]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext3/inode.c
introduce __block_write_begin
[karo-tx-linux.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __func__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177         int ret;
178
179         jbd_debug(2, "restarting handle %p\n", handle);
180         /*
181          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182          * At this moment, get_block can be called only for blocks inside
183          * i_size since page cache has been already dropped and writes are
184          * blocked by i_mutex. So we can safely drop the truncate_mutex.
185          */
186         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188         mutex_lock(&EXT3_I(inode)->truncate_mutex);
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext3_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198
199         if (!is_bad_inode(inode))
200                 dquot_initialize(inode);
201
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = start_transaction(inode);
208         if (IS_ERR(handle)) {
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext3_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 handle->h_sync = 1;
220         inode->i_size = 0;
221         if (inode->i_blocks)
222                 ext3_truncate(inode);
223         /*
224          * Kill off the orphan record which ext3_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext3_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext3_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext3_orphan_del(handle, inode);
232         EXT3_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext3_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext3_free_inode(handle, inode);
246         ext3_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 static int verify_chain(Indirect *from, Indirect *to)
265 {
266         while (from <= to && from->key == *from->p)
267                 from++;
268         return (from > to);
269 }
270
271 /**
272  *      ext3_block_to_path - parse the block number into array of offsets
273  *      @inode: inode in question (we are only interested in its superblock)
274  *      @i_block: block number to be parsed
275  *      @offsets: array to store the offsets in
276  *      @boundary: set this non-zero if the referred-to block is likely to be
277  *             followed (on disk) by an indirect block.
278  *
279  *      To store the locations of file's data ext3 uses a data structure common
280  *      for UNIX filesystems - tree of pointers anchored in the inode, with
281  *      data blocks at leaves and indirect blocks in intermediate nodes.
282  *      This function translates the block number into path in that tree -
283  *      return value is the path length and @offsets[n] is the offset of
284  *      pointer to (n+1)th node in the nth one. If @block is out of range
285  *      (negative or too large) warning is printed and zero returned.
286  *
287  *      Note: function doesn't find node addresses, so no IO is needed. All
288  *      we need to know is the capacity of indirect blocks (taken from the
289  *      inode->i_sb).
290  */
291
292 /*
293  * Portability note: the last comparison (check that we fit into triple
294  * indirect block) is spelled differently, because otherwise on an
295  * architecture with 32-bit longs and 8Kb pages we might get into trouble
296  * if our filesystem had 8Kb blocks. We might use long long, but that would
297  * kill us on x86. Oh, well, at least the sign propagation does not matter -
298  * i_block would have to be negative in the very beginning, so we would not
299  * get there at all.
300  */
301
302 static int ext3_block_to_path(struct inode *inode,
303                         long i_block, int offsets[4], int *boundary)
304 {
305         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
306         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
307         const long direct_blocks = EXT3_NDIR_BLOCKS,
308                 indirect_blocks = ptrs,
309                 double_blocks = (1 << (ptrs_bits * 2));
310         int n = 0;
311         int final = 0;
312
313         if (i_block < 0) {
314                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
315         } else if (i_block < direct_blocks) {
316                 offsets[n++] = i_block;
317                 final = direct_blocks;
318         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
319                 offsets[n++] = EXT3_IND_BLOCK;
320                 offsets[n++] = i_block;
321                 final = ptrs;
322         } else if ((i_block -= indirect_blocks) < double_blocks) {
323                 offsets[n++] = EXT3_DIND_BLOCK;
324                 offsets[n++] = i_block >> ptrs_bits;
325                 offsets[n++] = i_block & (ptrs - 1);
326                 final = ptrs;
327         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
328                 offsets[n++] = EXT3_TIND_BLOCK;
329                 offsets[n++] = i_block >> (ptrs_bits * 2);
330                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
331                 offsets[n++] = i_block & (ptrs - 1);
332                 final = ptrs;
333         } else {
334                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
335         }
336         if (boundary)
337                 *boundary = final - 1 - (i_block & (ptrs - 1));
338         return n;
339 }
340
341 /**
342  *      ext3_get_branch - read the chain of indirect blocks leading to data
343  *      @inode: inode in question
344  *      @depth: depth of the chain (1 - direct pointer, etc.)
345  *      @offsets: offsets of pointers in inode/indirect blocks
346  *      @chain: place to store the result
347  *      @err: here we store the error value
348  *
349  *      Function fills the array of triples <key, p, bh> and returns %NULL
350  *      if everything went OK or the pointer to the last filled triple
351  *      (incomplete one) otherwise. Upon the return chain[i].key contains
352  *      the number of (i+1)-th block in the chain (as it is stored in memory,
353  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
354  *      number (it points into struct inode for i==0 and into the bh->b_data
355  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
356  *      block for i>0 and NULL for i==0. In other words, it holds the block
357  *      numbers of the chain, addresses they were taken from (and where we can
358  *      verify that chain did not change) and buffer_heads hosting these
359  *      numbers.
360  *
361  *      Function stops when it stumbles upon zero pointer (absent block)
362  *              (pointer to last triple returned, *@err == 0)
363  *      or when it gets an IO error reading an indirect block
364  *              (ditto, *@err == -EIO)
365  *      or when it notices that chain had been changed while it was reading
366  *              (ditto, *@err == -EAGAIN)
367  *      or when it reads all @depth-1 indirect blocks successfully and finds
368  *      the whole chain, all way to the data (returns %NULL, *err == 0).
369  */
370 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
371                                  Indirect chain[4], int *err)
372 {
373         struct super_block *sb = inode->i_sb;
374         Indirect *p = chain;
375         struct buffer_head *bh;
376
377         *err = 0;
378         /* i_data is not going away, no lock needed */
379         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
380         if (!p->key)
381                 goto no_block;
382         while (--depth) {
383                 bh = sb_bread(sb, le32_to_cpu(p->key));
384                 if (!bh)
385                         goto failure;
386                 /* Reader: pointers */
387                 if (!verify_chain(chain, p))
388                         goto changed;
389                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
390                 /* Reader: end */
391                 if (!p->key)
392                         goto no_block;
393         }
394         return NULL;
395
396 changed:
397         brelse(bh);
398         *err = -EAGAIN;
399         goto no_block;
400 failure:
401         *err = -EIO;
402 no_block:
403         return p;
404 }
405
406 /**
407  *      ext3_find_near - find a place for allocation with sufficient locality
408  *      @inode: owner
409  *      @ind: descriptor of indirect block.
410  *
411  *      This function returns the preferred place for block allocation.
412  *      It is used when heuristic for sequential allocation fails.
413  *      Rules are:
414  *        + if there is a block to the left of our position - allocate near it.
415  *        + if pointer will live in indirect block - allocate near that block.
416  *        + if pointer will live in inode - allocate in the same
417  *          cylinder group.
418  *
419  * In the latter case we colour the starting block by the callers PID to
420  * prevent it from clashing with concurrent allocations for a different inode
421  * in the same block group.   The PID is used here so that functionally related
422  * files will be close-by on-disk.
423  *
424  *      Caller must make sure that @ind is valid and will stay that way.
425  */
426 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
427 {
428         struct ext3_inode_info *ei = EXT3_I(inode);
429         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
430         __le32 *p;
431         ext3_fsblk_t bg_start;
432         ext3_grpblk_t colour;
433
434         /* Try to find previous block */
435         for (p = ind->p - 1; p >= start; p--) {
436                 if (*p)
437                         return le32_to_cpu(*p);
438         }
439
440         /* No such thing, so let's try location of indirect block */
441         if (ind->bh)
442                 return ind->bh->b_blocknr;
443
444         /*
445          * It is going to be referred to from the inode itself? OK, just put it
446          * into the same cylinder group then.
447          */
448         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
449         colour = (current->pid % 16) *
450                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
451         return bg_start + colour;
452 }
453
454 /**
455  *      ext3_find_goal - find a preferred place for allocation.
456  *      @inode: owner
457  *      @block:  block we want
458  *      @partial: pointer to the last triple within a chain
459  *
460  *      Normally this function find the preferred place for block allocation,
461  *      returns it.
462  */
463
464 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
465                                    Indirect *partial)
466 {
467         struct ext3_block_alloc_info *block_i;
468
469         block_i =  EXT3_I(inode)->i_block_alloc_info;
470
471         /*
472          * try the heuristic for sequential allocation,
473          * failing that at least try to get decent locality.
474          */
475         if (block_i && (block == block_i->last_alloc_logical_block + 1)
476                 && (block_i->last_alloc_physical_block != 0)) {
477                 return block_i->last_alloc_physical_block + 1;
478         }
479
480         return ext3_find_near(inode, partial);
481 }
482
483 /**
484  *      ext3_blks_to_allocate: Look up the block map and count the number
485  *      of direct blocks need to be allocated for the given branch.
486  *
487  *      @branch: chain of indirect blocks
488  *      @k: number of blocks need for indirect blocks
489  *      @blks: number of data blocks to be mapped.
490  *      @blocks_to_boundary:  the offset in the indirect block
491  *
492  *      return the total number of blocks to be allocate, including the
493  *      direct and indirect blocks.
494  */
495 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
496                 int blocks_to_boundary)
497 {
498         unsigned long count = 0;
499
500         /*
501          * Simple case, [t,d]Indirect block(s) has not allocated yet
502          * then it's clear blocks on that path have not allocated
503          */
504         if (k > 0) {
505                 /* right now we don't handle cross boundary allocation */
506                 if (blks < blocks_to_boundary + 1)
507                         count += blks;
508                 else
509                         count += blocks_to_boundary + 1;
510                 return count;
511         }
512
513         count++;
514         while (count < blks && count <= blocks_to_boundary &&
515                 le32_to_cpu(*(branch[0].p + count)) == 0) {
516                 count++;
517         }
518         return count;
519 }
520
521 /**
522  *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
523  *      @indirect_blks: the number of blocks need to allocate for indirect
524  *                      blocks
525  *
526  *      @new_blocks: on return it will store the new block numbers for
527  *      the indirect blocks(if needed) and the first direct block,
528  *      @blks:  on return it will store the total number of allocated
529  *              direct blocks
530  */
531 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
532                         ext3_fsblk_t goal, int indirect_blks, int blks,
533                         ext3_fsblk_t new_blocks[4], int *err)
534 {
535         int target, i;
536         unsigned long count = 0;
537         int index = 0;
538         ext3_fsblk_t current_block = 0;
539         int ret = 0;
540
541         /*
542          * Here we try to allocate the requested multiple blocks at once,
543          * on a best-effort basis.
544          * To build a branch, we should allocate blocks for
545          * the indirect blocks(if not allocated yet), and at least
546          * the first direct block of this branch.  That's the
547          * minimum number of blocks need to allocate(required)
548          */
549         target = blks + indirect_blks;
550
551         while (1) {
552                 count = target;
553                 /* allocating blocks for indirect blocks and direct blocks */
554                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
555                 if (*err)
556                         goto failed_out;
557
558                 target -= count;
559                 /* allocate blocks for indirect blocks */
560                 while (index < indirect_blks && count) {
561                         new_blocks[index++] = current_block++;
562                         count--;
563                 }
564
565                 if (count > 0)
566                         break;
567         }
568
569         /* save the new block number for the first direct block */
570         new_blocks[index] = current_block;
571
572         /* total number of blocks allocated for direct blocks */
573         ret = count;
574         *err = 0;
575         return ret;
576 failed_out:
577         for (i = 0; i <index; i++)
578                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
579         return ret;
580 }
581
582 /**
583  *      ext3_alloc_branch - allocate and set up a chain of blocks.
584  *      @inode: owner
585  *      @indirect_blks: number of allocated indirect blocks
586  *      @blks: number of allocated direct blocks
587  *      @offsets: offsets (in the blocks) to store the pointers to next.
588  *      @branch: place to store the chain in.
589  *
590  *      This function allocates blocks, zeroes out all but the last one,
591  *      links them into chain and (if we are synchronous) writes them to disk.
592  *      In other words, it prepares a branch that can be spliced onto the
593  *      inode. It stores the information about that chain in the branch[], in
594  *      the same format as ext3_get_branch() would do. We are calling it after
595  *      we had read the existing part of chain and partial points to the last
596  *      triple of that (one with zero ->key). Upon the exit we have the same
597  *      picture as after the successful ext3_get_block(), except that in one
598  *      place chain is disconnected - *branch->p is still zero (we did not
599  *      set the last link), but branch->key contains the number that should
600  *      be placed into *branch->p to fill that gap.
601  *
602  *      If allocation fails we free all blocks we've allocated (and forget
603  *      their buffer_heads) and return the error value the from failed
604  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
605  *      as described above and return 0.
606  */
607 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
608                         int indirect_blks, int *blks, ext3_fsblk_t goal,
609                         int *offsets, Indirect *branch)
610 {
611         int blocksize = inode->i_sb->s_blocksize;
612         int i, n = 0;
613         int err = 0;
614         struct buffer_head *bh;
615         int num;
616         ext3_fsblk_t new_blocks[4];
617         ext3_fsblk_t current_block;
618
619         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
620                                 *blks, new_blocks, &err);
621         if (err)
622                 return err;
623
624         branch[0].key = cpu_to_le32(new_blocks[0]);
625         /*
626          * metadata blocks and data blocks are allocated.
627          */
628         for (n = 1; n <= indirect_blks;  n++) {
629                 /*
630                  * Get buffer_head for parent block, zero it out
631                  * and set the pointer to new one, then send
632                  * parent to disk.
