]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/extents.c
ext4: handle NULL p_ext in ext4_ext_next_allocated_block()
[karo-tx-linux.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45
46 #include <trace/events/ext4.h>
47
48 static int ext4_split_extent(handle_t *handle,
49                                 struct inode *inode,
50                                 struct ext4_ext_path *path,
51                                 struct ext4_map_blocks *map,
52                                 int split_flag,
53                                 int flags);
54
55 static int ext4_ext_truncate_extend_restart(handle_t *handle,
56                                             struct inode *inode,
57                                             int needed)
58 {
59         int err;
60
61         if (!ext4_handle_valid(handle))
62                 return 0;
63         if (handle->h_buffer_credits > needed)
64                 return 0;
65         err = ext4_journal_extend(handle, needed);
66         if (err <= 0)
67                 return err;
68         err = ext4_truncate_restart_trans(handle, inode, needed);
69         if (err == 0)
70                 err = -EAGAIN;
71
72         return err;
73 }
74
75 /*
76  * could return:
77  *  - EROFS
78  *  - ENOMEM
79  */
80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
81                                 struct ext4_ext_path *path)
82 {
83         if (path->p_bh) {
84                 /* path points to block */
85                 return ext4_journal_get_write_access(handle, path->p_bh);
86         }
87         /* path points to leaf/index in inode body */
88         /* we use in-core data, no need to protect them */
89         return 0;
90 }
91
92 /*
93  * could return:
94  *  - EROFS
95  *  - ENOMEM
96  *  - EIO
97  */
98 #define ext4_ext_dirty(handle, inode, path) \
99                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where, unsigned int line,
101                             handle_t *handle, struct inode *inode,
102                             struct ext4_ext_path *path)
103 {
104         int err;
105         if (path->p_bh) {
106                 /* path points to block */
107                 err = __ext4_handle_dirty_metadata(where, line, handle,
108                                                    inode, path->p_bh);
109         } else {
110                 /* path points to leaf/index in inode body */
111                 err = ext4_mark_inode_dirty(handle, inode);
112         }
113         return err;
114 }
115
116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
117                               struct ext4_ext_path *path,
118                               ext4_lblk_t block)
119 {
120         int depth;
121
122         if (path) {
123                 struct ext4_extent *ex;
124                 depth = path->p_depth;
125
126                 /*
127                  * Try to predict block placement assuming that we are
128                  * filling in a file which will eventually be
129                  * non-sparse --- i.e., in the case of libbfd writing
130                  * an ELF object sections out-of-order but in a way
131                  * the eventually results in a contiguous object or
132                  * executable file, or some database extending a table
133                  * space file.  However, this is actually somewhat
134                  * non-ideal if we are writing a sparse file such as
135                  * qemu or KVM writing a raw image file that is going
136                  * to stay fairly sparse, since it will end up
137                  * fragmenting the file system's free space.  Maybe we
138                  * should have some hueristics or some way to allow
139                  * userspace to pass a hint to file system,
140                  * especially if the latter case turns out to be
141                  * common.
142                  */
143                 ex = path[depth].p_ext;
144                 if (ex) {
145                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
146                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
147
148                         if (block > ext_block)
149                                 return ext_pblk + (block - ext_block);
150                         else
151                                 return ext_pblk - (ext_block - block);
152                 }
153
154                 /* it looks like index is empty;
155                  * try to find starting block from index itself */
156                 if (path[depth].p_bh)
157                         return path[depth].p_bh->b_blocknr;
158         }
159
160         /* OK. use inode's group */
161         return ext4_inode_to_goal_block(inode);
162 }
163
164 /*
165  * Allocation for a meta data block
166  */
167 static ext4_fsblk_t
168 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
169                         struct ext4_ext_path *path,
170                         struct ext4_extent *ex, int *err, unsigned int flags)
171 {
172         ext4_fsblk_t goal, newblock;
173
174         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
175         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
176                                         NULL, err);
177         return newblock;
178 }
179
180 static inline int ext4_ext_space_block(struct inode *inode, int check)
181 {
182         int size;
183
184         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
185                         / sizeof(struct ext4_extent);
186         if (!check) {
187 #ifdef AGGRESSIVE_TEST
188                 if (size > 6)
189                         size = 6;
190 #endif
191         }
192         return size;
193 }
194
195 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
196 {
197         int size;
198
199         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
200                         / sizeof(struct ext4_extent_idx);
201         if (!check) {
202 #ifdef AGGRESSIVE_TEST
203                 if (size > 5)
204                         size = 5;
205 #endif
206         }
207         return size;
208 }
209
210 static inline int ext4_ext_space_root(struct inode *inode, int check)
211 {
212         int size;
213
214         size = sizeof(EXT4_I(inode)->i_data);
215         size -= sizeof(struct ext4_extent_header);
216         size /= sizeof(struct ext4_extent);
217         if (!check) {
218 #ifdef AGGRESSIVE_TEST
219                 if (size > 3)
220                         size = 3;
221 #endif
222         }
223         return size;
224 }
225
226 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
227 {
228         int size;
229
230         size = sizeof(EXT4_I(inode)->i_data);
231         size -= sizeof(struct ext4_extent_header);
232         size /= sizeof(struct ext4_extent_idx);
233         if (!check) {
234 #ifdef AGGRESSIVE_TEST
235                 if (size > 4)
236                         size = 4;
237 #endif
238         }
239         return size;
240 }
241
242 /*
243  * Calculate the number of metadata blocks needed
244  * to allocate @blocks
245  * Worse case is one block per extent
246  */
247 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
248 {
249         struct ext4_inode_info *ei = EXT4_I(inode);
250         int idxs, num = 0;
251
252         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
253                 / sizeof(struct ext4_extent_idx));
254
255         /*
256          * If the new delayed allocation block is contiguous with the
257          * previous da block, it can share index blocks with the
258          * previous block, so we only need to allocate a new index
259          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
260          * an additional index block, and at ldxs**3 blocks, yet
261          * another index blocks.
262          */
263         if (ei->i_da_metadata_calc_len &&
264             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
265                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
266                         num++;
267                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
268                         num++;
269                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
270                         num++;
271                         ei->i_da_metadata_calc_len = 0;
272                 } else
273                         ei->i_da_metadata_calc_len++;
274                 ei->i_da_metadata_calc_last_lblock++;
275                 return num;
276         }
277
278         /*
279          * In the worst case we need a new set of index blocks at
280          * every level of the inode's extent tree.
281          */
282         ei->i_da_metadata_calc_len = 1;
283         ei->i_da_metadata_calc_last_lblock = lblock;
284         return ext_depth(inode) + 1;
285 }
286
287 static int
288 ext4_ext_max_entries(struct inode *inode, int depth)
289 {
290         int max;
291
292         if (depth == ext_depth(inode)) {
293                 if (depth == 0)
294                         max = ext4_ext_space_root(inode, 1);
295                 else
296                         max = ext4_ext_space_root_idx(inode, 1);
297         } else {
298                 if (depth == 0)
299                         max = ext4_ext_space_block(inode, 1);
300                 else
301                         max = ext4_ext_space_block_idx(inode, 1);
302         }
303
304         return max;
305 }
306
307 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
308 {
309         ext4_fsblk_t block = ext4_ext_pblock(ext);
310         int len = ext4_ext_get_actual_len(ext);
311
312         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
313 }
314
315 static int ext4_valid_extent_idx(struct inode *inode,
316                                 struct ext4_extent_idx *ext_idx)
317 {
318         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
319
320         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
321 }
322
323 static int ext4_valid_extent_entries(struct inode *inode,
324                                 struct ext4_extent_header *eh,
325                                 int depth)
326 {
327         struct ext4_extent *ext;
328         struct ext4_extent_idx *ext_idx;
329         unsigned short entries;
330         if (eh->eh_entries == 0)
331                 return 1;
332
333         entries = le16_to_cpu(eh->eh_entries);
334
335         if (depth == 0) {
336                 /* leaf entries */
337                 ext = EXT_FIRST_EXTENT(eh);
338                 while (entries) {
339                         if (!ext4_valid_extent(inode, ext))
340                                 return 0;
341                         ext++;
342                         entries--;
343                 }
344         } else {
345                 ext_idx = EXT_FIRST_INDEX(eh);
346                 while (entries) {
347                         if (!ext4_valid_extent_idx(inode, ext_idx))
348                                 return 0;
349                         ext_idx++;
350                         entries--;
351                 }
352         }
353         return 1;
354 }
355
356 static int __ext4_ext_check(const char *function, unsigned int line,
357                             struct inode *inode, struct ext4_extent_header *eh,
358                             int depth)
359 {
360         const char *error_msg;
361         int max = 0;
362
363         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
364                 error_msg = "invalid magic";
365                 goto corrupted;
366         }
367         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
368                 error_msg = "unexpected eh_depth";
369                 goto corrupted;
370         }
371         if (unlikely(eh->eh_max == 0)) {
372                 error_msg = "invalid eh_max";
373                 goto corrupted;
374         }
375         max = ext4_ext_max_entries(inode, depth);
376         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
377                 error_msg = "too large eh_max";
378                 goto corrupted;
379         }
380         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
381                 error_msg = "invalid eh_entries";
382                 goto corrupted;
383         }
384         if (!ext4_valid_extent_entries(inode, eh, depth)) {
385                 error_msg = "invalid extent entries";
386                 goto corrupted;
387         }
388         return 0;
389
390 corrupted:
391         ext4_error_inode(inode, function, line, 0,
392                         "bad header/extent: %s - magic %x, "
393                         "entries %u, max %u(%u), depth %u(%u)",
394                         error_msg, le16_to_cpu(eh->eh_magic),
395                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
396                         max, le16_to_cpu(eh->eh_depth), depth);
397
398         return -EIO;
399 }
400
401 #define ext4_ext_check(inode, eh, depth)        \
402         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
403
404 int ext4_ext_check_inode(struct inode *inode)
405 {
406         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
407 }
408
409 #ifdef EXT_DEBUG
410 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
411 {
412         int k, l = path->p_depth;
413
414         ext_debug("path:");
415         for (k = 0; k <= l; k++, path++) {
416                 if (path->p_idx) {
417                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
418                             ext4_idx_pblock(path->p_idx));
419                 } else if (path->p_ext) {
420                         ext_debug("  %d:[%d]%d:%llu ",
421                                   le32_to_cpu(path->p_ext->ee_block),
422                                   ext4_ext_is_uninitialized(path->p_ext),
423                                   ext4_ext_get_actual_len(path->p_ext),
424                                   ext4_ext_pblock(path->p_ext));
425                 } else
426                         ext_debug("  []");
427         }
428         ext_debug("\n");
429 }
430
431 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
432 {
433         int depth = ext_depth(inode);
434         struct ext4_extent_header *eh;
435         struct ext4_extent *ex;
436         int i;
437
438         if (!path)
439                 return;
440
441         eh = path[depth].p_hdr;
442         ex = EXT_FIRST_EXTENT(eh);
443
444         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
445
446         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
447                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
448                           ext4_ext_is_uninitialized(ex),
449                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
450         }
451         ext_debug("\n");
452 }
453
454 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
455                         ext4_fsblk_t newblock, int level)
456 {
457         int depth = ext_depth(inode);
458         struct ext4_extent *ex;
459
460         if (depth != level) {
461                 struct ext4_extent_idx *idx;
462                 idx = path[level].p_idx;
463                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
464                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
465                                         le32_to_cpu(idx->ei_block),
466                                         ext4_idx_pblock(idx),
467                                         newblock);
468                         idx++;
469                 }
470
471                 return;
472         }
473
474         ex = path[depth].p_ext;
475         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
476                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
477                                 le32_to_cpu(ex->ee_block),
478                                 ext4_ext_pblock(ex),
479                                 ext4_ext_is_uninitialized(ex),
480                                 ext4_ext_get_actual_len(ex),
481                                 newblock);
482                 ex++;
483         }
484 }
485
486 #else
487 #define ext4_ext_show_path(inode, path)
488 #define ext4_ext_show_leaf(inode, path)
489 #define ext4_ext_show_move(inode, path, newblock, level)
490 #endif
491
492 void ext4_ext_drop_refs(struct ext4_ext_path *path)
493 {
494         int depth = path->p_depth;
495         int i;
496
497         for (i = 0; i <= depth; i++, path++)
498                 if (path->p_bh) {
499                         brelse(path->p_bh);
500                         path->p_bh = NULL;
501                 }
502 }
503
504 /*
505  * ext4_ext_binsearch_idx:
506  * binary search for the closest index of the given block
507  * the header must be checked before calling this
508  */
509 static void
510 ext4_ext_binsearch_idx(struct inode *inode,
511                         struct ext4_ext_path *path, ext4_lblk_t block)
512 {
513         struct ext4_extent_header *eh = path->p_hdr;
514         struct ext4_extent_idx *r, *l, *m;
515
516
517         ext_debug("binsearch for %u(idx):  ", block);
518
519         l = EXT_FIRST_INDEX(eh) + 1;
520         r = EXT_LAST_INDEX(eh);
521         while (l <= r) {
522                 m = l + (r - l) / 2;
523                 if (block < le32_to_cpu(m->ei_block))
524                         r = m - 1;
525                 else
526                         l = m + 1;
527                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
528                                 m, le32_to_cpu(m->ei_block),
529                                 r, le32_to_cpu(r->ei_block));
530         }
531
532         path->p_idx = l - 1;
533         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
534                   ext4_idx_pblock(path->p_idx));
535
536 #ifdef CHECK_BINSEARCH
537         {
538                 struct ext4_extent_idx *chix, *ix;
539                 int k;
540
541                 chix = ix = EXT_FIRST_INDEX(eh);
542                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
543                   if (k != 0 &&
544                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
545                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
546                                        "first=0x%p\n", k,
547                                        ix, EXT_FIRST_INDEX(eh));
548                                 printk(KERN_DEBUG "%u <= %u\n",
549                                        le32_to_cpu(ix->ei_block),
550                                        le32_to_cpu(ix[-1].ei_block));
551                         }
552                         BUG_ON(k && le32_to_cpu(ix->ei_block)
553                                            <= le32_to_cpu(ix[-1].ei_block));
554                         if (block < le32_to_cpu(ix->ei_block))
555                                 break;
556                         chix = ix;
557                 }
558                 BUG_ON(chix != path->p_idx);
559         }
560 #endif
561
562 }
563
564 /*
565  * ext4_ext_binsearch:
566  * binary search for closest extent of the given block
567  * the header must be checked before calling this
568  */
569 static void
570 ext4_ext_binsearch(struct inode *inode,
571                 struct ext4_ext_path *path, ext4_lblk_t block)
572 {
573         struct ext4_extent_header *eh = path->p_hdr;
574         struct ext4_extent *r, *l, *m;
575
576         if (eh->eh_entries == 0) {
577                 /*
578                  * this leaf is empty:
579                  * we get such a leaf in split/add case
580                  */
581                 return;
582         }
583
584         ext_debug("binsearch for %u:  ", block);
585
586         l = EXT_FIRST_EXTENT(eh) + 1;
587         r = EXT_LAST_EXTENT(eh);
588
589         while (l <= r) {
590                 m = l + (r - l) / 2;
591                 if (block < le32_to_cpu(m->ee_block))
592                         r = m - 1;
593                 else
594                         l = m + 1;
595                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
596                                 m, le32_to_cpu(m->ee_block),
597                                 r, le32_to_cpu(r->ee_block));
598         }
599
600         path->p_ext = l - 1;
601         ext_debug("  -> %d:%llu:[%d]%d ",
602                         le32_to_cpu(path->p_ext->ee_block),
603                         ext4_ext_pblock(path->p_ext),
604                         ext4_ext_is_uninitialized(path->p_ext),
605                         ext4_ext_get_actual_len(path->p_ext));
606
607 #ifdef CHECK_BINSEARCH
608         {
609                 struct ext4_extent *chex, *ex;
610                 int k;
611
612                 chex = ex = EXT_FIRST_EXTENT(eh);
613                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
614                         BUG_ON(k && le32_to_cpu(ex->ee_block)
615                                           <= le32_to_cpu(ex[-1].ee_block));
616                         if (block < le32_to_cpu(ex->ee_block))
617                                 break;
618                         chex = ex;
619                 }
620                 BUG_ON(chex != path->p_ext);
621         }
622 #endif
623
624 }
625
626 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
627 {
628         struct ext4_extent_header *eh;
629
630         eh = ext_inode_hdr(inode);
631         eh->eh_depth = 0;
632         eh->eh_entries = 0;
633         eh->eh_magic = EXT4_EXT_MAGIC;
634         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
635         ext4_mark_inode_dirty(handle, inode);
636         ext4_ext_invalidate_cache(inode);
637         return 0;
638 }
639
640 struct ext4_ext_path *
641 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
642                                         struct ext4_ext_path *path)
643 {
644         struct ext4_extent_header *eh;
645         struct buffer_head *bh;
646         short int depth, i, ppos = 0, alloc = 0;
647
648         eh = ext_inode_hdr(inode);
649         depth = ext_depth(inode);
650
651         /* account possible depth increase */
652         if (!path) {
653                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
654                                 GFP_NOFS);
655                 if (!path)
656                         return ERR_PTR(-ENOMEM);
657                 alloc = 1;
658         }
659         path[0].p_hdr = eh;
660         path[0].p_bh = NULL;
661
662         i = depth;
663         /* walk through the tree */
664         while (i) {
665                 int need_to_validate = 0;
666
667                 ext_debug("depth %d: num %d, max %d\n",
668                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
669
670                 ext4_ext_binsearch_idx(inode, path + ppos, block);
671                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
672                 path[ppos].p_depth = i;
673                 path[ppos].p_ext = NULL;
674
675                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
676                 if (unlikely(!bh))
677                         goto err;
678                 if (!bh_uptodate_or_lock(bh)) {
679                         trace_ext4_ext_load_extent(inode, block,
680                                                 path[ppos].p_block);
681                         if (bh_submit_read(bh) < 0) {
682                                 put_bh(bh);
683                                 goto err;
684                         }
685                         /* validate the extent entries */
686                         need_to_validate = 1;
687                 }
688                 eh = ext_block_hdr(bh);
689                 ppos++;
690                 if (unlikely(ppos > depth)) {
691                         put_bh(bh);
692                         EXT4_ERROR_INODE(inode,
693                                          "ppos %d > depth %d", ppos, depth);
694                         goto err;
695                 }
696                 path[ppos].p_bh = bh;
697                 path[ppos].p_hdr = eh;
698                 i--;
699
700                 if (need_to_validate && ext4_ext_check(inode, eh, i))
701                         goto err;
702         }
703
704         path[ppos].p_depth = i;
705         path[ppos].p_ext = NULL;
706         path[ppos].p_idx = NULL;
707
708         /* find extent */
709         ext4_ext_binsearch(inode, path + ppos, block);
710         /* if not an empty leaf */
711         if (path[ppos].p_ext)
712                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
713
714         ext4_ext_show_path(inode, path);
715
716         return path;
717
718 err:
719         ext4_ext_drop_refs(path);
720         if (alloc)
721                 kfree(path);
722         return ERR_PTR(-EIO);
723 }
724
725 /*
726  * ext4_ext_insert_index:
727  * insert new index [@logical;@ptr] into the block at @curp;
728  * check where to insert: before @curp or after @curp
729  */
730 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
731                                  struct ext4_ext_path *curp,
732                                  int logical, ext4_fsblk_t ptr)
733 {
734         struct ext4_extent_idx *ix;
735         int len, err;
736
737         err = ext4_ext_get_access(handle, inode, curp);
738         if (err)
739                 return err;
740
741         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
742                 EXT4_ERROR_INODE(inode,
743                                  "logical %d == ei_block %d!",
744                                  logical, le32_to_cpu(curp->p_idx->ei_block));
745                 return -EIO;
746         }
747
748         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
749                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
750                 EXT4_ERROR_INODE(inode,
751                                  "eh_entries %d >= eh_max %d!",
752                                  le16_to_cpu(curp->p_hdr->eh_entries),
753                                  le16_to_cpu(curp->p_hdr->eh_max));
754                 return -EIO;
755         }
756
757         len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
758         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
759                 /* insert after */
760                 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
761                         len = (len - 1) * sizeof(struct ext4_extent_idx);
762                         len = len < 0 ? 0 : len;
763                         ext_debug("insert new index %d after: %llu. "
764                                         "move %d from 0x%p to 0x%p\n",
765                                         logical, ptr, len,
766                                         (curp->p_idx + 1), (curp->p_idx + 2));
767                         memmove(curp->p_idx + 2, curp->p_idx + 1, len);
768                 }
769                 ix = curp->p_idx + 1;
770         } else {
771                 /* insert before */
772                 len = len * sizeof(struct ext4_extent_idx);
773                 len = len < 0 ? 0 : len;
774                 ext_debug("insert new index %d before: %llu. "
775                                 "move %d from 0x%p to 0x%p\n",
776                                 logical, ptr, len,
777                                 curp->p_idx, (curp->p_idx + 1));
778                 memmove(curp->p_idx + 1, curp->p_idx, len);
779                 ix = curp->p_idx;
780         }
781
782         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
783                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
784                 return -EIO;
785         }
786
787         ix->ei_block = cpu_to_le32(logical);
788         ext4_idx_store_pblock(ix, ptr);
789         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
790
791         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
792                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
793                 return -EIO;
794         }
795
796         err = ext4_ext_dirty(handle, inode, curp);
797         ext4_std_error(inode->i_sb, err);
798
799         return err;
800 }
801
802 /*
803  * ext4_ext_split:
804  * inserts new subtree into the path, using free index entry
805  * at depth @at:
806  * - allocates all needed blocks (new leaf and all intermediate index blocks)
807  * - makes decision where to split
808  * - moves remaining extents and index entries (right to the split point)
809  *   into the newly allocated blocks
810  * - initializes subtree
811  */
812 static int ext4_ext_split(handle_t *handle, struct inode *inode,
813                           unsigned int flags,
814                           struct ext4_ext_path *path,
815                           struct ext4_extent *newext, int at)
816 {
817         struct buffer_head *bh = NULL;
818         int depth = ext_depth(inode);
819         struct ext4_extent_header *neh;
820         struct ext4_extent_idx *fidx;
821         int i = at, k, m, a;
822         ext4_fsblk_t newblock, oldblock;
823         __le32 border;
824         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
825         int err = 0;
826
827         /* make decision: where to split? */
828         /* FIXME: now decision is simplest: at current extent */
829
830         /* if current leaf will be split, then we should use
831          * border from split point */
832         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
833                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
834                 return -EIO;
835         }
836         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
837                 border = path[depth].p_ext[1].ee_block;
838                 ext_debug("leaf will be split."
