]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/extents.c
ext4: optimize ext4_find_delalloc_range() in nodelalloc mode
[karo-tx-linux.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45
46 #include <trace/events/ext4.h>
47
48 static int ext4_split_extent(handle_t *handle,
49                                 struct inode *inode,
50                                 struct ext4_ext_path *path,
51                                 struct ext4_map_blocks *map,
52                                 int split_flag,
53                                 int flags);
54
55 static int ext4_ext_truncate_extend_restart(handle_t *handle,
56                                             struct inode *inode,
57                                             int needed)
58 {
59         int err;
60
61         if (!ext4_handle_valid(handle))
62                 return 0;
63         if (handle->h_buffer_credits > needed)
64                 return 0;
65         err = ext4_journal_extend(handle, needed);
66         if (err <= 0)
67                 return err;
68         err = ext4_truncate_restart_trans(handle, inode, needed);
69         if (err == 0)
70                 err = -EAGAIN;
71
72         return err;
73 }
74
75 /*
76  * could return:
77  *  - EROFS
78  *  - ENOMEM
79  */
80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
81                                 struct ext4_ext_path *path)
82 {
83         if (path->p_bh) {
84                 /* path points to block */
85                 return ext4_journal_get_write_access(handle, path->p_bh);
86         }
87         /* path points to leaf/index in inode body */
88         /* we use in-core data, no need to protect them */
89         return 0;
90 }
91
92 /*
93  * could return:
94  *  - EROFS
95  *  - ENOMEM
96  *  - EIO
97  */
98 #define ext4_ext_dirty(handle, inode, path) \
99                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where, unsigned int line,
101                             handle_t *handle, struct inode *inode,
102                             struct ext4_ext_path *path)
103 {
104         int err;
105         if (path->p_bh) {
106                 /* path points to block */
107                 err = __ext4_handle_dirty_metadata(where, line, handle,
108                                                    inode, path->p_bh);
109         } else {
110                 /* path points to leaf/index in inode body */
111                 err = ext4_mark_inode_dirty(handle, inode);
112         }
113         return err;
114 }
115
116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
117                               struct ext4_ext_path *path,
118                               ext4_lblk_t block)
119 {
120         if (path) {
121                 int depth = path->p_depth;
122                 struct ext4_extent *ex;
123
124                 /*
125                  * Try to predict block placement assuming that we are
126                  * filling in a file which will eventually be
127                  * non-sparse --- i.e., in the case of libbfd writing
128                  * an ELF object sections out-of-order but in a way
129                  * the eventually results in a contiguous object or
130                  * executable file, or some database extending a table
131                  * space file.  However, this is actually somewhat
132                  * non-ideal if we are writing a sparse file such as
133                  * qemu or KVM writing a raw image file that is going
134                  * to stay fairly sparse, since it will end up
135                  * fragmenting the file system's free space.  Maybe we
136                  * should have some hueristics or some way to allow
137                  * userspace to pass a hint to file system,
138                  * especially if the latter case turns out to be
139                  * common.
140                  */
141                 ex = path[depth].p_ext;
142                 if (ex) {
143                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
144                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
145
146                         if (block > ext_block)
147                                 return ext_pblk + (block - ext_block);
148                         else
149                                 return ext_pblk - (ext_block - block);
150                 }
151
152                 /* it looks like index is empty;
153                  * try to find starting block from index itself */
154                 if (path[depth].p_bh)
155                         return path[depth].p_bh->b_blocknr;
156         }
157
158         /* OK. use inode's group */
159         return ext4_inode_to_goal_block(inode);
160 }
161
162 /*
163  * Allocation for a meta data block
164  */
165 static ext4_fsblk_t
166 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
167                         struct ext4_ext_path *path,
168                         struct ext4_extent *ex, int *err, unsigned int flags)
169 {
170         ext4_fsblk_t goal, newblock;
171
172         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
173         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
174                                         NULL, err);
175         return newblock;
176 }
177
178 static inline int ext4_ext_space_block(struct inode *inode, int check)
179 {
180         int size;
181
182         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
183                         / sizeof(struct ext4_extent);
184 #ifdef AGGRESSIVE_TEST
185         if (!check && size > 6)
186                 size = 6;
187 #endif
188         return size;
189 }
190
191 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
192 {
193         int size;
194
195         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
196                         / sizeof(struct ext4_extent_idx);
197 #ifdef AGGRESSIVE_TEST
198         if (!check && size > 5)
199                 size = 5;
200 #endif
201         return size;
202 }
203
204 static inline int ext4_ext_space_root(struct inode *inode, int check)
205 {
206         int size;
207
208         size = sizeof(EXT4_I(inode)->i_data);
209         size -= sizeof(struct ext4_extent_header);
210         size /= sizeof(struct ext4_extent);
211 #ifdef AGGRESSIVE_TEST
212         if (!check && size > 3)
213                 size = 3;
214 #endif
215         return size;
216 }
217
218 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
219 {
220         int size;
221
222         size = sizeof(EXT4_I(inode)->i_data);
223         size -= sizeof(struct ext4_extent_header);
224         size /= sizeof(struct ext4_extent_idx);
225 #ifdef AGGRESSIVE_TEST
226         if (!check && size > 4)
227                 size = 4;
228 #endif
229         return size;
230 }
231
232 /*
233  * Calculate the number of metadata blocks needed
234  * to allocate @blocks
235  * Worse case is one block per extent
236  */
237 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
238 {
239         struct ext4_inode_info *ei = EXT4_I(inode);
240         int idxs;
241
242         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243                 / sizeof(struct ext4_extent_idx));
244
245         /*
246          * If the new delayed allocation block is contiguous with the
247          * previous da block, it can share index blocks with the
248          * previous block, so we only need to allocate a new index
249          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
250          * an additional index block, and at ldxs**3 blocks, yet
251          * another index blocks.
252          */
253         if (ei->i_da_metadata_calc_len &&
254             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
255                 int num = 0;
256
257                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
258                         num++;
259                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
260                         num++;
261                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
262                         num++;
263                         ei->i_da_metadata_calc_len = 0;
264                 } else
265                         ei->i_da_metadata_calc_len++;
266                 ei->i_da_metadata_calc_last_lblock++;
267                 return num;
268         }
269
270         /*
271          * In the worst case we need a new set of index blocks at
272          * every level of the inode's extent tree.
273          */
274         ei->i_da_metadata_calc_len = 1;
275         ei->i_da_metadata_calc_last_lblock = lblock;
276         return ext_depth(inode) + 1;
277 }
278
279 static int
280 ext4_ext_max_entries(struct inode *inode, int depth)
281 {
282         int max;
283
284         if (depth == ext_depth(inode)) {
285                 if (depth == 0)
286                         max = ext4_ext_space_root(inode, 1);
287                 else
288                         max = ext4_ext_space_root_idx(inode, 1);
289         } else {
290                 if (depth == 0)
291                         max = ext4_ext_space_block(inode, 1);
292                 else
293                         max = ext4_ext_space_block_idx(inode, 1);
294         }
295
296         return max;
297 }
298
299 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
300 {
301         ext4_fsblk_t block = ext4_ext_pblock(ext);
302         int len = ext4_ext_get_actual_len(ext);
303
304         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
305 }
306
307 static int ext4_valid_extent_idx(struct inode *inode,
308                                 struct ext4_extent_idx *ext_idx)
309 {
310         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
311
312         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
313 }
314
315 static int ext4_valid_extent_entries(struct inode *inode,
316                                 struct ext4_extent_header *eh,
317                                 int depth)
318 {
319         unsigned short entries;
320         if (eh->eh_entries == 0)
321                 return 1;
322
323         entries = le16_to_cpu(eh->eh_entries);
324
325         if (depth == 0) {
326                 /* leaf entries */
327                 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
328                 while (entries) {
329                         if (!ext4_valid_extent(inode, ext))
330                                 return 0;
331                         ext++;
332                         entries--;
333                 }
334         } else {
335                 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
336                 while (entries) {
337                         if (!ext4_valid_extent_idx(inode, ext_idx))
338                                 return 0;
339                         ext_idx++;
340                         entries--;
341                 }
342         }
343         return 1;
344 }
345
346 static int __ext4_ext_check(const char *function, unsigned int line,
347                             struct inode *inode, struct ext4_extent_header *eh,
348                             int depth)
349 {
350         const char *error_msg;
351         int max = 0;
352
353         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
354                 error_msg = "invalid magic";
355                 goto corrupted;
356         }
357         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
358                 error_msg = "unexpected eh_depth";
359                 goto corrupted;
360         }
361         if (unlikely(eh->eh_max == 0)) {
362                 error_msg = "invalid eh_max";
363                 goto corrupted;
364         }
365         max = ext4_ext_max_entries(inode, depth);
366         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
367                 error_msg = "too large eh_max";
368                 goto corrupted;
369         }
370         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
371                 error_msg = "invalid eh_entries";
372                 goto corrupted;
373         }
374         if (!ext4_valid_extent_entries(inode, eh, depth)) {
375                 error_msg = "invalid extent entries";
376                 goto corrupted;
377         }
378         return 0;
379
380 corrupted:
381         ext4_error_inode(inode, function, line, 0,
382                         "bad header/extent: %s - magic %x, "
383                         "entries %u, max %u(%u), depth %u(%u)",
384                         error_msg, le16_to_cpu(eh->eh_magic),
385                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
386                         max, le16_to_cpu(eh->eh_depth), depth);
387
388         return -EIO;
389 }
390
391 #define ext4_ext_check(inode, eh, depth)        \
392         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
393
394 int ext4_ext_check_inode(struct inode *inode)
395 {
396         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
397 }
398
399 #ifdef EXT_DEBUG
400 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
401 {
402         int k, l = path->p_depth;
403
404         ext_debug("path:");
405         for (k = 0; k <= l; k++, path++) {
406                 if (path->p_idx) {
407                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
408                             ext4_idx_pblock(path->p_idx));
409                 } else if (path->p_ext) {
410                         ext_debug("  %d:[%d]%d:%llu ",
411                                   le32_to_cpu(path->p_ext->ee_block),
412                                   ext4_ext_is_uninitialized(path->p_ext),
413                                   ext4_ext_get_actual_len(path->p_ext),
414                                   ext4_ext_pblock(path->p_ext));
415                 } else
416                         ext_debug("  []");
417         }
418         ext_debug("\n");
419 }
420
421 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
422 {
423         int depth = ext_depth(inode);
424         struct ext4_extent_header *eh;
425         struct ext4_extent *ex;
426         int i;
427
428         if (!path)
429                 return;
430
431         eh = path[depth].p_hdr;
432         ex = EXT_FIRST_EXTENT(eh);
433
434         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
435
436         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
437                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
438                           ext4_ext_is_uninitialized(ex),
