping;
843 struct inode *inode = mapping->host;
846 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
847 iov, offset, nr_segs, ext2_get_block, NULL);
848 if (ret < 0 && (rw & WRITE))
849 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
854 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
856 return mpage_writepages(mapping, wbc, ext2_get_block);
859 const struct address_space_operations ext2_aops = {
860 .readpage = ext2_readpage,
861 .readpages = ext2_readpages,
862 .writepage = ext2_writepage,
863 .sync_page = block_sync_page,
864 .write_begin = ext2_write_begin,
865 .write_end = ext2_write_end,
867 .direct_IO = ext2_direct_IO,
868 .writepages = ext2_writepages,
869 .migratepage = buffer_migrate_page,
870 .is_partially_uptodate = block_is_partially_uptodate,
871 .error_remove_page = generic_error_remove_page,
874 const struct address_space_operations ext2_aops_xip = {
876 .get_xip_mem = ext2_get_xip_mem,
879 const struct address_space_operations ext2_nobh_aops = {
880 .readpage = ext2_readpage,
881 .readpages = ext2_readpages,
882 .writepage = ext2_nobh_writepage,
883 .sync_page = block_sync_page,
884 .write_begin = ext2_nobh_write_begin,
885 .write_end = nobh_write_end,
887 .direct_IO = ext2_direct_IO,
888 .writepages = ext2_writepages,
889 .migratepage = buffer_migrate_page,
890 .error_remove_page = generic_error_remove_page,
894 * Probably it should be a library function... search for first non-zero word
895 * or memcmp with zero_page, whatever is better for particular architecture.
898 static inline int all_zeroes(__le32 *p, __le32 *q)
907 * ext2_find_shared - find the indirect blocks for partial truncation.
908 * @inode: inode in question
909 * @depth: depth of the affected branch
910 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
911 * @chain: place to store the pointers to partial indirect blocks
912 * @top: place to the (detached) top of branch
914 * This is a helper function used by ext2_truncate().
916 * When we do truncate() we may have to clean the ends of several indirect
917 * blocks but leave the blocks themselves alive. Block is partially
918 * truncated if some data below the new i_size is refered from it (and
919 * it is on the path to the first completely truncated data block, indeed).
920 * We have to free the top of that path along with everything to the right
921 * of the path. Since no allocation past the truncation point is possible
922 * until ext2_truncate() finishes, we may safely do the latter, but top
923 * of branch may require special attention - pageout below the truncation
924 * point might try to populate it.
926 * We atomically detach the top of branch from the tree, store the block
927 * number of its root in *@top, pointers to buffer_heads of partially
928 * truncated blocks - in @chain[].bh and pointers to their last elements
929 * that should not be removed - in @chain[].p. Return value is the pointer
930 * to last filled element of @chain.
932 * The work left to caller to do the actual freeing of subtrees:
933 * a) free the subtree starting from *@top
934 * b) free the subtrees whose roots are stored in
935 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
936 * c) free the subtrees growing from the inode past the @chain[0].p
937 * (no partially truncated stuff there).
940 static Indirect *ext2_find_shared(struct inode *inode,
946 Indirect *partial, *p;
950 for (k = depth; k > 1 && !offsets[k-1]; k--)
952 partial = ext2_get_branch(inode, k, offsets, chain, &err);
954 partial = chain + k-1;
956 * If the branch acquired continuation since we've looked at it -
957 * fine, it should all survive and (new) top doesn't belong to us.
959 write_lock(&EXT2_I(inode)->i_meta_lock);
960 if (!partial->key && *partial->p) {
961 write_unlock(&EXT2_I(inode)->i_meta_lock);
964 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
967 * OK, we've found the last block that must survive. The rest of our
968 * branch should be detached before unlocking. However, if that rest
969 * of branch is all ours and does not grow immediately from the inode
970 * it's easier to cheat and just decrement partial->p.