839                                 " next leaf starts at %d\n",
840                                   le32_to_cpu(border));
841         } else {
842                 border = newext->ee_block;
843                 ext_debug("leaf will be added."
844                                 " next leaf starts at %d\n",
845                                 le32_to_cpu(border));
846         }
847
848         /*
849          * If error occurs, then we break processing
850          * and mark filesystem read-only. index won't
851          * be inserted and tree will be in consistent
852          * state. Next mount will repair buffers too.
853          */
854
855         /*
856          * Get array to track all allocated blocks.
857          * We need this to handle errors and free blocks
858          * upon them.
859          */
860         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
861         if (!ablocks)
862                 return -ENOMEM;
863
864         /* allocate all needed blocks */
865         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
866         for (a = 0; a < depth - at; a++) {
867                 newblock = ext4_ext_new_meta_block(handle, inode, path,
868                                                    newext, &err, flags);
869                 if (newblock == 0)
870                         goto cleanup;
871                 ablocks[a] = newblock;
872         }
873
874         /* initialize new leaf */
875         newblock = ablocks[--a];
876         if (unlikely(newblock == 0)) {
877                 EXT4_ERROR_INODE(inode, "newblock == 0!");
878                 err = -EIO;
879                 goto cleanup;
880         }
881         bh = sb_getblk(inode->i_sb, newblock);
882         if (!bh) {
883                 err = -EIO;
884                 goto cleanup;
885         }
886         lock_buffer(bh);
887
888         err = ext4_journal_get_create_access(handle, bh);
889         if (err)
890                 goto cleanup;
891
892         neh = ext_block_hdr(bh);
893         neh->eh_entries = 0;
894         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
895         neh->eh_magic = EXT4_EXT_MAGIC;
896         neh->eh_depth = 0;
897
898         /* move remainder of path[depth] to the new leaf */
899         if (unlikely(path[depth].p_hdr->eh_entries !=
900                      path[depth].p_hdr->eh_max)) {
901                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
902                                  path[depth].p_hdr->eh_entries,
903                                  path[depth].p_hdr->eh_max);
904                 err = -EIO;
905                 goto cleanup;
906         }
907         /* start copy from next extent */
908         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
909         ext4_ext_show_move(inode, path, newblock, depth);
910         if (m) {
911                 struct ext4_extent *ex;
912                 ex = EXT_FIRST_EXTENT(neh);
913                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
914                 le16_add_cpu(&neh->eh_entries, m);
915         }
916
917         set_buffer_uptodate(bh);
918         unlock_buffer(bh);
919
920         err = ext4_handle_dirty_metadata(handle, inode, bh);
921         if (err)
922                 goto cleanup;
923         brelse(bh);
924         bh = NULL;
925
926         /* correct old leaf */
927         if (m) {
928                 err = ext4_ext_get_access(handle, inode, path + depth);
929                 if (err)
930                         goto cleanup;
931                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
932                 err = ext4_ext_dirty(handle, inode, path + depth);
933                 if (err)
934                         goto cleanup;
935
936         }
937
938         /* create intermediate indexes */
939         k = depth - at - 1;
940         if (unlikely(k < 0)) {
941                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
942                 err = -EIO;
943                 goto cleanup;
944         }
945         if (k)
946                 ext_debug("create %d intermediate indices\n", k);
947         /* insert new index into current index block */
948         /* current depth stored in i var */
949         i = depth - 1;
950         while (k--) {
951                 oldblock = newblock;
952                 newblock = ablocks[--a];
953                 bh = sb_getblk(inode->i_sb, newblock);
954                 if (!bh) {
955                         err = -EIO;
956                         goto cleanup;
957                 }
958                 lock_buffer(bh);
959
960                 err = ext4_journal_get_create_access(handle, bh);
961                 if (err)
962                         goto cleanup;
963
964                 neh = ext_block_hdr(bh);
965                 neh->eh_entries = cpu_to_le16(1);
966                 neh->eh_magic = EXT4_EXT_MAGIC;
967                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
968                 neh->eh_depth = cpu_to_le16(depth - i);
969                 fidx = EXT_FIRST_INDEX(neh);
970                 fidx->ei_block = border;
971                 ext4_idx_store_pblock(fidx, oldblock);
972
973                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
974                                 i, newblock, le32_to_cpu(border), oldblock);
975
976                 /* move remainder of path[i] to the new index block */
977                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
978                                         EXT_LAST_INDEX(path[i].p_hdr))) {
979                         EXT4_ERROR_INODE(inode,
980                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
981                                          le32_to_cpu(path[i].p_ext->ee_block));
982                         err = -EIO;
983                         goto cleanup;
984                 }
985                 /* start copy indexes */
986                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
987                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
988                                 EXT_MAX_INDEX(path[i].p_hdr));
989                 ext4_ext_show_move(inode, path, newblock, i);
990                 if (m) {
991                         memmove(++fidx, path[i].p_idx,
992                                 sizeof(struct ext4_extent_idx) * m);
993                         le16_add_cpu(&neh->eh_entries, m);
994                 }
995                 set_buffer_uptodate(bh);
996                 unlock_buffer(bh);
997
998                 err = ext4_handle_dirty_metadata(handle, inode, bh);
999                 if (err)
1000                         goto cleanup;
1001                 brelse(bh);
1002                 bh = NULL;
1003
1004                 /* correct old index */
1005                 if (m) {
1006                         err = ext4_ext_get_access(handle, inode, path + i);
1007                         if (err)
1008                                 goto cleanup;
1009                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1010                         err = ext4_ext_dirty(handle, inode, path + i);
1011                         if (err)
1012                                 goto cleanup;
1013                 }
1014
1015                 i--;
1016         }
1017
1018         /* insert new index */
1019         err = ext4_ext_insert_index(handle, inode, path + at,
1020                                     le32_to_cpu(border), newblock);
1021
1022 cleanup:
1023         if (bh) {
1024                 if (buffer_locked(bh))
1025                         unlock_buffer(bh);
1026                 brelse(bh);
1027         }
1028
1029         if (err) {
1030                 /* free all allocated blocks in error case */
1031                 for (i = 0; i < depth; i++) {
1032                         if (!ablocks[i])
1033                                 continue;
1034                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1035                                          EXT4_FREE_BLOCKS_METADATA);
1036                 }
1037         }
1038         kfree(ablocks);
1039
1040         return err;
1041 }
1042
1043 /*
1044  * ext4_ext_grow_indepth:
1045  * implements tree growing procedure:
1046  * - allocates new block
1047  * - moves top-level data (index block or leaf) into the new block
1048  * - initializes new top-level, creating index that points to the
1049  *   just created block
1050  */
1051 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1052                                  unsigned int flags,
1053                                  struct ext4_extent *newext)
1054 {
1055         struct ext4_extent_header *neh;
1056         struct buffer_head *bh;
1057         ext4_fsblk_t newblock;
1058         int err = 0;
1059
1060         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1061                 newext, &err, flags);
1062         if (newblock == 0)
1063                 return err;
1064
1065         bh = sb_getblk(inode->i_sb, newblock);
1066         if (!bh) {
1067                 err = -EIO;
1068                 ext4_std_error(inode->i_sb, err);
1069                 return err;
1070         }
1071         lock_buffer(bh);
1072
1073         err = ext4_journal_get_create_access(handle, bh);
1074         if (err) {
1075                 unlock_buffer(bh);
1076                 goto out;
1077         }
1078
1079         /* move top-level index/leaf into new block */
1080         memmove(bh->b_data, EXT4_I(inode)->i_data,
1081                 sizeof(EXT4_I(inode)->i_data));
1082
1083         /* set size of new block */
1084         neh = ext_block_hdr(bh);
1085         /* old root could have indexes or leaves
1086          * so calculate e_max right way */
1087         if (ext_depth(inode))
1088                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1089         else
1090                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1091         neh->eh_magic = EXT4_EXT_MAGIC;
1092         set_buffer_uptodate(bh);
1093         unlock_buffer(bh);
1094
1095         err = ext4_handle_dirty_metadata(handle, inode, bh);
1096         if (err)
1097                 goto out;
1098
1099         /* Update top-level index: num,max,pointer */
1100         neh = ext_inode_hdr(inode);
1101         neh->eh_entries = cpu_to_le16(1);
1102         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1103         if (neh->eh_depth == 0) {
1104                 /* Root extent block becomes index block */
1105                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1106                 EXT_FIRST_INDEX(neh)->ei_block =
1107                         EXT_FIRST_EXTENT(neh)->ee_block;
1108         }
1109         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1110                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1111                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1112                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1113
1114         neh->eh_depth = cpu_to_le16(neh->eh_depth + 1);
1115         ext4_mark_inode_dirty(handle, inode);
1116 out:
1117         brelse(bh);
1118
1119         return err;
1120 }
1121
1122 /*
1123  * ext4_ext_create_new_leaf:
1124  * finds empty index and adds new leaf.
1125  * if no free index is found, then it requests in-depth growing.
1126  */
1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128                                     unsigned int flags,
1129                                     struct ext4_ext_path *path,
1130                                     struct ext4_extent *newext)
1131 {
1132         struct ext4_ext_path *curp;
1133         int depth, i, err = 0;
1134
1135 repeat:
1136         i = depth = ext_depth(inode);
1137
1138         /* walk up to the tree and look for free index entry */
1139         curp = path + depth;
1140         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1141                 i--;
1142                 curp--;
1143         }
1144
1145         /* we use already allocated block for index block,
1146          * so subsequent data blocks should be contiguous */
1147         if (EXT_HAS_FREE_INDEX(curp)) {
1148                 /* if we found index with free entry, then use that
1149                  * entry: create all needed subtree and add new leaf */
1150                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1151                 if (err)
1152                         goto out;
1153
1154                 /* refill path */
1155                 ext4_ext_drop_refs(path);
1156                 path = ext4_ext_find_extent(inode,
1157                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1158                                     path);
1159                 if (IS_ERR(path))
1160                         err = PTR_ERR(path);
1161         } else {
1162                 /* tree is full, time to grow in depth */
1163                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1164                 if (err)
1165                         goto out;
1166
1167                 /* refill path */
1168                 ext4_ext_drop_refs(path);
1169                 path = ext4_ext_find_extent(inode,
1170                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1171                                     path);
1172                 if (IS_ERR(path)) {
1173                         err = PTR_ERR(path);
1174                         goto out;
1175                 }
1176
1177                 /*
1178                  * only first (depth 0 -> 1) produces free space;
1179                  * in all other cases we have to split the grown tree
1180                  */
1181                 depth = ext_depth(inode);
1182                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1183                         /* now we need to split */
1184                         goto repeat;
1185                 }
1186         }
1187
1188 out:
1189         return err;
1190 }
1191
1192 /*
1193  * search the closest allocated block to the left for *logical
1194  * and returns it at @logical + it's physical address at @phys
1195  * if *logical is the smallest allocated block, the function
1196  * returns 0 at @phys
1197  * return value contains 0 (success) or error code
1198  */
1199 static int ext4_ext_search_left(struct inode *inode,
1200                                 struct ext4_ext_path *path,
1201                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1202 {
1203         struct ext4_extent_idx *ix;
1204         struct ext4_extent *ex;
1205         int depth, ee_len;
1206
1207         if (unlikely(path == NULL)) {
1208                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1209                 return -EIO;
1210         }
1211         depth = path->p_depth;
1212         *phys = 0;
1213
1214         if (depth == 0 && path->p_ext == NULL)
1215                 return 0;
1216
1217         /* usually extent in the path covers blocks smaller
1218          * then *logical, but it can be that extent is the
1219          * first one in the file */
1220
1221         ex = path[depth].p_ext;
1222         ee_len = ext4_ext_get_actual_len(ex);
1223         if (*logical < le32_to_cpu(ex->ee_block)) {
1224                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1225                         EXT4_ERROR_INODE(inode,
1226                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1227                                          *logical, le32_to_cpu(ex->ee_block));
1228                         return -EIO;
1229                 }
1230                 while (--depth >= 0) {
1231                         ix = path[depth].p_idx;
1232                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1233                                 EXT4_ERROR_INODE(inode,
1234                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1235                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1236                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1237                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1238                                   depth);
1239                                 return -EIO;
1240                         }
1241                 }
1242                 return 0;
1243         }
1244
1245         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1246                 EXT4_ERROR_INODE(inode,
1247                                  "logical %d < ee_block %d + ee_len %d!",
1248                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1249                 return -EIO;
1250         }
1251
1252         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1253         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1254         return 0;
1255 }
1256
1257 /*
1258  * search the closest allocated block to the right for *logical
1259  * and returns it at @logical + it's physical address at @phys
1260  * if *logical is the largest allocated block, the function
1261  * returns 0 at @phys
1262  * return value contains 0 (success) or error code
1263  */
1264 static int ext4_ext_search_right(struct inode *inode,
1265                                  struct ext4_ext_path *path,
1266                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1267                                  struct ext4_extent **ret_ex)
1268 {
1269         struct buffer_head *bh = NULL;
1270         struct ext4_extent_header *eh;
1271         struct ext4_extent_idx *ix;
1272         struct ext4_extent *ex;
1273         ext4_fsblk_t block;
1274         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1275         int ee_len;
1276
1277         if (unlikely(path == NULL)) {
1278                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1279                 return -EIO;
1280         }
1281         depth = path->p_depth;
1282         *phys = 0;
1283
1284         if (depth == 0 && path->p_ext == NULL)
1285                 return 0;
1286
1287         /* usually extent in the path covers blocks smaller
1288          * then *logical, but it can be that extent is the
1289          * first one in the file */
1290
1291         ex = path[depth].p_ext;
1292         ee_len = ext4_ext_get_actual_len(ex);
1293         if (*logical < le32_to_cpu(ex->ee_block)) {
1294                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1295                         EXT4_ERROR_INODE(inode,
1296                                          "first_extent(path[%d].p_hdr) != ex",
1297                                          depth);
1298                         return -EIO;
1299                 }
1300                 while (--depth >= 0) {
1301                         ix = path[depth].p_idx;
1302                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1303                                 EXT4_ERROR_INODE(inode,
1304                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1305                                                  *logical);
1306                                 return -EIO;
1307                         }
1308                 }
1309                 goto found_extent;
1310         }
1311
1312         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1313                 EXT4_ERROR_INODE(inode,
1314                                  "logical %d < ee_block %d + ee_len %d!",
1315                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1316                 return -EIO;
1317         }
1318
1319         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1320                 /* next allocated block in this leaf */
1321                 ex++;
1322                 goto found_extent;
1323         }
1324
1325         /* go up and search for index to the right */
1326         while (--depth >= 0) {
1327                 ix = path[depth].p_idx;
1328                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1329                         goto got_index;
1330         }
1331
1332         /* we've gone up to the root and found no index to the right */
1333         return 0;
1334
1335 got_index:
1336         /* we've found index to the right, let's
1337          * follow it and find the closest allocated
1338          * block to the right */
1339         ix++;
1340         block = ext4_idx_pblock(ix);
1341         while (++depth < path->p_depth) {
1342                 bh = sb_bread(inode->i_sb, block);
1343                 if (bh == NULL)
1344                         return -EIO;
1345                 eh = ext_block_hdr(bh);
1346                 /* subtract from p_depth to get proper eh_depth */
1347                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1348                         put_bh(bh);
1349                         return -EIO;
1350                 }
1351                 ix = EXT_FIRST_INDEX(eh);
1352                 block = ext4_idx_pblock(ix);
1353                 put_bh(bh);
1354         }
1355
1356         bh = sb_bread(inode->i_sb, block);
1357         if (bh == NULL)
1358                 return -EIO;
1359         eh = ext_block_hdr(bh);
1360         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361                 put_bh(bh);
1362                 return -EIO;
1363         }
1364         ex = EXT_FIRST_EXTENT(eh);
1365 found_extent:
1366         *logical = le32_to_cpu(ex->ee_block);
1367         *phys = ext4_ext_pblock(ex);
1368         *ret_ex = ex;
1369         if (bh)
1370                 put_bh(bh);
1371         return 0;
1372 }
1373
1374 /*
1375  * ext4_ext_next_allocated_block:
1376  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1377  * NOTE: it considers block number from index entry as
1378  * allocated block. Thus, index entries have to be consistent
1379  * with leaves.