439                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
440         }
441         ext_debug("\n");
442 }
443
444 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
445                         ext4_fsblk_t newblock, int level)
446 {
447         int depth = ext_depth(inode);
448         struct ext4_extent *ex;
449
450         if (depth != level) {
451                 struct ext4_extent_idx *idx;
452                 idx = path[level].p_idx;
453                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
454                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
455                                         le32_to_cpu(idx->ei_block),
456                                         ext4_idx_pblock(idx),
457                                         newblock);
458                         idx++;
459                 }
460
461                 return;
462         }
463
464         ex = path[depth].p_ext;
465         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
466                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
467                                 le32_to_cpu(ex->ee_block),
468                                 ext4_ext_pblock(ex),
469                                 ext4_ext_is_uninitialized(ex),
470                                 ext4_ext_get_actual_len(ex),
471                                 newblock);
472                 ex++;
473         }
474 }
475
476 #else
477 #define ext4_ext_show_path(inode, path)
478 #define ext4_ext_show_leaf(inode, path)
479 #define ext4_ext_show_move(inode, path, newblock, level)
480 #endif
481
482 void ext4_ext_drop_refs(struct ext4_ext_path *path)
483 {
484         int depth = path->p_depth;
485         int i;
486
487         for (i = 0; i <= depth; i++, path++)
488                 if (path->p_bh) {
489                         brelse(path->p_bh);
490                         path->p_bh = NULL;
491                 }
492 }
493
494 /*
495  * ext4_ext_binsearch_idx:
496  * binary search for the closest index of the given block
497  * the header must be checked before calling this
498  */
499 static void
500 ext4_ext_binsearch_idx(struct inode *inode,
501                         struct ext4_ext_path *path, ext4_lblk_t block)
502 {
503         struct ext4_extent_header *eh = path->p_hdr;
504         struct ext4_extent_idx *r, *l, *m;
505
506
507         ext_debug("binsearch for %u(idx):  ", block);
508
509         l = EXT_FIRST_INDEX(eh) + 1;
510         r = EXT_LAST_INDEX(eh);
511         while (l <= r) {
512                 m = l + (r - l) / 2;
513                 if (block < le32_to_cpu(m->ei_block))
514                         r = m - 1;
515                 else
516                         l = m + 1;
517                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518                                 m, le32_to_cpu(m->ei_block),
519                                 r, le32_to_cpu(r->ei_block));
520         }
521
522         path->p_idx = l - 1;
523         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524                   ext4_idx_pblock(path->p_idx));
525
526 #ifdef CHECK_BINSEARCH
527         {
528                 struct ext4_extent_idx *chix, *ix;
529                 int k;
530
531                 chix = ix = EXT_FIRST_INDEX(eh);
532                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
533                   if (k != 0 &&
534                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
536                                        "first=0x%p\n", k,
537                                        ix, EXT_FIRST_INDEX(eh));
538                                 printk(KERN_DEBUG "%u <= %u\n",
539                                        le32_to_cpu(ix->ei_block),
540                                        le32_to_cpu(ix[-1].ei_block));
541                         }
542                         BUG_ON(k && le32_to_cpu(ix->ei_block)
543                                            <= le32_to_cpu(ix[-1].ei_block));
544                         if (block < le32_to_cpu(ix->ei_block))
545                                 break;
546                         chix = ix;
547                 }
548                 BUG_ON(chix != path->p_idx);
549         }
550 #endif
551
552 }
553
554 /*
555  * ext4_ext_binsearch:
556  * binary search for closest extent of the given block
557  * the header must be checked before calling this
558  */
559 static void
560 ext4_ext_binsearch(struct inode *inode,
561                 struct ext4_ext_path *path, ext4_lblk_t block)
562 {
563         struct ext4_extent_header *eh = path->p_hdr;
564         struct ext4_extent *r, *l, *m;
565
566         if (eh->eh_entries == 0) {
567                 /*
568                  * this leaf is empty:
569                  * we get such a leaf in split/add case
570                  */
571                 return;
572         }
573
574         ext_debug("binsearch for %u:  ", block);
575
576         l = EXT_FIRST_EXTENT(eh) + 1;
577         r = EXT_LAST_EXTENT(eh);
578
579         while (l <= r) {
580                 m = l + (r - l) / 2;
581                 if (block < le32_to_cpu(m->ee_block))
582                         r = m - 1;
583                 else
584                         l = m + 1;
585                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586                                 m, le32_to_cpu(m->ee_block),
587                                 r, le32_to_cpu(r->ee_block));
588         }
589
590         path->p_ext = l - 1;
591         ext_debug("  -> %d:%llu:[%d]%d ",
592                         le32_to_cpu(path->p_ext->ee_block),
593                         ext4_ext_pblock(path->p_ext),
594                         ext4_ext_is_uninitialized(path->p_ext),
595                         ext4_ext_get_actual_len(path->p_ext));
596
597 #ifdef CHECK_BINSEARCH
598         {
599                 struct ext4_extent *chex, *ex;
600                 int k;
601
602                 chex = ex = EXT_FIRST_EXTENT(eh);
603                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
604                         BUG_ON(k && le32_to_cpu(ex->ee_block)
605                                           <= le32_to_cpu(ex[-1].ee_block));
606                         if (block < le32_to_cpu(ex->ee_block))
607                                 break;
608                         chex = ex;
609                 }
610                 BUG_ON(chex != path->p_ext);
611         }
612 #endif
613
614 }
615
616 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
617 {
618         struct ext4_extent_header *eh;
619
620         eh = ext_inode_hdr(inode);
621         eh->eh_depth = 0;
622         eh->eh_entries = 0;
623         eh->eh_magic = EXT4_EXT_MAGIC;
624         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
625         ext4_mark_inode_dirty(handle, inode);
626         ext4_ext_invalidate_cache(inode);
627         return 0;
628 }
629
630 struct ext4_ext_path *
631 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
632                                         struct ext4_ext_path *path)
633 {
634         struct ext4_extent_header *eh;
635         struct buffer_head *bh;
636         short int depth, i, ppos = 0, alloc = 0;
637
638         eh = ext_inode_hdr(inode);
639         depth = ext_depth(inode);
640
641         /* account possible depth increase */
642         if (!path) {
643                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
644                                 GFP_NOFS);
645                 if (!path)
646                         return ERR_PTR(-ENOMEM);
647                 alloc = 1;
648         }
649         path[0].p_hdr = eh;
650         path[0].p_bh = NULL;
651
652         i = depth;
653         /* walk through the tree */
654         while (i) {
655                 int need_to_validate = 0;
656
657                 ext_debug("depth %d: num %d, max %d\n",
658                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
659
660                 ext4_ext_binsearch_idx(inode, path + ppos, block);
661                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
662                 path[ppos].p_depth = i;
663                 path[ppos].p_ext = NULL;
664
665                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
666                 if (unlikely(!bh))
667                         goto err;
668                 if (!bh_uptodate_or_lock(bh)) {
669                         trace_ext4_ext_load_extent(inode, block,
670                                                 path[ppos].p_block);
671                         if (bh_submit_read(bh) < 0) {
672                                 put_bh(bh);
673                                 goto err;
674                         }
675                         /* validate the extent entries */
676                         need_to_validate = 1;
677                 }
678                 eh = ext_block_hdr(bh);
679                 ppos++;
680                 if (unlikely(ppos > depth)) {
681                         put_bh(bh);
682                         EXT4_ERROR_INODE(inode,
683                                          "ppos %d > depth %d", ppos, depth);
684                         goto err;
685                 }
686                 path[ppos].p_bh = bh;
687                 path[ppos].p_hdr = eh;
688                 i--;
689
690                 if (need_to_validate && ext4_ext_check(inode, eh, i))
691                         goto err;
692         }
693
694         path[ppos].p_depth = i;
695         path[ppos].p_ext = NULL;
696         path[ppos].p_idx = NULL;
697
698         /* find extent */
699         ext4_ext_binsearch(inode, path + ppos, block);
700         /* if not an empty leaf */
701         if (path[ppos].p_ext)
702                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
703
704         ext4_ext_show_path(inode, path);
705
706         return path;
707
708 err:
709         ext4_ext_drop_refs(path);
710         if (alloc)
711                 kfree(path);
712         return ERR_PTR(-EIO);
713 }
714
715 /*
716  * ext4_ext_insert_index:
717  * insert new index [@logical;@ptr] into the block at @curp;
718  * check where to insert: before @curp or after @curp
719  */
720 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
721                                  struct ext4_ext_path *curp,
722                                  int logical, ext4_fsblk_t ptr)
723 {
724         struct ext4_extent_idx *ix;
725         int len, err;
726
727         err = ext4_ext_get_access(handle, inode, curp);
728         if (err)
729                 return err;
730
731         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
732                 EXT4_ERROR_INODE(inode,
733                                  "logical %d == ei_block %d!",
734                                  logical, le32_to_cpu(curp->p_idx->ei_block));
735                 return -EIO;
736         }
737
738         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
739                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
740                 EXT4_ERROR_INODE(inode,
741                                  "eh_entries %d >= eh_max %d!",
742                                  le16_to_cpu(curp->p_hdr->eh_entries),
743                                  le16_to_cpu(curp->p_hdr->eh_max));
744                 return -EIO;
745         }
746
747         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
748                 /* insert after */
749                 ext_debug("insert new index %d after: %llu\n", logical, ptr);
750                 ix = curp->p_idx + 1;
751         } else {
752                 /* insert before */
753                 ext_debug("insert new index %d before: %llu\n", logical, ptr);
754                 ix = curp->p_idx;
755         }
756
757         len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
758         BUG_ON(len < 0);
759         if (len > 0) {
760                 ext_debug("insert new index %d: "
761                                 "move %d indices from 0x%p to 0x%p\n",
762                                 logical, len, ix, ix + 1);
763                 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
764         }
765
766         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
767                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
768                 return -EIO;
769         }
770
771         ix->ei_block = cpu_to_le32(logical);
772         ext4_idx_store_pblock(ix, ptr);
773         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
774
775         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
776                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
777                 return -EIO;
778         }
779
780         err = ext4_ext_dirty(handle, inode, curp);
781         ext4_std_error(inode->i_sb, err);
782
783         return err;
784 }
785
786 /*
787  * ext4_ext_split:
788  * inserts new subtree into the path, using free index entry
789  * at depth @at:
790  * - allocates all needed blocks (new leaf and all intermediate index blocks)
791  * - makes decision where to split
792  * - moves remaining extents and index entries (right to the split point)
793  *   into the newly allocated blocks
794  * - initializes subtree
795  */
796 static int ext4_ext_split(handle_t *handle, struct inode *inode,
797                           unsigned int flags,
798                           struct ext4_ext_path *path,
799                           struct ext4_extent *newext, int at)
800 {
801         struct buffer_head *bh = NULL;
802         int depth = ext_depth(inode);
803         struct ext4_extent_header *neh;
804         struct ext4_extent_idx *fidx;
805         int i = at, k, m, a;
806         ext4_fsblk_t newblock, oldblock;
807         __le32 border;
808         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
809         int err = 0;
810
811         /* make decision: where to split? */
812         /* FIXME: now decision is simplest: at current extent */
813
814         /* if current leaf will be split, then we should use
815          * border from split point */
816         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
817                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
818                 return -EIO;
819         }
820         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
821                 border = path[depth].p_ext[1].ee_block;
822                 ext_debug("leaf will be split."