972 if (p == chain + k - 1 && p > chain) {
978 write_unlock(&EXT2_I(inode)->i_meta_lock);
990 * ext2_free_data - free a list of data blocks
991 * @inode: inode we are dealing with
992 * @p: array of block numbers
993 * @q: points immediately past the end of array
995 * We are freeing all blocks refered from that array (numbers are
996 * stored as little-endian 32-bit) and updating @inode->i_blocks
999 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1001 unsigned long block_to_free = 0, count = 0;
1004 for ( ; p < q ; p++) {
1005 nr = le32_to_cpu(*p);
1008 /* accumulate blocks to free if they're contiguous */
1011 else if (block_to_free == nr - count)
1014 ext2_free_blocks (inode, block_to_free, count);
1015 mark_inode_dirty(inode);
1023 ext2_free_blocks (inode, block_to_free, count);
1024 mark_inode_dirty(inode);
1029 * ext2_free_branches - free an array of branches
1030 * @inode: inode we are dealing with
1031 * @p: array of block numbers
1032 * @q: pointer immediately past the end of array
1033 * @depth: depth of the branches to free
1035 * We are freeing all blocks refered from these branches (numbers are
1036 * stored as little-endian 32-bit) and updating @inode->i_blocks
1039 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1041 struct buffer_head * bh;
1045 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1046 for ( ; p < q ; p++) {
1047 nr = le32_to_cpu(*p);
1051 bh = sb_bread(inode->i_sb, nr);
1053 * A read failure? Report error and clear slot
1057 ext2_error(inode->i_sb, "ext2_free_branches",
1058 "Read failure, inode=%ld, block=%ld",
1062 ext2_free_branches(inode,
1063 (__le32*)bh->b_data,
1064 (__le32*)bh->b_data + addr_per_block,
1067 ext2_free_blocks(inode, nr, 1);
1068 mark_inode_dirty(inode);
1071 ext2_free_data(inode, p, q);
1074 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1076 __le32 *i_data = EXT2_I(inode)->i_data;
1077 struct ext2_inode_info *ei = EXT2_I(inode);
1078 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1086 blocksize = inode->i_sb->s_blocksize;
1087 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1089 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1094 * From here we block out all ext2_get_block() callers who want to
1095 * modify the block allocation tree.
1097 mutex_lock(&ei->truncate_mutex);
1100 ext2_free_data(inode, i_data+offsets[0],
1101 i_data + EXT2_NDIR_BLOCKS);
1105 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1106 /* Kill the top of shared branch (already detached) */
1108 if (partial == chain)
1109 mark_inode_dirty(inode);
1111 mark_buffer_dirty_inode(partial->bh, inode);
1112 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1114 /* Clear the ends of indirect blocks on the shared branch */
1115 while (partial > chain) {
1116 ext2_free_branches(inode,
1118 (__le32*)partial->bh->b_data+addr_per_block,
1119 (chain+n-1) - partial);
1120 mark_buffer_dirty_inode(partial->bh, inode);
1121 brelse (partial->bh);
1125 /* Kill the remaining (whole) subtrees */
1126 switch (offsets[0]) {
1128 nr = i_data[EXT2_IND_BLOCK];
1130 i_data[EXT2_IND_BLOCK] = 0;
1131 mark_inode_dirty(inode);
1132 ext2_free_branches(inode, &nr, &nr+1, 1);
1134 case EXT2_IND_BLOCK:
1135 nr = i_data[EXT2_DIND_BLOCK];
1137 i_data[EXT2_DIND_BLOCK] = 0;
1138 mark_inode_dirty(inode);
1139 ext2_free_branches(inode, &nr, &nr+1, 2);
1141 case EXT2_DIND_BLOCK:
1142 nr = i_data[EXT2_TIND_BLOCK];
1144 i_data[EXT2_TIND_BLOCK] = 0;
1145 mark_inode_dirty(inode);
1146 ext2_free_branches(inode, &nr, &nr+1, 3);
1148 case EXT2_TIND_BLOCK:
1152 ext2_discard_reservation(inode);
1154 mutex_unlock(&ei->truncate_mutex);
1157 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1160 * XXX: it seems like a bug here that we don't allow
1161 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1162 * review and fix this.
1164 * Also would be nice to be able to handle IO errors and such,
1165 * but that's probably too much to ask.