1380  */
1381 static ext4_lblk_t
1382 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1383 {
1384         int depth;
1385
1386         BUG_ON(path == NULL);
1387         depth = path->p_depth;
1388
1389         if (depth == 0 && path->p_ext == NULL)
1390                 return EXT_MAX_BLOCKS;
1391
1392         while (depth >= 0) {
1393                 if (depth == path->p_depth) {
1394                         /* leaf */
1395                         if (path[depth].p_ext &&
1396                                 path[depth].p_ext !=
1397                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1398                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1399                 } else {
1400                         /* index */
1401                         if (path[depth].p_idx !=
1402                                         EXT_LAST_INDEX(path[depth].p_hdr))
1403                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1404                 }
1405                 depth--;
1406         }
1407
1408         return EXT_MAX_BLOCKS;
1409 }
1410
1411 /*
1412  * ext4_ext_next_leaf_block:
1413  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1414  */
1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1416 {
1417         int depth;
1418
1419         BUG_ON(path == NULL);
1420         depth = path->p_depth;
1421
1422         /* zero-tree has no leaf blocks at all */
1423         if (depth == 0)
1424                 return EXT_MAX_BLOCKS;
1425
1426         /* go to index block */
1427         depth--;
1428
1429         while (depth >= 0) {
1430                 if (path[depth].p_idx !=
1431                                 EXT_LAST_INDEX(path[depth].p_hdr))
1432                         return (ext4_lblk_t)
1433                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1434                 depth--;
1435         }
1436
1437         return EXT_MAX_BLOCKS;
1438 }
1439
1440 /*
1441  * ext4_ext_correct_indexes:
1442  * if leaf gets modified and modified extent is first in the leaf,
1443  * then we have to correct all indexes above.
1444  * TODO: do we need to correct tree in all cases?
1445  */
1446 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1447                                 struct ext4_ext_path *path)
1448 {
1449         struct ext4_extent_header *eh;
1450         int depth = ext_depth(inode);
1451         struct ext4_extent *ex;
1452         __le32 border;
1453         int k, err = 0;
1454
1455         eh = path[depth].p_hdr;
1456         ex = path[depth].p_ext;
1457
1458         if (unlikely(ex == NULL || eh == NULL)) {
1459                 EXT4_ERROR_INODE(inode,
1460                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1461                 return -EIO;
1462         }
1463
1464         if (depth == 0) {
1465                 /* there is no tree at all */
1466                 return 0;
1467         }
1468
1469         if (ex != EXT_FIRST_EXTENT(eh)) {
1470                 /* we correct tree if first leaf got modified only */
1471                 return 0;
1472         }
1473
1474         /*
1475          * TODO: we need correction if border is smaller than current one
1476          */
1477         k = depth - 1;
1478         border = path[depth].p_ext->ee_block;
1479         err = ext4_ext_get_access(handle, inode, path + k);
1480         if (err)
1481                 return err;
1482         path[k].p_idx->ei_block = border;
1483         err = ext4_ext_dirty(handle, inode, path + k);
1484         if (err)
1485                 return err;
1486
1487         while (k--) {
1488                 /* change all left-side indexes */
1489                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1490                         break;
1491                 err = ext4_ext_get_access(handle, inode, path + k);
1492                 if (err)
1493                         break;
1494                 path[k].p_idx->ei_block = border;
1495                 err = ext4_ext_dirty(handle, inode, path + k);
1496                 if (err)
1497                         break;
1498         }
1499
1500         return err;
1501 }
1502
1503 int
1504 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1505                                 struct ext4_extent *ex2)
1506 {
1507         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1508
1509         /*
1510          * Make sure that either both extents are uninitialized, or
1511          * both are _not_.
1512          */
1513         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1514                 return 0;
1515
1516         if (ext4_ext_is_uninitialized(ex1))
1517                 max_len = EXT_UNINIT_MAX_LEN;
1518         else
1519                 max_len = EXT_INIT_MAX_LEN;
1520
1521         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1522         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1523
1524         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1525                         le32_to_cpu(ex2->ee_block))
1526                 return 0;
1527
1528         /*
1529          * To allow future support for preallocated extents to be added
1530          * as an RO_COMPAT feature, refuse to merge to extents if
1531          * this can result in the top bit of ee_len being set.
1532          */
1533         if (ext1_ee_len + ext2_ee_len > max_len)
1534                 return 0;
1535 #ifdef AGGRESSIVE_TEST
1536         if (ext1_ee_len >= 4)
1537                 return 0;
1538 #endif
1539
1540         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1541                 return 1;
1542         return 0;
1543 }
1544
1545 /*
1546  * This function tries to merge the "ex" extent to the next extent in the tree.
1547  * It always tries to merge towards right. If you want to merge towards
1548  * left, pass "ex - 1" as argument instead of "ex".
1549  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1550  * 1 if they got merged.
1551  */
1552 static int ext4_ext_try_to_merge_right(struct inode *inode,
1553                                  struct ext4_ext_path *path,
1554                                  struct ext4_extent *ex)
1555 {
1556         struct ext4_extent_header *eh;
1557         unsigned int depth, len;
1558         int merge_done = 0;
1559         int uninitialized = 0;
1560
1561         depth = ext_depth(inode);
1562         BUG_ON(path[depth].p_hdr == NULL);
1563         eh = path[depth].p_hdr;
1564
1565         while (ex < EXT_LAST_EXTENT(eh)) {
1566                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1567                         break;
1568                 /* merge with next extent! */
1569                 if (ext4_ext_is_uninitialized(ex))
1570                         uninitialized = 1;
1571                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1572                                 + ext4_ext_get_actual_len(ex + 1));
1573                 if (uninitialized)
1574                         ext4_ext_mark_uninitialized(ex);
1575
1576                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1577                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1578                                 * sizeof(struct ext4_extent);
1579                         memmove(ex + 1, ex + 2, len);
1580                 }
1581                 le16_add_cpu(&eh->eh_entries, -1);
1582                 merge_done = 1;
1583                 WARN_ON(eh->eh_entries == 0);
1584                 if (!eh->eh_entries)
1585                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1586         }
1587
1588         return merge_done;
1589 }
1590
1591 /*
1592  * This function tries to merge the @ex extent to neighbours in the tree.
1593  * return 1 if merge left else 0.
1594  */
1595 static int ext4_ext_try_to_merge(struct inode *inode,
1596                                   struct ext4_ext_path *path,
1597                                   struct ext4_extent *ex) {
1598         struct ext4_extent_header *eh;
1599         unsigned int depth;
1600         int merge_done = 0;
1601         int ret = 0;
1602
1603         depth = ext_depth(inode);
1604         BUG_ON(path[depth].p_hdr == NULL);
1605         eh = path[depth].p_hdr;
1606
1607         if (ex > EXT_FIRST_EXTENT(eh))
1608                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1609
1610         if (!merge_done)
1611                 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1612
1613         return ret;
1614 }
1615
1616 /*
1617  * check if a portion of the "newext" extent overlaps with an
1618  * existing extent.
1619  *
1620  * If there is an overlap discovered, it updates the length of the newext
1621  * such that there will be no overlap, and then returns 1.
1622  * If there is no overlap found, it returns 0.
1623  */
1624 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1625                                            struct inode *inode,
1626                                            struct ext4_extent *newext,
1627                                            struct ext4_ext_path *path)
1628 {
1629         ext4_lblk_t b1, b2;
1630         unsigned int depth, len1;
1631         unsigned int ret = 0;
1632
1633         b1 = le32_to_cpu(newext->ee_block);
1634         len1 = ext4_ext_get_actual_len(newext);
1635         depth = ext_depth(inode);
1636         if (!path[depth].p_ext)
1637                 goto out;
1638         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1639         b2 &= ~(sbi->s_cluster_ratio - 1);
1640
1641         /*
1642          * get the next allocated block if the extent in the path
1643          * is before the requested block(s)
1644          */
1645         if (b2 < b1) {
1646                 b2 = ext4_ext_next_allocated_block(path);
1647                 if (b2 == EXT_MAX_BLOCKS)
1648                         goto out;
1649                 b2 &= ~(sbi->s_cluster_ratio - 1);
1650         }
1651
1652         /* check for wrap through zero on extent logical start block*/
1653         if (b1 + len1 < b1) {
1654                 len1 = EXT_MAX_BLOCKS - b1;
1655                 newext->ee_len = cpu_to_le16(len1);
1656                 ret = 1;
1657         }
1658
1659         /* check for overlap */
1660         if (b1 + len1 > b2) {
1661                 newext->ee_len = cpu_to_le16(b2 - b1);
1662                 ret = 1;
1663         }
1664 out:
1665         return ret;
1666 }
1667
1668 /*
1669  * ext4_ext_insert_extent:
1670  * tries to merge requsted extent into the existing extent or
1671  * inserts requested extent as new one into the tree,
1672  * creating new leaf in the no-space case.
1673  */
1674 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1675                                 struct ext4_ext_path *path,
1676                                 struct ext4_extent *newext, int flag)
1677 {
1678         struct ext4_extent_header *eh;
1679         struct ext4_extent *ex, *fex;
1680         struct ext4_extent *nearex; /* nearest extent */
1681         struct ext4_ext_path *npath = NULL;
1682         int depth, len, err;
1683         ext4_lblk_t next;
1684         unsigned uninitialized = 0;
1685         int flags = 0;
1686
1687         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1688                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1689                 return -EIO;
1690         }
1691         depth = ext_depth(inode);
1692         ex = path[depth].p_ext;
1693         if (unlikely(path[depth].p_hdr == NULL)) {
1694                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1695                 return -EIO;
1696         }
1697
1698         /* try to insert block into found extent and return */
1699         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1700                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1701                 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1702                           ext4_ext_is_uninitialized(newext),
1703                           ext4_ext_get_actual_len(newext),
1704                           le32_to_cpu(ex->ee_block),
1705                           ext4_ext_is_uninitialized(ex),
1706                           ext4_ext_get_actual_len(ex),
1707                           ext4_ext_pblock(ex));
1708                 err = ext4_ext_get_access(handle, inode, path + depth);
1709                 if (err)
1710                         return err;
1711
1712                 /*
1713                  * ext4_can_extents_be_merged should have checked that either
1714                  * both extents are uninitialized, or both aren't. Thus we
1715                  * need to check only one of them here.
1716                  */
1717                 if (ext4_ext_is_uninitialized(ex))
1718                         uninitialized = 1;
1719                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1720                                         + ext4_ext_get_actual_len(newext));
1721                 if (uninitialized)
1722                         ext4_ext_mark_uninitialized(ex);
1723                 eh = path[depth].p_hdr;
1724                 nearex = ex;
1725                 goto merge;
1726         }
1727
1728         depth = ext_depth(inode);
1729         eh = path[depth].p_hdr;
1730         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1731                 goto has_space;
1732
1733         /* probably next leaf has space for us? */
1734         fex = EXT_LAST_EXTENT(eh);
1735         next = EXT_MAX_BLOCKS;
1736         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1737                 next = ext4_ext_next_leaf_block(path);
1738         if (next != EXT_MAX_BLOCKS) {
1739                 ext_debug("next leaf block - %d\n", next);
1740                 BUG_ON(npath != NULL);
1741                 npath = ext4_ext_find_extent(inode, next, NULL);
1742                 if (IS_ERR(npath))
1743                         return PTR_ERR(npath);
1744                 BUG_ON(npath->p_depth != path->p_depth);
1745                 eh = npath[depth].p_hdr;
1746                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1747                         ext_debug("next leaf isn't full(%d)\n",
1748                                   le16_to_cpu(eh->eh_entries));
1749                         path = npath;
1750                         goto has_space;
1751                 }
1752                 ext_debug("next leaf has no free space(%d,%d)\n",
1753                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1754         }
1755
1756         /*
1757          * There is no free space in the found leaf.
1758          * We're gonna add a new leaf in the tree.
1759          */
1760         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1761                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1762         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1763         if (err)
1764                 goto cleanup;
1765         depth = ext_depth(inode);
1766         eh = path[depth].p_hdr;
1767
1768 has_space:
1769         nearex = path[depth].p_ext;
1770
1771         err = ext4_ext_get_access(handle, inode, path + depth);
1772         if (err)
1773                 goto cleanup;
1774
1775         if (!nearex) {
1776                 /* there is no extent in this leaf, create first one */
1777                 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1778                                 le32_to_cpu(newext->ee_block),
1779                                 ext4_ext_pblock(newext),
1780                                 ext4_ext_is_uninitialized(newext),
1781                                 ext4_ext_get_actual_len(newext));
1782                 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1783         } else if (le32_to_cpu(newext->ee_block)
1784                            > le32_to_cpu(nearex->ee_block)) {
1785 /*              BUG_ON(newext->ee_block == nearex->ee_block); */
1786                 if (nearex != EXT_LAST_EXTENT(eh)) {
1787                         len = EXT_MAX_EXTENT(eh) - nearex;
1788                         len = (len - 1) * sizeof(struct ext4_extent);
1789                         len = len < 0 ? 0 : len;
1790                         ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1791                                         "move %d from 0x%p to 0x%p\n",
1792                                         le32_to_cpu(newext->ee_block),
1793                                         ext4_ext_pblock(newext),
1794                                         ext4_ext_is_uninitialized(newext),
1795                                         ext4_ext_get_actual_len(newext),
1796                                         nearex, len, nearex + 1, nearex + 2);
1797                         memmove(nearex + 2, nearex + 1, len);
1798                 }
1799                 path[depth].p_ext = nearex + 1;
1800         } else {
1801                 BUG_ON(newext->ee_block == nearex->ee_block);
1802                 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1803                 len = len < 0 ? 0 : len;
1804                 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1805                                 "move %d from 0x%p to 0x%p\n",
1806                                 le32_to_cpu(newext->ee_block),
1807                                 ext4_ext_pblock(newext),
1808                                 ext4_ext_is_uninitialized(newext),
1809                                 ext4_ext_get_actual_len(newext),
1810                                 nearex, len, nearex, nearex + 1);
1811                 memmove(nearex + 1, nearex, len);
1812                 path[depth].p_ext = nearex;
1813         }
1814
1815         le16_add_cpu(&eh->eh_entries, 1);
1816         nearex = path[depth].p_ext;
1817         nearex->ee_block = newext->ee_block;
1818         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1819         nearex->ee_len = newext->ee_len;
1820
1821 merge:
1822         /* try to merge extents to the right */
1823         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1824                 ext4_ext_try_to_merge(inode, path, nearex);
1825
1826         /* try to merge extents to the left */
1827
1828         /* time to correct all indexes above */
1829         err = ext4_ext_correct_indexes(handle, inode, path);
1830         if (err)
1831                 goto cleanup;
1832
1833         err = ext4_ext_dirty(handle, inode, path + depth);
1834
1835 cleanup:
1836         if (npath) {
1837                 ext4_ext_drop_refs(npath);
1838                 kfree(npath);
1839         }
1840         ext4_ext_invalidate_cache(inode);
1841         return err;
1842 }
1843
1844 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1845                                ext4_lblk_t num, ext_prepare_callback func,
1846                                void *cbdata)
1847 {
1848         struct ext4_ext_path *path = NULL;
1849         struct ext4_ext_cache cbex;
1850         struct ext4_extent *ex;
1851         ext4_lblk_t next, start = 0, end = 0;
1852         ext4_lblk_t last = block + num;
1853         int depth, exists, err = 0;
1854
1855         BUG_ON(func == NULL);
1856         BUG_ON(inode == NULL);
1857
1858         while (block < last && block != EXT_MAX_BLOCKS) {
1859                 num = last - block;
1860                 /* find extent for this block */
1861                 down_read(&EXT4_I(inode)->i_data_sem);
1862                 path = ext4_ext_find_extent(inode, block, path);
1863                 up_read(&EXT4_I(inode)->i_data_sem);
1864                 if (IS_ERR(path)) {
1865                         err = PTR_ERR(path);
1866                         path = NULL;
1867                         break;
1868                 }
1869
1870                 depth = ext_depth(inode);
1871                 if (unlikely(path[depth].p_hdr == NULL)) {
1872                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1873                         err = -EIO;
1874                         break;
1875                 }
1876                 ex = path[depth].p_ext;
1877                 next = ext4_ext_next_allocated_block(path);
1878
1879                 exists = 0;
1880                 if (!ex) {
1881                         /* there is no extent yet, so try to allocate
1882                          * all requested space */
1883                         start = block;
1884                         end = block + num;
1885                 } else if (le32_to_cpu(ex->ee_block) > block) {
1886                         /* need to allocate space before found extent */
1887                         start = block;
1888                         end = le32_to_cpu(ex->ee_block);
1889                         if (block + num < end)
1890                                 end = block + num;
1891                 } else if (block >= le32_to_cpu(ex->ee_block)
1892                                         + ext4_ext_get_actual_len(ex)) {
1893                         /* need to allocate space after found extent */
1894                         start = block;
1895                         end = block + num;
1896                         if (end >= next)
1897                                 end = next;
1898                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1899                         /*
1900                          * some part of requested space is covered
1901                          * by found extent
1902                          */
1903                         start = block;
1904                         end = le32_to_cpu(ex->ee_block)
1905                                 + ext4_ext_get_actual_len(ex);
1906                         if (block + num < end)
1907                                 end = block + num;
1908                         exists = 1;
1909                 } else {
1910                         BUG();
1911                 }
1912                 BUG_ON(end <= start);
1913
1914                 if (!exists) {
1915                         cbex.ec_block = start;
1916                         cbex.ec_len = end - start;
1917                         cbex.ec_start = 0;
1918                 } else {
1919                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1920                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1921                         cbex.ec_start = ext4_ext_pblock(ex);
1922                 }
1923
1924                 if (unlikely(cbex.ec_len == 0)) {
1925                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1926                         err = -EIO;
1927                         break;
1928                 }
1929                 err = func(inode, next, &cbex, ex, cbdata);
1930                 ext4_ext_drop_refs(path);
1931
1932                 if (err < 0)
1933                         break;
1934
1935                 if (err == EXT_REPEAT)
1936                         continue;
1937                 else if (err == EXT_BREAK) {
1938                         err = 0;
1939                         break;
1940                 }
1941
1942                 if (ext_depth(inode) != depth) {
1943                         /* depth was changed. we have to realloc path */
1944                         kfree(path);
1945                         path = NULL;
1946                 }
1947
1948                 block = cbex.ec_block + cbex.ec_len;
1949         }
1950
1951         if (path) {
1952                 ext4_ext_drop_refs(path);
1953                 kfree(path);
1954         }
1955
1956         return err;
1957 }
1958
1959 static void
1960 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1961                         __u32 len, ext4_fsblk_t start)
1962 {
1963         struct ext4_ext_cache *cex;
1964         BUG_ON(len == 0);
1965         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1966         trace_ext4_ext_put_in_cache(inode, block, len, start);
1967         cex = &EXT4_I(inode)->i_cached_extent;
1968         cex->ec_block = block;
1969         cex->ec_len = len;
1970         cex->ec_start = start;
1971         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1972 }
1973
1974 /*
1975  * ext4_ext_put_gap_in_cache:
1976  * calculate boundaries of the gap that the requested block fits into
1977  * and cache this gap
1978  */
1979 static void
1980 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1981                                 ext4_lblk_t block)
1982 {
1983         int depth = ext_depth(inode);
1984         unsigned long len;
1985         ext4_lblk_t lblock;
1986         struct ext4_extent *ex;
1987
1988         ex = path[depth].p_ext;
1989         if (ex == NULL) {
1990                 /* there is no extent yet, so gap is [0;-] */
1991                 lblock = 0;
1992                 len = EXT_MAX_BLOCKS;
1993                 ext_debug("cache gap(whole file):");
1994         } else if (block < le32_to_cpu(ex->ee_block)) {
1995                 lblock = block;
1996                 len = le32_to_cpu(ex->ee_block) - block;
1997                 ext_debug("cache gap(before): %u [%u:%u]",
1998                                 block,
1999                                 le32_to_cpu(ex->ee_block),
2000                                  ext4_ext_get_actual_len(ex));
2001         } else if (block >= le32_to_cpu(ex->ee_block)
2002                         + ext4_ext_get_actual_len(ex)) {
2003                 ext4_lblk_t next;
2004                 lblock = le32_to_cpu(ex->ee_block)
2005                         + ext4_ext_get_actual_len(ex);
2006
2007                 next = ext4_ext_next_allocated_block(path);
2008                 ext_debug("cache gap(after): [%u:%u] %u",
2009                                 le32_to_cpu(ex->ee_block),
2010                                 ext4_ext_get_actual_len(ex),
2011                                 block);
2012                 BUG_ON(next == lblock);
2013                 len = next - lblock;
2014         } else {
2015                 lblock = len = 0;
2016                 BUG();
2017         }
2018
2019         ext_debug(" -> %u:%lu\n", lblock, len);
2020         ext4_ext_put_in_cache(inode, lblock, len, 0);
2021 }
2022
2023 /*
2024  * ext4_ext_check_cache()
2025  * Checks to see if the given block is in the cache.