823                                 " next leaf starts at %d\n",
824                                   le32_to_cpu(border));
825         } else {
826                 border = newext->ee_block;
827                 ext_debug("leaf will be added."
828                                 " next leaf starts at %d\n",
829                                 le32_to_cpu(border));
830         }
831
832         /*
833          * If error occurs, then we break processing
834          * and mark filesystem read-only. index won't
835          * be inserted and tree will be in consistent
836          * state. Next mount will repair buffers too.
837          */
838
839         /*
840          * Get array to track all allocated blocks.
841          * We need this to handle errors and free blocks
842          * upon them.
843          */
844         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
845         if (!ablocks)
846                 return -ENOMEM;
847
848         /* allocate all needed blocks */
849         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
850         for (a = 0; a < depth - at; a++) {
851                 newblock = ext4_ext_new_meta_block(handle, inode, path,
852                                                    newext, &err, flags);
853                 if (newblock == 0)
854                         goto cleanup;
855                 ablocks[a] = newblock;
856         }
857
858         /* initialize new leaf */
859         newblock = ablocks[--a];
860         if (unlikely(newblock == 0)) {
861                 EXT4_ERROR_INODE(inode, "newblock == 0!");
862                 err = -EIO;
863                 goto cleanup;
864         }
865         bh = sb_getblk(inode->i_sb, newblock);
866         if (!bh) {
867                 err = -EIO;
868                 goto cleanup;
869         }
870         lock_buffer(bh);
871
872         err = ext4_journal_get_create_access(handle, bh);
873         if (err)
874                 goto cleanup;
875
876         neh = ext_block_hdr(bh);
877         neh->eh_entries = 0;
878         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
879         neh->eh_magic = EXT4_EXT_MAGIC;
880         neh->eh_depth = 0;
881
882         /* move remainder of path[depth] to the new leaf */
883         if (unlikely(path[depth].p_hdr->eh_entries !=
884                      path[depth].p_hdr->eh_max)) {
885                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
886                                  path[depth].p_hdr->eh_entries,
887                                  path[depth].p_hdr->eh_max);
888                 err = -EIO;
889                 goto cleanup;
890         }
891         /* start copy from next extent */
892         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
893         ext4_ext_show_move(inode, path, newblock, depth);
894         if (m) {
895                 struct ext4_extent *ex;
896                 ex = EXT_FIRST_EXTENT(neh);
897                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
898                 le16_add_cpu(&neh->eh_entries, m);
899         }
900
901         set_buffer_uptodate(bh);
902         unlock_buffer(bh);
903
904         err = ext4_handle_dirty_metadata(handle, inode, bh);
905         if (err)
906                 goto cleanup;
907         brelse(bh);
908         bh = NULL;
909
910         /* correct old leaf */
911         if (m) {
912                 err = ext4_ext_get_access(handle, inode, path + depth);
913                 if (err)
914                         goto cleanup;
915                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
916                 err = ext4_ext_dirty(handle, inode, path + depth);
917                 if (err)
918                         goto cleanup;
919
920         }
921
922         /* create intermediate indexes */
923         k = depth - at - 1;
924         if (unlikely(k < 0)) {
925                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
926                 err = -EIO;
927                 goto cleanup;
928         }
929         if (k)
930                 ext_debug("create %d intermediate indices\n", k);
931         /* insert new index into current index block */
932         /* current depth stored in i var */
933         i = depth - 1;
934         while (k--) {
935                 oldblock = newblock;
936                 newblock = ablocks[--a];
937                 bh = sb_getblk(inode->i_sb, newblock);
938                 if (!bh) {
939                         err = -EIO;
940                         goto cleanup;
941                 }
942                 lock_buffer(bh);
943
944                 err = ext4_journal_get_create_access(handle, bh);
945                 if (err)
946                         goto cleanup;
947
948                 neh = ext_block_hdr(bh);
949                 neh->eh_entries = cpu_to_le16(1);
950                 neh->eh_magic = EXT4_EXT_MAGIC;
951                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
952                 neh->eh_depth = cpu_to_le16(depth - i);
953                 fidx = EXT_FIRST_INDEX(neh);
954                 fidx->ei_block = border;
955                 ext4_idx_store_pblock(fidx, oldblock);
956
957                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
958                                 i, newblock, le32_to_cpu(border), oldblock);
959
960                 /* move remainder of path[i] to the new index block */
961                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
962                                         EXT_LAST_INDEX(path[i].p_hdr))) {
963                         EXT4_ERROR_INODE(inode,
964                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
965                                          le32_to_cpu(path[i].p_ext->ee_block));
966                         err = -EIO;
967                         goto cleanup;
968                 }
969                 /* start copy indexes */
970                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
971                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972                                 EXT_MAX_INDEX(path[i].p_hdr));
973                 ext4_ext_show_move(inode, path, newblock, i);
974                 if (m) {
975                         memmove(++fidx, path[i].p_idx,
976                                 sizeof(struct ext4_extent_idx) * m);
977                         le16_add_cpu(&neh->eh_entries, m);
978                 }
979                 set_buffer_uptodate(bh);
980                 unlock_buffer(bh);
981
982                 err = ext4_handle_dirty_metadata(handle, inode, bh);
983                 if (err)
984                         goto cleanup;
985                 brelse(bh);
986                 bh = NULL;
987
988                 /* correct old index */
989                 if (m) {
990                         err = ext4_ext_get_access(handle, inode, path + i);
991                         if (err)
992                                 goto cleanup;
993                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
994                         err = ext4_ext_dirty(handle, inode, path + i);
995                         if (err)
996                                 goto cleanup;
997                 }
998
999                 i--;
1000         }
1001
1002         /* insert new index */
1003         err = ext4_ext_insert_index(handle, inode, path + at,
1004                                     le32_to_cpu(border), newblock);
1005
1006 cleanup:
1007         if (bh) {
1008                 if (buffer_locked(bh))
1009                         unlock_buffer(bh);
1010                 brelse(bh);
1011         }
1012
1013         if (err) {
1014                 /* free all allocated blocks in error case */
1015                 for (i = 0; i < depth; i++) {
1016                         if (!ablocks[i])
1017                                 continue;
1018                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1019                                          EXT4_FREE_BLOCKS_METADATA);
1020                 }
1021         }
1022         kfree(ablocks);
1023
1024         return err;
1025 }
1026
1027 /*
1028  * ext4_ext_grow_indepth:
1029  * implements tree growing procedure:
1030  * - allocates new block
1031  * - moves top-level data (index block or leaf) into the new block
1032  * - initializes new top-level, creating index that points to the
1033  *   just created block
1034  */
1035 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1036                                  unsigned int flags,
1037                                  struct ext4_extent *newext)
1038 {
1039         struct ext4_extent_header *neh;
1040         struct buffer_head *bh;
1041         ext4_fsblk_t newblock;
1042         int err = 0;
1043
1044         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1045                 newext, &err, flags);
1046         if (newblock == 0)
1047                 return err;
1048
1049         bh = sb_getblk(inode->i_sb, newblock);
1050         if (!bh) {
1051                 err = -EIO;
1052                 ext4_std_error(inode->i_sb, err);
1053                 return err;
1054         }
1055         lock_buffer(bh);
1056
1057         err = ext4_journal_get_create_access(handle, bh);
1058         if (err) {
1059                 unlock_buffer(bh);
1060                 goto out;
1061         }
1062
1063         /* move top-level index/leaf into new block */
1064         memmove(bh->b_data, EXT4_I(inode)->i_data,
1065                 sizeof(EXT4_I(inode)->i_data));
1066
1067         /* set size of new block */
1068         neh = ext_block_hdr(bh);
1069         /* old root could have indexes or leaves
1070          * so calculate e_max right way */
1071         if (ext_depth(inode))
1072                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1073         else
1074                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1075         neh->eh_magic = EXT4_EXT_MAGIC;
1076         set_buffer_uptodate(bh);
1077         unlock_buffer(bh);
1078
1079         err = ext4_handle_dirty_metadata(handle, inode, bh);
1080         if (err)
1081                 goto out;
1082
1083         /* Update top-level index: num,max,pointer */
1084         neh = ext_inode_hdr(inode);
1085         neh->eh_entries = cpu_to_le16(1);
1086         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1087         if (neh->eh_depth == 0) {
1088                 /* Root extent block becomes index block */
1089                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1090                 EXT_FIRST_INDEX(neh)->ei_block =
1091                         EXT_FIRST_EXTENT(neh)->ee_block;
1092         }
1093         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1094                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1095                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1096                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1097
1098         neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1099         ext4_mark_inode_dirty(handle, inode);
1100 out:
1101         brelse(bh);
1102
1103         return err;
1104 }
1105
1106 /*
1107  * ext4_ext_create_new_leaf:
1108  * finds empty index and adds new leaf.
1109  * if no free index is found, then it requests in-depth growing.