1167 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1168 S_ISLNK(inode->i_mode)))
1170 if (ext2_inode_is_fast_symlink(inode))
1172 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1174 __ext2_truncate_blocks(inode, offset);
1177 static int ext2_setsize(struct inode *inode, loff_t newsize)
1181 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 S_ISLNK(inode->i_mode)))
1184 if (ext2_inode_is_fast_symlink(inode))
1186 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1189 if (mapping_is_xip(inode->i_mapping))
1190 error = xip_truncate_page(inode->i_mapping, newsize);
1191 else if (test_opt(inode->i_sb, NOBH))
1192 error = nobh_truncate_page(inode->i_mapping,
1193 newsize, ext2_get_block);
1195 error = block_truncate_page(inode->i_mapping,
1196 newsize, ext2_get_block);
1200 truncate_setsize(inode, newsize);
1201 __ext2_truncate_blocks(inode, newsize);
1203 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1204 if (inode_needs_sync(inode)) {
1205 sync_mapping_buffers(inode->i_mapping);
1206 sync_inode_metadata(inode, 1);
1208 mark_inode_dirty(inode);
1214 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1215 struct buffer_head **p)
1217 struct buffer_head * bh;
1218 unsigned long block_group;
1219 unsigned long block;
1220 unsigned long offset;
1221 struct ext2_group_desc * gdp;
1224 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1225 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1228 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1229 gdp = ext2_get_group_desc(sb, block_group, NULL);
1233 * Figure out the offset within the block group inode table
1235 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1236 block = le32_to_cpu(gdp->bg_inode_table) +
1237 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1238 if (!(bh = sb_bread(sb, block)))
1242 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1243 return (struct ext2_inode *) (bh->b_data + offset);
1246 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1247 (unsigned long) ino);
1248 return ERR_PTR(-EINVAL);
1250 ext2_error(sb, "ext2_get_inode",
1251 "unable to read inode block - inode=%lu, block=%lu",
1252 (unsigned long) ino, block);
1254 return ERR_PTR(-EIO);
1257 void ext2_set_inode_flags(struct inode *inode)
1259 unsigned int flags = EXT2_I(inode)->i_flags;
1261 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1262 if (flags & EXT2_SYNC_FL)
1263 inode->i_flags |= S_SYNC;
1264 if (flags & EXT2_APPEND_FL)
1265 inode->i_flags |= S_APPEND;
1266 if (flags & EXT2_IMMUTABLE_FL)
1267 inode->i_flags |= S_IMMUTABLE;
1268 if (flags & EXT2_NOATIME_FL)
1269 inode->i_flags |= S_NOATIME;
1270 if (flags & EXT2_DIRSYNC_FL)
1271 inode->i_flags |= S_DIRSYNC;
1274 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1275 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1277 unsigned int flags = ei->vfs_inode.i_flags;
1279 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1280 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1282 ei->i_flags |= EXT2_SYNC_FL;
1283 if (flags & S_APPEND)
1284 ei->i_flags |= EXT2_APPEND_FL;
1285 if (flags & S_IMMUTABLE)
1286 ei->i_flags |= EXT2_IMMUTABLE_FL;
1287 if (flags & S_NOATIME)
1288 ei->i_flags |= EXT2_NOATIME_FL;
1289 if (flags & S_DIRSYNC)
1290 ei->i_flags |= EXT2_DIRSYNC_FL;
1293 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1295 struct ext2_inode_info *ei;
1296 struct buffer_head * bh;
1297 struct ext2_inode *raw_inode;
1298 struct inode *inode;
1302 inode = iget_locked(sb, ino);
1304 return ERR_PTR(-ENOMEM);
1305 if (!(inode->i_state & I_NEW))
1309 ei->i_block_alloc_info = NULL;
1311 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312 if (IS_ERR(raw_inode)) {
1313 ret = PTR_ERR(raw_inode);
1317 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320 if (!(test_opt (inode->i_sb, NO_UID32))) {
1321 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1324 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1325 inode->i_size = le32_to_cpu(raw_inode->i_size);
1326 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1327 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1328 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1329 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1330 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1331 /* We now have enough fields to check if the inode was active or not.
1332 * This is needed because nfsd might try to access dead inodes
1333 * the test is that same one that e2fsck uses
1334 * NeilBrown 1999oct15
1336 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1337 /* this inode is deleted */
1342 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1343 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1344 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1345 ei->i_frag_no = raw_inode->i_frag;
1346 ei->i_frag_size = raw_inode->i_fsize;
1347 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1349 if (S_ISREG(inode->i_mode))
1350 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1352 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1354 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1356 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1357 ei->i_dir_start_lookup = 0;
1360 * NOTE! The in-memory inode i_data array is in little-endian order
1361 * even on big-endian machines: we do NOT byteswap the block numbers!