2026  * If it is, the cached extent is stored in the given
2027  * cache extent pointer.  If the cached extent is a hole,
2028  * this routine should be used instead of
2029  * ext4_ext_in_cache if the calling function needs to
2030  * know the size of the hole.
2031  *
2032  * @inode: The files inode
2033  * @block: The block to look for in the cache
2034  * @ex:    Pointer where the cached extent will be stored
2035  *         if it contains block
2036  *
2037  * Return 0 if cache is invalid; 1 if the cache is valid
2038  */
2039 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2040         struct ext4_ext_cache *ex){
2041         struct ext4_ext_cache *cex;
2042         struct ext4_sb_info *sbi;
2043         int ret = 0;
2044
2045         /*
2046          * We borrow i_block_reservation_lock to protect i_cached_extent
2047          */
2048         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2049         cex = &EXT4_I(inode)->i_cached_extent;
2050         sbi = EXT4_SB(inode->i_sb);
2051
2052         /* has cache valid data? */
2053         if (cex->ec_len == 0)
2054                 goto errout;
2055
2056         if (in_range(block, cex->ec_block, cex->ec_len)) {
2057                 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2058                 ext_debug("%u cached by %u:%u:%llu\n",
2059                                 block,
2060                                 cex->ec_block, cex->ec_len, cex->ec_start);
2061                 ret = 1;
2062         }
2063 errout:
2064         if (!ret)
2065                 sbi->extent_cache_misses++;
2066         else
2067                 sbi->extent_cache_hits++;
2068         trace_ext4_ext_in_cache(inode, block, ret);
2069         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2070         return ret;
2071 }
2072
2073 /*
2074  * ext4_ext_in_cache()
2075  * Checks to see if the given block is in the cache.
2076  * If it is, the cached extent is stored in the given
2077  * extent pointer.
2078  *
2079  * @inode: The files inode
2080  * @block: The block to look for in the cache
2081  * @ex:    Pointer where the cached extent will be stored
2082  *         if it contains block
2083  *
2084  * Return 0 if cache is invalid; 1 if the cache is valid
2085  */
2086 static int
2087 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2088                         struct ext4_extent *ex)
2089 {
2090         struct ext4_ext_cache cex;
2091         int ret = 0;
2092
2093         if (ext4_ext_check_cache(inode, block, &cex)) {
2094                 ex->ee_block = cpu_to_le32(cex.ec_block);
2095                 ext4_ext_store_pblock(ex, cex.ec_start);
2096                 ex->ee_len = cpu_to_le16(cex.ec_len);
2097                 ret = 1;
2098         }
2099
2100         return ret;
2101 }
2102
2103
2104 /*
2105  * ext4_ext_rm_idx:
2106  * removes index from the index block.
2107  */
2108 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2109                         struct ext4_ext_path *path)
2110 {
2111         int err;
2112         ext4_fsblk_t leaf;
2113
2114         /* free index block */
2115         path--;
2116         leaf = ext4_idx_pblock(path->p_idx);
2117         if (unlikely(path->p_hdr->eh_entries == 0)) {
2118                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2119                 return -EIO;
2120         }
2121         err = ext4_ext_get_access(handle, inode, path);
2122         if (err)
2123                 return err;
2124
2125         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2126                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2127                 len *= sizeof(struct ext4_extent_idx);
2128                 memmove(path->p_idx, path->p_idx + 1, len);
2129         }
2130
2131         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2132         err = ext4_ext_dirty(handle, inode, path);
2133         if (err)
2134                 return err;
2135         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2136         trace_ext4_ext_rm_idx(inode, leaf);
2137
2138         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2139                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2140         return err;
2141 }
2142
2143 /*
2144  * ext4_ext_calc_credits_for_single_extent:
2145  * This routine returns max. credits that needed to insert an extent
2146  * to the extent tree.
2147  * When pass the actual path, the caller should calculate credits
2148  * under i_data_sem.
2149  */
2150 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2151                                                 struct ext4_ext_path *path)
2152 {
2153         if (path) {
2154                 int depth = ext_depth(inode);
2155                 int ret = 0;
2156
2157                 /* probably there is space in leaf? */
2158                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2159                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2160
2161                         /*
2162                          *  There are some space in the leaf tree, no
2163                          *  need to account for leaf block credit
2164                          *
2165                          *  bitmaps and block group descriptor blocks
2166                          *  and other metadata blocks still need to be
2167                          *  accounted.
2168                          */
2169                         /* 1 bitmap, 1 block group descriptor */
2170                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2171                         return ret;
2172                 }
2173         }
2174
2175         return ext4_chunk_trans_blocks(inode, nrblocks);
2176 }
2177
2178 /*
2179  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2180  *
2181  * if nrblocks are fit in a single extent (chunk flag is 1), then
2182  * in the worse case, each tree level index/leaf need to be changed
2183  * if the tree split due to insert a new extent, then the old tree
2184  * index/leaf need to be updated too
2185  *
2186  * If the nrblocks are discontiguous, they could cause
2187  * the whole tree split more than once, but this is really rare.
2188  */
2189 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2190 {
2191         int index;
2192         int depth = ext_depth(inode);
2193
2194         if (chunk)
2195                 index = depth * 2;
2196         else
2197                 index = depth * 3;
2198
2199         return index;
2200 }
2201
2202 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2203                               struct ext4_extent *ex,
2204                               ext4_fsblk_t *partial_cluster,
2205                               ext4_lblk_t from, ext4_lblk_t to)
2206 {
2207         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2208         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2209         ext4_fsblk_t pblk;
2210         int flags = EXT4_FREE_BLOCKS_FORGET;
2211
2212         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2213                 flags |= EXT4_FREE_BLOCKS_METADATA;
2214         /*
2215          * For bigalloc file systems, we never free a partial cluster
2216          * at the beginning of the extent.  Instead, we make a note
2217          * that we tried freeing the cluster, and check to see if we
2218          * need to free it on a subsequent call to ext4_remove_blocks,
2219          * or at the end of the ext4_truncate() operation.
2220          */
2221         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2222
2223         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2224         /*
2225          * If we have a partial cluster, and it's different from the
2226          * cluster of the last block, we need to explicitly free the
2227          * partial cluster here.
2228          */
2229         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2230         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2231                 ext4_free_blocks(handle, inode, NULL,
2232                                  EXT4_C2B(sbi, *partial_cluster),
2233                                  sbi->s_cluster_ratio, flags);
2234                 *partial_cluster = 0;
2235         }
2236
2237 #ifdef EXTENTS_STATS
2238         {
2239                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2240                 spin_lock(&sbi->s_ext_stats_lock);
2241                 sbi->s_ext_blocks += ee_len;
2242                 sbi->s_ext_extents++;
2243                 if (ee_len < sbi->s_ext_min)
2244                         sbi->s_ext_min = ee_len;
2245                 if (ee_len > sbi->s_ext_max)
2246                         sbi->s_ext_max = ee_len;
2247                 if (ext_depth(inode) > sbi->s_depth_max)
2248                         sbi->s_depth_max = ext_depth(inode);
2249                 spin_unlock(&sbi->s_ext_stats_lock);
2250         }
2251 #endif
2252         if (from >= le32_to_cpu(ex->ee_block)
2253             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2254                 /* tail removal */
2255                 ext4_lblk_t num;
2256
2257                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2258                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2259                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2260                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2261                 /*
2262                  * If the block range to be freed didn't start at the
2263                  * beginning of a cluster, and we removed the entire
2264                  * extent, save the partial cluster here, since we
2265                  * might need to delete if we determine that the
2266                  * truncate operation has removed all of the blocks in
2267                  * the cluster.
2268                  */
2269                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2270                     (ee_len == num))
2271                         *partial_cluster = EXT4_B2C(sbi, pblk);
2272                 else
2273                         *partial_cluster = 0;
2274         } else if (from == le32_to_cpu(ex->ee_block)
2275                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2276                 /* head removal */
2277                 ext4_lblk_t num;
2278                 ext4_fsblk_t start;
2279
2280                 num = to - from;
2281                 start = ext4_ext_pblock(ex);
2282
2283                 ext_debug("free first %u blocks starting %llu\n", num, start);
2284                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2285
2286         } else {
2287                 printk(KERN_INFO "strange request: removal(2) "
2288                                 "%u-%u from %u:%u\n",
2289                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2290         }
2291         return 0;
2292 }
2293
2294
2295 /*
2296  * ext4_ext_rm_leaf() Removes the extents associated with the
2297  * blocks appearing between "start" and "end", and splits the extents
2298  * if "start" and "end" appear in the same extent
2299  *
2300  * @handle: The journal handle
2301  * @inode:  The files inode
2302  * @path:   The path to the leaf
2303  * @start:  The first block to remove
2304  * @end:   The last block to remove
2305  */
2306 static int
2307 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2308                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2309                  ext4_lblk_t start, ext4_lblk_t end)
2310 {
2311         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2312         int err = 0, correct_index = 0;
2313         int depth = ext_depth(inode), credits;
2314         struct ext4_extent_header *eh;
2315         ext4_lblk_t a, b;
2316         unsigned num;
2317         ext4_lblk_t ex_ee_block;
2318         unsigned short ex_ee_len;
2319         unsigned uninitialized = 0;
2320         struct ext4_extent *ex;
2321
2322         /* the header must be checked already in ext4_ext_remove_space() */
2323         ext_debug("truncate since %u in leaf\n", start);
2324         if (!path[depth].p_hdr)
2325                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2326         eh = path[depth].p_hdr;
2327         if (unlikely(path[depth].p_hdr == NULL)) {
2328                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2329                 return -EIO;
2330         }
2331         /* find where to start removing */
2332         ex = EXT_LAST_EXTENT(eh);
2333
2334         ex_ee_block = le32_to_cpu(ex->ee_block);
2335         ex_ee_len = ext4_ext_get_actual_len(ex);
2336
2337         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2338
2339         while (ex >= EXT_FIRST_EXTENT(eh) &&
2340                         ex_ee_block + ex_ee_len > start) {
2341
2342                 if (ext4_ext_is_uninitialized(ex))
2343                         uninitialized = 1;
2344                 else
2345                         uninitialized = 0;
2346
2347                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2348                          uninitialized, ex_ee_len);
2349                 path[depth].p_ext = ex;
2350
2351                 a = ex_ee_block > start ? ex_ee_block : start;
2352                 b = ex_ee_block+ex_ee_len - 1 < end ?
2353                         ex_ee_block+ex_ee_len - 1 : end;
2354
2355                 ext_debug("  border %u:%u\n", a, b);
2356
2357                 /* If this extent is beyond the end of the hole, skip it */
2358                 if (end <= ex_ee_block) {
2359                         ex--;
2360                         ex_ee_block = le32_to_cpu(ex->ee_block);
2361                         ex_ee_len = ext4_ext_get_actual_len(ex);
2362                         continue;
2363                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2364                         EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2365                                          start, end);
2366                         err = -EIO;
2367                         goto out;
2368                 } else if (a != ex_ee_block) {
2369                         /* remove tail of the extent */
2370                         num = a - ex_ee_block;
2371                 } else {
2372                         /* remove whole extent: excellent! */
2373                         num = 0;
2374                 }
2375                 /*
2376                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2377                  * descriptor) for each block group; assume two block
2378                  * groups plus ex_ee_len/blocks_per_block_group for
2379                  * the worst case
2380                  */
2381                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2382                 if (ex == EXT_FIRST_EXTENT(eh)) {
2383                         correct_index = 1;
2384                         credits += (ext_depth(inode)) + 1;
2385                 }
2386                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2387
2388                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2389                 if (err)
2390                         goto out;
2391
2392                 err = ext4_ext_get_access(handle, inode, path + depth);
2393                 if (err)
2394                         goto out;
2395
2396                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2397                                          a, b);
2398                 if (err)
2399                         goto out;
2400
2401                 if (num == 0)
2402                         /* this extent is removed; mark slot entirely unused */
2403                         ext4_ext_store_pblock(ex, 0);
2404
2405                 ex->ee_len = cpu_to_le16(num);
2406                 /*
2407                  * Do not mark uninitialized if all the blocks in the
2408                  * extent have been removed.
2409                  */
2410                 if (uninitialized && num)
2411                         ext4_ext_mark_uninitialized(ex);
2412                 /*
2413                  * If the extent was completely released,
2414                  * we need to remove it from the leaf
2415                  */
2416                 if (num == 0) {
2417                         if (end != EXT_MAX_BLOCKS - 1) {
2418                                 /*
2419                                  * For hole punching, we need to scoot all the
2420                                  * extents up when an extent is removed so that
2421                                  * we dont have blank extents in the middle
2422                                  */
2423                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2424                                         sizeof(struct ext4_extent));
2425
2426                                 /* Now get rid of the one at the end */
2427                                 memset(EXT_LAST_EXTENT(eh), 0,
2428                                         sizeof(struct ext4_extent));
2429                         }
2430                         le16_add_cpu(&eh->eh_entries, -1);
2431                 } else
2432                         *partial_cluster = 0;
2433
2434                 err = ext4_ext_dirty(handle, inode, path + depth);
2435                 if (err)
2436                         goto out;
2437
2438                 ext_debug("new extent: %u:%u:%llu\n", block, num,
2439                                 ext4_ext_pblock(ex));
2440                 ex--;
2441                 ex_ee_block = le32_to_cpu(ex->ee_block);
2442                 ex_ee_len = ext4_ext_get_actual_len(ex);
2443         }
2444
2445         if (correct_index && eh->eh_entries)
2446                 err = ext4_ext_correct_indexes(handle, inode, path);
2447
2448         /*
2449          * If there is still a entry in the leaf node, check to see if
2450          * it references the partial cluster.  This is the only place
2451          * where it could; if it doesn't, we can free the cluster.
2452          */
2453         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2454             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2455              *partial_cluster)) {
2456                 int flags = EXT4_FREE_BLOCKS_FORGET;
2457
2458                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2459                         flags |= EXT4_FREE_BLOCKS_METADATA;
2460
2461                 ext4_free_blocks(handle, inode, NULL,
2462                                  EXT4_C2B(sbi, *partial_cluster),
2463                                  sbi->s_cluster_ratio, flags);
2464                 *partial_cluster = 0;
2465         }
2466
2467         /* if this leaf is free, then we should
2468          * remove it from index block above */
2469         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2470                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2471
2472 out:
2473         return err;
2474 }
2475
2476 /*
2477  * ext4_ext_more_to_rm:
2478  * returns 1 if current index has to be freed (even partial)
2479  */
2480 static int
2481 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2482 {
2483         BUG_ON(path->p_idx == NULL);
2484
2485         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2486                 return 0;
2487
2488         /*
2489          * if truncate on deeper level happened, it wasn't partial,
2490          * so we have to consider current index for truncation
2491          */
2492         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2493                 return 0;
2494         return 1;
2495 }
2496
2497 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2498 {
2499         struct super_block *sb = inode->i_sb;
2500         int depth = ext_depth(inode);
2501         struct ext4_ext_path *path;
2502         ext4_fsblk_t partial_cluster = 0;
2503         handle_t *handle;
2504         int i, err;
2505
2506         ext_debug("truncate since %u\n", start);
2507
2508         /* probably first extent we're gonna free will be last in block */
2509         handle = ext4_journal_start(inode, depth + 1);
2510         if (IS_ERR(handle))
2511                 return PTR_ERR(handle);
2512
2513 again:
2514         ext4_ext_invalidate_cache(inode);
2515
2516         trace_ext4_ext_remove_space(inode, start, depth);
2517
2518         /*
2519          * We start scanning from right side, freeing all the blocks
2520          * after i_size and walking into the tree depth-wise.