1110  */
1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1112                                     unsigned int flags,
1113                                     struct ext4_ext_path *path,
1114                                     struct ext4_extent *newext)
1115 {
1116         struct ext4_ext_path *curp;
1117         int depth, i, err = 0;
1118
1119 repeat:
1120         i = depth = ext_depth(inode);
1121
1122         /* walk up to the tree and look for free index entry */
1123         curp = path + depth;
1124         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1125                 i--;
1126                 curp--;
1127         }
1128
1129         /* we use already allocated block for index block,
1130          * so subsequent data blocks should be contiguous */
1131         if (EXT_HAS_FREE_INDEX(curp)) {
1132                 /* if we found index with free entry, then use that
1133                  * entry: create all needed subtree and add new leaf */
1134                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1135                 if (err)
1136                         goto out;
1137
1138                 /* refill path */
1139                 ext4_ext_drop_refs(path);
1140                 path = ext4_ext_find_extent(inode,
1141                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1142                                     path);
1143                 if (IS_ERR(path))
1144                         err = PTR_ERR(path);
1145         } else {
1146                 /* tree is full, time to grow in depth */
1147                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1148                 if (err)
1149                         goto out;
1150
1151                 /* refill path */
1152                 ext4_ext_drop_refs(path);
1153                 path = ext4_ext_find_extent(inode,
1154                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1155                                     path);
1156                 if (IS_ERR(path)) {
1157                         err = PTR_ERR(path);
1158                         goto out;
1159                 }
1160
1161                 /*
1162                  * only first (depth 0 -> 1) produces free space;
1163                  * in all other cases we have to split the grown tree
1164                  */
1165                 depth = ext_depth(inode);
1166                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1167                         /* now we need to split */
1168                         goto repeat;
1169                 }
1170         }
1171
1172 out:
1173         return err;
1174 }
1175
1176 /*
1177  * search the closest allocated block to the left for *logical
1178  * and returns it at @logical + it's physical address at @phys
1179  * if *logical is the smallest allocated block, the function
1180  * returns 0 at @phys
1181  * return value contains 0 (success) or error code
1182  */
1183 static int ext4_ext_search_left(struct inode *inode,
1184                                 struct ext4_ext_path *path,
1185                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1186 {
1187         struct ext4_extent_idx *ix;
1188         struct ext4_extent *ex;
1189         int depth, ee_len;
1190
1191         if (unlikely(path == NULL)) {
1192                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1193                 return -EIO;
1194         }
1195         depth = path->p_depth;
1196         *phys = 0;
1197
1198         if (depth == 0 && path->p_ext == NULL)
1199                 return 0;
1200
1201         /* usually extent in the path covers blocks smaller
1202          * then *logical, but it can be that extent is the
1203          * first one in the file */
1204
1205         ex = path[depth].p_ext;
1206         ee_len = ext4_ext_get_actual_len(ex);
1207         if (*logical < le32_to_cpu(ex->ee_block)) {
1208                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1209                         EXT4_ERROR_INODE(inode,
1210                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1211                                          *logical, le32_to_cpu(ex->ee_block));
1212                         return -EIO;
1213                 }
1214                 while (--depth >= 0) {
1215                         ix = path[depth].p_idx;
1216                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1217                                 EXT4_ERROR_INODE(inode,
1218                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1219                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1220                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1221                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1222                                   depth);
1223                                 return -EIO;
1224                         }
1225                 }
1226                 return 0;
1227         }
1228
1229         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1230                 EXT4_ERROR_INODE(inode,
1231                                  "logical %d < ee_block %d + ee_len %d!",
1232                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1233                 return -EIO;
1234         }
1235
1236         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1237         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1238         return 0;
1239 }
1240
1241 /*
1242  * search the closest allocated block to the right for *logical
1243  * and returns it at @logical + it's physical address at @phys
1244  * if *logical is the largest allocated block, the function
1245  * returns 0 at @phys
1246  * return value contains 0 (success) or error code
1247  */
1248 static int ext4_ext_search_right(struct inode *inode,
1249                                  struct ext4_ext_path *path,
1250                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1251                                  struct ext4_extent **ret_ex)
1252 {
1253         struct buffer_head *bh = NULL;
1254         struct ext4_extent_header *eh;
1255         struct ext4_extent_idx *ix;
1256         struct ext4_extent *ex;
1257         ext4_fsblk_t block;
1258         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1259         int ee_len;
1260
1261         if (unlikely(path == NULL)) {
1262                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1263                 return -EIO;
1264         }
1265         depth = path->p_depth;
1266         *phys = 0;
1267
1268         if (depth == 0 && path->p_ext == NULL)
1269                 return 0;
1270
1271         /* usually extent in the path covers blocks smaller
1272          * then *logical, but it can be that extent is the
1273          * first one in the file */
1274
1275         ex = path[depth].p_ext;
1276         ee_len = ext4_ext_get_actual_len(ex);
1277         if (*logical < le32_to_cpu(ex->ee_block)) {
1278                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1279                         EXT4_ERROR_INODE(inode,
1280                                          "first_extent(path[%d].p_hdr) != ex",
1281                                          depth);
1282                         return -EIO;
1283                 }
1284                 while (--depth >= 0) {
1285                         ix = path[depth].p_idx;
1286                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1287                                 EXT4_ERROR_INODE(inode,
1288                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1289                                                  *logical);
1290                                 return -EIO;
1291                         }
1292                 }
1293                 goto found_extent;
1294         }
1295
1296         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1297                 EXT4_ERROR_INODE(inode,
1298                                  "logical %d < ee_block %d + ee_len %d!",
1299                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1300                 return -EIO;
1301         }
1302
1303         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1304                 /* next allocated block in this leaf */
1305                 ex++;
1306                 goto found_extent;
1307         }
1308
1309         /* go up and search for index to the right */
1310         while (--depth >= 0) {
1311                 ix = path[depth].p_idx;
1312                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1313                         goto got_index;
1314         }
1315
1316         /* we've gone up to the root and found no index to the right */
1317         return 0;
1318
1319 got_index:
1320         /* we've found index to the right, let's
1321          * follow it and find the closest allocated
1322          * block to the right */
1323         ix++;
1324         block = ext4_idx_pblock(ix);
1325         while (++depth < path->p_depth) {
1326                 bh = sb_bread(inode->i_sb, block);
1327                 if (bh == NULL)
1328                         return -EIO;
1329                 eh = ext_block_hdr(bh);
1330                 /* subtract from p_depth to get proper eh_depth */
1331                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1332                         put_bh(bh);
1333                         return -EIO;
1334                 }
1335                 ix = EXT_FIRST_INDEX(eh);
1336                 block = ext4_idx_pblock(ix);
1337                 put_bh(bh);
1338         }
1339
1340         bh = sb_bread(inode->i_sb, block);
1341         if (bh == NULL)
1342                 return -EIO;
1343         eh = ext_block_hdr(bh);
1344         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1345                 put_bh(bh);
1346                 return -EIO;
1347         }
1348         ex = EXT_FIRST_EXTENT(eh);
1349 found_extent:
1350         *logical = le32_to_cpu(ex->ee_block);
1351         *phys = ext4_ext_pblock(ex);
1352         *ret_ex = ex;
1353         if (bh)
1354                 put_bh(bh);
1355         return 0;
1356 }
1357
1358 /*
1359  * ext4_ext_next_allocated_block:
1360  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1361  * NOTE: it considers block number from index entry as
1362  * allocated block. Thus, index entries have to be consistent
1363  * with leaves.
1364  */
1365 static ext4_lblk_t
1366 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1367 {
1368         int depth;
1369
1370         BUG_ON(path == NULL);
1371         depth = path->p_depth;
1372
1373         if (depth == 0 && path->p_ext == NULL)
1374                 return EXT_MAX_BLOCKS;
1375
1376         while (depth >= 0) {
1377                 if (depth == path->p_depth) {
1378                         /* leaf */
1379                         if (path[depth].p_ext &&
1380                                 path[depth].p_ext !=
1381                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1382                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1383                 } else {
1384                         /* index */
1385                         if (path[depth].p_idx !=
1386                                         EXT_LAST_INDEX(path[depth].p_hdr))
1387                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1388                 }
1389                 depth--;
1390         }
1391
1392         return EXT_MAX_BLOCKS;
1393 }
1394
1395 /*
1396  * ext4_ext_next_leaf_block:
1397  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1398  */
1399 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1400 {
1401         int depth;
1402
1403         BUG_ON(path == NULL);
1404         depth = path->p_depth;
1405
1406         /* zero-tree has no leaf blocks at all */
1407         if (depth == 0)
1408                 return EXT_MAX_BLOCKS;
1409
1410         /* go to index block */
1411         depth--;
1412
1413         while (depth >= 0) {
1414                 if (path[depth].p_idx !=
1415                                 EXT_LAST_INDEX(path[depth].p_hdr))
1416                         return (ext4_lblk_t)
1417                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1418                 depth--;
1419         }
1420
1421         return EXT_MAX_BLOCKS;
1422 }
1423
1424 /*
1425  * ext4_ext_correct_indexes:
1426  * if leaf gets modified and modified extent is first in the leaf,
1427  * then we have to correct all indexes above.
1428  * TODO: do we need to correct tree in all cases?
1429  */
1430 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1431                                 struct ext4_ext_path *path)
1432 {
1433         struct ext4_extent_header *eh;
1434         int depth = ext_depth(inode);
1435         struct ext4_extent *ex;
1436         __le32 border;
1437         int k, err = 0;
1438
1439         eh = path[depth].p_hdr;
1440         ex = path[depth].p_ext;
1441
1442         if (unlikely(ex == NULL || eh == NULL)) {
1443                 EXT4_ERROR_INODE(inode,
1444                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1445                 return -EIO;
1446         }
1447
1448         if (depth == 0) {
1449                 /* there is no tree at all */
1450                 return 0;
1451         }
1452
1453         if (ex != EXT_FIRST_EXTENT(eh)) {
1454                 /* we correct tree if first leaf got modified only */
1455                 return 0;
1456         }
1457
1458         /*
1459          * TODO: we need correction if border is smaller than current one
1460          */
1461         k = depth - 1;
1462         border = path[depth].p_ext->ee_block;
1463         err = ext4_ext_get_access(handle, inode, path + k);
1464         if (err)
1465                 return err;
1466         path[k].p_idx->ei_block = border;
1467         err = ext4_ext_dirty(handle, inode, path + k);
1468         if (err)
1469                 return err;
1470
1471         while (k--) {
1472                 /* change all left-side indexes */
1473                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1474                         break;
1475                 err = ext4_ext_get_access(handle, inode, path + k);
1476                 if (err)
1477                         break;
1478                 path[k].p_idx->ei_block = border;
1479                 err = ext4_ext_dirty(handle, inode, path + k);
1480                 if (err)
1481                         break;
1482         }
1483
1484         return err;
1485 }
1486
1487 int
1488 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1489                                 struct ext4_extent *ex2)
1490 {
1491         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1492
1493         /*
1494          * Make sure that either both extents are uninitialized, or
1495          * both are _not_.
1496          */
1497         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1498                 return 0;
1499
1500         if (ext4_ext_is_uninitialized(ex1))
1501                 max_len = EXT_UNINIT_MAX_LEN;
1502         else
1503                 max_len = EXT_INIT_MAX_LEN;
1504
1505         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1506         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1507
1508         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1509                         le32_to_cpu(ex2->ee_block))
1510                 return 0;
1511
1512         /*
1513          * To allow future support for preallocated extents to be added
1514          * as an RO_COMPAT feature, refuse to merge to extents if
1515          * this can result in the top bit of ee_len being set.
1516          */
1517         if (ext1_ee_len + ext2_ee_len > max_len)
1518                 return 0;
1519 #ifdef AGGRESSIVE_TEST
1520         if (ext1_ee_len >= 4)
1521                 return 0;
1522 #endif
1523
1524         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1525                 return 1;
1526         return 0;
1527 }
1528
1529 /*
1530  * This function tries to merge the "ex" extent to the next extent in the tree.
1531  * It always tries to merge towards right. If you want to merge towards
1532  * left, pass "ex - 1" as argument instead of "ex".
1533  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1534  * 1 if they got merged.