633                  */
634                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
635                 branch[n].bh = bh;
636                 lock_buffer(bh);
637                 BUFFER_TRACE(bh, "call get_create_access");
638                 err = ext3_journal_get_create_access(handle, bh);
639                 if (err) {
640                         unlock_buffer(bh);
641                         brelse(bh);
642                         goto failed;
643                 }
644
645                 memset(bh->b_data, 0, blocksize);
646                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
647                 branch[n].key = cpu_to_le32(new_blocks[n]);
648                 *branch[n].p = branch[n].key;
649                 if ( n == indirect_blks) {
650                         current_block = new_blocks[n];
651                         /*
652                          * End of chain, update the last new metablock of
653                          * the chain to point to the new allocated
654                          * data blocks numbers
655                          */
656                         for (i=1; i < num; i++)
657                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
658                 }
659                 BUFFER_TRACE(bh, "marking uptodate");
660                 set_buffer_uptodate(bh);
661                 unlock_buffer(bh);
662
663                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
664                 err = ext3_journal_dirty_metadata(handle, bh);
665                 if (err)
666                         goto failed;
667         }
668         *blks = num;
669         return err;
670 failed:
671         /* Allocation failed, free what we already allocated */
672         for (i = 1; i <= n ; i++) {
673                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
674                 ext3_journal_forget(handle, branch[i].bh);
675         }
676         for (i = 0; i <indirect_blks; i++)
677                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
678
679         ext3_free_blocks(handle, inode, new_blocks[i], num);
680
681         return err;
682 }
683
684 /**
685  * ext3_splice_branch - splice the allocated branch onto inode.
686  * @inode: owner
687  * @block: (logical) number of block we are adding
688  * @chain: chain of indirect blocks (with a missing link - see
689  *      ext3_alloc_branch)
690  * @where: location of missing link
691  * @num:   number of indirect blocks we are adding
692  * @blks:  number of direct blocks we are adding
693  *
694  * This function fills the missing link and does all housekeeping needed in
695  * inode (->i_blocks, etc.). In case of success we end up with the full
696  * chain to new block and return 0.
697  */
698 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
699                         long block, Indirect *where, int num, int blks)
700 {
701         int i;
702         int err = 0;
703         struct ext3_block_alloc_info *block_i;
704         ext3_fsblk_t current_block;
705         struct ext3_inode_info *ei = EXT3_I(inode);
706
707         block_i = ei->i_block_alloc_info;
708         /*
709          * If we're splicing into a [td]indirect block (as opposed to the
710          * inode) then we need to get write access to the [td]indirect block
711          * before the splice.
712          */
713         if (where->bh) {
714                 BUFFER_TRACE(where->bh, "get_write_access");
715                 err = ext3_journal_get_write_access(handle, where->bh);
716                 if (err)
717                         goto err_out;
718         }
719         /* That's it */
720
721         *where->p = where->key;
722
723         /*
724          * Update the host buffer_head or inode to point to more just allocated
725          * direct blocks blocks
726          */
727         if (num == 0 && blks > 1) {
728                 current_block = le32_to_cpu(where->key) + 1;
729                 for (i = 1; i < blks; i++)
730                         *(where->p + i ) = cpu_to_le32(current_block++);
731         }
732
733         /*
734          * update the most recently allocated logical & physical block
735          * in i_block_alloc_info, to assist find the proper goal block for next
736          * allocation
737          */
738         if (block_i) {
739                 block_i->last_alloc_logical_block = block + blks - 1;
740                 block_i->last_alloc_physical_block =
741                                 le32_to_cpu(where[num].key) + blks - 1;
742         }
743
744         /* We are done with atomic stuff, now do the rest of housekeeping */
745
746         inode->i_ctime = CURRENT_TIME_SEC;
747         ext3_mark_inode_dirty(handle, inode);
748         /* ext3_mark_inode_dirty already updated i_sync_tid */
749         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
750
751         /* had we spliced it onto indirect block? */
752         if (where->bh) {
753                 /*
754                  * If we spliced it onto an indirect block, we haven't
755                  * altered the inode.  Note however that if it is being spliced
756                  * onto an indirect block at the very end of the file (the
757                  * file is growing) then we *will* alter the inode to reflect
758                  * the new i_size.  But that is not done here - it is done in
759                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
760                  */
761                 jbd_debug(5, "splicing indirect only\n");
762                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
763                 err = ext3_journal_dirty_metadata(handle, where->bh);
764                 if (err)
765                         goto err_out;
766         } else {
767                 /*
768                  * OK, we spliced it into the inode itself on a direct block.
769                  * Inode was dirtied above.
770                  */
771                 jbd_debug(5, "splicing direct\n");
772         }
773         return err;
774
775 err_out:
776         for (i = 1; i <= num; i++) {
777                 BUFFER_TRACE(where[i].bh, "call journal_forget");
778                 ext3_journal_forget(handle, where[i].bh);
779                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
780         }
781         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
782
783         return err;
784 }
785
786 /*
787  * Allocation strategy is simple: if we have to allocate something, we will
788  * have to go the whole way to leaf. So let's do it before attaching anything
789  * to tree, set linkage between the newborn blocks, write them if sync is
790  * required, recheck the path, free and repeat if check fails, otherwise
791  * set the last missing link (that will protect us from any truncate-generated
792  * removals - all blocks on the path are immune now) and possibly force the
793  * write on the parent block.
794  * That has a nice additional property: no special recovery from the failed
795  * allocations is needed - we simply release blocks and do not touch anything
796  * reachable from inode.
797  *
798  * `handle' can be NULL if create == 0.
799  *
800  * The BKL may not be held on entry here.  Be sure to take it early.
801  * return > 0, # of blocks mapped or allocated.
802  * return = 0, if plain lookup failed.
803  * return < 0, error case.
804  */
805 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
806                 sector_t iblock, unsigned long maxblocks,
807                 struct buffer_head *bh_result,
808                 int create)
809 {
810         int err = -EIO;
811         int offsets[4];
812         Indirect chain[4];
813         Indirect *partial;
814         ext3_fsblk_t goal;
815         int indirect_blks;
816         int blocks_to_boundary = 0;
817         int depth;
818         struct ext3_inode_info *ei = EXT3_I(inode);
819         int count = 0;
820         ext3_fsblk_t first_block = 0;
821
822
823         J_ASSERT(handle != NULL || create == 0);
824         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
825
826         if (depth == 0)
827                 goto out;
828
829         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
830
831         /* Simplest case - block found, no allocation needed */
832         if (!partial) {
833                 first_block = le32_to_cpu(chain[depth - 1].key);
834                 clear_buffer_new(bh_result);
835                 count++;
836                 /*map more blocks*/
837                 while (count < maxblocks && count <= blocks_to_boundary) {
838                         ext3_fsblk_t blk;
839
840                         if (!verify_chain(chain, chain + depth - 1)) {
841                                 /*
842                                  * Indirect block might be removed by
843                                  * truncate while we were reading it.
844                                  * Handling of that case: forget what we've
845                                  * got now. Flag the err as EAGAIN, so it
846                                  * will reread.
847                                  */
848                                 err = -EAGAIN;
849                                 count = 0;
850                                 break;
851                         }
852                         blk = le32_to_cpu(*(chain[depth-1].p + count));
853
854                         if (blk == first_block + count)
855                                 count++;
856                         else
857                                 break;
858                 }
859                 if (err != -EAGAIN)
860                         goto got_it;
861         }
862
863         /* Next simple case - plain lookup or failed read of indirect block */
864         if (!create || err == -EIO)
865                 goto cleanup;
866
867         mutex_lock(&ei->truncate_mutex);
868
869         /*
870          * If the indirect block is missing while we are reading
871          * the chain(ext3_get_branch() returns -EAGAIN err), or
872          * if the chain has been changed after we grab the semaphore,
873          * (either because another process truncated this branch, or
874          * another get_block allocated this branch) re-grab the chain to see if
875          * the request block has been allocated or not.
876          *
877          * Since we already block the truncate/other get_block
878          * at this point, we will have the current copy of the chain when we
879          * splice the branch into the tree.
880          */
881         if (err == -EAGAIN || !verify_chain(chain, partial)) {
882                 while (partial > chain) {
883                         brelse(partial->bh);
884                         partial--;
885                 }
886                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
887                 if (!partial) {
888                         count++;
889                         mutex_unlock(&ei->truncate_mutex);
890                         if (err)
891                                 goto cleanup;
892                         clear_buffer_new(bh_result);
893                         goto got_it;
894                 }
895         }
896
897         /*
898          * Okay, we need to do block allocation.  Lazily initialize the block
899          * allocation info here if necessary
900         */
901         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
902                 ext3_init_block_alloc_info(inode);
903
904         goal = ext3_find_goal(inode, iblock, partial);
905
906         /* the number of blocks need to allocate for [d,t]indirect blocks */
907         indirect_blks = (chain + depth) - partial - 1;
908
909         /*
910          * Next look up the indirect map to count the totoal number of
911          * direct blocks to allocate for this branch.
912          */
913         count = ext3_blks_to_allocate(partial, indirect_blks,
914                                         maxblocks, blocks_to_boundary);
915         /*
916          * Block out ext3_truncate while we alter the tree
917          */
918         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
919                                 offsets + (partial - chain), partial);
920
921         /*
922          * The ext3_splice_branch call will free and forget any buffers
923          * on the new chain if there is a failure, but that risks using
924          * up transaction credits, especially for bitmaps where the
925          * credits cannot be returned.  Can we handle this somehow?  We
926          * may need to return -EAGAIN upwards in the worst case.  --sct
927          */
928         if (!err)
929                 err = ext3_splice_branch(handle, inode, iblock,
930                                         partial, indirect_blks, count);
931         mutex_unlock(&ei->truncate_mutex);
932         if (err)
933                 goto cleanup;
934
935         set_buffer_new(bh_result);
936 got_it:
937         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
938         if (count > blocks_to_boundary)
939                 set_buffer_boundary(bh_result);
940         err = count;
941         /* Clean up and exit */
942         partial = chain + depth - 1;    /* the whole chain */
943 cleanup:
944         while (partial > chain) {
945                 BUFFER_TRACE(partial->bh, "call brelse");
946                 brelse(partial->bh);
947                 partial--;
948         }
949         BUFFER_TRACE(bh_result, "returned");
950 out:
951         return err;
952 }
953
954 /* Maximum number of blocks we map for direct IO at once. */
955 #define DIO_MAX_BLOCKS 4096
956 /*
957  * Number of credits we need for writing DIO_MAX_BLOCKS:
958  * We need sb + group descriptor + bitmap + inode -> 4
959  * For B blocks with A block pointers per block we need:
960  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
961  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
962  */
963 #define DIO_CREDITS 25
964
965 static int ext3_get_block(struct inode *inode, sector_t iblock,
966                         struct buffer_head *bh_result, int create)
967 {
968         handle_t *handle = ext3_journal_current_handle();
969         int ret = 0, started = 0;
970         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
971
972         if (create && !handle) {        /* Direct IO write... */
973                 if (max_blocks > DIO_MAX_BLOCKS)
974                         max_blocks = DIO_MAX_BLOCKS;
975                 handle = ext3_journal_start(inode, DIO_CREDITS +
976                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
977                 if (IS_ERR(handle)) {
978                         ret = PTR_ERR(handle);
979                         goto out;
980                 }
981                 started = 1;
982         }
983
984         ret = ext3_get_blocks_handle(handle, inode, iblock,
985                                         max_blocks, bh_result, create);
986         if (ret > 0) {
987                 bh_result->b_size = (ret << inode->i_blkbits);
988                 ret = 0;
989         }
990         if (started)
991                 ext3_journal_stop(handle);
992 out:
993         return ret;
994 }
995
996 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
997                 u64 start, u64 len)
998 {
999         return generic_block_fiemap(inode, fieinfo, start, len,
1000                                     ext3_get_block);
1001 }
1002
1003 /*
1004  * `handle' can be NULL if create is zero
1005  */
1006 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1007                                 long block, int create, int *errp)
1008 {
1009         struct buffer_head dummy;
1010         int fatal = 0, err;
1011
1012         J_ASSERT(handle != NULL || create == 0);
1013
1014         dummy.b_state = 0;
1015         dummy.b_blocknr = -1000;
1016         buffer_trace_init(&dummy.b_history);
1017         err = ext3_get_blocks_handle(handle, inode, block, 1,
1018                                         &dummy, create);
1019         /*
1020          * ext3_get_blocks_handle() returns number of blocks
1021          * mapped. 0 in case of a HOLE.
1022          */
1023         if (err > 0) {
1024                 if (err > 1)
1025                         WARN_ON(1);
1026                 err = 0;
1027         }
1028         *errp = err;
1029         if (!err && buffer_mapped(&dummy)) {
1030                 struct buffer_head *bh;
1031                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1032                 if (!bh) {
1033                         *errp = -EIO;
1034                         goto err;
1035                 }
1036                 if (buffer_new(&dummy)) {
1037                         J_ASSERT(create != 0);
1038                         J_ASSERT(handle != NULL);
1039
1040                         /*
1041                          * Now that we do not always journal data, we should
1042                          * keep in mind whether this should always journal the
1043                          * new buffer as metadata.  For now, regular file
1044                          * writes use ext3_get_block instead, so it's not a
1045                          * problem.