2521          */
2522         depth = ext_depth(inode);
2523         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2524         if (path == NULL) {
2525                 ext4_journal_stop(handle);
2526                 return -ENOMEM;
2527         }
2528         path[0].p_depth = depth;
2529         path[0].p_hdr = ext_inode_hdr(inode);
2530         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2531                 err = -EIO;
2532                 goto out;
2533         }
2534         i = err = 0;
2535
2536         while (i >= 0 && err == 0) {
2537                 if (i == depth) {
2538                         /* this is leaf block */
2539                         err = ext4_ext_rm_leaf(handle, inode, path,
2540                                                &partial_cluster, start,
2541                                                EXT_MAX_BLOCKS - 1);
2542                         /* root level has p_bh == NULL, brelse() eats this */
2543                         brelse(path[i].p_bh);
2544                         path[i].p_bh = NULL;
2545                         i--;
2546                         continue;
2547                 }
2548
2549                 /* this is index block */
2550                 if (!path[i].p_hdr) {
2551                         ext_debug("initialize header\n");
2552                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2553                 }
2554
2555                 if (!path[i].p_idx) {
2556                         /* this level hasn't been touched yet */
2557                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2558                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2559                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2560                                   path[i].p_hdr,
2561                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2562                 } else {
2563                         /* we were already here, see at next index */
2564                         path[i].p_idx--;
2565                 }
2566
2567                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2568                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2569                                 path[i].p_idx);
2570                 if (ext4_ext_more_to_rm(path + i)) {
2571                         struct buffer_head *bh;
2572                         /* go to the next level */
2573                         ext_debug("move to level %d (block %llu)\n",
2574                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2575                         memset(path + i + 1, 0, sizeof(*path));
2576                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2577                         if (!bh) {
2578                                 /* should we reset i_size? */
2579                                 err = -EIO;
2580                                 break;
2581                         }
2582                         if (WARN_ON(i + 1 > depth)) {
2583                                 err = -EIO;
2584                                 break;
2585                         }
2586                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2587                                                         depth - i - 1)) {
2588                                 err = -EIO;
2589                                 break;
2590                         }
2591                         path[i + 1].p_bh = bh;
2592
2593                         /* save actual number of indexes since this
2594                          * number is changed at the next iteration */
2595                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2596                         i++;
2597                 } else {
2598                         /* we finished processing this index, go up */
2599                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2600                                 /* index is empty, remove it;
2601                                  * handle must be already prepared by the
2602                                  * truncatei_leaf() */
2603                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2604                         }
2605                         /* root level has p_bh == NULL, brelse() eats this */
2606                         brelse(path[i].p_bh);
2607                         path[i].p_bh = NULL;
2608                         i--;
2609                         ext_debug("return to level %d\n", i);
2610                 }
2611         }
2612
2613         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2614                         path->p_hdr->eh_entries);
2615
2616         /* If we still have something in the partial cluster and we have removed
2617          * even the first extent, then we should free the blocks in the partial
2618          * cluster as well. */
2619         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2620                 int flags = EXT4_FREE_BLOCKS_FORGET;
2621
2622                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2623                         flags |= EXT4_FREE_BLOCKS_METADATA;
2624
2625                 ext4_free_blocks(handle, inode, NULL,
2626                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2627                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2628                 partial_cluster = 0;
2629         }
2630
2631         /* TODO: flexible tree reduction should be here */
2632         if (path->p_hdr->eh_entries == 0) {
2633                 /*
2634                  * truncate to zero freed all the tree,
2635                  * so we need to correct eh_depth
2636                  */
2637                 err = ext4_ext_get_access(handle, inode, path);
2638                 if (err == 0) {
2639                         ext_inode_hdr(inode)->eh_depth = 0;
2640                         ext_inode_hdr(inode)->eh_max =
2641                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2642                         err = ext4_ext_dirty(handle, inode, path);
2643                 }
2644         }
2645 out:
2646         ext4_ext_drop_refs(path);
2647         kfree(path);
2648         if (err == -EAGAIN)
2649                 goto again;
2650         ext4_journal_stop(handle);
2651
2652         return err;
2653 }
2654
2655 /*
2656  * called at mount time
2657  */
2658 void ext4_ext_init(struct super_block *sb)
2659 {
2660         /*
2661          * possible initialization would be here
2662          */
2663
2664         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2665 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2666                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2667 #ifdef AGGRESSIVE_TEST
2668                 printk(", aggressive tests");
2669 #endif
2670 #ifdef CHECK_BINSEARCH
2671                 printk(", check binsearch");
2672 #endif
2673 #ifdef EXTENTS_STATS
2674                 printk(", stats");
2675 #endif
2676                 printk("\n");
2677 #endif
2678 #ifdef EXTENTS_STATS
2679                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2680                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2681                 EXT4_SB(sb)->s_ext_max = 0;
2682 #endif
2683         }
2684 }
2685
2686 /*
2687  * called at umount time
2688  */
2689 void ext4_ext_release(struct super_block *sb)
2690 {
2691         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2692                 return;
2693
2694 #ifdef EXTENTS_STATS
2695         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2696                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2697                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2698                         sbi->s_ext_blocks, sbi->s_ext_extents,
2699                         sbi->s_ext_blocks / sbi->s_ext_extents);
2700                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2701                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2702         }
2703 #endif
2704 }
2705
2706 /* FIXME!! we need to try to merge to left or right after zero-out  */
2707 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2708 {
2709         ext4_fsblk_t ee_pblock;
2710         unsigned int ee_len;
2711         int ret;
2712
2713         ee_len    = ext4_ext_get_actual_len(ex);
2714         ee_pblock = ext4_ext_pblock(ex);
2715
2716         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2717         if (ret > 0)
2718                 ret = 0;
2719
2720         return ret;
2721 }
2722
2723 /*
2724  * used by extent splitting.
2725  */
2726 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
2727                                         due to ENOSPC */
2728 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
2729 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
2730
2731 /*
2732  * ext4_split_extent_at() splits an extent at given block.
2733  *
2734  * @handle: the journal handle
2735  * @inode: the file inode
2736  * @path: the path to the extent
2737  * @split: the logical block where the extent is splitted.
2738  * @split_flags: indicates if the extent could be zeroout if split fails, and
2739  *               the states(init or uninit) of new extents.
2740  * @flags: flags used to insert new extent to extent tree.
2741  *
2742  *
2743  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2744  * of which are deterimined by split_flag.
2745  *
2746  * There are two cases:
2747  *  a> the extent are splitted into two extent.
2748  *  b> split is not needed, and just mark the extent.
2749  *
2750  * return 0 on success.
2751  */
2752 static int ext4_split_extent_at(handle_t *handle,
2753                              struct inode *inode,
2754                              struct ext4_ext_path *path,
2755                              ext4_lblk_t split,
2756                              int split_flag,
2757                              int flags)
2758 {
2759         ext4_fsblk_t newblock;
2760         ext4_lblk_t ee_block;
2761         struct ext4_extent *ex, newex, orig_ex;
2762         struct ext4_extent *ex2 = NULL;
2763         unsigned int ee_len, depth;
2764         int err = 0;
2765
2766         ext_debug("ext4_split_extents_at: inode %lu, logical"
2767                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2768
2769         ext4_ext_show_leaf(inode, path);
2770
2771         depth = ext_depth(inode);
2772         ex = path[depth].p_ext;
2773         ee_block = le32_to_cpu(ex->ee_block);
2774         ee_len = ext4_ext_get_actual_len(ex);
2775         newblock = split - ee_block + ext4_ext_pblock(ex);
2776
2777         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2778
2779         err = ext4_ext_get_access(handle, inode, path + depth);
2780         if (err)
2781                 goto out;
2782
2783         if (split == ee_block) {
2784                 /*
2785                  * case b: block @split is the block that the extent begins with
2786                  * then we just change the state of the extent, and splitting
2787                  * is not needed.
2788                  */
2789                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2790                         ext4_ext_mark_uninitialized(ex);
2791                 else
2792                         ext4_ext_mark_initialized(ex);
2793
2794                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2795                         ext4_ext_try_to_merge(inode, path, ex);
2796
2797                 err = ext4_ext_dirty(handle, inode, path + depth);
2798                 goto out;
2799         }
2800
2801         /* case a */
2802         memcpy(&orig_ex, ex, sizeof(orig_ex));
2803         ex->ee_len = cpu_to_le16(split - ee_block);
2804         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2805                 ext4_ext_mark_uninitialized(ex);
2806
2807         /*
2808          * path may lead to new leaf, not to original leaf any more
2809          * after ext4_ext_insert_extent() returns,
2810          */
2811         err = ext4_ext_dirty(handle, inode, path + depth);
2812         if (err)
2813                 goto fix_extent_len;
2814
2815         ex2 = &newex;
2816         ex2->ee_block = cpu_to_le32(split);
2817         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2818         ext4_ext_store_pblock(ex2, newblock);
2819         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2820                 ext4_ext_mark_uninitialized(ex2);
2821
2822         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2823         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2824                 err = ext4_ext_zeroout(inode, &orig_ex);
2825                 if (err)
2826                         goto fix_extent_len;
2827                 /* update the extent length and mark as initialized */
2828                 ex->ee_len = cpu_to_le32(ee_len);
2829                 ext4_ext_try_to_merge(inode, path, ex);
2830                 err = ext4_ext_dirty(handle, inode, path + depth);
2831                 goto out;
2832         } else if (err)
2833                 goto fix_extent_len;
2834
2835 out:
2836         ext4_ext_show_leaf(inode, path);
2837         return err;
2838
2839 fix_extent_len:
2840         ex->ee_len = orig_ex.ee_len;
2841         ext4_ext_dirty(handle, inode, path + depth);
2842         return err;
2843 }
2844
2845 /*
2846  * ext4_split_extents() splits an extent and mark extent which is covered
2847  * by @map as split_flags indicates
2848  *
2849  * It may result in splitting the extent into multiple extents (upto three)
2850  * There are three possibilities:
2851  *   a> There is no split required
2852  *   b> Splits in two extents: Split is happening at either end of the extent
2853  *   c> Splits in three extents: Somone is splitting in middle of the extent
2854  *
2855  */
2856 static int ext4_split_extent(handle_t *handle,
2857                               struct inode *inode,
2858                               struct ext4_ext_path *path,
2859                               struct ext4_map_blocks *map,
2860                               int split_flag,
2861                               int flags)
2862 {
2863         ext4_lblk_t ee_block;
2864         struct ext4_extent *ex;
2865         unsigned int ee_len, depth;
2866         int err = 0;
2867         int uninitialized;
2868         int split_flag1, flags1;
2869
2870         depth = ext_depth(inode);
2871         ex = path[depth].p_ext;
2872         ee_block = le32_to_cpu(ex->ee_block);
2873         ee_len = ext4_ext_get_actual_len(ex);
2874         uninitialized = ext4_ext_is_uninitialized(ex);
2875
2876         if (map->m_lblk + map->m_len < ee_block + ee_len) {
2877                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2878                               EXT4_EXT_MAY_ZEROOUT : 0;
2879                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2880                 if (uninitialized)
2881                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2882                                        EXT4_EXT_MARK_UNINIT2;
2883                 err = ext4_split_extent_at(handle, inode, path,
2884                                 map->m_lblk + map->m_len, split_flag1, flags1);
2885                 if (err)
2886                         goto out;
2887         }
2888
2889         ext4_ext_drop_refs(path);
2890         path = ext4_ext_find_extent(inode, map->m_lblk, path);
2891         if (IS_ERR(path))
2892                 return PTR_ERR(path);
2893
2894         if (map->m_lblk >= ee_block) {
2895                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2896                               EXT4_EXT_MAY_ZEROOUT : 0;
2897                 if (uninitialized)
2898                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2899                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2900                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2901                 err = ext4_split_extent_at(handle, inode, path,
2902                                 map->m_lblk, split_flag1, flags);
2903                 if (err)
2904                         goto out;
2905         }
2906
2907         ext4_ext_show_leaf(inode, path);
2908 out:
2909         return err ? err : map->m_len;
2910 }
2911
2912 #define EXT4_EXT_ZERO_LEN 7
2913 /*
2914  * This function is called by ext4_ext_map_blocks() if someone tries to write
2915  * to an uninitialized extent. It may result in splitting the uninitialized
2916  * extent into multiple extents (up to three - one initialized and two
2917  * uninitialized).
2918  * There are three possibilities:
2919  *   a> There is no split required: Entire extent should be initialized
2920  *   b> Splits in two extents: Write is happening at either end of the extent
2921  *   c> Splits in three extents: Somone is writing in middle of the extent
2922  */
2923 static int ext4_ext_convert_to_initialized(handle_t *handle,
2924                                            struct inode *inode,
2925                                            struct ext4_map_blocks *map,
2926                                            struct ext4_ext_path *path)
2927 {
2928         struct ext4_map_blocks split_map;
2929         struct ext4_extent zero_ex;
2930         struct ext4_extent *ex;
2931         ext4_lblk_t ee_block, eof_block;
2932         unsigned int ee_len, depth;
2933         int allocated;
2934         int err = 0;
2935         int split_flag = 0;
2936
2937         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938                 "block %llu, max_blocks %u\n", inode->i_ino,
2939                 (unsigned long long)map->m_lblk, map->m_len);
2940
2941         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2942                 inode->i_sb->s_blocksize_bits;
2943         if (eof_block < map->m_lblk + map->m_len)
2944                 eof_block = map->m_lblk + map->m_len;
2945
2946         depth = ext_depth(inode);
2947         ex = path[depth].p_ext;
2948         ee_block = le32_to_cpu(ex->ee_block);
2949         ee_len = ext4_ext_get_actual_len(ex);
2950         allocated = ee_len - (map->m_lblk - ee_block);
2951
2952         WARN_ON(map->m_lblk < ee_block);
2953         /*
2954          * It is safe to convert extent to initialized via explicit
2955          * zeroout only if extent is fully insde i_size or new_size.
2956          */
2957         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2958
2959         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2960         if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2961             (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2962                 err = ext4_ext_zeroout(inode, ex);
2963                 if (err)
2964                         goto out;
2965
2966                 err = ext4_ext_get_access(handle, inode, path + depth);
2967                 if (err)
2968                         goto out;
2969                 ext4_ext_mark_initialized(ex);
2970                 ext4_ext_try_to_merge(inode, path, ex);
2971                 err = ext4_ext_dirty(handle, inode, path + depth);
2972                 goto out;
2973         }
2974
2975         /*
2976          * four cases:
2977          * 1. split the extent into three extents.
2978          * 2. split the extent into two extents, zeroout the first half.
2979          * 3. split the extent into two extents, zeroout the second half.
2980          * 4. split the extent into two extents with out zeroout.
2981          */
2982         split_map.m_lblk = map->m_lblk;
2983         split_map.m_len = map->m_len;
2984
2985         if (allocated > map->m_len) {
2986                 if (allocated <= EXT4_EXT_ZERO_LEN &&
2987                     (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2988                         /* case 3 */
2989                         zero_ex.ee_block =
2990                                          cpu_to_le32(map->m_lblk);
2991                         zero_ex.ee_len = cpu_to_le16(allocated);
2992                         ext4_ext_store_pblock(&zero_ex,
2993                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2994                         err = ext4_ext_zeroout(inode, &zero_ex);
2995                         if (err)
2996                                 goto out;
2997                         split_map.m_lblk = map->m_lblk;
2998                         split_map.m_len = allocated;
2999                 } else if ((map->m_lblk - ee_block + map->m_len <
3000                            EXT4_EXT_ZERO_LEN) &&
3001                            (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3002                         /* case 2 */
3003                         if (map->m_lblk != ee_block) {
3004                                 zero_ex.ee_block = ex->ee_block;
3005                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3006                                                         ee_block);
3007                                 ext4_ext_store_pblock(&zero_ex,
3008                                                       ext4_ext_pblock(ex));
3009                                 err = ext4_ext_zeroout(inode, &zero_ex);
3010                                 if (err)
3011                                         goto out;
3012                         }
3013
3014                         split_map.m_lblk = ee_block;
3015                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3016                         allocated = map->m_len;
3017                 }
3018         }
3019
3020         allocated = ext4_split_extent(handle, inode, path,
3021                                        &split_map, split_flag, 0);
3022         if (allocated < 0)
3023                 err = allocated;
3024
3025 out:
3026         return err ? err : allocated;
3027 }
3028
3029 /*
3030  * This function is called by ext4_ext_map_blocks() from
3031  * ext4_get_blocks_dio_write() when DIO to write
3032  * to an uninitialized extent.
3033  *
3034  * Writing to an uninitialized extent may result in splitting the uninitialized
3035  * extent into multiple /initialized uninitialized extents (up to three)
3036  * There are three possibilities:
3037  *   a> There is no split required: Entire extent should be uninitialized
3038  *   b> Splits in two extents: Write is happening at either end of the extent
3039  *   c> Splits in three extents: Somone is writing in middle of the extent
3040  *
3041  * One of more index blocks maybe needed if the extent tree grow after
3042  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3043  * complete, we need to split the uninitialized extent before DIO submit
3044  * the IO. The uninitialized extent called at this time will be split
3045  * into three uninitialized extent(at most). After IO complete, the part
3046  * being filled will be convert to initialized by the end_io callback function
3047  * via ext4_convert_unwritten_extents().
3048  *
3049  * Returns the size of uninitialized extent to be written on success.
3050  */
3051 static int ext4_split_unwritten_extents(handle_t *handle,
3052                                         struct inode *inode,
3053                                         struct ext4_map_blocks *map,
3054                                         struct ext4_ext_path *path,
3055                                         int flags)
3056 {
3057         ext4_lblk_t eof_block;
3058         ext4_lblk_t ee_block;
3059         struct ext4_extent *ex;
3060         unsigned int ee_len;
3061         int split_flag = 0, depth;
3062
3063         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3064                 "block %llu, max_blocks %u\n", inode->i_ino,
3065                 (unsigned long long)map->m_lblk, map->m_len);
3066
3067         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3068                 inode->i_sb->s_blocksize_bits;
3069         if (eof_block < map->m_lblk + map->m_len)
3070                 eof_block = map->m_lblk + map->m_len;
3071         /*
3072          * It is safe to convert extent to initialized via explicit
3073          * zeroout only if extent is fully insde i_size or new_size.