1535  */
1536 static int ext4_ext_try_to_merge_right(struct inode *inode,
1537                                  struct ext4_ext_path *path,
1538                                  struct ext4_extent *ex)
1539 {
1540         struct ext4_extent_header *eh;
1541         unsigned int depth, len;
1542         int merge_done = 0;
1543         int uninitialized = 0;
1544
1545         depth = ext_depth(inode);
1546         BUG_ON(path[depth].p_hdr == NULL);
1547         eh = path[depth].p_hdr;
1548
1549         while (ex < EXT_LAST_EXTENT(eh)) {
1550                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1551                         break;
1552                 /* merge with next extent! */
1553                 if (ext4_ext_is_uninitialized(ex))
1554                         uninitialized = 1;
1555                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1556                                 + ext4_ext_get_actual_len(ex + 1));
1557                 if (uninitialized)
1558                         ext4_ext_mark_uninitialized(ex);
1559
1560                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1561                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1562                                 * sizeof(struct ext4_extent);
1563                         memmove(ex + 1, ex + 2, len);
1564                 }
1565                 le16_add_cpu(&eh->eh_entries, -1);
1566                 merge_done = 1;
1567                 WARN_ON(eh->eh_entries == 0);
1568                 if (!eh->eh_entries)
1569                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1570         }
1571
1572         return merge_done;
1573 }
1574
1575 /*
1576  * This function tries to merge the @ex extent to neighbours in the tree.
1577  * return 1 if merge left else 0.
1578  */
1579 static int ext4_ext_try_to_merge(struct inode *inode,
1580                                   struct ext4_ext_path *path,
1581                                   struct ext4_extent *ex) {
1582         struct ext4_extent_header *eh;
1583         unsigned int depth;
1584         int merge_done = 0;
1585         int ret = 0;
1586
1587         depth = ext_depth(inode);
1588         BUG_ON(path[depth].p_hdr == NULL);
1589         eh = path[depth].p_hdr;
1590
1591         if (ex > EXT_FIRST_EXTENT(eh))
1592                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1593
1594         if (!merge_done)
1595                 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1596
1597         return ret;
1598 }
1599
1600 /*
1601  * check if a portion of the "newext" extent overlaps with an
1602  * existing extent.
1603  *
1604  * If there is an overlap discovered, it updates the length of the newext
1605  * such that there will be no overlap, and then returns 1.
1606  * If there is no overlap found, it returns 0.
1607  */
1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1609                                            struct inode *inode,
1610                                            struct ext4_extent *newext,
1611                                            struct ext4_ext_path *path)
1612 {
1613         ext4_lblk_t b1, b2;
1614         unsigned int depth, len1;
1615         unsigned int ret = 0;
1616
1617         b1 = le32_to_cpu(newext->ee_block);
1618         len1 = ext4_ext_get_actual_len(newext);
1619         depth = ext_depth(inode);
1620         if (!path[depth].p_ext)
1621                 goto out;
1622         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1623         b2 &= ~(sbi->s_cluster_ratio - 1);
1624
1625         /*
1626          * get the next allocated block if the extent in the path
1627          * is before the requested block(s)
1628          */
1629         if (b2 < b1) {
1630                 b2 = ext4_ext_next_allocated_block(path);
1631                 if (b2 == EXT_MAX_BLOCKS)
1632                         goto out;
1633                 b2 &= ~(sbi->s_cluster_ratio - 1);
1634         }
1635
1636         /* check for wrap through zero on extent logical start block*/
1637         if (b1 + len1 < b1) {
1638                 len1 = EXT_MAX_BLOCKS - b1;
1639                 newext->ee_len = cpu_to_le16(len1);
1640                 ret = 1;
1641         }
1642
1643         /* check for overlap */
1644         if (b1 + len1 > b2) {
1645                 newext->ee_len = cpu_to_le16(b2 - b1);
1646                 ret = 1;
1647         }
1648 out:
1649         return ret;
1650 }
1651
1652 /*
1653  * ext4_ext_insert_extent:
1654  * tries to merge requsted extent into the existing extent or
1655  * inserts requested extent as new one into the tree,
1656  * creating new leaf in the no-space case.
1657  */
1658 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1659                                 struct ext4_ext_path *path,
1660                                 struct ext4_extent *newext, int flag)
1661 {
1662         struct ext4_extent_header *eh;
1663         struct ext4_extent *ex, *fex;
1664         struct ext4_extent *nearex; /* nearest extent */
1665         struct ext4_ext_path *npath = NULL;
1666         int depth, len, err;
1667         ext4_lblk_t next;
1668         unsigned uninitialized = 0;
1669         int flags = 0;
1670
1671         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1672                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1673                 return -EIO;
1674         }
1675         depth = ext_depth(inode);
1676         ex = path[depth].p_ext;
1677         if (unlikely(path[depth].p_hdr == NULL)) {
1678                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1679                 return -EIO;
1680         }
1681
1682         /* try to insert block into found extent and return */
1683         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1684                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1685                 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1686                           ext4_ext_is_uninitialized(newext),
1687                           ext4_ext_get_actual_len(newext),
1688                           le32_to_cpu(ex->ee_block),
1689                           ext4_ext_is_uninitialized(ex),
1690                           ext4_ext_get_actual_len(ex),
1691                           ext4_ext_pblock(ex));
1692                 err = ext4_ext_get_access(handle, inode, path + depth);
1693                 if (err)
1694                         return err;
1695
1696                 /*
1697                  * ext4_can_extents_be_merged should have checked that either
1698                  * both extents are uninitialized, or both aren't. Thus we
1699                  * need to check only one of them here.
1700                  */
1701                 if (ext4_ext_is_uninitialized(ex))
1702                         uninitialized = 1;
1703                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1704                                         + ext4_ext_get_actual_len(newext));
1705                 if (uninitialized)
1706                         ext4_ext_mark_uninitialized(ex);
1707                 eh = path[depth].p_hdr;
1708                 nearex = ex;
1709                 goto merge;
1710         }
1711
1712         depth = ext_depth(inode);
1713         eh = path[depth].p_hdr;
1714         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1715                 goto has_space;
1716
1717         /* probably next leaf has space for us? */
1718         fex = EXT_LAST_EXTENT(eh);
1719         next = EXT_MAX_BLOCKS;
1720         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1721                 next = ext4_ext_next_leaf_block(path);
1722         if (next != EXT_MAX_BLOCKS) {
1723                 ext_debug("next leaf block - %u\n", next);
1724                 BUG_ON(npath != NULL);
1725                 npath = ext4_ext_find_extent(inode, next, NULL);
1726                 if (IS_ERR(npath))
1727                         return PTR_ERR(npath);
1728                 BUG_ON(npath->p_depth != path->p_depth);
1729                 eh = npath[depth].p_hdr;
1730                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1731                         ext_debug("next leaf isn't full(%d)\n",
1732                                   le16_to_cpu(eh->eh_entries));
1733                         path = npath;
1734                         goto has_space;
1735                 }
1736                 ext_debug("next leaf has no free space(%d,%d)\n",
1737                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1738         }
1739
1740         /*
1741          * There is no free space in the found leaf.
1742          * We're gonna add a new leaf in the tree.
1743          */
1744         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1745                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1746         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1747         if (err)
1748                 goto cleanup;
1749         depth = ext_depth(inode);
1750         eh = path[depth].p_hdr;
1751
1752 has_space:
1753         nearex = path[depth].p_ext;
1754
1755         err = ext4_ext_get_access(handle, inode, path + depth);
1756         if (err)
1757                 goto cleanup;
1758
1759         if (!nearex) {
1760                 /* there is no extent in this leaf, create first one */
1761                 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1762                                 le32_to_cpu(newext->ee_block),
1763                                 ext4_ext_pblock(newext),
1764                                 ext4_ext_is_uninitialized(newext),
1765                                 ext4_ext_get_actual_len(newext));
1766                 nearex = EXT_FIRST_EXTENT(eh);
1767         } else {
1768                 if (le32_to_cpu(newext->ee_block)
1769                            > le32_to_cpu(nearex->ee_block)) {
1770                         /* Insert after */
1771                         ext_debug("insert %u:%llu:[%d]%d before: "
1772                                         "nearest %p\n",
1773                                         le32_to_cpu(newext->ee_block),
1774                                         ext4_ext_pblock(newext),
1775                                         ext4_ext_is_uninitialized(newext),
1776                                         ext4_ext_get_actual_len(newext),
1777                                         nearex);
1778                         nearex++;
1779                 } else {
1780                         /* Insert before */
1781                         BUG_ON(newext->ee_block == nearex->ee_block);
1782                         ext_debug("insert %u:%llu:[%d]%d after: "
1783                                         "nearest %p\n",
1784                                         le32_to_cpu(newext->ee_block),
1785                                         ext4_ext_pblock(newext),
1786                                         ext4_ext_is_uninitialized(newext),
1787                                         ext4_ext_get_actual_len(newext),
1788                                         nearex);
1789                 }
1790                 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1791                 if (len > 0) {
1792                         ext_debug("insert %u:%llu:[%d]%d: "
1793                                         "move %d extents from 0x%p to 0x%p\n",
1794                                         le32_to_cpu(newext->ee_block),
1795                                         ext4_ext_pblock(newext),
1796                                         ext4_ext_is_uninitialized(newext),
1797                                         ext4_ext_get_actual_len(newext),
1798                                         len, nearex, nearex + 1);
1799                         memmove(nearex + 1, nearex,
1800                                 len * sizeof(struct ext4_extent));
1801                 }
1802         }
1803
1804         le16_add_cpu(&eh->eh_entries, 1);
1805         path[depth].p_ext = nearex;
1806         nearex->ee_block = newext->ee_block;
1807         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1808         nearex->ee_len = newext->ee_len;
1809
1810 merge:
1811         /* try to merge extents to the right */
1812         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1813                 ext4_ext_try_to_merge(inode, path, nearex);
1814
1815         /* try to merge extents to the left */
1816
1817         /* time to correct all indexes above */
1818         err = ext4_ext_correct_indexes(handle, inode, path);
1819         if (err)
1820                 goto cleanup;
1821
1822         err = ext4_ext_dirty(handle, inode, path + depth);
1823
1824 cleanup:
1825         if (npath) {
1826                 ext4_ext_drop_refs(npath);
1827                 kfree(npath);
1828         }
1829         ext4_ext_invalidate_cache(inode);
1830         return err;
1831 }
1832
1833 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1834                                ext4_lblk_t num, ext_prepare_callback func,
1835                                void *cbdata)
1836 {
1837         struct ext4_ext_path *path = NULL;
1838         struct ext4_ext_cache cbex;
1839         struct ext4_extent *ex;
1840         ext4_lblk_t next, start = 0, end = 0;