1046                          */
1047                         lock_buffer(bh);
1048                         BUFFER_TRACE(bh, "call get_create_access");
1049                         fatal = ext3_journal_get_create_access(handle, bh);
1050                         if (!fatal && !buffer_uptodate(bh)) {
1051                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1052                                 set_buffer_uptodate(bh);
1053                         }
1054                         unlock_buffer(bh);
1055                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1056                         err = ext3_journal_dirty_metadata(handle, bh);
1057                         if (!fatal)
1058                                 fatal = err;
1059                 } else {
1060                         BUFFER_TRACE(bh, "not a new buffer");
1061                 }
1062                 if (fatal) {
1063                         *errp = fatal;
1064                         brelse(bh);
1065                         bh = NULL;
1066                 }
1067                 return bh;
1068         }
1069 err:
1070         return NULL;
1071 }
1072
1073 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1074                                int block, int create, int *err)
1075 {
1076         struct buffer_head * bh;
1077
1078         bh = ext3_getblk(handle, inode, block, create, err);
1079         if (!bh)
1080                 return bh;
1081         if (buffer_uptodate(bh))
1082                 return bh;
1083         ll_rw_block(READ_META, 1, &bh);
1084         wait_on_buffer(bh);
1085         if (buffer_uptodate(bh))
1086                 return bh;
1087         put_bh(bh);
1088         *err = -EIO;
1089         return NULL;
1090 }
1091
1092 static int walk_page_buffers(   handle_t *handle,
1093                                 struct buffer_head *head,
1094                                 unsigned from,
1095                                 unsigned to,
1096                                 int *partial,
1097                                 int (*fn)(      handle_t *handle,
1098                                                 struct buffer_head *bh))
1099 {
1100         struct buffer_head *bh;
1101         unsigned block_start, block_end;
1102         unsigned blocksize = head->b_size;
1103         int err, ret = 0;
1104         struct buffer_head *next;
1105
1106         for (   bh = head, block_start = 0;
1107                 ret == 0 && (bh != head || !block_start);
1108                 block_start = block_end, bh = next)
1109         {
1110                 next = bh->b_this_page;
1111                 block_end = block_start + blocksize;
1112                 if (block_end <= from || block_start >= to) {
1113                         if (partial && !buffer_uptodate(bh))
1114                                 *partial = 1;
1115                         continue;
1116                 }
1117                 err = (*fn)(handle, bh);
1118                 if (!ret)
1119                         ret = err;
1120         }
1121         return ret;
1122 }
1123
1124 /*
1125  * To preserve ordering, it is essential that the hole instantiation and
1126  * the data write be encapsulated in a single transaction.  We cannot
1127  * close off a transaction and start a new one between the ext3_get_block()
1128  * and the commit_write().  So doing the journal_start at the start of
1129  * prepare_write() is the right place.
1130  *
1131  * Also, this function can nest inside ext3_writepage() ->
1132  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1133  * has generated enough buffer credits to do the whole page.  So we won't
1134  * block on the journal in that case, which is good, because the caller may
1135  * be PF_MEMALLOC.
1136  *
1137  * By accident, ext3 can be reentered when a transaction is open via
1138  * quota file writes.  If we were to commit the transaction while thus
1139  * reentered, there can be a deadlock - we would be holding a quota
1140  * lock, and the commit would never complete if another thread had a
1141  * transaction open and was blocking on the quota lock - a ranking
1142  * violation.
1143  *
1144  * So what we do is to rely on the fact that journal_stop/journal_start
1145  * will _not_ run commit under these circumstances because handle->h_ref
1146  * is elevated.  We'll still have enough credits for the tiny quotafile
1147  * write.
1148  */
1149 static int do_journal_get_write_access(handle_t *handle,
1150                                         struct buffer_head *bh)
1151 {
1152         if (!buffer_mapped(bh) || buffer_freed(bh))
1153                 return 0;
1154         return ext3_journal_get_write_access(handle, bh);
1155 }
1156
1157 /*
1158  * Truncate blocks that were not used by write. We have to truncate the
1159  * pagecache as well so that corresponding buffers get properly unmapped.
1160  */
1161 static void ext3_truncate_failed_write(struct inode *inode)
1162 {
1163         truncate_inode_pages(inode->i_mapping, inode->i_size);
1164         ext3_truncate(inode);
1165 }
1166
1167 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1168                                 loff_t pos, unsigned len, unsigned flags,
1169                                 struct page **pagep, void **fsdata)
1170 {
1171         struct inode *inode = mapping->host;
1172         int ret;
1173         handle_t *handle;
1174         int retries = 0;
1175         struct page *page;
1176         pgoff_t index;
1177         unsigned from, to;
1178         /* Reserve one block more for addition to orphan list in case
1179          * we allocate blocks but write fails for some reason */
1180         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1181
1182         index = pos >> PAGE_CACHE_SHIFT;
1183         from = pos & (PAGE_CACHE_SIZE - 1);
1184         to = from + len;
1185
1186 retry:
1187         page = grab_cache_page_write_begin(mapping, index, flags);
1188         if (!page)
1189                 return -ENOMEM;
1190         *pagep = page;
1191
1192         handle = ext3_journal_start(inode, needed_blocks);
1193         if (IS_ERR(handle)) {
1194                 unlock_page(page);
1195                 page_cache_release(page);
1196                 ret = PTR_ERR(handle);
1197                 goto out;
1198         }
1199         ret = __block_write_begin(page, pos, len, ext3_get_block);
1200         if (ret)
1201                 goto write_begin_failed;
1202
1203         if (ext3_should_journal_data(inode)) {
1204                 ret = walk_page_buffers(handle, page_buffers(page),
1205                                 from, to, NULL, do_journal_get_write_access);
1206         }
1207 write_begin_failed:
1208         if (ret) {
1209                 /*
1210                  * block_write_begin may have instantiated a few blocks
1211                  * outside i_size.  Trim these off again. Don't need
1212                  * i_size_read because we hold i_mutex.
1213                  *
1214                  * Add inode to orphan list in case we crash before truncate
1215                  * finishes. Do this only if ext3_can_truncate() agrees so
1216                  * that orphan processing code is happy.
1217                  */
1218                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1219                         ext3_orphan_add(handle, inode);
1220                 ext3_journal_stop(handle);
1221                 unlock_page(page);
1222                 page_cache_release(page);
1223                 if (pos + len > inode->i_size)
1224                         ext3_truncate_failed_write(inode);
1225         }
1226         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1227                 goto retry;
1228 out:
1229         return ret;
1230 }
1231
1232
1233 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1234 {
1235         int err = journal_dirty_data(handle, bh);
1236         if (err)
1237                 ext3_journal_abort_handle(__func__, __func__,
1238                                                 bh, handle, err);
1239         return err;
1240 }
1241
1242 /* For ordered writepage and write_end functions */
1243 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1244 {
1245         /*
1246          * Write could have mapped the buffer but it didn't copy the data in
1247          * yet. So avoid filing such buffer into a transaction.
1248          */
1249         if (buffer_mapped(bh) && buffer_uptodate(bh))
1250                 return ext3_journal_dirty_data(handle, bh);
1251         return 0;
1252 }
1253
1254 /* For write_end() in data=journal mode */
1255 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1256 {
1257         if (!buffer_mapped(bh) || buffer_freed(bh))
1258                 return 0;
1259         set_buffer_uptodate(bh);
1260         return ext3_journal_dirty_metadata(handle, bh);
1261 }
1262
1263 /*
1264  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1265  * for the whole page but later we failed to copy the data in. Update inode
1266  * size according to what we managed to copy. The rest is going to be
1267  * truncated in write_end function.
1268  */
1269 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1270 {
1271         /* What matters to us is i_disksize. We don't write i_size anywhere */
1272         if (pos + copied > inode->i_size)
1273                 i_size_write(inode, pos + copied);
1274         if (pos + copied > EXT3_I(inode)->i_disksize) {
1275                 EXT3_I(inode)->i_disksize = pos + copied;
1276                 mark_inode_dirty(inode);
1277         }
1278 }
1279
1280 /*
1281  * We need to pick up the new inode size which generic_commit_write gave us
1282  * `file' can be NULL - eg, when called from page_symlink().
1283  *
1284  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1285  * buffers are managed internally.
1286  */
1287 static int ext3_ordered_write_end(struct file *file,
1288                                 struct address_space *mapping,
1289                                 loff_t pos, unsigned len, unsigned copied,
1290                                 struct page *page, void *fsdata)
1291 {
1292         handle_t *handle = ext3_journal_current_handle();
1293         struct inode *inode = file->f_mapping->host;
1294         unsigned from, to;
1295         int ret = 0, ret2;
1296
1297         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1298
1299         from = pos & (PAGE_CACHE_SIZE - 1);
1300         to = from + copied;
1301         ret = walk_page_buffers(handle, page_buffers(page),
1302                 from, to, NULL, journal_dirty_data_fn);
1303
1304         if (ret == 0)
1305                 update_file_sizes(inode, pos, copied);
1306         /*
1307          * There may be allocated blocks outside of i_size because
1308          * we failed to copy some data. Prepare for truncate.
1309          */
1310         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1311                 ext3_orphan_add(handle, inode);
1312         ret2 = ext3_journal_stop(handle);
1313         if (!ret)
1314                 ret = ret2;
1315         unlock_page(page);
1316         page_cache_release(page);
1317
1318         if (pos + len > inode->i_size)
1319                 ext3_truncate_failed_write(inode);
1320         return ret ? ret : copied;
1321 }
1322
1323 static int ext3_writeback_write_end(struct file *file,
1324                                 struct address_space *mapping,
1325                                 loff_t pos, unsigned len, unsigned copied,
1326                                 struct page *page, void *fsdata)
1327 {
1328         handle_t *handle = ext3_journal_current_handle();
1329         struct inode *inode = file->f_mapping->host;
1330         int ret;
1331
1332         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1333         update_file_sizes(inode, pos, copied);
1334         /*
1335          * There may be allocated blocks outside of i_size because
1336          * we failed to copy some data. Prepare for truncate.
1337          */
1338         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1339                 ext3_orphan_add(handle, inode);
1340         ret = ext3_journal_stop(handle);
1341         unlock_page(page);
1342         page_cache_release(page);
1343
1344         if (pos + len > inode->i_size)
1345                 ext3_truncate_failed_write(inode);
1346         return ret ? ret : copied;
1347 }
1348
1349 static int ext3_journalled_write_end(struct file *file,
1350                                 struct address_space *mapping,
1351                                 loff_t pos, unsigned len, unsigned copied,
1352                                 struct page *page, void *fsdata)
1353 {
1354         handle_t *handle = ext3_journal_current_handle();
1355         struct inode *inode = mapping->host;
1356         int ret = 0, ret2;
1357         int partial = 0;
1358         unsigned from, to;
1359
1360         from = pos & (PAGE_CACHE_SIZE - 1);
1361         to = from + len;
1362
1363         if (copied < len) {
1364                 if (!PageUptodate(page))
1365                         copied = 0;
1366                 page_zero_new_buffers(page, from + copied, to);
1367                 to = from + copied;
1368         }
1369
1370         ret = walk_page_buffers(handle, page_buffers(page), from,
1371                                 to, &partial, write_end_fn);
1372         if (!partial)
1373                 SetPageUptodate(page);
1374
1375         if (pos + copied > inode->i_size)
1376                 i_size_write(inode, pos + copied);
1377         /*
1378          * There may be allocated blocks outside of i_size because
1379          * we failed to copy some data. Prepare for truncate.
1380          */
1381         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1382                 ext3_orphan_add(handle, inode);
1383         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1384         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1385                 EXT3_I(inode)->i_disksize = inode->i_size;
1386                 ret2 = ext3_mark_inode_dirty(handle, inode);
1387                 if (!ret)
1388                         ret = ret2;
1389         }
1390
1391         ret2 = ext3_journal_stop(handle);
1392         if (!ret)
1393                 ret = ret2;
1394         unlock_page(page);
1395         page_cache_release(page);
1396
1397         if (pos + len > inode->i_size)
1398                 ext3_truncate_failed_write(inode);
1399         return ret ? ret : copied;
1400 }
1401
1402 /*
1403  * bmap() is special.  It gets used by applications such as lilo and by
1404  * the swapper to find the on-disk block of a specific piece of data.
1405  *
1406  * Naturally, this is dangerous if the block concerned is still in the
1407  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1408  * filesystem and enables swap, then they may get a nasty shock when the
1409  * data getting swapped to that swapfile suddenly gets overwritten by
1410  * the original zero's written out previously to the journal and
1411  * awaiting writeback in the kernel's buffer cache.
1412  *
1413  * So, if we see any bmap calls here on a modified, data-journaled file,
1414  * take extra steps to flush any blocks which might be in the cache.
1415  */
1416 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1417 {
1418         struct inode *inode = mapping->host;
1419         journal_t *journal;
1420         int err;
1421
1422         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1423                 /*
1424                  * This is a REALLY heavyweight approach, but the use of
1425                  * bmap on dirty files is expected to be extremely rare:
1426                  * only if we run lilo or swapon on a freshly made file
1427                  * do we expect this to happen.
1428                  *
1429                  * (bmap requires CAP_SYS_RAWIO so this does not
1430                  * represent an unprivileged user DOS attack --- we'd be
1431                  * in trouble if mortal users could trigger this path at
1432                  * will.)
1433                  *
1434                  * NB. EXT3_STATE_JDATA is not set on files other than
1435                  * regular files.  If somebody wants to bmap a directory
1436                  * or symlink and gets confused because the buffer
1437                  * hasn't yet been flushed to disk, they deserve
1438                  * everything they get.