3074          */
3075         depth = ext_depth(inode);
3076         ex = path[depth].p_ext;
3077         ee_block = le32_to_cpu(ex->ee_block);
3078         ee_len = ext4_ext_get_actual_len(ex);
3079
3080         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3081         split_flag |= EXT4_EXT_MARK_UNINIT2;
3082
3083         flags |= EXT4_GET_BLOCKS_PRE_IO;
3084         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3085 }
3086
3087 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3088                                               struct inode *inode,
3089                                               struct ext4_ext_path *path)
3090 {
3091         struct ext4_extent *ex;
3092         int depth;
3093         int err = 0;
3094
3095         depth = ext_depth(inode);
3096         ex = path[depth].p_ext;
3097
3098         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3099                 "block %llu, max_blocks %u\n", inode->i_ino,
3100                 (unsigned long long)le32_to_cpu(ex->ee_block),
3101                 ext4_ext_get_actual_len(ex));
3102
3103         err = ext4_ext_get_access(handle, inode, path + depth);
3104         if (err)
3105                 goto out;
3106         /* first mark the extent as initialized */
3107         ext4_ext_mark_initialized(ex);
3108
3109         /* note: ext4_ext_correct_indexes() isn't needed here because
3110          * borders are not changed
3111          */
3112         ext4_ext_try_to_merge(inode, path, ex);
3113
3114         /* Mark modified extent as dirty */
3115         err = ext4_ext_dirty(handle, inode, path + depth);
3116 out:
3117         ext4_ext_show_leaf(inode, path);
3118         return err;
3119 }
3120
3121 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3122                         sector_t block, int count)
3123 {
3124         int i;
3125         for (i = 0; i < count; i++)
3126                 unmap_underlying_metadata(bdev, block + i);
3127 }
3128
3129 /*
3130  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3131  */
3132 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3133                               ext4_lblk_t lblk,
3134                               struct ext4_ext_path *path,
3135                               unsigned int len)
3136 {
3137         int i, depth;
3138         struct ext4_extent_header *eh;
3139         struct ext4_extent *last_ex;
3140
3141         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3142                 return 0;
3143
3144         depth = ext_depth(inode);
3145         eh = path[depth].p_hdr;
3146
3147         if (unlikely(!eh->eh_entries)) {
3148                 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3149                                  "EOFBLOCKS_FL set");
3150                 return -EIO;
3151         }
3152         last_ex = EXT_LAST_EXTENT(eh);
3153         /*
3154          * We should clear the EOFBLOCKS_FL flag if we are writing the
3155          * last block in the last extent in the file.  We test this by
3156          * first checking to see if the caller to
3157          * ext4_ext_get_blocks() was interested in the last block (or
3158          * a block beyond the last block) in the current extent.  If
3159          * this turns out to be false, we can bail out from this
3160          * function immediately.
3161          */
3162         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3163             ext4_ext_get_actual_len(last_ex))
3164                 return 0;
3165         /*
3166          * If the caller does appear to be planning to write at or
3167          * beyond the end of the current extent, we then test to see
3168          * if the current extent is the last extent in the file, by
3169          * checking to make sure it was reached via the rightmost node
3170          * at each level of the tree.
3171          */
3172         for (i = depth-1; i >= 0; i--)
3173                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3174                         return 0;
3175         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3176         return ext4_mark_inode_dirty(handle, inode);
3177 }
3178
3179 /**
3180  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3181  *
3182  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3183  * whether there are any buffers marked for delayed allocation. It returns '1'
3184  * on the first delalloc'ed buffer head found. If no buffer head in the given
3185  * range is marked for delalloc, it returns 0.
3186  * lblk_start should always be <= lblk_end.
3187  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3188  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3189  * block sooner). This is useful when blocks are truncated sequentially from
3190  * lblk_start towards lblk_end.
3191  */
3192 static int ext4_find_delalloc_range(struct inode *inode,
3193                                     ext4_lblk_t lblk_start,
3194                                     ext4_lblk_t lblk_end,
3195                                     int search_hint_reverse)
3196 {
3197         struct address_space *mapping = inode->i_mapping;
3198         struct buffer_head *head, *bh = NULL;
3199         struct page *page;
3200         ext4_lblk_t i, pg_lblk;
3201         pgoff_t index;
3202
3203         /* reverse search wont work if fs block size is less than page size */
3204         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3205                 search_hint_reverse = 0;
3206
3207         if (search_hint_reverse)
3208                 i = lblk_end;
3209         else
3210                 i = lblk_start;
3211
3212         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3213
3214         while ((i >= lblk_start) && (i <= lblk_end)) {
3215                 page = find_get_page(mapping, index);
3216                 if (!page)
3217                         goto nextpage;
3218
3219                 if (!page_has_buffers(page))
3220                         goto nextpage;
3221
3222                 head = page_buffers(page);
3223                 if (!head)
3224                         goto nextpage;
3225
3226                 bh = head;
3227                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3228                                                 inode->i_blkbits);
3229                 do {
3230                         if (unlikely(pg_lblk < lblk_start)) {
3231                                 /*
3232                                  * This is possible when fs block size is less
3233                                  * than page size and our cluster starts/ends in
3234                                  * middle of the page. So we need to skip the
3235                                  * initial few blocks till we reach the 'lblk'
3236                                  */
3237                                 pg_lblk++;
3238                                 continue;
3239                         }
3240
3241                         /* Check if the buffer is delayed allocated and that it
3242                          * is not yet mapped. (when da-buffers are mapped during
3243                          * their writeout, their da_mapped bit is set.)
3244                          */
3245                         if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3246                                 page_cache_release(page);
3247                                 trace_ext4_find_delalloc_range(inode,
3248                                                 lblk_start, lblk_end,
3249                                                 search_hint_reverse,
3250                                                 1, i);
3251                                 return 1;
3252                         }
3253                         if (search_hint_reverse)
3254                                 i--;
3255                         else
3256                                 i++;
3257                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3258                                 ((bh = bh->b_this_page) != head));
3259 nextpage:
3260                 if (page)
3261                         page_cache_release(page);
3262                 /*
3263                  * Move to next page. 'i' will be the first lblk in the next
3264                  * page.
3265                  */
3266                 if (search_hint_reverse)
3267                         index--;
3268                 else
3269                         index++;
3270                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3271         }
3272
3273         trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3274                                         search_hint_reverse, 0, 0);
3275         return 0;
3276 }
3277
3278 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3279                                int search_hint_reverse)
3280 {
3281         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3282         ext4_lblk_t lblk_start, lblk_end;
3283         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3284         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3285
3286         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3287                                         search_hint_reverse);
3288 }
3289
3290 /**
3291  * Determines how many complete clusters (out of those specified by the 'map')
3292  * are under delalloc and were reserved quota for.
3293  * This function is called when we are writing out the blocks that were
3294  * originally written with their allocation delayed, but then the space was
3295  * allocated using fallocate() before the delayed allocation could be resolved.
3296  * The cases to look for are:
3297  * ('=' indicated delayed allocated blocks
3298  *  '-' indicates non-delayed allocated blocks)
3299  * (a) partial clusters towards beginning and/or end outside of allocated range
3300  *     are not delalloc'ed.
3301  *      Ex:
3302  *      |----c---=|====c====|====c====|===-c----|
3303  *               |++++++ allocated ++++++|
3304  *      ==> 4 complete clusters in above example
3305  *
3306  * (b) partial cluster (outside of allocated range) towards either end is
3307  *     marked for delayed allocation. In this case, we will exclude that
3308  *     cluster.
3309  *      Ex:
3310  *      |----====c========|========c========|
3311  *           |++++++ allocated ++++++|
3312  *      ==> 1 complete clusters in above example
3313  *
3314  *      Ex:
3315  *      |================c================|
3316  *            |++++++ allocated ++++++|
3317  *      ==> 0 complete clusters in above example
3318  *
3319  * The ext4_da_update_reserve_space will be called only if we
3320  * determine here that there were some "entire" clusters that span
3321  * this 'allocated' range.
3322  * In the non-bigalloc case, this function will just end up returning num_blks
3323  * without ever calling ext4_find_delalloc_range.
3324  */
3325 static unsigned int
3326 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3327                            unsigned int num_blks)
3328 {
3329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3330         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3331         ext4_lblk_t lblk_from, lblk_to, c_offset;
3332         unsigned int allocated_clusters = 0;
3333
3334         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3335         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3336
3337         /* max possible clusters for this allocation */
3338         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3339
3340         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3341
3342         /* Check towards left side */
3343         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3344         if (c_offset) {
3345                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3346                 lblk_to = lblk_from + c_offset - 1;
3347
3348                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3349                         allocated_clusters--;
3350         }
3351
3352         /* Now check towards right. */
3353         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3354         if (allocated_clusters && c_offset) {
3355                 lblk_from = lblk_start + num_blks;
3356                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3357
3358                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3359                         allocated_clusters--;
3360         }
3361
3362         return allocated_clusters;
3363 }
3364
3365 static int
3366 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3367                         struct ext4_map_blocks *map,
3368                         struct ext4_ext_path *path, int flags,
3369                         unsigned int allocated, ext4_fsblk_t newblock)
3370 {
3371         int ret = 0;
3372         int err = 0;
3373         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3374
3375         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3376                   "block %llu, max_blocks %u, flags %d, allocated %u",
3377                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3378                   flags, allocated);
3379         ext4_ext_show_leaf(inode, path);
3380
3381         trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3382                                                     newblock);
3383
3384         /* get_block() before submit the IO, split the extent */
3385         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3386                 ret = ext4_split_unwritten_extents(handle, inode, map,
3387                                                    path, flags);
3388                 /*
3389                  * Flag the inode(non aio case) or end_io struct (aio case)
3390                  * that this IO needs to conversion to written when IO is
3391                  * completed
3392                  */
3393                 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3394                         io->flag = EXT4_IO_END_UNWRITTEN;
3395                         atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3396                 } else
3397                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3398                 if (ext4_should_dioread_nolock(inode))
3399                         map->m_flags |= EXT4_MAP_UNINIT;
3400                 goto out;
3401         }
3402         /* IO end_io complete, convert the filled extent to written */
3403         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3404                 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3405                                                         path);
3406                 if (ret >= 0) {
3407                         ext4_update_inode_fsync_trans(handle, inode, 1);
3408                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3409                                                  path, map->m_len);
3410                 } else
3411                         err = ret;
3412                 goto out2;
3413         }
3414         /* buffered IO case */
3415         /*
3416          * repeat fallocate creation request
3417          * we already have an unwritten extent
3418          */
3419         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3420                 goto map_out;
3421
3422         /* buffered READ or buffered write_begin() lookup */
3423         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3424                 /*
3425                  * We have blocks reserved already.  We
3426                  * return allocated blocks so that delalloc
3427                  * won't do block reservation for us.  But
3428                  * the buffer head will be unmapped so that
3429                  * a read from the block returns 0s.
3430                  */
3431                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3432                 goto out1;
3433         }
3434
3435         /* buffered write, writepage time, convert*/
3436         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3437         if (ret >= 0)
3438                 ext4_update_inode_fsync_trans(handle, inode, 1);
3439 out:
3440         if (ret <= 0) {
3441                 err = ret;
3442                 goto out2;
3443         } else
3444                 allocated = ret;
3445         map->m_flags |= EXT4_MAP_NEW;
3446         /*
3447          * if we allocated more blocks than requested
3448          * we need to make sure we unmap the extra block
3449          * allocated. The actual needed block will get
3450          * unmapped later when we find the buffer_head marked
3451          * new.
3452          */
3453         if (allocated > map->m_len) {
3454                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3455                                         newblock + map->m_len,
3456                                         allocated - map->m_len);
3457                 allocated = map->m_len;
3458         }
3459
3460         /*
3461          * If we have done fallocate with the offset that is already
3462          * delayed allocated, we would have block reservation
3463          * and quota reservation done in the delayed write path.
3464          * But fallocate would have already updated quota and block
3465          * count for this offset. So cancel these reservation
3466          */
3467         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3468                 unsigned int reserved_clusters;
3469                 reserved_clusters = get_reserved_cluster_alloc(inode,
3470                                 map->m_lblk, map->m_len);
3471                 if (reserved_clusters)
3472                         ext4_da_update_reserve_space(inode,
3473                                                      reserved_clusters,
3474                                                      0);
3475         }
3476
3477 map_out:
3478         map->m_flags |= EXT4_MAP_MAPPED;
3479         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3480                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3481                                          map->m_len);
3482                 if (err < 0)
3483                         goto out2;
3484         }
3485 out1:
3486         if (allocated > map->m_len)
3487                 allocated = map->m_len;
3488         ext4_ext_show_leaf(inode, path);
3489         map->m_pblk = newblock;
3490         map->m_len = allocated;
3491 out2:
3492         if (path) {
3493                 ext4_ext_drop_refs(path);
3494                 kfree(path);
3495         }
3496         return err ? err : allocated;
3497 }
3498
3499 /*
3500  * get_implied_cluster_alloc - check to see if the requested
3501  * allocation (in the map structure) overlaps with a cluster already
3502  * allocated in an extent.
3503  *      @sb     The filesystem superblock structure
3504  *      @map    The requested lblk->pblk mapping
3505  *      @ex     The extent structure which might contain an implied
3506  *                      cluster allocation
3507  *
3508  * This function is called by ext4_ext_map_blocks() after we failed to
3509  * find blocks that were already in the inode's extent tree.  Hence,
3510  * we know that the beginning of the requested region cannot overlap
3511  * the extent from the inode's extent tree.  There are three cases we
3512  * want to catch.  The first is this case:
3513  *
3514  *               |--- cluster # N--|
3515  *    |--- extent ---|  |---- requested region ---|
3516  *                      |==========|
3517  *
3518  * The second case that we need to test for is this one:
3519  *
3520  *   |--------- cluster # N ----------------|
3521  *         |--- requested region --|   |------- extent ----|
3522  *         |=======================|
3523  *
3524  * The third case is when the requested region lies between two extents
3525  * within the same cluster:
3526  *          |------------- cluster # N-------------|
3527  * |----- ex -----|                  |---- ex_right ----|
3528  *                  |------ requested region ------|
3529  *                  |================|
3530  *
3531  * In each of the above cases, we need to set the map->m_pblk and
3532  * map->m_len so it corresponds to the return the extent labelled as
3533  * "|====|" from cluster #N, since it is already in use for data in
3534  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3535  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3536  * as a new "allocated" block region.  Otherwise, we will return 0 and
3537  * ext4_ext_map_blocks() will then allocate one or more new clusters
3538  * by calling ext4_mb_new_blocks().
3539  */
3540 static int get_implied_cluster_alloc(struct super_block *sb,
3541                                      struct ext4_map_blocks *map,
3542                                      struct ext4_extent *ex,
3543                                      struct ext4_ext_path *path)
3544 {
3545         struct ext4_sb_info *sbi = EXT4_SB(sb);
3546         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3547         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3548         ext4_lblk_t rr_cluster_start, rr_cluster_end;
3549         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3550         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3551         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3552
3553         /* The extent passed in that we are trying to match */
3554         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3555         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3556
3557         /* The requested region passed into ext4_map_blocks() */
3558         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3559         rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3560
3561         if ((rr_cluster_start == ex_cluster_end) ||
3562             (rr_cluster_start == ex_cluster_start)) {
3563                 if (rr_cluster_start == ex_cluster_end)
3564                         ee_start += ee_len - 1;
3565                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3566                         c_offset;
3567                 map->m_len = min(map->m_len,
3568                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3569                 /*
3570                  * Check for and handle this case:
3571                  *
3572                  *   |--------- cluster # N-------------|
3573                  *                     |------- extent ----|
3574                  *         |--- requested region ---|
3575                  *         |===========|
3576                  */
3577
3578                 if (map->m_lblk < ee_block)
3579                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3580
3581                 /*
3582                  * Check for the case where there is already another allocated
3583                  * block to the right of 'ex' but before the end of the cluster.
3584                  *
3585                  *          |------------- cluster # N-------------|
3586                  * |----- ex -----|                  |---- ex_right ----|
3587                  *                  |------ requested region ------|
3588                  *                  |================|
3589                  */
3590                 if (map->m_lblk > ee_block) {
3591                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3592                         map->m_len = min(map->m_len, next - map->m_lblk);
3593                 }
3594
3595                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3596                 return 1;
3597         }
3598
3599         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3600         return 0;
3601 }
3602
3603
3604 /*
3605  * Block allocation/map/preallocation routine for extents based files
3606  *
3607  *
3608  * Need to be called with
3609  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3610  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3611  *
3612  * return > 0, number of of blocks already mapped/allocated
3613  *          if create == 0 and these are pre-allocated blocks
3614  *              buffer head is unmapped
3615  *          otherwise blocks are mapped
3616  *
3617  * return = 0, if plain look up failed (blocks have not been allocated)
3618  *          buffer head is unmapped
3619  *
3620  * return < 0, error case.
3621  */
3622 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3623                         struct ext4_map_blocks *map, int flags)
3624 {
3625         struct ext4_ext_path *path = NULL;
3626         struct ext4_extent newex, *ex, *ex2;
3627         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3628         ext4_fsblk_t newblock = 0;
3629         int free_on_err = 0, err = 0, depth, ret;
3630         unsigned int allocated = 0, offset = 0;
3631         unsigned int allocated_clusters = 0, reserved_clusters = 0;
3632         unsigned int punched_out = 0;
3633         unsigned int result = 0;
3634         struct ext4_allocation_request ar;
3635         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3636         ext4_lblk_t cluster_offset;
3637         struct ext4_map_blocks punch_map;
3638
3639         ext_debug("blocks %u/%u requested for inode %lu\n",
3640                   map->m_lblk, map->m_len, inode->i_ino);
3641         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3642
3643         /* check in cache */
3644         if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3645                 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3646                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3647                         if ((sbi->s_cluster_ratio > 1) &&
3648                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3649                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3650
3651                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3652                                 /*
3653                                  * block isn't allocated yet and
3654                                  * user doesn't want to allocate it
3655                                  */
3656                                 goto out2;
3657                         }
3658                         /* we should allocate requested block */
3659                 } else {
3660                         /* block is already allocated */
3661                         if (sbi->s_cluster_ratio > 1)
3662                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3663                         newblock = map->m_lblk
3664                                    - le32_to_cpu(newex.ee_block)
3665                                    + ext4_ext_pblock(&newex);
3666                         /* number of remaining blocks in the extent */
3667                         allocated = ext4_ext_get_actual_len(&newex) -
3668                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3669                         goto out;
3670                 }
3671         }
3672
3673         /* find extent for this block */
3674         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3675         if (IS_ERR(path)) {
3676                 err = PTR_ERR(path);
3677                 path = NULL;
3678                 goto out2;
3679         }
3680
3681         depth = ext_depth(inode);
3682
3683         /*
3684          * consistent leaf must not be empty;
3685          * this situation is possible, though, _during_ tree modification;
3686          * this is why assert can't be put in ext4_ext_find_extent()
3687          */
3688         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3689                 EXT4_ERROR_INODE(inode, "bad extent address "
3690                                  "lblock: %lu, depth: %d pblock %lld",
3691                                  (unsigned long) map->m_lblk, depth,
3692                                  path[depth].p_block);
3693                 err = -EIO;
3694                 goto out2;
3695         }
3696
3697         ex = path[depth].p_ext;
3698         if (ex) {
3699                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3700                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3701                 unsigned short ee_len;
3702
3703                 /*
3704                  * Uninitialized extents are treated as holes, except that
3705                  * we split out initialized portions during a write.