1841         ext4_lblk_t last = block + num;
1842         int depth, exists, err = 0;
1843
1844         BUG_ON(func == NULL);
1845         BUG_ON(inode == NULL);
1846
1847         while (block < last && block != EXT_MAX_BLOCKS) {
1848                 num = last - block;
1849                 /* find extent for this block */
1850                 down_read(&EXT4_I(inode)->i_data_sem);
1851                 path = ext4_ext_find_extent(inode, block, path);
1852                 up_read(&EXT4_I(inode)->i_data_sem);
1853                 if (IS_ERR(path)) {
1854                         err = PTR_ERR(path);
1855                         path = NULL;
1856                         break;
1857                 }
1858
1859                 depth = ext_depth(inode);
1860                 if (unlikely(path[depth].p_hdr == NULL)) {
1861                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1862                         err = -EIO;
1863                         break;
1864                 }
1865                 ex = path[depth].p_ext;
1866                 next = ext4_ext_next_allocated_block(path);
1867
1868                 exists = 0;
1869                 if (!ex) {
1870                         /* there is no extent yet, so try to allocate
1871                          * all requested space */
1872                         start = block;
1873                         end = block + num;
1874                 } else if (le32_to_cpu(ex->ee_block) > block) {
1875                         /* need to allocate space before found extent */
1876                         start = block;
1877                         end = le32_to_cpu(ex->ee_block);
1878                         if (block + num < end)
1879                                 end = block + num;
1880                 } else if (block >= le32_to_cpu(ex->ee_block)
1881                                         + ext4_ext_get_actual_len(ex)) {
1882                         /* need to allocate space after found extent */
1883                         start = block;
1884                         end = block + num;
1885                         if (end >= next)
1886                                 end = next;
1887                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1888                         /*
1889                          * some part of requested space is covered
1890                          * by found extent
1891                          */
1892                         start = block;
1893                         end = le32_to_cpu(ex->ee_block)
1894                                 + ext4_ext_get_actual_len(ex);
1895                         if (block + num < end)
1896                                 end = block + num;
1897                         exists = 1;
1898                 } else {
1899                         BUG();
1900                 }
1901                 BUG_ON(end <= start);
1902
1903                 if (!exists) {
1904                         cbex.ec_block = start;
1905                         cbex.ec_len = end - start;
1906                         cbex.ec_start = 0;
1907                 } else {
1908                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1909                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1910                         cbex.ec_start = ext4_ext_pblock(ex);
1911                 }
1912
1913                 if (unlikely(cbex.ec_len == 0)) {
1914                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1915                         err = -EIO;
1916                         break;
1917                 }
1918                 err = func(inode, next, &cbex, ex, cbdata);
1919                 ext4_ext_drop_refs(path);
1920
1921                 if (err < 0)
1922                         break;
1923
1924                 if (err == EXT_REPEAT)
1925                         continue;
1926                 else if (err == EXT_BREAK) {
1927                         err = 0;
1928                         break;
1929                 }
1930
1931                 if (ext_depth(inode) != depth) {
1932                         /* depth was changed. we have to realloc path */
1933                         kfree(path);
1934                         path = NULL;
1935                 }
1936
1937                 block = cbex.ec_block + cbex.ec_len;
1938         }
1939
1940         if (path) {
1941                 ext4_ext_drop_refs(path);
1942                 kfree(path);
1943         }
1944
1945         return err;
1946 }
1947
1948 static void
1949 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1950                         __u32 len, ext4_fsblk_t start)
1951 {
1952         struct ext4_ext_cache *cex;
1953         BUG_ON(len == 0);
1954         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955         trace_ext4_ext_put_in_cache(inode, block, len, start);
1956         cex = &EXT4_I(inode)->i_cached_extent;
1957         cex->ec_block = block;
1958         cex->ec_len = len;
1959         cex->ec_start = start;
1960         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1961 }
1962
1963 /*
1964  * ext4_ext_put_gap_in_cache:
1965  * calculate boundaries of the gap that the requested block fits into
1966  * and cache this gap
1967  */
1968 static void
1969 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1970                                 ext4_lblk_t block)
1971 {
1972         int depth = ext_depth(inode);
1973         unsigned long len;
1974         ext4_lblk_t lblock;
1975         struct ext4_extent *ex;
1976
1977         ex = path[depth].p_ext;
1978         if (ex == NULL) {
1979                 /* there is no extent yet, so gap is [0;-] */
1980                 lblock = 0;
1981                 len = EXT_MAX_BLOCKS;
1982                 ext_debug("cache gap(whole file):");
1983         } else if (block < le32_to_cpu(ex->ee_block)) {
1984                 lblock = block;
1985                 len = le32_to_cpu(ex->ee_block) - block;
1986                 ext_debug("cache gap(before): %u [%u:%u]",
1987                                 block,
1988                                 le32_to_cpu(ex->ee_block),
1989                                  ext4_ext_get_actual_len(ex));
1990         } else if (block >= le32_to_cpu(ex->ee_block)
1991                         + ext4_ext_get_actual_len(ex)) {
1992                 ext4_lblk_t next;
1993                 lblock = le32_to_cpu(ex->ee_block)
1994                         + ext4_ext_get_actual_len(ex);
1995
1996                 next = ext4_ext_next_allocated_block(path);
1997                 ext_debug("cache gap(after): [%u:%u] %u",
1998                                 le32_to_cpu(ex->ee_block),
1999                                 ext4_ext_get_actual_len(ex),
2000                                 block);
2001                 BUG_ON(next == lblock);
2002                 len = next - lblock;
2003         } else {
2004                 lblock = len = 0;
2005                 BUG();
2006         }
2007
2008         ext_debug(" -> %u:%lu\n", lblock, len);
2009         ext4_ext_put_in_cache(inode, lblock, len, 0);
2010 }
2011
2012 /*
2013  * ext4_ext_check_cache()
2014  * Checks to see if the given block is in the cache.
2015  * If it is, the cached extent is stored in the given
2016  * cache extent pointer.  If the cached extent is a hole,
2017  * this routine should be used instead of
2018  * ext4_ext_in_cache if the calling function needs to
2019  * know the size of the hole.
2020  *
2021  * @inode: The files inode
2022  * @block: The block to look for in the cache
2023  * @ex:    Pointer where the cached extent will be stored
2024  *         if it contains block
2025  *
2026  * Return 0 if cache is invalid; 1 if the cache is valid
2027  */
2028 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2029         struct ext4_ext_cache *ex){
2030         struct ext4_ext_cache *cex;
2031         struct ext4_sb_info *sbi;
2032         int ret = 0;
2033
2034         /*
2035          * We borrow i_block_reservation_lock to protect i_cached_extent
2036          */
2037         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2038         cex = &EXT4_I(inode)->i_cached_extent;
2039         sbi = EXT4_SB(inode->i_sb);
2040
2041         /* has cache valid data? */
2042         if (cex->ec_len == 0)
2043                 goto errout;
2044
2045         if (in_range(block, cex->ec_block, cex->ec_len)) {
2046                 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2047                 ext_debug("%u cached by %u:%u:%llu\n",
2048                                 block,
2049                                 cex->ec_block, cex->ec_len, cex->ec_start);
2050                 ret = 1;
2051         }
2052 errout:
2053         if (!ret)
2054                 sbi->extent_cache_misses++;
2055         else
2056                 sbi->extent_cache_hits++;
2057         trace_ext4_ext_in_cache(inode, block, ret);
2058         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2059         return ret;
2060 }
2061
2062 /*
2063  * ext4_ext_in_cache()
2064  * Checks to see if the given block is in the cache.
2065  * If it is, the cached extent is stored in the given
2066  * extent pointer.
2067  *
2068  * @inode: The files inode
2069  * @block: The block to look for in the cache
2070  * @ex:    Pointer where the cached extent will be stored
2071  *         if it contains block
2072  *
2073  * Return 0 if cache is invalid; 1 if the cache is valid
2074  */
2075 static int
2076 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2077                         struct ext4_extent *ex)
2078 {
2079         struct ext4_ext_cache cex;
2080         int ret = 0;
2081
2082         if (ext4_ext_check_cache(inode, block, &cex)) {
2083                 ex->ee_block = cpu_to_le32(cex.ec_block);
2084                 ext4_ext_store_pblock(ex, cex.ec_start);
2085                 ex->ee_len = cpu_to_le16(cex.ec_len);
2086                 ret = 1;
2087         }
2088
2089         return ret;
2090 }
2091
2092
2093 /*
2094  * ext4_ext_rm_idx:
2095  * removes index from the index block.
2096  */
2097 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2098                         struct ext4_ext_path *path)
2099 {
2100         int err;
2101         ext4_fsblk_t leaf;
2102
2103         /* free index block */
2104         path--;
2105         leaf = ext4_idx_pblock(path->p_idx);
2106         if (unlikely(path->p_hdr->eh_entries == 0)) {
2107                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2108                 return -EIO;
2109         }
2110         err = ext4_ext_get_access(handle, inode, path);
2111         if (err)
2112                 return err;
2113
2114         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2115                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2116                 len *= sizeof(struct ext4_extent_idx);
2117                 memmove(path->p_idx, path->p_idx + 1, len);
2118         }
2119
2120         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2121         err = ext4_ext_dirty(handle, inode, path);
2122         if (err)
2123                 return err;
2124         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2125         trace_ext4_ext_rm_idx(inode, leaf);
2126
2127         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2128                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2129         return err;
2130 }
2131
2132 /*
2133  * ext4_ext_calc_credits_for_single_extent:
2134  * This routine returns max. credits that needed to insert an extent
2135  * to the extent tree.
2136  * When pass the actual path, the caller should calculate credits
2137  * under i_data_sem.
2138  */
2139 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2140                                                 struct ext4_ext_path *path)
2141 {
2142         if (path) {
2143                 int depth = ext_depth(inode);
2144                 int ret = 0;
2145
2146                 /* probably there is space in leaf? */
2147                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2148                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2149
2150                         /*
2151                          *  There are some space in the leaf tree, no
2152                          *  need to account for leaf block credit
2153                          *
2154                          *  bitmaps and block group descriptor blocks
2155                          *  and other metadata blocks still need to be
2156                          *  accounted.
2157                          */
2158                         /* 1 bitmap, 1 block group descriptor */
2159                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2160                         return ret;
2161                 }
2162         }
2163
2164         return ext4_chunk_trans_blocks(inode, nrblocks);
2165 }
2166
2167 /*
2168  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2169  *
2170  * if nrblocks are fit in a single extent (chunk flag is 1), then
2171  * in the worse case, each tree level index/leaf need to be changed
2172  * if the tree split due to insert a new extent, then the old tree
2173  * index/leaf need to be updated too
2174  *
2175  * If the nrblocks are discontiguous, they could cause
2176  * the whole tree split more than once, but this is really rare.