1439                  */
1440
1441                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1442                 journal = EXT3_JOURNAL(inode);
1443                 journal_lock_updates(journal);
1444                 err = journal_flush(journal);
1445                 journal_unlock_updates(journal);
1446
1447                 if (err)
1448                         return 0;
1449         }
1450
1451         return generic_block_bmap(mapping,block,ext3_get_block);
1452 }
1453
1454 static int bget_one(handle_t *handle, struct buffer_head *bh)
1455 {
1456         get_bh(bh);
1457         return 0;
1458 }
1459
1460 static int bput_one(handle_t *handle, struct buffer_head *bh)
1461 {
1462         put_bh(bh);
1463         return 0;
1464 }
1465
1466 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1467 {
1468         return !buffer_mapped(bh);
1469 }
1470
1471 /*
1472  * Note that we always start a transaction even if we're not journalling
1473  * data.  This is to preserve ordering: any hole instantiation within
1474  * __block_write_full_page -> ext3_get_block() should be journalled
1475  * along with the data so we don't crash and then get metadata which
1476  * refers to old data.
1477  *
1478  * In all journalling modes block_write_full_page() will start the I/O.
1479  *
1480  * Problem:
1481  *
1482  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1483  *              ext3_writepage()
1484  *
1485  * Similar for:
1486  *
1487  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1488  *
1489  * Same applies to ext3_get_block().  We will deadlock on various things like
1490  * lock_journal and i_truncate_mutex.
1491  *
1492  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1493  * allocations fail.
1494  *
1495  * 16May01: If we're reentered then journal_current_handle() will be
1496  *          non-zero. We simply *return*.
1497  *
1498  * 1 July 2001: @@@ FIXME:
1499  *   In journalled data mode, a data buffer may be metadata against the
1500  *   current transaction.  But the same file is part of a shared mapping
1501  *   and someone does a writepage() on it.
1502  *
1503  *   We will move the buffer onto the async_data list, but *after* it has
1504  *   been dirtied. So there's a small window where we have dirty data on
1505  *   BJ_Metadata.
1506  *
1507  *   Note that this only applies to the last partial page in the file.  The
1508  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1509  *   broken code anyway: it's wrong for msync()).
1510  *
1511  *   It's a rare case: affects the final partial page, for journalled data
1512  *   where the file is subject to bith write() and writepage() in the same
1513  *   transction.  To fix it we'll need a custom block_write_full_page().
1514  *   We'll probably need that anyway for journalling writepage() output.
1515  *
1516  * We don't honour synchronous mounts for writepage().  That would be
1517  * disastrous.  Any write() or metadata operation will sync the fs for
1518  * us.
1519  *
1520  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1521  * we don't need to open a transaction here.
1522  */
1523 static int ext3_ordered_writepage(struct page *page,
1524                                 struct writeback_control *wbc)
1525 {
1526         struct inode *inode = page->mapping->host;
1527         struct buffer_head *page_bufs;
1528         handle_t *handle = NULL;
1529         int ret = 0;
1530         int err;
1531
1532         J_ASSERT(PageLocked(page));
1533         WARN_ON_ONCE(IS_RDONLY(inode));
1534
1535         /*
1536          * We give up here if we're reentered, because it might be for a
1537          * different filesystem.
1538          */
1539         if (ext3_journal_current_handle())
1540                 goto out_fail;
1541
1542         if (!page_has_buffers(page)) {
1543                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1544                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1545                 page_bufs = page_buffers(page);
1546         } else {
1547                 page_bufs = page_buffers(page);
1548                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1549                                        NULL, buffer_unmapped)) {
1550                         /* Provide NULL get_block() to catch bugs if buffers
1551                          * weren't really mapped */
1552                         return block_write_full_page(page, NULL, wbc);
1553                 }
1554         }
1555         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1556
1557         if (IS_ERR(handle)) {
1558                 ret = PTR_ERR(handle);
1559                 goto out_fail;
1560         }
1561
1562         walk_page_buffers(handle, page_bufs, 0,
1563                         PAGE_CACHE_SIZE, NULL, bget_one);
1564
1565         ret = block_write_full_page(page, ext3_get_block, wbc);
1566
1567         /*
1568          * The page can become unlocked at any point now, and
1569          * truncate can then come in and change things.  So we
1570          * can't touch *page from now on.  But *page_bufs is
1571          * safe due to elevated refcount.
1572          */
1573
1574         /*
1575          * And attach them to the current transaction.  But only if
1576          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1577          * and generally junk.
1578          */
1579         if (ret == 0) {
1580                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1581                                         NULL, journal_dirty_data_fn);
1582                 if (!ret)
1583                         ret = err;
1584         }
1585         walk_page_buffers(handle, page_bufs, 0,
1586                         PAGE_CACHE_SIZE, NULL, bput_one);
1587         err = ext3_journal_stop(handle);
1588         if (!ret)
1589                 ret = err;
1590         return ret;
1591
1592 out_fail:
1593         redirty_page_for_writepage(wbc, page);
1594         unlock_page(page);
1595         return ret;
1596 }
1597
1598 static int ext3_writeback_writepage(struct page *page,
1599                                 struct writeback_control *wbc)
1600 {
1601         struct inode *inode = page->mapping->host;
1602         handle_t *handle = NULL;
1603         int ret = 0;
1604         int err;
1605
1606         J_ASSERT(PageLocked(page));
1607         WARN_ON_ONCE(IS_RDONLY(inode));
1608
1609         if (ext3_journal_current_handle())
1610                 goto out_fail;
1611
1612         if (page_has_buffers(page)) {
1613                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1614                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1615                         /* Provide NULL get_block() to catch bugs if buffers
1616                          * weren't really mapped */
1617                         return block_write_full_page(page, NULL, wbc);
1618                 }
1619         }
1620
1621         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1622         if (IS_ERR(handle)) {
1623                 ret = PTR_ERR(handle);
1624                 goto out_fail;
1625         }
1626
1627         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1628                 ret = nobh_writepage(page, ext3_get_block, wbc);
1629         else
1630                 ret = block_write_full_page(page, ext3_get_block, wbc);
1631
1632         err = ext3_journal_stop(handle);
1633         if (!ret)
1634                 ret = err;
1635         return ret;
1636
1637 out_fail:
1638         redirty_page_for_writepage(wbc, page);
1639         unlock_page(page);
1640         return ret;
1641 }
1642
1643 static int ext3_journalled_writepage(struct page *page,
1644                                 struct writeback_control *wbc)
1645 {
1646         struct inode *inode = page->mapping->host;
1647         handle_t *handle = NULL;
1648         int ret = 0;
1649         int err;
1650
1651         J_ASSERT(PageLocked(page));
1652         WARN_ON_ONCE(IS_RDONLY(inode));
1653
1654         if (ext3_journal_current_handle())
1655                 goto no_write;
1656
1657         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1658         if (IS_ERR(handle)) {
1659                 ret = PTR_ERR(handle);
1660                 goto no_write;
1661         }
1662
1663         if (!page_has_buffers(page) || PageChecked(page)) {
1664                 /*
1665                  * It's mmapped pagecache.  Add buffers and journal it.  There
1666                  * doesn't seem much point in redirtying the page here.
1667                  */
1668                 ClearPageChecked(page);
1669                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1670                                         ext3_get_block);
1671                 if (ret != 0) {
1672                         ext3_journal_stop(handle);
1673                         goto out_unlock;
1674                 }
1675                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1676                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1677
1678                 err = walk_page_buffers(handle, page_buffers(page), 0,
1679                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1680                 if (ret == 0)
1681                         ret = err;
1682                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1683                 unlock_page(page);
1684         } else {
1685                 /*
1686                  * It may be a page full of checkpoint-mode buffers.  We don't
1687                  * really know unless we go poke around in the buffer_heads.
1688                  * But block_write_full_page will do the right thing.
1689                  */
1690                 ret = block_write_full_page(page, ext3_get_block, wbc);
1691         }
1692         err = ext3_journal_stop(handle);
1693         if (!ret)
1694                 ret = err;
1695 out:
1696         return ret;
1697
1698 no_write:
1699         redirty_page_for_writepage(wbc, page);
1700 out_unlock:
1701         unlock_page(page);
1702         goto out;
1703 }
1704
1705 static int ext3_readpage(struct file *file, struct page *page)
1706 {
1707         return mpage_readpage(page, ext3_get_block);
1708 }
1709
1710 static int
1711 ext3_readpages(struct file *file, struct address_space *mapping,
1712                 struct list_head *pages, unsigned nr_pages)
1713 {
1714         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1715 }
1716
1717 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1718 {
1719         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1720
1721         /*
1722          * If it's a full truncate we just forget about the pending dirtying
1723          */
1724         if (offset == 0)
1725                 ClearPageChecked(page);
1726
1727         journal_invalidatepage(journal, page, offset);
1728 }
1729
1730 static int ext3_releasepage(struct page *page, gfp_t wait)
1731 {
1732         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1733
1734         WARN_ON(PageChecked(page));
1735         if (!page_has_buffers(page))
1736                 return 0;
1737         return journal_try_to_free_buffers(journal, page, wait);
1738 }
1739
1740 /*
1741  * If the O_DIRECT write will extend the file then add this inode to the
1742  * orphan list.  So recovery will truncate it back to the original size
1743  * if the machine crashes during the write.
1744  *
1745  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1746  * crashes then stale disk data _may_ be exposed inside the file. But current
1747  * VFS code falls back into buffered path in that case so we are safe.
1748  */
1749 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1750                         const struct iovec *iov, loff_t offset,
1751                         unsigned long nr_segs)
1752 {
1753         struct file *file = iocb->ki_filp;
1754         struct inode *inode = file->f_mapping->host;
1755         struct ext3_inode_info *ei = EXT3_I(inode);
1756         handle_t *handle;
1757         ssize_t ret;
1758         int orphan = 0;
1759         size_t count = iov_length(iov, nr_segs);
1760         int retries = 0;
1761
1762         if (rw == WRITE) {
1763                 loff_t final_size = offset + count;
1764
1765                 if (final_size > inode->i_size) {
1766                         /* Credits for sb + inode write */
1767                         handle = ext3_journal_start(inode, 2);
1768                         if (IS_ERR(handle)) {
1769                                 ret = PTR_ERR(handle);
1770                                 goto out;
1771                         }
1772                         ret = ext3_orphan_add(handle, inode);
1773                         if (ret) {
1774                                 ext3_journal_stop(handle);
1775                                 goto out;
1776                         }
1777                         orphan = 1;
1778                         ei->i_disksize = inode->i_size;
1779                         ext3_journal_stop(handle);
1780                 }
1781         }
1782
1783 retry:
1784         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1785                                  offset, nr_segs,
1786                                  ext3_get_block, NULL);
1787         /*
1788          * In case of error extending write may have instantiated a few
1789          * blocks outside i_size. Trim these off again.
1790          */
1791         if (unlikely((rw & WRITE) && ret < 0)) {
1792                 loff_t isize = i_size_read(inode);
1793                 loff_t end = offset + iov_length(iov, nr_segs);
1794
1795                 if (end > isize)
1796                         vmtruncate(inode, isize);
1797         }
1798         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1799                 goto retry;
1800
1801         if (orphan) {
1802                 int err;
1803
1804                 /* Credits for sb + inode write */
1805                 handle = ext3_journal_start(inode, 2);
1806                 if (IS_ERR(handle)) {
1807                         /* This is really bad luck. We've written the data
1808                          * but cannot extend i_size. Truncate allocated blocks
1809                          * and pretend the write failed... */
1810                         ext3_truncate(inode);
1811                         ret = PTR_ERR(handle);
1812                         goto out;
1813                 }
1814                 if (inode->i_nlink)
1815                         ext3_orphan_del(handle, inode);
1816                 if (ret > 0) {
1817                         loff_t end = offset + ret;
1818                         if (end > inode->i_size) {
1819                                 ei->i_disksize = end;
1820                                 i_size_write(inode, end);
1821                                 /*
1822                                  * We're going to return a positive `ret'
1823                                  * here due to non-zero-length I/O, so there's
1824                                  * no way of reporting error returns from
1825                                  * ext3_mark_inode_dirty() to userspace.  So
1826                                  * ignore it.
1827                                  */
1828                                 ext3_mark_inode_dirty(handle, inode);
1829                         }
1830                 }
1831                 err = ext3_journal_stop(handle);
1832                 if (ret == 0)
1833                         ret = err;
1834         }
1835 out:
1836         return ret;
1837 }
1838
1839 /*
1840  * Pages can be marked dirty completely asynchronously from ext3's journalling
1841  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1842  * much here because ->set_page_dirty is called under VFS locks.  The page is
1843  * not necessarily locked.
1844  *
1845  * We cannot just dirty the page and leave attached buffers clean, because the
1846  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1847  * or jbddirty because all the journalling code will explode.
1848  *
1849  * So what we do is to mark the page "pending dirty" and next time writepage
1850  * is called, propagate that into the buffers appropriately.