3706                  */
3707                 ee_len = ext4_ext_get_actual_len(ex);
3708
3709                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3710
3711                 /* if found extent covers block, simply return it */
3712                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3713                         ext4_fsblk_t partial_cluster = 0;
3714
3715                         newblock = map->m_lblk - ee_block + ee_start;
3716                         /* number of remaining blocks in the extent */
3717                         allocated = ee_len - (map->m_lblk - ee_block);
3718                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3719                                   ee_block, ee_len, newblock);
3720
3721                         if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3722                                 /*
3723                                  * Do not put uninitialized extent
3724                                  * in the cache
3725                                  */
3726                                 if (!ext4_ext_is_uninitialized(ex)) {
3727                                         ext4_ext_put_in_cache(inode, ee_block,
3728                                                 ee_len, ee_start);
3729                                         goto out;
3730                                 }
3731                                 ret = ext4_ext_handle_uninitialized_extents(
3732                                         handle, inode, map, path, flags,
3733                                         allocated, newblock);
3734                                 return ret;
3735                         }
3736
3737                         /*
3738                          * Punch out the map length, but only to the
3739                          * end of the extent
3740                          */
3741                         punched_out = allocated < map->m_len ?
3742                                 allocated : map->m_len;
3743
3744                         /*
3745                          * Sense extents need to be converted to
3746                          * uninitialized, they must fit in an
3747                          * uninitialized extent
3748                          */
3749                         if (punched_out > EXT_UNINIT_MAX_LEN)
3750                                 punched_out = EXT_UNINIT_MAX_LEN;
3751
3752                         punch_map.m_lblk = map->m_lblk;
3753                         punch_map.m_pblk = newblock;
3754                         punch_map.m_len = punched_out;
3755                         punch_map.m_flags = 0;
3756
3757                         /* Check to see if the extent needs to be split */
3758                         if (punch_map.m_len != ee_len ||
3759                                 punch_map.m_lblk != ee_block) {
3760
3761                                 ret = ext4_split_extent(handle, inode,
3762                                 path, &punch_map, 0,
3763                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3764                                 EXT4_GET_BLOCKS_PRE_IO);
3765
3766                                 if (ret < 0) {
3767                                         err = ret;
3768                                         goto out2;
3769                                 }
3770                                 /*
3771                                  * find extent for the block at
3772                                  * the start of the hole
3773                                  */
3774                                 ext4_ext_drop_refs(path);
3775                                 kfree(path);
3776
3777                                 path = ext4_ext_find_extent(inode,
3778                                 map->m_lblk, NULL);
3779                                 if (IS_ERR(path)) {
3780                                         err = PTR_ERR(path);
3781                                         path = NULL;
3782                                         goto out2;
3783                                 }
3784
3785                                 depth = ext_depth(inode);
3786                                 ex = path[depth].p_ext;
3787                                 ee_len = ext4_ext_get_actual_len(ex);
3788                                 ee_block = le32_to_cpu(ex->ee_block);
3789                                 ee_start = ext4_ext_pblock(ex);
3790
3791                         }
3792
3793                         ext4_ext_mark_uninitialized(ex);
3794
3795                         ext4_ext_invalidate_cache(inode);
3796
3797                         err = ext4_ext_rm_leaf(handle, inode, path,
3798                                                &partial_cluster, map->m_lblk,
3799                                                map->m_lblk + punched_out);
3800
3801                         if (!err && path->p_hdr->eh_entries == 0) {
3802                                 /*
3803                                  * Punch hole freed all of this sub tree,
3804                                  * so we need to correct eh_depth
3805                                  */
3806                                 err = ext4_ext_get_access(handle, inode, path);
3807                                 if (err == 0) {
3808                                         ext_inode_hdr(inode)->eh_depth = 0;
3809                                         ext_inode_hdr(inode)->eh_max =
3810                                         cpu_to_le16(ext4_ext_space_root(
3811                                                 inode, 0));
3812
3813                                         err = ext4_ext_dirty(
3814                                                 handle, inode, path);
3815                                 }
3816                         }
3817
3818                         goto out2;
3819                 }
3820         }
3821
3822         if ((sbi->s_cluster_ratio > 1) &&
3823             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3824                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3825
3826         /*
3827          * requested block isn't allocated yet;
3828          * we couldn't try to create block if create flag is zero
3829          */
3830         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3831                 /*
3832                  * put just found gap into cache to speed up
3833                  * subsequent requests
3834                  */
3835                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3836                 goto out2;
3837         }
3838
3839         /*
3840          * Okay, we need to do block allocation.
3841          */
3842         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3843         newex.ee_block = cpu_to_le32(map->m_lblk);
3844         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3845
3846         /*
3847          * If we are doing bigalloc, check to see if the extent returned
3848          * by ext4_ext_find_extent() implies a cluster we can use.
3849          */
3850         if (cluster_offset && ex &&
3851             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3852                 ar.len = allocated = map->m_len;
3853                 newblock = map->m_pblk;
3854                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3855                 goto got_allocated_blocks;
3856         }
3857
3858         /* find neighbour allocated blocks */
3859         ar.lleft = map->m_lblk;
3860         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3861         if (err)
3862                 goto out2;
3863         ar.lright = map->m_lblk;
3864         ex2 = NULL;
3865         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3866         if (err)
3867                 goto out2;
3868
3869         /* Check if the extent after searching to the right implies a
3870          * cluster we can use. */
3871         if ((sbi->s_cluster_ratio > 1) && ex2 &&
3872             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3873                 ar.len = allocated = map->m_len;
3874                 newblock = map->m_pblk;
3875                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3876                 goto got_allocated_blocks;
3877         }
3878
3879         /*
3880          * See if request is beyond maximum number of blocks we can have in
3881          * a single extent. For an initialized extent this limit is
3882          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3883          * EXT_UNINIT_MAX_LEN.
3884          */
3885         if (map->m_len > EXT_INIT_MAX_LEN &&
3886             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3887                 map->m_len = EXT_INIT_MAX_LEN;
3888         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3889                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3890                 map->m_len = EXT_UNINIT_MAX_LEN;
3891
3892         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3893         newex.ee_len = cpu_to_le16(map->m_len);
3894         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3895         if (err)
3896                 allocated = ext4_ext_get_actual_len(&newex);
3897         else
3898                 allocated = map->m_len;
3899
3900         /* allocate new block */
3901         ar.inode = inode;
3902         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3903         ar.logical = map->m_lblk;
3904         /*
3905          * We calculate the offset from the beginning of the cluster
3906          * for the logical block number, since when we allocate a
3907          * physical cluster, the physical block should start at the
3908          * same offset from the beginning of the cluster.  This is
3909          * needed so that future calls to get_implied_cluster_alloc()
3910          * work correctly.
3911          */
3912         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3913         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3914         ar.goal -= offset;
3915         ar.logical -= offset;
3916         if (S_ISREG(inode->i_mode))
3917                 ar.flags = EXT4_MB_HINT_DATA;
3918         else
3919                 /* disable in-core preallocation for non-regular files */
3920                 ar.flags = 0;
3921         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3922                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3923         newblock = ext4_mb_new_blocks(handle, &ar, &err);
3924         if (!newblock)
3925                 goto out2;
3926         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3927                   ar.goal, newblock, allocated);
3928         free_on_err = 1;
3929         allocated_clusters = ar.len;
3930         ar.len = EXT4_C2B(sbi, ar.len) - offset;
3931         if (ar.len > allocated)
3932                 ar.len = allocated;
3933
3934 got_allocated_blocks:
3935         /* try to insert new extent into found leaf and return */
3936         ext4_ext_store_pblock(&newex, newblock + offset);
3937         newex.ee_len = cpu_to_le16(ar.len);
3938         /* Mark uninitialized */
3939         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3940                 ext4_ext_mark_uninitialized(&newex);
3941                 /*
3942                  * io_end structure was created for every IO write to an
3943                  * uninitialized extent. To avoid unnecessary conversion,
3944                  * here we flag the IO that really needs the conversion.
3945                  * For non asycn direct IO case, flag the inode state
3946                  * that we need to perform conversion when IO is done.
3947                  */
3948                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3949                         if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3950                                 io->flag = EXT4_IO_END_UNWRITTEN;
3951                                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3952                         } else
3953                                 ext4_set_inode_state(inode,
3954                                                      EXT4_STATE_DIO_UNWRITTEN);
3955                 }
3956                 if (ext4_should_dioread_nolock(inode))
3957                         map->m_flags |= EXT4_MAP_UNINIT;
3958         }
3959
3960         err = 0;
3961         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
3962                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3963                                          path, ar.len);
3964         if (!err)
3965                 err = ext4_ext_insert_extent(handle, inode, path,
3966                                              &newex, flags);
3967         if (err && free_on_err) {
3968                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3969                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3970                 /* free data blocks we just allocated */
3971                 /* not a good idea to call discard here directly,
3972                  * but otherwise we'd need to call it every free() */
3973                 ext4_discard_preallocations(inode);
3974                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3975                                  ext4_ext_get_actual_len(&newex), fb_flags);
3976                 goto out2;
3977         }
3978
3979         /* previous routine could use block we allocated */
3980         newblock = ext4_ext_pblock(&newex);
3981         allocated = ext4_ext_get_actual_len(&newex);
3982         if (allocated > map->m_len)
3983                 allocated = map->m_len;
3984         map->m_flags |= EXT4_MAP_NEW;
3985
3986         /*
3987          * Update reserved blocks/metadata blocks after successful
3988          * block allocation which had been deferred till now.
3989          */
3990         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3991                 /*
3992                  * Check how many clusters we had reserved this allocted range.
3993                  */
3994                 reserved_clusters = get_reserved_cluster_alloc(inode,
3995                                                 map->m_lblk, allocated);
3996                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
3997                         if (reserved_clusters) {
3998                                 /*
3999                                  * We have clusters reserved for this range.
4000                                  * But since we are not doing actual allocation
4001                                  * and are simply using blocks from previously
4002                                  * allocated cluster, we should release the
4003                                  * reservation and not claim quota.
4004                                  */
4005                                 ext4_da_update_reserve_space(inode,
4006                                                 reserved_clusters, 0);
4007                         }
4008                 } else {
4009                         BUG_ON(allocated_clusters < reserved_clusters);
4010                         /* We will claim quota for all newly allocated blocks.*/
4011                         ext4_da_update_reserve_space(inode, allocated_clusters,
4012                                                         1);
4013                         if (reserved_clusters < allocated_clusters) {
4014                                 struct ext4_inode_info *ei = EXT4_I(inode);
4015                                 int reservation = allocated_clusters -
4016                                                   reserved_clusters;
4017                                 /*
4018                                  * It seems we claimed few clusters outside of
4019                                  * the range of this allocation. We should give
4020                                  * it back to the reservation pool. This can
4021                                  * happen in the following case:
4022                                  *
4023                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4024                                  *   cluster has 4 blocks. Thus, the clusters
4025                                  *   are [0-3],[4-7],[8-11]...
4026                                  * * First comes delayed allocation write for
4027                                  *   logical blocks 10 & 11. Since there were no
4028                                  *   previous delayed allocated blocks in the
4029                                  *   range [8-11], we would reserve 1 cluster
4030                                  *   for this write.
4031                                  * * Next comes write for logical blocks 3 to 8.
4032                                  *   In this case, we will reserve 2 clusters
4033                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4034                                  *   that range has a delayed allocated blocks.
4035                                  *   Thus total reserved clusters now becomes 3.
4036                                  * * Now, during the delayed allocation writeout
4037                                  *   time, we will first write blocks [3-8] and
4038                                  *   allocate 3 clusters for writing these
4039                                  *   blocks. Also, we would claim all these
4040                                  *   three clusters above.
4041                                  * * Now when we come here to writeout the
4042                                  *   blocks [10-11], we would expect to claim
4043                                  *   the reservation of 1 cluster we had made
4044                                  *   (and we would claim it since there are no
4045                                  *   more delayed allocated blocks in the range
4046                                  *   [8-11]. But our reserved cluster count had
4047                                  *   already gone to 0.
4048                                  *
4049                                  *   Thus, at the step 4 above when we determine
4050                                  *   that there are still some unwritten delayed
4051                                  *   allocated blocks outside of our current
4052                                  *   block range, we should increment the
4053                                  *   reserved clusters count so that when the
4054                                  *   remaining blocks finally gets written, we
4055                                  *   could claim them.
4056                                  */
4057                                 dquot_reserve_block(inode,
4058                                                 EXT4_C2B(sbi, reservation));
4059                                 spin_lock(&ei->i_block_reservation_lock);
4060                                 ei->i_reserved_data_blocks += reservation;
4061                                 spin_unlock(&ei->i_block_reservation_lock);
4062                         }
4063                 }
4064         }
4065
4066         /*
4067          * Cache the extent and update transaction to commit on fdatasync only
4068          * when it is _not_ an uninitialized extent.
4069          */
4070         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4071                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4072                 ext4_update_inode_fsync_trans(handle, inode, 1);
4073         } else
4074                 ext4_update_inode_fsync_trans(handle, inode, 0);
4075 out:
4076         if (allocated > map->m_len)
4077                 allocated = map->m_len;
4078         ext4_ext_show_leaf(inode, path);
4079         map->m_flags |= EXT4_MAP_MAPPED;
4080         map->m_pblk = newblock;
4081         map->m_len = allocated;
4082 out2:
4083         if (path) {
4084                 ext4_ext_drop_refs(path);
4085                 kfree(path);
4086         }
4087         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4088                 newblock, map->m_len, err ? err : allocated);
4089
4090         result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4091                         punched_out : allocated;
4092
4093         return err ? err : result;
4094 }
4095
4096 void ext4_ext_truncate(struct inode *inode)
4097 {
4098         struct address_space *mapping = inode->i_mapping;
4099         struct super_block *sb = inode->i_sb;
4100         ext4_lblk_t last_block;
4101         handle_t *handle;
4102         loff_t page_len;
4103         int err = 0;
4104
4105         /*
4106          * finish any pending end_io work so we won't run the risk of
4107          * converting any truncated blocks to initialized later
4108          */
4109         ext4_flush_completed_IO(inode);
4110
4111         /*
4112          * probably first extent we're gonna free will be last in block
4113          */
4114         err = ext4_writepage_trans_blocks(inode);
4115         handle = ext4_journal_start(inode, err);
4116         if (IS_ERR(handle))
4117                 return;
4118
4119         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4120                 page_len = PAGE_CACHE_SIZE -
4121                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4122
4123                 err = ext4_discard_partial_page_buffers(handle,
4124                         mapping, inode->i_size, page_len, 0);
4125
4126                 if (err)
4127                         goto out_stop;
4128         }
4129
4130         if (ext4_orphan_add(handle, inode))
4131                 goto out_stop;
4132
4133         down_write(&EXT4_I(inode)->i_data_sem);
4134         ext4_ext_invalidate_cache(inode);
4135
4136         ext4_discard_preallocations(inode);
4137
4138         /*
4139          * TODO: optimization is possible here.
4140          * Probably we need not scan at all,
4141          * because page truncation is enough.
4142          */
4143
4144         /* we have to know where to truncate from in crash case */
4145         EXT4_I(inode)->i_disksize = inode->i_size;
4146         ext4_mark_inode_dirty(handle, inode);
4147
4148         last_block = (inode->i_size + sb->s_blocksize - 1)
4149                         >> EXT4_BLOCK_SIZE_BITS(sb);
4150         err = ext4_ext_remove_space(inode, last_block);
4151
4152         /* In a multi-transaction truncate, we only make the final
4153          * transaction synchronous.
4154          */
4155         if (IS_SYNC(inode))
4156                 ext4_handle_sync(handle);
4157
4158         up_write(&EXT4_I(inode)->i_data_sem);
4159
4160 out_stop:
4161         /*
4162          * If this was a simple ftruncate() and the file will remain alive,
4163          * then we need to clear up the orphan record which we created above.
4164          * However, if this was a real unlink then we were called by
4165          * ext4_delete_inode(), and we allow that function to clean up the
4166          * orphan info for us.
4167          */
4168         if (inode->i_nlink)
4169                 ext4_orphan_del(handle, inode);
4170
4171         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4172         ext4_mark_inode_dirty(handle, inode);
4173         ext4_journal_stop(handle);
4174 }
4175
4176 static void ext4_falloc_update_inode(struct inode *inode,
4177                                 int mode, loff_t new_size, int update_ctime)
4178 {
4179         struct timespec now;
4180
4181         if (update_ctime) {
4182                 now = current_fs_time(inode->i_sb);
4183                 if (!timespec_equal(&inode->i_ctime, &now))
4184                         inode->i_ctime = now;
4185         }
4186         /*
4187          * Update only when preallocation was requested beyond
4188          * the file size.
4189          */
4190         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4191                 if (new_size > i_size_read(inode))
4192                         i_size_write(inode, new_size);
4193                 if (new_size > EXT4_I(inode)->i_disksize)
4194                         ext4_update_i_disksize(inode, new_size);
4195         } else {
4196                 /*
4197                  * Mark that we allocate beyond EOF so the subsequent truncate
4198                  * can proceed even if the new size is the same as i_size.
4199                  */
4200                 if (new_size > i_size_read(inode))
4201                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4202         }
4203
4204 }
4205
4206 /*
4207  * preallocate space for a file. This implements ext4's fallocate file
4208  * operation, which gets called from sys_fallocate system call.
4209  * For block-mapped files, posix_fallocate should fall back to the method
4210  * of writing zeroes to the required new blocks (the same behavior which is
4211  * expected for file systems which do not support fallocate() system call).
4212  */
4213 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4214 {
4215         struct inode *inode = file->f_path.dentry->d_inode;
4216         handle_t *handle;
4217         loff_t new_size;
4218         unsigned int max_blocks;
4219         int ret = 0;
4220         int ret2 = 0;
4221         int retries = 0;
4222         int flags;
4223         struct ext4_map_blocks map;
4224         unsigned int credits, blkbits = inode->i_blkbits;
4225
4226         /*
4227          * currently supporting (pre)allocate mode for extent-based
4228          * files _only_
4229          */
4230         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4231                 return -EOPNOTSUPP;
4232
4233         /* Return error if mode is not supported */
4234         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4235                 return -EOPNOTSUPP;
4236
4237         if (mode & FALLOC_FL_PUNCH_HOLE)
4238                 return ext4_punch_hole(file, offset, len);
4239
4240         trace_ext4_fallocate_enter(inode, offset, len, mode);
4241         map.m_lblk = offset >> blkbits;
4242         /*
4243          * We can't just convert len to max_blocks because
4244          * If blocksize = 4096 offset = 3072 and len = 2048
4245          */
4246         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4247                 - map.m_lblk;
4248         /*
4249          * credits to insert 1 extent into extent tree
4250          */
4251         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4252         mutex_lock(&inode->i_mutex);
4253         ret = inode_newsize_ok(inode, (len + offset));
4254         if (ret) {
4255                 mutex_unlock(&inode->i_mutex);
4256                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4257                 return ret;
4258         }
4259         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4260                 EXT4_GET_BLOCKS_NO_NORMALIZE;
4261         if (mode & FALLOC_FL_KEEP_SIZE)
4262                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4263 retry:
4264         while (ret >= 0 && ret < max_blocks) {
4265                 map.m_lblk = map.m_lblk + ret;
4266                 map.m_len = max_blocks = max_blocks - ret;
4267                 handle = ext4_journal_start(inode, credits);
4268                 if (IS_ERR(handle)) {
4269                         ret = PTR_ERR(handle);
4270                         break;
4271                 }
4272                 ret = ext4_map_blocks(handle, inode, &map, flags);
4273                 if (ret <= 0) {
4274 #ifdef EXT4FS_DEBUG
4275                         WARN_ON(ret <= 0);
4276                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4277                                     "returned error inode#%lu, block=%u, "
4278                                     "max_blocks=%u", __func__,
4279                                     inode->i_ino, map.m_lblk, max_blocks);
4280 #endif
4281                         ext4_mark_inode_dirty(handle, inode);
4282                         ret2 = ext4_journal_stop(handle);
4283                         break;
4284                 }
4285                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4286                                                 blkbits) >> blkbits))
4287                         new_size = offset + len;
4288                 else
4289                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4290
4291                 ext4_falloc_update_inode(inode, mode, new_size,
4292                                          (map.m_flags & EXT4_MAP_NEW));
4293                 ext4_mark_inode_dirty(handle, inode);
4294                 ret2 = ext4_journal_stop(handle);
4295                 if (ret2)
4296                         break;
4297         }
4298         if (ret == -ENOSPC &&
4299                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4300                 ret = 0;
4301                 goto retry;
4302         }
4303         mutex_unlock(&inode->i_mutex);
4304         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4305                                 ret > 0 ? ret2 : ret);
4306         return ret > 0 ? ret2 : ret;
4307 }
4308
4309 /*
4310  * This function convert a range of blocks to written extents
4311  * The caller of this function will pass the start offset and the size.