1363 for (n = 0; n < EXT2_N_BLOCKS; n++)
1364 ei->i_data[n] = raw_inode->i_block[n];
1366 if (S_ISREG(inode->i_mode)) {
1367 inode->i_op = &ext2_file_inode_operations;
1368 if (ext2_use_xip(inode->i_sb)) {
1369 inode->i_mapping->a_ops = &ext2_aops_xip;
1370 inode->i_fop = &ext2_xip_file_operations;
1371 } else if (test_opt(inode->i_sb, NOBH)) {
1372 inode->i_mapping->a_ops = &ext2_nobh_aops;
1373 inode->i_fop = &ext2_file_operations;
1375 inode->i_mapping->a_ops = &ext2_aops;
1376 inode->i_fop = &ext2_file_operations;
1378 } else if (S_ISDIR(inode->i_mode)) {
1379 inode->i_op = &ext2_dir_inode_operations;
1380 inode->i_fop = &ext2_dir_operations;
1381 if (test_opt(inode->i_sb, NOBH))
1382 inode->i_mapping->a_ops = &ext2_nobh_aops;
1384 inode->i_mapping->a_ops = &ext2_aops;
1385 } else if (S_ISLNK(inode->i_mode)) {
1386 if (ext2_inode_is_fast_symlink(inode)) {
1387 inode->i_op = &ext2_fast_symlink_inode_operations;
1388 nd_terminate_link(ei->i_data, inode->i_size,
1389 sizeof(ei->i_data) - 1);
1391 inode->i_op = &ext2_symlink_inode_operations;
1392 if (test_opt(inode->i_sb, NOBH))
1393 inode->i_mapping->a_ops = &ext2_nobh_aops;
1395 inode->i_mapping->a_ops = &ext2_aops;
1398 inode->i_op = &ext2_special_inode_operations;
1399 if (raw_inode->i_block[0])
1400 init_special_inode(inode, inode->i_mode,
1401 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1403 init_special_inode(inode, inode->i_mode,
1404 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1407 ext2_set_inode_flags(inode);
1408 unlock_new_inode(inode);
1413 return ERR_PTR(ret);
1416 static int __ext2_write_inode(struct inode *inode, int do_sync)
1418 struct ext2_inode_info *ei = EXT2_I(inode);
1419 struct super_block *sb = inode->i_sb;
1420 ino_t ino = inode->i_ino;
1421 uid_t uid = inode->i_uid;
1422 gid_t gid = inode->i_gid;
1423 struct buffer_head * bh;
1424 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1428 if (IS_ERR(raw_inode))
1431 /* For fields not not tracking in the in-memory inode,
1432 * initialise them to zero for new inodes. */
1433 if (ei->i_state & EXT2_STATE_NEW)
1434 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1436 ext2_get_inode_flags(ei);
1437 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1438 if (!(test_opt(sb, NO_UID32))) {
1439 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1440 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1442 * Fix up interoperability with old kernels. Otherwise, old inodes get
1443 * re-used with the upper 16 bits of the uid/gid intact
1446 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1447 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1449 raw_inode->i_uid_high = 0;
1450 raw_inode->i_gid_high = 0;
1453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1455 raw_inode->i_uid_high = 0;
1456 raw_inode->i_gid_high = 0;
1458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1459 raw_inode->i_size = cpu_to_le32(inode->i_size);
1460 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1461 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1462 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1464 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1465 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1466 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1467 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1468 raw_inode->i_frag = ei->i_frag_no;
1469 raw_inode->i_fsize = ei->i_frag_size;
1470 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1471 if (!S_ISREG(inode->i_mode))
1472 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1474 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1475 if (inode->i_size > 0x7fffffffULL) {
1476 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1477 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1478 EXT2_SB(sb)->s_es->s_rev_level ==
1479 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1480 /* If this is the first large file
1481 * created, add a flag to the superblock.
1483 spin_lock(&EXT2_SB(sb)->s_lock);
1484 ext2_update_dynamic_rev(sb);
1485 EXT2_SET_RO_COMPAT_FEATURE(sb,
1486 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1487 spin_unlock(&EXT2_SB(sb)->s_lock);
1488 ext2_write_super(sb);
1493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1495 if (old_valid_dev(inode->i_rdev)) {
1496 raw_inode->i_block[0] =
1497 cpu_to_le32(old_encode_dev(inode->i_rdev));
1498 raw_inode->i_block[1] = 0;
1500 raw_inode->i_block[0] = 0;
1501 raw_inode->i_block[1] =
1502 cpu_to_le32(new_encode_dev(inode->i_rdev));
1503 raw_inode->i_block[2] = 0;
1505 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1506 raw_inode->i_block[n] = ei->i_data[n];
1507 mark_buffer_dirty(bh);
1509 sync_dirty_buffer(bh);
1510 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1511 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1512 sb->s_id, (unsigned long) ino);
1516 ei->i_state &= ~EXT2_STATE_NEW;
1521 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1523 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1526 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1528 struct inode *inode = dentry->d_inode;
1531 error = inode_change_ok(inode, iattr);
1535 if (is_quota_modification(inode, iattr))
1536 dquot_initialize(inode);
1537 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1538 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1539 error = dquot_transfer(inode, iattr);
1543 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1544 error = ext2_setsize(inode, iattr->ia_size);
1548 setattr_copy(inode, iattr);
1549 if (iattr->ia_valid & ATTR_MODE)
1550 error = ext2_acl_chmod(inode);
1551 mark_inode_dirty(inode);