1851  */
1852 static int ext3_journalled_set_page_dirty(struct page *page)
1853 {
1854         SetPageChecked(page);
1855         return __set_page_dirty_nobuffers(page);
1856 }
1857
1858 static const struct address_space_operations ext3_ordered_aops = {
1859         .readpage               = ext3_readpage,
1860         .readpages              = ext3_readpages,
1861         .writepage              = ext3_ordered_writepage,
1862         .sync_page              = block_sync_page,
1863         .write_begin            = ext3_write_begin,
1864         .write_end              = ext3_ordered_write_end,
1865         .bmap                   = ext3_bmap,
1866         .invalidatepage         = ext3_invalidatepage,
1867         .releasepage            = ext3_releasepage,
1868         .direct_IO              = ext3_direct_IO,
1869         .migratepage            = buffer_migrate_page,
1870         .is_partially_uptodate  = block_is_partially_uptodate,
1871         .error_remove_page      = generic_error_remove_page,
1872 };
1873
1874 static const struct address_space_operations ext3_writeback_aops = {
1875         .readpage               = ext3_readpage,
1876         .readpages              = ext3_readpages,
1877         .writepage              = ext3_writeback_writepage,
1878         .sync_page              = block_sync_page,
1879         .write_begin            = ext3_write_begin,
1880         .write_end              = ext3_writeback_write_end,
1881         .bmap                   = ext3_bmap,
1882         .invalidatepage         = ext3_invalidatepage,
1883         .releasepage            = ext3_releasepage,
1884         .direct_IO              = ext3_direct_IO,
1885         .migratepage            = buffer_migrate_page,
1886         .is_partially_uptodate  = block_is_partially_uptodate,
1887         .error_remove_page      = generic_error_remove_page,
1888 };
1889
1890 static const struct address_space_operations ext3_journalled_aops = {
1891         .readpage               = ext3_readpage,
1892         .readpages              = ext3_readpages,
1893         .writepage              = ext3_journalled_writepage,
1894         .sync_page              = block_sync_page,
1895         .write_begin            = ext3_write_begin,
1896         .write_end              = ext3_journalled_write_end,
1897         .set_page_dirty         = ext3_journalled_set_page_dirty,
1898         .bmap                   = ext3_bmap,
1899         .invalidatepage         = ext3_invalidatepage,
1900         .releasepage            = ext3_releasepage,
1901         .is_partially_uptodate  = block_is_partially_uptodate,
1902         .error_remove_page      = generic_error_remove_page,
1903 };
1904
1905 void ext3_set_aops(struct inode *inode)
1906 {
1907         if (ext3_should_order_data(inode))
1908                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1909         else if (ext3_should_writeback_data(inode))
1910                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1911         else
1912                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1913 }
1914
1915 /*
1916  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1917  * up to the end of the block which corresponds to `from'.
1918  * This required during truncate. We need to physically zero the tail end
1919  * of that block so it doesn't yield old data if the file is later grown.
1920  */
1921 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1922                 struct address_space *mapping, loff_t from)
1923 {
1924         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1925         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1926         unsigned blocksize, iblock, length, pos;
1927         struct inode *inode = mapping->host;
1928         struct buffer_head *bh;
1929         int err = 0;
1930
1931         blocksize = inode->i_sb->s_blocksize;
1932         length = blocksize - (offset & (blocksize - 1));
1933         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1934
1935         /*
1936          * For "nobh" option,  we can only work if we don't need to
1937          * read-in the page - otherwise we create buffers to do the IO.
1938          */
1939         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1940              ext3_should_writeback_data(inode) && PageUptodate(page)) {
1941                 zero_user(page, offset, length);
1942                 set_page_dirty(page);
1943                 goto unlock;
1944         }
1945
1946         if (!page_has_buffers(page))
1947                 create_empty_buffers(page, blocksize, 0);
1948
1949         /* Find the buffer that contains "offset" */
1950         bh = page_buffers(page);
1951         pos = blocksize;
1952         while (offset >= pos) {
1953                 bh = bh->b_this_page;
1954                 iblock++;
1955                 pos += blocksize;
1956         }
1957
1958         err = 0;
1959         if (buffer_freed(bh)) {
1960                 BUFFER_TRACE(bh, "freed: skip");
1961                 goto unlock;
1962         }
1963
1964         if (!buffer_mapped(bh)) {
1965                 BUFFER_TRACE(bh, "unmapped");
1966                 ext3_get_block(inode, iblock, bh, 0);
1967                 /* unmapped? It's a hole - nothing to do */
1968                 if (!buffer_mapped(bh)) {
1969                         BUFFER_TRACE(bh, "still unmapped");
1970                         goto unlock;
1971                 }
1972         }
1973
1974         /* Ok, it's mapped. Make sure it's up-to-date */
1975         if (PageUptodate(page))
1976                 set_buffer_uptodate(bh);
1977
1978         if (!buffer_uptodate(bh)) {
1979                 err = -EIO;
1980                 ll_rw_block(READ, 1, &bh);
1981                 wait_on_buffer(bh);
1982                 /* Uhhuh. Read error. Complain and punt. */
1983                 if (!buffer_uptodate(bh))
1984                         goto unlock;
1985         }
1986
1987         if (ext3_should_journal_data(inode)) {
1988                 BUFFER_TRACE(bh, "get write access");
1989                 err = ext3_journal_get_write_access(handle, bh);
1990                 if (err)
1991                         goto unlock;
1992         }
1993
1994         zero_user(page, offset, length);
1995         BUFFER_TRACE(bh, "zeroed end of block");
1996
1997         err = 0;
1998         if (ext3_should_journal_data(inode)) {
1999                 err = ext3_journal_dirty_metadata(handle, bh);
2000         } else {
2001                 if (ext3_should_order_data(inode))
2002                         err = ext3_journal_dirty_data(handle, bh);
2003                 mark_buffer_dirty(bh);
2004         }
2005
2006 unlock:
2007         unlock_page(page);
2008         page_cache_release(page);
2009         return err;
2010 }
2011
2012 /*
2013  * Probably it should be a library function... search for first non-zero word
2014  * or memcmp with zero_page, whatever is better for particular architecture.
2015  * Linus?
2016  */
2017 static inline int all_zeroes(__le32 *p, __le32 *q)
2018 {
2019         while (p < q)
2020                 if (*p++)
2021                         return 0;
2022         return 1;
2023 }
2024
2025 /**
2026  *      ext3_find_shared - find the indirect blocks for partial truncation.
2027  *      @inode:   inode in question
2028  *      @depth:   depth of the affected branch
2029  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2030  *      @chain:   place to store the pointers to partial indirect blocks
2031  *      @top:     place to the (detached) top of branch
2032  *
2033  *      This is a helper function used by ext3_truncate().
2034  *
2035  *      When we do truncate() we may have to clean the ends of several
2036  *      indirect blocks but leave the blocks themselves alive. Block is
2037  *      partially truncated if some data below the new i_size is refered
2038  *      from it (and it is on the path to the first completely truncated
2039  *      data block, indeed).  We have to free the top of that path along
2040  *      with everything to the right of the path. Since no allocation
2041  *      past the truncation point is possible until ext3_truncate()
2042  *      finishes, we may safely do the latter, but top of branch may
2043  *      require special attention - pageout below the truncation point
2044  *      might try to populate it.
2045  *
2046  *      We atomically detach the top of branch from the tree, store the
2047  *      block number of its root in *@top, pointers to buffer_heads of
2048  *      partially truncated blocks - in @chain[].bh and pointers to
2049  *      their last elements that should not be removed - in
2050  *      @chain[].p. Return value is the pointer to last filled element
2051  *      of @chain.
2052  *
2053  *      The work left to caller to do the actual freeing of subtrees:
2054  *              a) free the subtree starting from *@top
2055  *              b) free the subtrees whose roots are stored in
2056  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2057  *              c) free the subtrees growing from the inode past the @chain[0].
2058  *                      (no partially truncated stuff there).  */
2059
2060 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2061                         int offsets[4], Indirect chain[4], __le32 *top)
2062 {
2063         Indirect *partial, *p;
2064         int k, err;
2065
2066         *top = 0;
2067         /* Make k index the deepest non-null offset + 1 */
2068         for (k = depth; k > 1 && !offsets[k-1]; k--)
2069                 ;
2070         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2071         /* Writer: pointers */
2072         if (!partial)
2073                 partial = chain + k-1;
2074         /*
2075          * If the branch acquired continuation since we've looked at it -
2076          * fine, it should all survive and (new) top doesn't belong to us.
2077          */
2078         if (!partial->key && *partial->p)
2079                 /* Writer: end */
2080                 goto no_top;
2081         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2082                 ;
2083         /*
2084          * OK, we've found the last block that must survive. The rest of our
2085          * branch should be detached before unlocking. However, if that rest
2086          * of branch is all ours and does not grow immediately from the inode
2087          * it's easier to cheat and just decrement partial->p.
2088          */
2089         if (p == chain + k - 1 && p > chain) {
2090                 p->p--;
2091         } else {
2092                 *top = *p->p;
2093                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2094 #if 0
2095                 *p->p = 0;
2096 #endif
2097         }
2098         /* Writer: end */
2099
2100         while(partial > p) {
2101                 brelse(partial->bh);
2102                 partial--;
2103         }
2104 no_top:
2105         return partial;
2106 }
2107
2108 /*
2109  * Zero a number of block pointers in either an inode or an indirect block.
2110  * If we restart the transaction we must again get write access to the
2111  * indirect block for further modification.
2112  *
2113  * We release `count' blocks on disk, but (last - first) may be greater
2114  * than `count' because there can be holes in there.
2115  */
2116 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2117                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2118                 unsigned long count, __le32 *first, __le32 *last)
2119 {
2120         __le32 *p;
2121         if (try_to_extend_transaction(handle, inode)) {
2122                 if (bh) {
2123                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2124                         ext3_journal_dirty_metadata(handle, bh);
2125                 }
2126                 ext3_mark_inode_dirty(handle, inode);
2127                 truncate_restart_transaction(handle, inode);
2128                 if (bh) {
2129                         BUFFER_TRACE(bh, "retaking write access");
2130                         ext3_journal_get_write_access(handle, bh);
2131                 }
2132         }
2133
2134         /*
2135          * Any buffers which are on the journal will be in memory. We find
2136          * them on the hash table so journal_revoke() will run journal_forget()
2137          * on them.  We've already detached each block from the file, so
2138          * bforget() in journal_forget() should be safe.
2139          *
2140          * AKPM: turn on bforget in journal_forget()!!!
2141          */
2142         for (p = first; p < last; p++) {
2143                 u32 nr = le32_to_cpu(*p);
2144                 if (nr) {
2145                         struct buffer_head *bh;
2146
2147                         *p = 0;
2148                         bh = sb_find_get_block(inode->i_sb, nr);
2149                         ext3_forget(handle, 0, inode, bh, nr);
2150                 }
2151         }
2152
2153         ext3_free_blocks(handle, inode, block_to_free, count);
2154 }
2155
2156 /**
2157  * ext3_free_data - free a list of data blocks
2158  * @handle:     handle for this transaction
2159  * @inode:      inode we are dealing with
2160  * @this_bh:    indirect buffer_head which contains *@first and *@last
2161  * @first:      array of block numbers
2162  * @last:       points immediately past the end of array
2163  *
2164  * We are freeing all blocks refered from that array (numbers are stored as
2165  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2166  *
2167  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2168  * blocks are contiguous then releasing them at one time will only affect one
2169  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2170  * actually use a lot of journal space.
2171  *
2172  * @this_bh will be %NULL if @first and @last point into the inode's direct
2173  * block pointers.
2174  */
2175 static void ext3_free_data(handle_t *handle, struct inode *inode,
2176                            struct buffer_head *this_bh,
2177                            __le32 *first, __le32 *last)
2178 {
2179         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2180         unsigned long count = 0;            /* Number of blocks in the run */
2181         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2182                                                corresponding to
2183                                                block_to_free */
2184         ext3_fsblk_t nr;                    /* Current block # */
2185         __le32 *p;                          /* Pointer into inode/ind
2186                                                for current block */
2187         int err;
2188
2189         if (this_bh) {                          /* For indirect block */
2190                 BUFFER_TRACE(this_bh, "get_write_access");
2191                 err = ext3_journal_get_write_access(handle, this_bh);
2192                 /* Important: if we can't update the indirect pointers
2193                  * to the blocks, we can't free them. */
2194                 if (err)
2195                         return;
2196         }
2197
2198         for (p = first; p < last; p++) {
2199                 nr = le32_to_cpu(*p);
2200                 if (nr) {
2201                         /* accumulate blocks to free if they're contiguous */
2202                         if (count == 0) {
2203                                 block_to_free = nr;
2204                                 block_to_free_p = p;
2205                                 count = 1;
2206                         } else if (nr == block_to_free + count) {
2207                                 count++;
2208                         } else {
2209                                 ext3_clear_blocks(handle, inode, this_bh,
2210                                                   block_to_free,
2211                                                   count, block_to_free_p, p);
2212                                 block_to_free = nr;
2213                                 block_to_free_p = p;
2214                                 count = 1;
2215                         }
2216                 }
2217         }
2218
2219         if (count > 0)
2220                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2221                                   count, block_to_free_p, p);
2222
2223         if (this_bh) {
2224                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2225
2226                 /*
2227                  * The buffer head should have an attached journal head at this
2228                  * point. However, if the data is corrupted and an indirect
2229                  * block pointed to itself, it would have been detached when
2230                  * the block was cleared. Check for this instead of OOPSing.
2231                  */
2232                 if (bh2jh(this_bh))
2233                         ext3_journal_dirty_metadata(handle, this_bh);
2234                 else
2235                         ext3_error(inode->i_sb, "ext3_free_data",
2236                                    "circular indirect block detected, "
2237                                    "inode=%lu, block=%llu",
2238                                    inode->i_ino,
2239                                    (unsigned long long)this_bh->b_blocknr);
2240         }
2241 }
2242
2243 /**
2244  *      ext3_free_branches - free an array of branches
2245  *      @handle: JBD handle for this transaction
2246  *      @inode: inode we are dealing with
2247  *      @parent_bh: the buffer_head which contains *@first and *@last
2248  *      @first: array of block numbers
2249  *      @last:  pointer immediately past the end of array
2250  *      @depth: depth of the branches to free
2251  *
2252  *      We are freeing all blocks refered from these branches (numbers are
2253  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2254  *      appropriately.