2177  */
2178 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2179 {
2180         int index;
2181         int depth = ext_depth(inode);
2182
2183         if (chunk)
2184                 index = depth * 2;
2185         else
2186                 index = depth * 3;
2187
2188         return index;
2189 }
2190
2191 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2192                               struct ext4_extent *ex,
2193                               ext4_fsblk_t *partial_cluster,
2194                               ext4_lblk_t from, ext4_lblk_t to)
2195 {
2196         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2197         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2198         ext4_fsblk_t pblk;
2199         int flags = EXT4_FREE_BLOCKS_FORGET;
2200
2201         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2202                 flags |= EXT4_FREE_BLOCKS_METADATA;
2203         /*
2204          * For bigalloc file systems, we never free a partial cluster
2205          * at the beginning of the extent.  Instead, we make a note
2206          * that we tried freeing the cluster, and check to see if we
2207          * need to free it on a subsequent call to ext4_remove_blocks,
2208          * or at the end of the ext4_truncate() operation.
2209          */
2210         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2211
2212         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2213         /*
2214          * If we have a partial cluster, and it's different from the
2215          * cluster of the last block, we need to explicitly free the
2216          * partial cluster here.
2217          */
2218         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2219         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2220                 ext4_free_blocks(handle, inode, NULL,
2221                                  EXT4_C2B(sbi, *partial_cluster),
2222                                  sbi->s_cluster_ratio, flags);
2223                 *partial_cluster = 0;
2224         }
2225
2226 #ifdef EXTENTS_STATS
2227         {
2228                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2229                 spin_lock(&sbi->s_ext_stats_lock);
2230                 sbi->s_ext_blocks += ee_len;
2231                 sbi->s_ext_extents++;
2232                 if (ee_len < sbi->s_ext_min)
2233                         sbi->s_ext_min = ee_len;
2234                 if (ee_len > sbi->s_ext_max)
2235                         sbi->s_ext_max = ee_len;
2236                 if (ext_depth(inode) > sbi->s_depth_max)
2237                         sbi->s_depth_max = ext_depth(inode);
2238                 spin_unlock(&sbi->s_ext_stats_lock);
2239         }
2240 #endif
2241         if (from >= le32_to_cpu(ex->ee_block)
2242             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2243                 /* tail removal */
2244                 ext4_lblk_t num;
2245
2246                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2247                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2248                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2249                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2250                 /*
2251                  * If the block range to be freed didn't start at the
2252                  * beginning of a cluster, and we removed the entire
2253                  * extent, save the partial cluster here, since we
2254                  * might need to delete if we determine that the
2255                  * truncate operation has removed all of the blocks in
2256                  * the cluster.
2257                  */
2258                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2259                     (ee_len == num))
2260                         *partial_cluster = EXT4_B2C(sbi, pblk);
2261                 else
2262                         *partial_cluster = 0;
2263         } else if (from == le32_to_cpu(ex->ee_block)
2264                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2265                 /* head removal */
2266                 ext4_lblk_t num;
2267                 ext4_fsblk_t start;
2268
2269                 num = to - from;
2270                 start = ext4_ext_pblock(ex);
2271
2272                 ext_debug("free first %u blocks starting %llu\n", num, start);
2273                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2274
2275         } else {
2276                 printk(KERN_INFO "strange request: removal(2) "
2277                                 "%u-%u from %u:%u\n",
2278                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2279         }
2280         return 0;
2281 }
2282
2283
2284 /*
2285  * ext4_ext_rm_leaf() Removes the extents associated with the
2286  * blocks appearing between "start" and "end", and splits the extents
2287  * if "start" and "end" appear in the same extent
2288  *
2289  * @handle: The journal handle
2290  * @inode:  The files inode
2291  * @path:   The path to the leaf
2292  * @start:  The first block to remove
2293  * @end:   The last block to remove
2294  */
2295 static int
2296 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2297                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2298                  ext4_lblk_t start, ext4_lblk_t end)
2299 {
2300         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2301         int err = 0, correct_index = 0;
2302         int depth = ext_depth(inode), credits;
2303         struct ext4_extent_header *eh;
2304         ext4_lblk_t a, b;
2305         unsigned num;
2306         ext4_lblk_t ex_ee_block;
2307         unsigned short ex_ee_len;
2308         unsigned uninitialized = 0;
2309         struct ext4_extent *ex;
2310
2311         /* the header must be checked already in ext4_ext_remove_space() */
2312         ext_debug("truncate since %u in leaf\n", start);
2313         if (!path[depth].p_hdr)
2314                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2315         eh = path[depth].p_hdr;
2316         if (unlikely(path[depth].p_hdr == NULL)) {
2317                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2318                 return -EIO;
2319         }
2320         /* find where to start removing */
2321         ex = EXT_LAST_EXTENT(eh);
2322
2323         ex_ee_block = le32_to_cpu(ex->ee_block);
2324         ex_ee_len = ext4_ext_get_actual_len(ex);
2325
2326         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2327
2328         while (ex >= EXT_FIRST_EXTENT(eh) &&
2329                         ex_ee_block + ex_ee_len > start) {
2330
2331                 if (ext4_ext_is_uninitialized(ex))
2332                         uninitialized = 1;
2333                 else
2334                         uninitialized = 0;
2335
2336                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2337                          uninitialized, ex_ee_len);
2338                 path[depth].p_ext = ex;
2339
2340                 a = ex_ee_block > start ? ex_ee_block : start;
2341                 b = ex_ee_block+ex_ee_len - 1 < end ?
2342                         ex_ee_block+ex_ee_len - 1 : end;
2343
2344                 ext_debug("  border %u:%u\n", a, b);
2345
2346                 /* If this extent is beyond the end of the hole, skip it */
2347                 if (end <= ex_ee_block) {
2348                         ex--;
2349                         ex_ee_block = le32_to_cpu(ex->ee_block);
2350                         ex_ee_len = ext4_ext_get_actual_len(ex);
2351                         continue;
2352                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2353                         EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2354                                          start, end);
2355                         err = -EIO;
2356                         goto out;
2357                 } else if (a != ex_ee_block) {
2358                         /* remove tail of the extent */
2359                         num = a - ex_ee_block;
2360                 } else {
2361                         /* remove whole extent: excellent! */
2362                         num = 0;
2363                 }
2364                 /*
2365                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2366                  * descriptor) for each block group; assume two block
2367                  * groups plus ex_ee_len/blocks_per_block_group for
2368                  * the worst case
2369                  */
2370                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2371                 if (ex == EXT_FIRST_EXTENT(eh)) {
2372                         correct_index = 1;
2373                         credits += (ext_depth(inode)) + 1;
2374                 }
2375                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2376
2377                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2378                 if (err)
2379                         goto out;
2380
2381                 err = ext4_ext_get_access(handle, inode, path + depth);
2382                 if (err)
2383                         goto out;
2384
2385                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2386                                          a, b);
2387                 if (err)
2388                         goto out;
2389
2390                 if (num == 0)
2391                         /* this extent is removed; mark slot entirely unused */
2392                         ext4_ext_store_pblock(ex, 0);
2393
2394                 ex->ee_len = cpu_to_le16(num);
2395                 /*
2396                  * Do not mark uninitialized if all the blocks in the
2397                  * extent have been removed.
2398                  */
2399                 if (uninitialized && num)
2400                         ext4_ext_mark_uninitialized(ex);
2401                 /*
2402                  * If the extent was completely released,
2403                  * we need to remove it from the leaf
2404                  */
2405                 if (num == 0) {
2406                         if (end != EXT_MAX_BLOCKS - 1) {
2407                                 /*
2408                                  * For hole punching, we need to scoot all the
2409                                  * extents up when an extent is removed so that
2410                                  * we dont have blank extents in the middle
2411                                  */
2412                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2413                                         sizeof(struct ext4_extent));
2414
2415                                 /* Now get rid of the one at the end */
2416                                 memset(EXT_LAST_EXTENT(eh), 0,
2417                                         sizeof(struct ext4_extent));
2418                         }
2419                         le16_add_cpu(&eh->eh_entries, -1);
2420                 } else
2421                         *partial_cluster = 0;
2422
2423                 err = ext4_ext_dirty(handle, inode, path + depth);
2424                 if (err)
2425                         goto out;
2426
2427                 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2428                                 ext4_ext_pblock(ex));
2429                 ex--;
2430                 ex_ee_block = le32_to_cpu(ex->ee_block);
2431                 ex_ee_len = ext4_ext_get_actual_len(ex);
2432         }
2433
2434         if (correct_index && eh->eh_entries)
2435                 err = ext4_ext_correct_indexes(handle, inode, path);
2436
2437         /*
2438          * If there is still a entry in the leaf node, check to see if
2439          * it references the partial cluster.  This is the only place
2440          * where it could; if it doesn't, we can free the cluster.
2441          */
2442         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2443             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2444              *partial_cluster)) {
2445                 int flags = EXT4_FREE_BLOCKS_FORGET;
2446
2447                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448                         flags |= EXT4_FREE_BLOCKS_METADATA;
2449
2450                 ext4_free_blocks(handle, inode, NULL,
2451                                  EXT4_C2B(sbi, *partial_cluster),
2452                                  sbi->s_cluster_ratio, flags);
2453                 *partial_cluster = 0;
2454         }
2455
2456         /* if this leaf is free, then we should
2457          * remove it from index block above */
2458         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2459                 err = ext4_ext_rm_idx(handle, inode, path + depth);
2460
2461 out:
2462         return err;
2463 }
2464
2465 /*
2466  * ext4_ext_more_to_rm:
2467  * returns 1 if current index has to be freed (even partial)
2468  */
2469 static int
2470 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2471 {
2472         BUG_ON(path->p_idx == NULL);
2473
2474         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2475                 return 0;
2476
2477         /*
2478          * if truncate on deeper level happened, it wasn't partial,
2479          * so we have to consider current index for truncation
2480          */
2481         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2482                 return 0;
2483         return 1;
2484 }
2485
2486 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2487 {
2488         struct super_block *sb = inode->i_sb;
2489         int depth = ext_depth(inode);
2490         struct ext4_ext_path *path;
2491         ext4_fsblk_t partial_cluster = 0;
2492         handle_t *handle;
2493         int i, err;
2494
2495         ext_debug("truncate since %u\n", start);
2496
2497         /* probably first extent we're gonna free will be last in block */
2498         handle = ext4_journal_start(inode, depth + 1);
2499         if (IS_ERR(handle))
2500                 return PTR_ERR(handle);
2501
2502 again:
2503         ext4_ext_invalidate_cache(inode);
2504
2505         trace_ext4_ext_remove_space(inode, start, depth);
2506
2507         /*
2508          * We start scanning from right side, freeing all the blocks
2509          * after i_size and walking into the tree depth-wise.