4312  * all unwritten extents within this range will be converted to
4313  * written extents.
4314  *
4315  * This function is called from the direct IO end io call back
4316  * function, to convert the fallocated extents after IO is completed.
4317  * Returns 0 on success.
4318  */
4319 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4320                                     ssize_t len)
4321 {
4322         handle_t *handle;
4323         unsigned int max_blocks;
4324         int ret = 0;
4325         int ret2 = 0;
4326         struct ext4_map_blocks map;
4327         unsigned int credits, blkbits = inode->i_blkbits;
4328
4329         map.m_lblk = offset >> blkbits;
4330         /*
4331          * We can't just convert len to max_blocks because
4332          * If blocksize = 4096 offset = 3072 and len = 2048
4333          */
4334         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4335                       map.m_lblk);
4336         /*
4337          * credits to insert 1 extent into extent tree
4338          */
4339         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4340         while (ret >= 0 && ret < max_blocks) {
4341                 map.m_lblk += ret;
4342                 map.m_len = (max_blocks -= ret);
4343                 handle = ext4_journal_start(inode, credits);
4344                 if (IS_ERR(handle)) {
4345                         ret = PTR_ERR(handle);
4346                         break;
4347                 }
4348                 ret = ext4_map_blocks(handle, inode, &map,
4349                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4350                 if (ret <= 0) {
4351                         WARN_ON(ret <= 0);
4352                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4353                                     "returned error inode#%lu, block=%u, "
4354                                     "max_blocks=%u", __func__,
4355                                     inode->i_ino, map.m_lblk, map.m_len);
4356                 }
4357                 ext4_mark_inode_dirty(handle, inode);
4358                 ret2 = ext4_journal_stop(handle);
4359                 if (ret <= 0 || ret2 )
4360                         break;
4361         }
4362         return ret > 0 ? ret2 : ret;
4363 }
4364
4365 /*
4366  * Callback function called for each extent to gather FIEMAP information.
4367  */
4368 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4369                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4370                        void *data)
4371 {
4372         __u64   logical;
4373         __u64   physical;
4374         __u64   length;
4375         __u32   flags = 0;
4376         int             ret = 0;
4377         struct fiemap_extent_info *fieinfo = data;
4378         unsigned char blksize_bits;
4379
4380         blksize_bits = inode->i_sb->s_blocksize_bits;
4381         logical = (__u64)newex->ec_block << blksize_bits;
4382
4383         if (newex->ec_start == 0) {
4384                 /*
4385                  * No extent in extent-tree contains block @newex->ec_start,
4386                  * then the block may stay in 1)a hole or 2)delayed-extent.
4387                  *
4388                  * Holes or delayed-extents are processed as follows.
4389                  * 1. lookup dirty pages with specified range in pagecache.
4390                  *    If no page is got, then there is no delayed-extent and
4391                  *    return with EXT_CONTINUE.
4392                  * 2. find the 1st mapped buffer,
4393                  * 3. check if the mapped buffer is both in the request range
4394                  *    and a delayed buffer. If not, there is no delayed-extent,
4395                  *    then return.
4396                  * 4. a delayed-extent is found, the extent will be collected.
4397                  */
4398                 ext4_lblk_t     end = 0;
4399                 pgoff_t         last_offset;
4400                 pgoff_t         offset;
4401                 pgoff_t         index;
4402                 pgoff_t         start_index = 0;
4403                 struct page     **pages = NULL;
4404                 struct buffer_head *bh = NULL;
4405                 struct buffer_head *head = NULL;
4406                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4407
4408                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4409                 if (pages == NULL)
4410                         return -ENOMEM;
4411
4412                 offset = logical >> PAGE_SHIFT;
4413 repeat:
4414                 last_offset = offset;
4415                 head = NULL;
4416                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4417                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4418
4419                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4420                         /* First time, try to find a mapped buffer. */
4421                         if (ret == 0) {
4422 out:
4423                                 for (index = 0; index < ret; index++)
4424                                         page_cache_release(pages[index]);
4425                                 /* just a hole. */
4426                                 kfree(pages);
4427                                 return EXT_CONTINUE;
4428                         }
4429                         index = 0;
4430
4431 next_page:
4432                         /* Try to find the 1st mapped buffer. */
4433                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4434                                   blksize_bits;
4435                         if (!page_has_buffers(pages[index]))
4436                                 goto out;
4437                         head = page_buffers(pages[index]);
4438                         if (!head)
4439                                 goto out;
4440
4441                         index++;
4442                         bh = head;
4443                         do {
4444                                 if (end >= newex->ec_block +
4445                                         newex->ec_len)
4446                                         /* The buffer is out of
4447                                          * the request range.
4448                                          */
4449                                         goto out;
4450
4451                                 if (buffer_mapped(bh) &&
4452                                     end >= newex->ec_block) {
4453                                         start_index = index - 1;
4454                                         /* get the 1st mapped buffer. */
4455                                         goto found_mapped_buffer;
4456                                 }
4457
4458                                 bh = bh->b_this_page;
4459                                 end++;
4460                         } while (bh != head);
4461
4462                         /* No mapped buffer in the range found in this page,
4463                          * We need to look up next page.
4464                          */
4465                         if (index >= ret) {
4466                                 /* There is no page left, but we need to limit
4467                                  * newex->ec_len.
4468                                  */
4469                                 newex->ec_len = end - newex->ec_block;
4470                                 goto out;
4471                         }
4472                         goto next_page;
4473                 } else {
4474                         /*Find contiguous delayed buffers. */
4475                         if (ret > 0 && pages[0]->index == last_offset)
4476                                 head = page_buffers(pages[0]);
4477                         bh = head;
4478                         index = 1;
4479                         start_index = 0;
4480                 }
4481
4482 found_mapped_buffer:
4483                 if (bh != NULL && buffer_delay(bh)) {
4484                         /* 1st or contiguous delayed buffer found. */
4485                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4486                                 /*
4487                                  * 1st delayed buffer found, record
4488                                  * the start of extent.
4489                                  */
4490                                 flags |= FIEMAP_EXTENT_DELALLOC;
4491                                 newex->ec_block = end;
4492                                 logical = (__u64)end << blksize_bits;
4493                         }
4494                         /* Find contiguous delayed buffers. */
4495                         do {
4496                                 if (!buffer_delay(bh))
4497                                         goto found_delayed_extent;
4498                                 bh = bh->b_this_page;
4499                                 end++;
4500                         } while (bh != head);
4501
4502                         for (; index < ret; index++) {
4503                                 if (!page_has_buffers(pages[index])) {
4504                                         bh = NULL;
4505                                         break;
4506                                 }
4507                                 head = page_buffers(pages[index]);
4508                                 if (!head) {
4509                                         bh = NULL;
4510                                         break;
4511                                 }
4512
4513                                 if (pages[index]->index !=
4514                                     pages[start_index]->index + index
4515                                     - start_index) {
4516                                         /* Blocks are not contiguous. */
4517                                         bh = NULL;
4518                                         break;
4519                                 }
4520                                 bh = head;
4521                                 do {
4522                                         if (!buffer_delay(bh))
4523                                                 /* Delayed-extent ends. */
4524                                                 goto found_delayed_extent;
4525                                         bh = bh->b_this_page;
4526                                         end++;
4527                                 } while (bh != head);
4528                         }
4529                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4530                         /* a hole found. */
4531                         goto out;
4532
4533 found_delayed_extent:
4534                 newex->ec_len = min(end - newex->ec_block,
4535                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4536                 if (ret == nr_pages && bh != NULL &&
4537                         newex->ec_len < EXT_INIT_MAX_LEN &&
4538                         buffer_delay(bh)) {
4539                         /* Have not collected an extent and continue. */
4540                         for (index = 0; index < ret; index++)
4541                                 page_cache_release(pages[index]);
4542                         goto repeat;
4543                 }
4544
4545                 for (index = 0; index < ret; index++)
4546                         page_cache_release(pages[index]);
4547                 kfree(pages);
4548         }
4549
4550         physical = (__u64)newex->ec_start << blksize_bits;
4551         length =   (__u64)newex->ec_len << blksize_bits;
4552
4553         if (ex && ext4_ext_is_uninitialized(ex))
4554                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4555
4556         if (next == EXT_MAX_BLOCKS)
4557                 flags |= FIEMAP_EXTENT_LAST;
4558
4559         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4560                                         length, flags);
4561         if (ret < 0)
4562                 return ret;
4563         if (ret == 1)
4564                 return EXT_BREAK;
4565         return EXT_CONTINUE;
4566 }
4567 /* fiemap flags we can handle specified here */
4568 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4569
4570 static int ext4_xattr_fiemap(struct inode *inode,
4571                                 struct fiemap_extent_info *fieinfo)
4572 {
4573         __u64 physical = 0;
4574         __u64 length;
4575         __u32 flags = FIEMAP_EXTENT_LAST;
4576         int blockbits = inode->i_sb->s_blocksize_bits;
4577         int error = 0;
4578
4579         /* in-inode? */
4580         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4581                 struct ext4_iloc iloc;
4582                 int offset;     /* offset of xattr in inode */
4583
4584                 error = ext4_get_inode_loc(inode, &iloc);
4585                 if (error)
4586                         return error;
4587                 physical = iloc.bh->b_blocknr << blockbits;
4588                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4589                                 EXT4_I(inode)->i_extra_isize;
4590                 physical += offset;
4591                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4592                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4593                 brelse(iloc.bh);
4594         } else { /* external block */
4595                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4596                 length = inode->i_sb->s_blocksize;
4597         }
4598
4599         if (physical)
4600                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4601                                                 length, flags);
4602         return (error < 0 ? error : 0);
4603 }
4604
4605 /*
4606  * ext4_ext_punch_hole
4607  *
4608  * Punches a hole of "length" bytes in a file starting
4609  * at byte "offset"
4610  *
4611  * @inode:  The inode of the file to punch a hole in
4612  * @offset: The starting byte offset of the hole
4613  * @length: The length of the hole
4614  *
4615  * Returns the number of blocks removed or negative on err
4616  */
4617 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4618 {
4619         struct inode *inode = file->f_path.dentry->d_inode;
4620         struct super_block *sb = inode->i_sb;
4621         struct ext4_ext_cache cache_ex;
4622         ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4623         struct address_space *mapping = inode->i_mapping;
4624         struct ext4_map_blocks map;
4625         handle_t *handle;
4626         loff_t first_page, last_page, page_len;
4627         loff_t first_page_offset, last_page_offset;
4628         int ret, credits, blocks_released, err = 0;
4629
4630         /* No need to punch hole beyond i_size */
4631         if (offset >= inode->i_size)
4632                 return 0;
4633
4634         /*
4635          * If the hole extends beyond i_size, set the hole
4636          * to end after the page that contains i_size
4637          */
4638         if (offset + length > inode->i_size) {
4639                 length = inode->i_size +
4640                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4641                    offset;
4642         }
4643
4644         first_block = (offset + sb->s_blocksize - 1) >>
4645                 EXT4_BLOCK_SIZE_BITS(sb);
4646         last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4647
4648         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4649         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4650
4651         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4652         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4653
4654         /*
4655          * Write out all dirty pages to avoid race conditions
4656          * Then release them.
4657          */
4658         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4659                 err = filemap_write_and_wait_range(mapping,
4660                         offset, offset + length - 1);
4661
4662                 if (err)
4663                         return err;
4664         }
4665
4666         /* Now release the pages */
4667         if (last_page_offset > first_page_offset) {
4668                 truncate_inode_pages_range(mapping, first_page_offset,
4669                                            last_page_offset-1);
4670         }
4671
4672         /* finish any pending end_io work */
4673         ext4_flush_completed_IO(inode);
4674
4675         credits = ext4_writepage_trans_blocks(inode);
4676         handle = ext4_journal_start(inode, credits);
4677         if (IS_ERR(handle))
4678                 return PTR_ERR(handle);
4679
4680         err = ext4_orphan_add(handle, inode);
4681         if (err)
4682                 goto out;
4683
4684         /*
4685          * Now we need to zero out the non-page-aligned data in the
4686          * pages at the start and tail of the hole, and unmap the buffer
4687          * heads for the block aligned regions of the page that were
4688          * completely zeroed.
4689          */
4690         if (first_page > last_page) {
4691                 /*
4692                  * If the file space being truncated is contained within a page
4693                  * just zero out and unmap the middle of that page
4694                  */
4695                 err = ext4_discard_partial_page_buffers(handle,
4696                         mapping, offset, length, 0);
4697
4698                 if (err)
4699                         goto out;
4700         } else {
4701                 /*
4702                  * zero out and unmap the partial page that contains
4703                  * the start of the hole
4704                  */
4705                 page_len  = first_page_offset - offset;
4706                 if (page_len > 0) {
4707                         err = ext4_discard_partial_page_buffers(handle, mapping,
4708                                                    offset, page_len, 0);
4709                         if (err)
4710                                 goto out;
4711                 }
4712
4713                 /*
4714                  * zero out and unmap the partial page that contains
4715                  * the end of the hole
4716                  */
4717                 page_len = offset + length - last_page_offset;
4718                 if (page_len > 0) {
4719                         err = ext4_discard_partial_page_buffers(handle, mapping,
4720                                         last_page_offset, page_len, 0);
4721                         if (err)
4722                                 goto out;
4723                 }
4724         }
4725
4726
4727         /*
4728          * If i_size is contained in the last page, we need to
4729          * unmap and zero the partial page after i_size
4730          */
4731         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4732            inode->i_size % PAGE_CACHE_SIZE != 0) {
4733
4734                 page_len = PAGE_CACHE_SIZE -
4735                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4736
4737                 if (page_len > 0) {
4738                         err = ext4_discard_partial_page_buffers(handle,
4739                           mapping, inode->i_size, page_len, 0);
4740
4741                         if (err)
4742                                 goto out;
4743                 }
4744         }
4745
4746         /* If there are no blocks to remove, return now */
4747         if (first_block >= last_block)
4748                 goto out;
4749
4750         down_write(&EXT4_I(inode)->i_data_sem);
4751         ext4_ext_invalidate_cache(inode);
4752         ext4_discard_preallocations(inode);
4753
4754         /*
4755          * Loop over all the blocks and identify blocks
4756          * that need to be punched out
4757          */
4758         iblock = first_block;
4759         blocks_released = 0;
4760         while (iblock < last_block) {
4761                 max_blocks = last_block - iblock;
4762                 num_blocks = 1;
4763                 memset(&map, 0, sizeof(map));
4764                 map.m_lblk = iblock;
4765                 map.m_len = max_blocks;
4766                 ret = ext4_ext_map_blocks(handle, inode, &map,
4767                         EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4768
4769                 if (ret > 0) {
4770                         blocks_released += ret;
4771                         num_blocks = ret;
4772                 } else if (ret == 0) {
4773                         /*
4774                          * If map blocks could not find the block,
4775                          * then it is in a hole.  If the hole was
4776                          * not already cached, then map blocks should
4777                          * put it in the cache.  So we can get the hole
4778                          * out of the cache
4779                          */
4780                         memset(&cache_ex, 0, sizeof(cache_ex));
4781                         if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4782                                 !cache_ex.ec_start) {
4783
4784                                 /* The hole is cached */
4785                                 num_blocks = cache_ex.ec_block +
4786                                 cache_ex.ec_len - iblock;
4787
4788                         } else {
4789                                 /* The block could not be identified */
4790                                 err = -EIO;
4791                                 break;
4792                         }
4793                 } else {
4794                         /* Map blocks error */
4795                         err = ret;
4796                         break;
4797                 }
4798
4799                 if (num_blocks == 0) {
4800                         /* This condition should never happen */
4801                         ext_debug("Block lookup failed");
4802                         err = -EIO;
4803                         break;
4804                 }
4805
4806                 iblock += num_blocks;
4807         }
4808
4809         if (blocks_released > 0) {
4810                 ext4_ext_invalidate_cache(inode);
4811                 ext4_discard_preallocations(inode);
4812         }
4813
4814         if (IS_SYNC(inode))
4815                 ext4_handle_sync(handle);
4816
4817         up_write(&EXT4_I(inode)->i_data_sem);
4818
4819 out:
4820         ext4_orphan_del(handle, inode);
4821         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4822         ext4_mark_inode_dirty(handle, inode);
4823         ext4_journal_stop(handle);
4824         return err;
4825 }
4826 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4827                 __u64 start, __u64 len)
4828 {
4829         ext4_lblk_t start_blk;
4830         int error = 0;
4831
4832         /* fallback to generic here if not in extents fmt */
4833         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4834                 return generic_block_fiemap(inode, fieinfo, start, len,
4835                         ext4_get_block);
4836
4837         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4838                 return -EBADR;
4839
4840         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4841                 error = ext4_xattr_fiemap(inode, fieinfo);
4842         } else {
4843                 ext4_lblk_t len_blks;
4844                 __u64 last_blk;
4845
4846                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4847                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4848                 if (last_blk >= EXT_MAX_BLOCKS)
4849                         last_blk = EXT_MAX_BLOCKS-1;
4850                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4851
4852                 /*
4853                  * Walk the extent tree gathering extent information.
4854                  * ext4_ext_fiemap_cb will push extents back to user.
4855                  */
4856                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4857                                           ext4_ext_fiemap_cb, fieinfo);
4858         }
4859
4860         return error;
4861 }