2255  */
2256 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2257                                struct buffer_head *parent_bh,
2258                                __le32 *first, __le32 *last, int depth)
2259 {
2260         ext3_fsblk_t nr;
2261         __le32 *p;
2262
2263         if (is_handle_aborted(handle))
2264                 return;
2265
2266         if (depth--) {
2267                 struct buffer_head *bh;
2268                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2269                 p = last;
2270                 while (--p >= first) {
2271                         nr = le32_to_cpu(*p);
2272                         if (!nr)
2273                                 continue;               /* A hole */
2274
2275                         /* Go read the buffer for the next level down */
2276                         bh = sb_bread(inode->i_sb, nr);
2277
2278                         /*
2279                          * A read failure? Report error and clear slot
2280                          * (should be rare).
2281                          */
2282                         if (!bh) {
2283                                 ext3_error(inode->i_sb, "ext3_free_branches",
2284                                            "Read failure, inode=%lu, block="E3FSBLK,
2285                                            inode->i_ino, nr);
2286                                 continue;
2287                         }
2288
2289                         /* This zaps the entire block.  Bottom up. */
2290                         BUFFER_TRACE(bh, "free child branches");
2291                         ext3_free_branches(handle, inode, bh,
2292                                            (__le32*)bh->b_data,
2293                                            (__le32*)bh->b_data + addr_per_block,
2294                                            depth);
2295
2296                         /*
2297                          * We've probably journalled the indirect block several
2298                          * times during the truncate.  But it's no longer
2299                          * needed and we now drop it from the transaction via
2300                          * journal_revoke().
2301                          *
2302                          * That's easy if it's exclusively part of this
2303                          * transaction.  But if it's part of the committing
2304                          * transaction then journal_forget() will simply
2305                          * brelse() it.  That means that if the underlying
2306                          * block is reallocated in ext3_get_block(),
2307                          * unmap_underlying_metadata() will find this block
2308                          * and will try to get rid of it.  damn, damn.
2309                          *
2310                          * If this block has already been committed to the
2311                          * journal, a revoke record will be written.  And
2312                          * revoke records must be emitted *before* clearing
2313                          * this block's bit in the bitmaps.
2314                          */
2315                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2316
2317                         /*
2318                          * Everything below this this pointer has been
2319                          * released.  Now let this top-of-subtree go.
2320                          *
2321                          * We want the freeing of this indirect block to be
2322                          * atomic in the journal with the updating of the
2323                          * bitmap block which owns it.  So make some room in
2324                          * the journal.
2325                          *
2326                          * We zero the parent pointer *after* freeing its
2327                          * pointee in the bitmaps, so if extend_transaction()
2328                          * for some reason fails to put the bitmap changes and
2329                          * the release into the same transaction, recovery
2330                          * will merely complain about releasing a free block,
2331                          * rather than leaking blocks.
2332                          */
2333                         if (is_handle_aborted(handle))
2334                                 return;
2335                         if (try_to_extend_transaction(handle, inode)) {
2336                                 ext3_mark_inode_dirty(handle, inode);
2337                                 truncate_restart_transaction(handle, inode);
2338                         }
2339
2340                         ext3_free_blocks(handle, inode, nr, 1);
2341
2342                         if (parent_bh) {
2343                                 /*
2344                                  * The block which we have just freed is
2345                                  * pointed to by an indirect block: journal it
2346                                  */
2347                                 BUFFER_TRACE(parent_bh, "get_write_access");
2348                                 if (!ext3_journal_get_write_access(handle,
2349                                                                    parent_bh)){
2350                                         *p = 0;
2351                                         BUFFER_TRACE(parent_bh,
2352                                         "call ext3_journal_dirty_metadata");
2353                                         ext3_journal_dirty_metadata(handle,
2354                                                                     parent_bh);
2355                                 }
2356                         }
2357                 }
2358         } else {
2359                 /* We have reached the bottom of the tree. */
2360                 BUFFER_TRACE(parent_bh, "free data blocks");
2361                 ext3_free_data(handle, inode, parent_bh, first, last);
2362         }
2363 }
2364
2365 int ext3_can_truncate(struct inode *inode)
2366 {
2367         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2368                 return 0;
2369         if (S_ISREG(inode->i_mode))
2370                 return 1;
2371         if (S_ISDIR(inode->i_mode))
2372                 return 1;
2373         if (S_ISLNK(inode->i_mode))
2374                 return !ext3_inode_is_fast_symlink(inode);
2375         return 0;
2376 }
2377
2378 /*
2379  * ext3_truncate()
2380  *
2381  * We block out ext3_get_block() block instantiations across the entire
2382  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2383  * simultaneously on behalf of the same inode.
2384  *
2385  * As we work through the truncate and commmit bits of it to the journal there
2386  * is one core, guiding principle: the file's tree must always be consistent on
2387  * disk.  We must be able to restart the truncate after a crash.
2388  *
2389  * The file's tree may be transiently inconsistent in memory (although it
2390  * probably isn't), but whenever we close off and commit a journal transaction,
2391  * the contents of (the filesystem + the journal) must be consistent and
2392  * restartable.  It's pretty simple, really: bottom up, right to left (although
2393  * left-to-right works OK too).
2394  *
2395  * Note that at recovery time, journal replay occurs *before* the restart of
2396  * truncate against the orphan inode list.
2397  *
2398  * The committed inode has the new, desired i_size (which is the same as
2399  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2400  * that this inode's truncate did not complete and it will again call
2401  * ext3_truncate() to have another go.  So there will be instantiated blocks
2402  * to the right of the truncation point in a crashed ext3 filesystem.  But
2403  * that's fine - as long as they are linked from the inode, the post-crash
2404  * ext3_truncate() run will find them and release them.
2405  */
2406 void ext3_truncate(struct inode *inode)
2407 {
2408         handle_t *handle;
2409         struct ext3_inode_info *ei = EXT3_I(inode);
2410         __le32 *i_data = ei->i_data;
2411         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2412         struct address_space *mapping = inode->i_mapping;
2413         int offsets[4];
2414         Indirect chain[4];
2415         Indirect *partial;
2416         __le32 nr = 0;
2417         int n;
2418         long last_block;
2419         unsigned blocksize = inode->i_sb->s_blocksize;
2420         struct page *page;
2421
2422         if (!ext3_can_truncate(inode))
2423                 goto out_notrans;
2424
2425         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2426                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2427
2428         /*
2429          * We have to lock the EOF page here, because lock_page() nests
2430          * outside journal_start().
2431          */
2432         if ((inode->i_size & (blocksize - 1)) == 0) {
2433                 /* Block boundary? Nothing to do */
2434                 page = NULL;
2435         } else {
2436                 page = grab_cache_page(mapping,
2437                                 inode->i_size >> PAGE_CACHE_SHIFT);
2438                 if (!page)
2439                         goto out_notrans;
2440         }
2441
2442         handle = start_transaction(inode);
2443         if (IS_ERR(handle)) {
2444                 if (page) {
2445                         clear_highpage(page);
2446                         flush_dcache_page(page);
2447                         unlock_page(page);
2448                         page_cache_release(page);
2449                 }
2450                 goto out_notrans;
2451         }
2452
2453         last_block = (inode->i_size + blocksize-1)
2454                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2455
2456         if (page)
2457                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2458
2459         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2460         if (n == 0)
2461                 goto out_stop;  /* error */
2462
2463         /*
2464          * OK.  This truncate is going to happen.  We add the inode to the
2465          * orphan list, so that if this truncate spans multiple transactions,
2466          * and we crash, we will resume the truncate when the filesystem
2467          * recovers.  It also marks the inode dirty, to catch the new size.
2468          *
2469          * Implication: the file must always be in a sane, consistent
2470          * truncatable state while each transaction commits.
2471          */
2472         if (ext3_orphan_add(handle, inode))
2473                 goto out_stop;
2474
2475         /*
2476          * The orphan list entry will now protect us from any crash which
2477          * occurs before the truncate completes, so it is now safe to propagate
2478          * the new, shorter inode size (held for now in i_size) into the
2479          * on-disk inode. We do this via i_disksize, which is the value which
2480          * ext3 *really* writes onto the disk inode.
2481          */
2482         ei->i_disksize = inode->i_size;
2483
2484         /*
2485          * From here we block out all ext3_get_block() callers who want to
2486          * modify the block allocation tree.
2487          */
2488         mutex_lock(&ei->truncate_mutex);
2489
2490         if (n == 1) {           /* direct blocks */
2491                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2492                                i_data + EXT3_NDIR_BLOCKS);
2493                 goto do_indirects;
2494         }
2495
2496         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2497         /* Kill the top of shared branch (not detached) */
2498         if (nr) {
2499                 if (partial == chain) {
2500                         /* Shared branch grows from the inode */
2501                         ext3_free_branches(handle, inode, NULL,
2502                                            &nr, &nr+1, (chain+n-1) - partial);
2503                         *partial->p = 0;
2504                         /*
2505                          * We mark the inode dirty prior to restart,
2506                          * and prior to stop.  No need for it here.
2507                          */
2508                 } else {
2509                         /* Shared branch grows from an indirect block */
2510                         BUFFER_TRACE(partial->bh, "get_write_access");
2511                         ext3_free_branches(handle, inode, partial->bh,
2512                                         partial->p,
2513                                         partial->p+1, (chain+n-1) - partial);
2514                 }
2515         }
2516         /* Clear the ends of indirect blocks on the shared branch */
2517         while (partial > chain) {
2518                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2519                                    (__le32*)partial->bh->b_data+addr_per_block,
2520                                    (chain+n-1) - partial);
2521                 BUFFER_TRACE(partial->bh, "call brelse");
2522                 brelse (partial->bh);
2523                 partial--;
2524         }
2525 do_indirects:
2526         /* Kill the remaining (whole) subtrees */
2527         switch (offsets[0]) {
2528         default:
2529                 nr = i_data[EXT3_IND_BLOCK];
2530                 if (nr) {
2531                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2532                         i_data[EXT3_IND_BLOCK] = 0;
2533                 }
2534         case EXT3_IND_BLOCK:
2535                 nr = i_data[EXT3_DIND_BLOCK];
2536                 if (nr) {
2537                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2538                         i_data[EXT3_DIND_BLOCK] = 0;
2539                 }
2540         case EXT3_DIND_BLOCK:
2541                 nr = i_data[EXT3_TIND_BLOCK];
2542                 if (nr) {
2543                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2544                         i_data[EXT3_TIND_BLOCK] = 0;
2545                 }
2546         case EXT3_TIND_BLOCK:
2547                 ;
2548         }
2549
2550         ext3_discard_reservation(inode);
2551
2552         mutex_unlock(&ei->truncate_mutex);
2553         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2554         ext3_mark_inode_dirty(handle, inode);
2555
2556         /*
2557          * In a multi-transaction truncate, we only make the final transaction
2558          * synchronous
2559          */
2560         if (IS_SYNC(inode))
2561                 handle->h_sync = 1;
2562 out_stop:
2563         /*
2564          * If this was a simple ftruncate(), and the file will remain alive
2565          * then we need to clear up the orphan record which we created above.
2566          * However, if this was a real unlink then we were called by
2567          * ext3_delete_inode(), and we allow that function to clean up the
2568          * orphan info for us.
2569          */
2570         if (inode->i_nlink)
2571                 ext3_orphan_del(handle, inode);
2572
2573         ext3_journal_stop(handle);
2574         return;
2575 out_notrans:
2576         /*
2577          * Delete the inode from orphan list so that it doesn't stay there
2578          * forever and trigger assertion on umount.
2579          */
2580         if (inode->i_nlink)
2581                 ext3_orphan_del(NULL, inode);
2582 }
2583
2584 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2585                 unsigned long ino, struct ext3_iloc *iloc)
2586 {
2587         unsigned long block_group;
2588         unsigned long offset;
2589         ext3_fsblk_t block;
2590         struct ext3_group_desc *gdp;
2591
2592         if (!ext3_valid_inum(sb, ino)) {
2593                 /*
2594                  * This error is already checked for in namei.c unless we are
2595                  * looking at an NFS filehandle, in which case no error
2596                  * report is needed
2597                  */
2598                 return 0;
2599         }
2600
2601         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2602         gdp = ext3_get_group_desc(sb, block_group, NULL);
2603         if (!gdp)
2604                 return 0;
2605         /*
2606          * Figure out the offset within the block group inode table
2607          */
2608         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2609                 EXT3_INODE_SIZE(sb);
2610         block = le32_to_cpu(gdp->bg_inode_table) +
2611                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2612
2613         iloc->block_group = block_group;
2614         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2615         return block;
2616 }
2617
2618 /*
2619  * ext3_get_inode_loc returns with an extra refcount against the inode's
2620  * underlying buffer_head on success. If 'in_mem' is true, we have all
2621  * data in memory that is needed to recreate the on-disk version of this
2622  * inode.
2623  */
2624 static int __ext3_get_inode_loc(struct inode *inode,
2625                                 struct ext3_iloc *iloc, int in_mem)
2626 {
2627         ext3_fsblk_t block;
2628         struct buffer_head *bh;
2629
2630         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2631         if (!block)
2632                 return -EIO;
2633
2634         bh = sb_getblk(inode->i_sb, block);
2635         if (!bh) {
2636                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2637                                 "unable to read inode block - "
2638                                 "inode=%lu, block="E3FSBLK,
2639                                  inode->i_ino, block);
2640                 return -EIO;
2641         }
2642         if (!buffer_uptodate(bh)) {
2643                 lock_buffer(bh);
2644
2645                 /*
2646                  * If the buffer has the write error flag, we have failed
2647                  * to write out another inode in the same block.  In this
2648                  * case, we don't have to read the block because we may
2649                  * read the old inode data successfully.
2650                  */
2651                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2652                         set_buffer_uptodate(bh);
2653
2654                 if (buffer_uptodate(bh)) {
2655                         /* someone brought it uptodate while we waited */
2656                         unlock_buffer(bh);
2657                         goto has_buffer;
2658                 }
2659
2660                 /*
2661                  * If we have all information of the inode in memory and this
2662                  * is the only valid inode in the block, we need not read the
2663                  * block.
2664                  */
2665                 if (in_mem) {
2666                         struct buffer_head *bitmap_bh;
2667                         struct ext3_group_desc *desc;
2668                         int inodes_per_buffer;
2669                         int inode_offset, i;
2670                         int block_group;
2671                         int start;
2672
2673                         block_group = (inode->i_ino - 1) /
2674                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2675                         inodes_per_buffer = bh->b_size /
2676                                 EXT3_INODE_SIZE(inode->i_sb);
2677                         inode_offset = ((inode->i_ino - 1) %
2678                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2679                         start = inode_offset & ~(inodes_per_buffer - 1);
2680
2681                         /* Is the inode bitmap in cache? */
2682                         desc = ext3_get_group_desc(inode->i_sb,
2683                                                 block_group, NULL);
2684                         if (!desc)
2685                                 goto make_io;
2686
2687                         bitmap_bh = sb_getblk(inode->i_sb,
2688                                         le32_to_cpu(desc->bg_inode_bitmap));
2689                         if (!bitmap_bh)
2690                                 goto make_io;
2691
2692                         /*
2693                          * If the inode bitmap isn't in cache then the
2694                          * optimisation may end up performing two reads instead
2695                          * of one, so skip it.
2696                          */
2697                         if (!buffer_uptodate(bitmap_bh)) {
2698                                 brelse(bitmap_bh);
2699                                 goto make_io;
2700                         }
2701                         for (i = start; i < start + inodes_per_buffer; i++) {
2702                                 if (i == inode_offset)
2703                                         continue;
2704                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2705                                         break;
2706                         }
2707                         brelse(bitmap_bh);
2708                         if (i == start + inodes_per_buffer) {
2709                                 /* all other inodes are free, so skip I/O */
2710                                 memset(bh->b_data, 0, bh->b_size);
2711                                 set_buffer_uptodate(bh);
2712                                 unlock_buffer(bh);
2713                                 goto has_buffer;
2714                         }
2715                 }
2716
2717 make_io:
2718                 /*
2719                  * There are other valid inodes in the buffer, this inode
2720                  * has in-inode xattrs, or we don't have this inode in memory.
2721                  * Read the block from disk.
2722                  */
2723                 get_bh(bh);
2724                 bh->b_end_io = end_buffer_read_sync;
2725                 submit_bh(READ_META, bh);
2726                 wait_on_buffer(bh);
2727                 if (!buffer_uptodate(bh)) {
2728                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2729                                         "unable to read inode block - "
2730                                         "inode=%lu, block="E3FSBLK,
2731                                         inode->i_ino, block);
2732                         brelse(bh);
2733                         return -EIO;
2734                 }
2735         }
2736 has_buffer:
2737         iloc->bh = bh;
2738         return 0;
2739 }
2740
2741 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2742 {
2743         /* We have all inode data except xattrs in memory here. */
2744         return __ext3_get_inode_loc(inode, iloc,
2745                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2746 }
2747
2748 void ext3_set_inode_flags(struct inode *inode)
2749 {
2750         unsigned int flags = EXT3_I(inode)->i_flags;
2751
2752         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2753         if (flags & EXT3_SYNC_FL)
2754                 inode->i_flags |= S_SYNC;
2755         if (flags & EXT3_APPEND_FL)
2756                 inode->i_flags |= S_APPEND;
2757         if (flags & EXT3_IMMUTABLE_FL)
2758                 inode->i_flags |= S_IMMUTABLE;
2759         if (flags & EXT3_NOATIME_FL)
2760                 inode->i_flags |= S_NOATIME;
2761         if (flags & EXT3_DIRSYNC_FL)
2762                 inode->i_flags |= S_DIRSYNC;
2763 }
2764
2765 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2766 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2767 {
2768         unsigned int flags = ei->vfs_inode.i_flags;
2769
2770         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2771                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2772         if (flags & S_SYNC)
2773                 ei->i_flags |= EXT3_SYNC_FL;
2774         if (flags & S_APPEND)
2775                 ei->i_flags |= EXT3_APPEND_FL;
2776         if (flags & S_IMMUTABLE)
2777                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2778         if (flags & S_NOATIME)
2779                 ei->i_flags |= EXT3_NOATIME_FL;
2780         if (flags & S_DIRSYNC)
2781                 ei->i_flags |= EXT3_DIRSYNC_FL;
2782 }
2783
2784 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2785 {
2786         struct ext3_iloc iloc;
2787         struct ext3_inode *raw_inode;
2788         struct ext3_inode_info *ei;
2789         struct buffer_head *bh;
2790         struct inode *inode;
2791         journal_t *journal = EXT3_SB(sb)->s_journal;
2792         transaction_t *transaction;
2793         long ret;
2794         int block;
2795
2796         inode = iget_locked(sb, ino);
2797         if (!inode)
2798                 return ERR_PTR(-ENOMEM);
2799         if (!(inode->i_state & I_NEW))
2800                 return inode;
2801
2802         ei = EXT3_I(inode);
2803         ei->i_block_alloc_info = NULL;
2804
2805         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2806         if (ret < 0)
2807                 goto bad_inode;
2808         bh = iloc.bh;
2809         raw_inode = ext3_raw_inode(&iloc);
2810         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2811         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2812         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2813         if(!(test_opt (inode->i_sb, NO_UID32))) {
2814                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2815                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2816         }
2817         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2818         inode->i_size = le32_to_cpu(raw_inode->i_size);
2819         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2820         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2821         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2822         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2823
2824         ei->i_state_flags = 0;
2825         ei->i_dir_start_lookup = 0;
2826         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2827         /* We now have enough fields to check if the inode was active or not.
2828          * This is needed because nfsd might try to access dead inodes
2829          * the test is that same one that e2fsck uses
2830          * NeilBrown 1999oct15
2831          */
2832         if (inode->i_nlink == 0) {
2833                 if (inode->i_mode == 0 ||
2834                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2835                         /* this inode is deleted */
2836                         brelse (bh);
2837                         ret = -ESTALE;
2838                         goto bad_inode;
2839                 }
2840                 /* The only unlinked inodes we let through here have
2841                  * valid i_mode and are being read by the orphan
2842                  * recovery code: that's fine, we're about to complete
2843                  * the process of deleting those. */
2844         }
2845         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2846         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2847 #ifdef EXT3_FRAGMENTS
2848         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2849         ei->i_frag_no = raw_inode->i_frag;
2850         ei->i_frag_size = raw_inode->i_fsize;
2851 #endif
2852         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2853         if (!S_ISREG(inode->i_mode)) {
2854                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2855         } else {
2856                 inode->i_size |=
2857                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2858         }
2859         ei->i_disksize = inode->i_size;
2860         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2861         ei->i_block_group = iloc.block_group;
2862         /*
2863          * NOTE! The in-memory inode i_data array is in little-endian order
2864          * even on big-endian machines: we do NOT byteswap the block numbers!
2865          */
2866         for (block = 0; block < EXT3_N_BLOCKS; block++)
2867                 ei->i_data[block] = raw_inode->i_block[block];
2868         INIT_LIST_HEAD(&ei->i_orphan);
2869
2870         /*
2871          * Set transaction id's of transactions that have to be committed
2872          * to finish f[data]sync. We set them to currently running transaction
2873          * as we cannot be sure that the inode or some of its metadata isn't
2874          * part of the transaction - the inode could have been reclaimed and
2875          * now it is reread from disk.
2876          */
2877         if (journal) {
2878                 tid_t tid;
2879
2880                 spin_lock(&journal->j_state_lock);
2881                 if (journal->j_running_transaction)
2882                         transaction = journal->j_running_transaction;
2883                 else
2884                         transaction = journal->j_committing_transaction;
2885                 if (transaction)
2886                         tid = transaction->t_tid;
2887                 else
2888                         tid = journal->j_commit_sequence;
2889                 spin_unlock(&journal->j_state_lock);
2890                 atomic_set(&ei->i_sync_tid, tid);
2891                 atomic_set(&ei->i_datasync_tid, tid);
2892         }
2893
2894         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2895             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2896                 /*
2897                  * When mke2fs creates big inodes it does not zero out
2898                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2899                  * so ignore those first few inodes.
2900                  */
2901                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2902                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2903                     EXT3_INODE_SIZE(inode->i_sb)) {
2904                         brelse (bh);
2905                         ret = -EIO;
2906                         goto bad_inode;
2907                 }
2908                 if (ei->i_extra_isize == 0) {
2909                         /* The extra space is currently unused. Use it. */
2910                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2911                                             EXT3_GOOD_OLD_INODE_SIZE;
2912                 } else {
2913                         __le32 *magic = (void *)raw_inode +
2914                                         EXT3_GOOD_OLD_INODE_SIZE +
2915                                         ei->i_extra_isize;
2916                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2917                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2918                 }
2919         } else
2920                 ei->i_extra_isize = 0;
2921
2922         if (S_ISREG(inode->i_mode)) {
2923                 inode->i_op = &ext3_file_inode_operations;
2924                 inode->i_fop = &ext3_file_operations;
2925                 ext3_set_aops(inode);
2926         } else if (S_ISDIR(inode->i_mode)) {
2927                 inode->i_op = &ext3_dir_inode_operations;
2928                 inode->i_fop = &ext3_dir_operations;
2929         } else if (S_ISLNK(inode->i_mode)) {
2930                 if (ext3_inode_is_fast_symlink(inode)) {
2931                         inode->i_op = &ext3_fast_symlink_inode_operations;
2932                         nd_terminate_link(ei->i_data, inode->i_size,
2933                                 sizeof(ei->i_data) - 1);
2934                 } else {
2935                         inode->i_op = &ext3_symlink_inode_operations;
2936                         ext3_set_aops(inode);
2937                 }
2938         } else {
2939                 inode->i_op = &ext3_special_inode_operations;
2940                 if (raw_inode->i_block[0])
2941                         init_special_inode(inode, inode->i_mode,
2942                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2943                 else
2944                         init_special_inode(inode, inode->i_mode,
2945                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2946         }
2947         brelse (iloc.bh);
2948         ext3_set_inode_flags(inode);
2949         unlock_new_inode(inode);
2950         return inode;
2951
2952 bad_inode:
2953         iget_failed(inode);
2954         return ERR_PTR(ret);
2955 }
2956
2957 /*
2958  * Post the struct inode info into an on-disk inode location in the
2959  * buffer-cache.  This gobbles the caller's reference to the
2960  * buffer_head in the inode location struct.
2961  *
2962  * The caller must have write access to iloc->bh.
2963  */
2964 static int ext3_do_update_inode(handle_t *handle,
2965                                 struct inode *inode,
2966                                 struct ext3_iloc *iloc)
2967 {
2968         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2969         struct ext3_inode_info *ei = EXT3_I(inode);
2970         struct buffer_head *bh = iloc->bh;
2971         int err = 0, rc, block;
2972
2973 again:
2974         /* we can't allow multiple procs in here at once, its a bit racey */
2975         lock_buffer(bh);
2976
2977         /* For fields not not tracking in the in-memory inode,
2978          * initialise them to zero for new inodes. */
2979         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
2980                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2981
2982         ext3_get_inode_flags(ei);
2983         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2984         if(!(test_opt(inode->i_sb, NO_UID32))) {
2985                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2986                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2987 /*
2988  * Fix up interoperability with old kernels. Otherwise, old inodes get
2989  * re-used with the upper 16 bits of the uid/gid intact
2990  */
2991                 if(!ei->i_dtime) {
2992                         raw_inode->i_uid_high =
2993                                 cpu_to_le16(high_16_bits(inode->i_uid));
2994                         raw_inode->i_gid_high =
2995                                 cpu_to_le16(high_16_bits(inode->i_gid));
2996                 } else {
2997                         raw_inode->i_uid_high = 0;
2998                         raw_inode->i_gid_high = 0;
2999                 }
3000         } else {
3001                 raw_inode->i_uid_low =
3002                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3003                 raw_inode->i_gid_low =
3004                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3005                 raw_inode->i_uid_high = 0;
3006                 raw_inode->i_gid_high = 0;
3007         }
3008         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3009         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3010         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3011         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3012         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3013         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3014         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3015         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3016 #ifdef EXT3_FRAGMENTS
3017         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3018         raw_inode->i_frag = ei->i_frag_no;
3019         raw_inode->i_fsize = ei->i_frag_size;
3020 #endif
3021         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3022         if (!S_ISREG(inode->i_mode)) {
3023                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3024         } else {
3025                 raw_inode->i_size_high =
3026                         cpu_to_le32(ei->i_disksize >> 32);
3027                 if (ei->i_disksize > 0x7fffffffULL) {
3028                         struct super_block *sb = inode->i_sb;
3029                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3030                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3031                             EXT3_SB(sb)->s_es->s_rev_level ==
3032                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3033                                /* If this is the first large file
3034                                 * created, add a flag to the superblock.
3035                                 */
3036                                 unlock_buffer(bh);
3037                                 err = ext3_journal_get_write_access(handle,
3038                                                 EXT3_SB(sb)->s_sbh);
3039                                 if (err)
3040                                         goto out_brelse;
3041
3042                                 ext3_update_dynamic_rev(sb);
3043                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3044                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3045                                 handle->h_sync = 1;
3046                                 err = ext3_journal_dirty_metadata(handle,
3047                                                 EXT3_SB(sb)->s_sbh);
3048                                 /* get our lock and start over */
3049                                 goto again;
3050                         }
3051                 }
3052         }
3053         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3054         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3055                 if (old_valid_dev(inode->i_rdev)) {
3056                         raw_inode->i_block[0] =
3057                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3058                         raw_inode->i_block[1] = 0;
3059                 } else {
3060                         raw_inode->i_block[0] = 0;
3061                         raw_inode->i_block[1] =
3062                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3063                         raw_inode->i_block[2] = 0;
3064                 }
3065         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3066                 raw_inode->i_block[block] = ei->i_data[block];
3067
3068         if (ei->i_extra_isize)
3069                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3070
3071         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3072         unlock_buffer(bh);
3073         rc = ext3_journal_dirty_metadata(handle, bh);
3074         if (!err)
3075                 err = rc;
3076         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3077
3078         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3079 out_brelse:
3080         brelse (bh);
3081         ext3_std_error(inode->i_sb, err);
3082         return err;
3083 }
3084
3085 /*
3086  * ext3_write_inode()
3087  *
3088  * We are called from a few places:
3089  *
3090  * - Within generic_file_write() for O_SYNC files.
3091  *   Here, there will be no transaction running. We wait for any running
3092  *   trasnaction to commit.
3093  *
3094  * - Within sys_sync(), kupdate and such.
3095  *   We wait on commit, if tol to.
3096  *
3097  * - Within prune_icache() (PF_MEMALLOC == true)
3098  *   Here we simply return.  We can't afford to block kswapd on the
3099  *   journal commit.
3100  *
3101  * In all cases it is actually safe for us to return without doing anything,
3102  * because the inode has been copied into a raw inode buffer in
3103  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3104  * knfsd.
3105  *
3106  * Note that we are absolutely dependent upon all inode dirtiers doing the
3107  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3108  * which we are interested.
3109  *
3110  * It would be a bug for them to not do this.  The code:
3111  *
3112  *      mark_inode_dirty(inode)
3113  *      stuff();
3114  *      inode->i_size = expr;
3115  *
3116  * is in error because a kswapd-driven write_inode() could occur while
3117  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3118  * will no longer be on the superblock's dirty inode list.
3119  */
3120 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3121 {
3122         if (current->flags & PF_MEMALLOC)
3123                 return 0;
3124
3125         if (ext3_journal_current_handle()) {
3126                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3127                 dump_stack();
3128                 return -EIO;
3129         }
3130
3131         if (wbc->sync_mode != WB_SYNC_ALL)
3132                 return 0;
3133
3134         return ext3_force_commit(inode->i_sb);
3135 }
3136
3137 /*
3138  * ext3_setattr()
3139  *
3140  * Called from notify_change.
3141  *
3142  * We want to trap VFS attempts to truncate the file as soon as
3143  * possible.  In particular, we want to make sure that when the VFS
3144  * shrinks i_size, we put the inode on the orphan list and modify
3145  * i_disksize immediately, so that during the subsequent flushing of
3146  * dirty pages and freeing of disk blocks, we can guarantee that any
3147  * commit will leave the blocks being flushed in an unused state on
3148  * disk.  (On recovery, the inode will get truncated and the blocks will
3149  * be freed, so we have a strong guarantee that no future commit will
3150  * leave these blocks visible to the user.)
3151  *
3152  * Called with inode->sem down.
3153  */
3154 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3155 {
3156         struct inode *inode = dentry->d_inode;
3157         int error, rc = 0;
3158         const unsigned int ia_valid = attr->ia_valid;
3159
3160         error = inode_change_ok(inode, attr);
3161         if (error)
3162                 return error;
3163
3164         if (is_quota_modification(inode, attr))
3165                 dquot_initialize(inode);
3166         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3167                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3168                 handle_t *handle;
3169
3170                 /* (user+group)*(old+new) structure, inode write (sb,
3171                  * inode block, ? - but truncate inode update has it) */
3172                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3173                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3174                 if (IS_ERR(handle)) {
3175                         error = PTR_ERR(handle);
3176                         goto err_out;
3177                 }
3178                 error = dquot_transfer(inode, attr);
3179                 if (error) {
3180                         ext3_journal_stop(handle);
3181                         return error;
3182                 }
3183                 /* Update corresponding info in inode so that everything is in
3184                  * one transaction */
3185                 if (attr->ia_valid & ATTR_UID)
3186                         inode->i_uid = attr->ia_uid;
3187                 if (attr->ia_valid & ATTR_GID)
3188                         inode->i_gid = attr->ia_gid;
3189                 error = ext3_mark_inode_dirty(handle, inode);
3190                 ext3_journal_stop(handle);
3191         }
3192
3193         if (S_ISREG(inode->i_mode) &&
3194             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3195                 handle_t *handle;
3196
3197                 handle = ext3_journal_start(inode, 3);
3198                 if (IS_ERR(handle)) {
3199                         error = PTR_ERR(handle);
3200                         goto err_out;
3201                 }
3202
3203                 error = ext3_orphan_add(handle, inode);
3204                 EXT3_I(inode)->i_disksize = attr->ia_size;
3205                 rc = ext3_mark_inode_dirty(handle, inode);
3206                 if (!error)
3207                         error = rc;
3208                 ext3_journal_stop(handle);
3209         }
3210
3211         rc = inode_setattr(inode, attr);
3212
3213         if (!rc && (ia_valid & ATTR_MODE))
3214                 rc = ext3_acl_chmod(inode);
3215
3216 err_out:
3217         ext3_std_error(inode->i_sb, error);
3218         if (!error)
3219                 error = rc;
3220         return error;
3221 }
3222
3223
3224 /*
3225  * How many blocks doth make a writepage()?
3226  *
3227  * With N blocks per page, it may be:
3228  * N data blocks
3229  * 2 indirect block
3230  * 2 dindirect
3231  * 1 tindirect
3232  * N+5 bitmap blocks (from the above)
3233  * N+5 group descriptor summary blocks
3234  * 1 inode block
3235  * 1 superblock.
3236  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3237  *
3238  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3239  *
3240  * With ordered or writeback data it's the same, less the N data blocks.
3241  *
3242  * If the inode's direct blocks can hold an integral number of pages then a
3243  * page cannot straddle two indirect blocks, and we can only touch one indirect
3244  * and dindirect block, and the "5" above becomes "3".
3245  *
3246  * This still overestimates under most circumstances.  If we were to pass the
3247  * start and end offsets in here as well we could do block_to_path() on each
3248  * block and work out the exact number of indirects which are touched.  Pah.
3249  */
3250
3251 static int ext3_writepage_trans_blocks(struct inode *inode)
3252 {
3253         int bpp = ext3_journal_blocks_per_page(inode);
3254         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3255         int ret;
3256
3257         if (ext3_should_journal_data(inode))
3258                 ret = 3 * (bpp + indirects) + 2;
3259         else
3260                 ret = 2 * (bpp + indirects) + 2;
3261
3262 #ifdef CONFIG_QUOTA
3263         /* We know that structure was already allocated during dquot_initialize so
3264          * we will be updating only the data blocks + inodes */
3265         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3266 #endif
3267
3268         return ret;
3269 }
3270
3271 /*
3272  * The caller must have previously called ext3_reserve_inode_write().
3273  * Give this, we know that the caller already has write access to iloc->bh.
3274  */
3275 int ext3_mark_iloc_dirty(handle_t *handle,
3276                 struct inode *inode, struct ext3_iloc *iloc)
3277 {
3278         int err = 0;
3279
3280         /* the do_update_inode consumes one bh->b_count */
3281         get_bh(iloc->bh);
3282
3283         /* ext3_do_update_inode() does journal_dirty_metadata */
3284         err = ext3_do_update_inode(handle, inode, iloc);
3285         put_bh(iloc->bh);
3286         return err;
3287 }
3288
3289 /*
3290  * On success, We end up with an outstanding reference count against
3291  * iloc->bh.  This _must_ be cleaned up later.
3292  */
3293
3294 int
3295 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3296                          struct ext3_iloc *iloc)
3297 {
3298         int err = 0;
3299         if (handle) {
3300                 err = ext3_get_inode_loc(inode, iloc);
3301                 if (!err) {
3302                         BUFFER_TRACE(iloc->bh, "get_write_access");
3303                         err = ext3_journal_get_write_access(handle, iloc->bh);
3304                         if (err) {
3305                                 brelse(iloc->bh);
3306                                 iloc->bh = NULL;
3307                         }
3308                 }
3309         }
3310         ext3_std_error(inode->i_sb, err);
3311         return err;
3312 }
3313
3314 /*
3315  * What we do here is to mark the in-core inode as clean with respect to inode
3316  * dirtiness (it may still be data-dirty).
3317  * This means that the in-core inode may be reaped by prune_icache
3318  * without having to perform any I/O.  This is a very good thing,
3319  * because *any* task may call prune_icache - even ones which
3320  * have a transaction open against a different journal.
3321  *
3322  * Is this cheating?  Not really.  Sure, we haven't written the
3323  * inode out, but prune_icache isn't a user-visible syncing function.
3324  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3325  * we start and wait on commits.
3326  *
3327  * Is this efficient/effective?  Well, we're being nice to the system
3328  * by cleaning up our inodes proactively so they can be reaped
3329  * without I/O.  But we are potentially leaving up to five seconds'
3330  * worth of inodes floating about which prune_icache wants us to
3331  * write out.  One way to fix that would be to get prune_icache()
3332  * to do a write_super() to free up some memory.  It has the desired
3333  * effect.
3334  */
3335 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3336 {
3337         struct ext3_iloc iloc;
3338         int err;
3339
3340         might_sleep();
3341         err = ext3_reserve_inode_write(handle, inode, &iloc);
3342         if (!err)
3343                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3344         return err;
3345 }
3346
3347 /*
3348  * ext3_dirty_inode() is called from __mark_inode_dirty()
3349  *
3350  * We're really interested in the case where a file is being extended.
3351  * i_size has been changed by generic_commit_write() and we thus need
3352  * to include the updated inode in the current transaction.
3353  *
3354  * Also, dquot_alloc_space() will always dirty the inode when blocks
3355  * are allocated to the file.
3356  *
3357  * If the inode is marked synchronous, we don't honour that here - doing
3358  * so would cause a commit on atime updates, which we don't bother doing.
3359  * We handle synchronous inodes at the highest possible level.
3360  */
3361 void ext3_dirty_inode(struct inode *inode)
3362 {
3363         handle_t *current_handle = ext3_journal_current_handle();
3364         handle_t *handle;
3365
3366         handle = ext3_journal_start(inode, 2);
3367         if (IS_ERR(handle))
3368                 goto out;
3369         if (current_handle &&
3370                 current_handle->h_transaction != handle->h_transaction) {
3371                 /* This task has a transaction open against a different fs */
3372                 printk(KERN_EMERG "%s: transactions do not match!\n",
3373                        __func__);
3374         } else {
3375                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3376                                 current_handle);
3377                 ext3_mark_inode_dirty(handle, inode);
3378         }
3379         ext3_journal_stop(handle);
3380 out:
3381         return;
3382 }
3383
3384 #if 0
3385 /*
3386  * Bind an inode's backing buffer_head into this transaction, to prevent
3387  * it from being flushed to disk early.  Unlike
3388  * ext3_reserve_inode_write, this leaves behind no bh reference and
3389  * returns no iloc structure, so the caller needs to repeat the iloc
3390  * lookup to mark the inode dirty later.
3391  */
3392 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3393 {
3394         struct ext3_iloc iloc;
3395
3396         int err = 0;
3397         if (handle) {
3398                 err = ext3_get_inode_loc(inode, &iloc);
3399                 if (!err) {
3400                         BUFFER_TRACE(iloc.bh, "get_write_access");
3401                         err = journal_get_write_access(handle, iloc.bh);
3402                         if (!err)
3403                                 err = ext3_journal_dirty_metadata(handle,
3404                                                                   iloc.bh);
3405                         brelse(iloc.bh);
3406                 }
3407         }
3408         ext3_std_error(inode->i_sb, err);
3409         return err;
3410 }
3411 #endif
3412
3413 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3414 {
3415         journal_t *journal;
3416         handle_t *handle;
3417         int err;
3418
3419         /*
3420          * We have to be very careful here: changing a data block's
3421          * journaling status dynamically is dangerous.  If we write a
3422          * data block to the journal, change the status and then delete
3423          * that block, we risk forgetting to revoke the old log record
3424          * from the journal and so a subsequent replay can corrupt data.
3425          * So, first we make sure that the journal is empty and that
3426          * nobody is changing anything.
3427          */
3428
3429         journal = EXT3_JOURNAL(inode);
3430         if (is_journal_aborted(journal))
3431                 return -EROFS;
3432
3433         journal_lock_updates(journal);
3434         journal_flush(journal);
3435
3436         /*
3437          * OK, there are no updates running now, and all cached data is
3438          * synced to disk.  We are now in a completely consistent state
3439          * which doesn't have anything in the journal, and we know that
3440          * no filesystem updates are running, so it is safe to modify
3441          * the inode's in-core data-journaling state flag now.
3442          */
3443
3444         if (val)
3445                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3446         else
3447                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3448         ext3_set_aops(inode);
3449
3450         journal_unlock_updates(journal);
3451
3452         /* Finally we can mark the inode as dirty. */
3453
3454         handle = ext3_journal_start(inode, 1);
3455         if (IS_ERR(handle))
3456                 return PTR_ERR(handle);
3457
3458         err = ext3_mark_inode_dirty(handle, inode);
3459         handle->h_sync = 1;
3460         ext3_journal_stop(handle);
3461         ext3_std_error(inode->i_sb, err);
3462
3463         return err;
3464 }