2510          */
2511         depth = ext_depth(inode);
2512         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2513         if (path == NULL) {
2514                 ext4_journal_stop(handle);
2515                 return -ENOMEM;
2516         }
2517         path[0].p_depth = depth;
2518         path[0].p_hdr = ext_inode_hdr(inode);
2519         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2520                 err = -EIO;
2521                 goto out;
2522         }
2523         i = err = 0;
2524
2525         while (i >= 0 && err == 0) {
2526                 if (i == depth) {
2527                         /* this is leaf block */
2528                         err = ext4_ext_rm_leaf(handle, inode, path,
2529                                                &partial_cluster, start,
2530                                                EXT_MAX_BLOCKS - 1);
2531                         /* root level has p_bh == NULL, brelse() eats this */
2532                         brelse(path[i].p_bh);
2533                         path[i].p_bh = NULL;
2534                         i--;
2535                         continue;
2536                 }
2537
2538                 /* this is index block */
2539                 if (!path[i].p_hdr) {
2540                         ext_debug("initialize header\n");
2541                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2542                 }
2543
2544                 if (!path[i].p_idx) {
2545                         /* this level hasn't been touched yet */
2546                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2547                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2548                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2549                                   path[i].p_hdr,
2550                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2551                 } else {
2552                         /* we were already here, see at next index */
2553                         path[i].p_idx--;
2554                 }
2555
2556                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2558                                 path[i].p_idx);
2559                 if (ext4_ext_more_to_rm(path + i)) {
2560                         struct buffer_head *bh;
2561                         /* go to the next level */
2562                         ext_debug("move to level %d (block %llu)\n",
2563                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2564                         memset(path + i + 1, 0, sizeof(*path));
2565                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2566                         if (!bh) {
2567                                 /* should we reset i_size? */
2568                                 err = -EIO;
2569                                 break;
2570                         }
2571                         if (WARN_ON(i + 1 > depth)) {
2572                                 err = -EIO;
2573                                 break;
2574                         }
2575                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2576                                                         depth - i - 1)) {
2577                                 err = -EIO;
2578                                 break;
2579                         }
2580                         path[i + 1].p_bh = bh;
2581
2582                         /* save actual number of indexes since this
2583                          * number is changed at the next iteration */
2584                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2585                         i++;
2586                 } else {
2587                         /* we finished processing this index, go up */
2588                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2589                                 /* index is empty, remove it;
2590                                  * handle must be already prepared by the
2591                                  * truncatei_leaf() */
2592                                 err = ext4_ext_rm_idx(handle, inode, path + i);
2593                         }
2594                         /* root level has p_bh == NULL, brelse() eats this */
2595                         brelse(path[i].p_bh);
2596                         path[i].p_bh = NULL;
2597                         i--;
2598                         ext_debug("return to level %d\n", i);
2599                 }
2600         }
2601
2602         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2603                         path->p_hdr->eh_entries);
2604
2605         /* If we still have something in the partial cluster and we have removed
2606          * even the first extent, then we should free the blocks in the partial
2607          * cluster as well. */
2608         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2609                 int flags = EXT4_FREE_BLOCKS_FORGET;
2610
2611                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2612                         flags |= EXT4_FREE_BLOCKS_METADATA;
2613
2614                 ext4_free_blocks(handle, inode, NULL,
2615                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2616                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2617                 partial_cluster = 0;
2618         }
2619
2620         /* TODO: flexible tree reduction should be here */
2621         if (path->p_hdr->eh_entries == 0) {
2622                 /*
2623                  * truncate to zero freed all the tree,
2624                  * so we need to correct eh_depth
2625                  */
2626                 err = ext4_ext_get_access(handle, inode, path);
2627                 if (err == 0) {
2628                         ext_inode_hdr(inode)->eh_depth = 0;
2629                         ext_inode_hdr(inode)->eh_max =
2630                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2631                         err = ext4_ext_dirty(handle, inode, path);
2632                 }
2633         }
2634 out:
2635         ext4_ext_drop_refs(path);
2636         kfree(path);
2637         if (err == -EAGAIN)
2638                 goto again;
2639         ext4_journal_stop(handle);
2640
2641         return err;
2642 }
2643
2644 /*
2645  * called at mount time
2646  */
2647 void ext4_ext_init(struct super_block *sb)
2648 {
2649         /*
2650          * possible initialization would be here
2651          */
2652
2653         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2655                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2656 #ifdef AGGRESSIVE_TEST
2657                 printk(", aggressive tests");
2658 #endif
2659 #ifdef CHECK_BINSEARCH
2660                 printk(", check binsearch");
2661 #endif
2662 #ifdef EXTENTS_STATS
2663                 printk(", stats");
2664 #endif
2665                 printk("\n");
2666 #endif
2667 #ifdef EXTENTS_STATS
2668                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2669                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2670                 EXT4_SB(sb)->s_ext_max = 0;
2671 #endif
2672         }
2673 }
2674
2675 /*
2676  * called at umount time
2677  */
2678 void ext4_ext_release(struct super_block *sb)
2679 {
2680         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2681                 return;
2682
2683 #ifdef EXTENTS_STATS
2684         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2685                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2686                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2687                         sbi->s_ext_blocks, sbi->s_ext_extents,
2688                         sbi->s_ext_blocks / sbi->s_ext_extents);
2689                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2690                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2691         }
2692 #endif
2693 }
2694
2695 /* FIXME!! we need to try to merge to left or right after zero-out  */
2696 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2697 {
2698         ext4_fsblk_t ee_pblock;
2699         unsigned int ee_len;
2700         int ret;
2701
2702         ee_len    = ext4_ext_get_actual_len(ex);
2703         ee_pblock = ext4_ext_pblock(ex);
2704
2705         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2706         if (ret > 0)
2707                 ret = 0;
2708
2709         return ret;
2710 }
2711
2712 /*
2713  * used by extent splitting.
2714  */
2715 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
2716                                         due to ENOSPC */
2717 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
2718 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
2719
2720 /*
2721  * ext4_split_extent_at() splits an extent at given block.
2722  *
2723  * @handle: the journal handle
2724  * @inode: the file inode
2725  * @path: the path to the extent
2726  * @split: the logical block where the extent is splitted.
2727  * @split_flags: indicates if the extent could be zeroout if split fails, and
2728  *               the states(init or uninit) of new extents.
2729  * @flags: flags used to insert new extent to extent tree.
2730  *
2731  *
2732  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2733  * of which are deterimined by split_flag.
2734  *
2735  * There are two cases:
2736  *  a> the extent are splitted into two extent.
2737  *  b> split is not needed, and just mark the extent.
2738  *
2739  * return 0 on success.
2740  */
2741 static int ext4_split_extent_at(handle_t *handle,
2742                              struct inode *inode,
2743                              struct ext4_ext_path *path,
2744                              ext4_lblk_t split,
2745                              int split_flag,
2746                              int flags)
2747 {
2748         ext4_fsblk_t newblock;
2749         ext4_lblk_t ee_block;
2750         struct ext4_extent *ex, newex, orig_ex;
2751         struct ext4_extent *ex2 = NULL;
2752         unsigned int ee_len, depth;
2753         int err = 0;
2754
2755         ext_debug("ext4_split_extents_at: inode %lu, logical"
2756                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2757
2758         ext4_ext_show_leaf(inode, path);
2759
2760         depth = ext_depth(inode);
2761         ex = path[depth].p_ext;
2762         ee_block = le32_to_cpu(ex->ee_block);
2763         ee_len = ext4_ext_get_actual_len(ex);
2764         newblock = split - ee_block + ext4_ext_pblock(ex);
2765
2766         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2767
2768         err = ext4_ext_get_access(handle, inode, path + depth);
2769         if (err)
2770                 goto out;
2771
2772         if (split == ee_block) {
2773                 /*
2774                  * case b: block @split is the block that the extent begins with
2775                  * then we just change the state of the extent, and splitting
2776                  * is not needed.
2777                  */
2778                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2779                         ext4_ext_mark_uninitialized(ex);
2780                 else
2781                         ext4_ext_mark_initialized(ex);
2782
2783                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2784                         ext4_ext_try_to_merge(inode, path, ex);
2785
2786                 err = ext4_ext_dirty(handle, inode, path + depth);
2787                 goto out;
2788         }
2789
2790         /* case a */
2791         memcpy(&orig_ex, ex, sizeof(orig_ex));
2792         ex->ee_len = cpu_to_le16(split - ee_block);
2793         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2794                 ext4_ext_mark_uninitialized(ex);
2795
2796         /*
2797          * path may lead to new leaf, not to original leaf any more
2798          * after ext4_ext_insert_extent() returns,
2799          */
2800         err = ext4_ext_dirty(handle, inode, path + depth);
2801         if (err)
2802                 goto fix_extent_len;
2803
2804         ex2 = &newex;
2805         ex2->ee_block = cpu_to_le32(split);
2806         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2807         ext4_ext_store_pblock(ex2, newblock);
2808         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2809                 ext4_ext_mark_uninitialized(ex2);
2810
2811         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2812         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2813                 err = ext4_ext_zeroout(inode, &orig_ex);
2814                 if (err)
2815                         goto fix_extent_len;
2816                 /* update the extent length and mark as initialized */
2817                 ex->ee_len = cpu_to_le32(ee_len);
2818                 ext4_ext_try_to_merge(inode, path, ex);
2819                 err = ext4_ext_dirty(handle, inode, path + depth);
2820                 goto out;
2821         } else if (err)
2822                 goto fix_extent_len;
2823
2824 out:
2825         ext4_ext_show_leaf(inode, path);
2826         return err;
2827
2828 fix_extent_len:
2829         ex->ee_len = orig_ex.ee_len;
2830         ext4_ext_dirty(handle, inode, path + depth);
2831         return err;
2832 }
2833
2834 /*
2835  * ext4_split_extents() splits an extent and mark extent which is covered
2836  * by @map as split_flags indicates
2837  *
2838  * It may result in splitting the extent into multiple extents (upto three)
2839  * There are three possibilities:
2840  *   a> There is no split required
2841  *   b> Splits in two extents: Split is happening at either end of the extent
2842  *   c> Splits in three extents: Somone is splitting in middle of the extent
2843  *
2844  */
2845 static int ext4_split_extent(handle_t *handle,
2846                               struct inode *inode,
2847                               struct ext4_ext_path *path,
2848                               struct ext4_map_blocks *map,
2849                               int split_flag,
2850                               int flags)
2851 {
2852         ext4_lblk_t ee_block;
2853         struct ext4_extent *ex;
2854         unsigned int ee_len, depth;
2855         int err = 0;
2856         int uninitialized;
2857         int split_flag1, flags1;
2858
2859         depth = ext_depth(inode);
2860         ex = path[depth].p_ext;
2861         ee_block = le32_to_cpu(ex->ee_block);
2862         ee_len = ext4_ext_get_actual_len(ex);
2863         uninitialized = ext4_ext_is_uninitialized(ex);
2864
2865         if (map->m_lblk + map->m_len < ee_block + ee_len) {
2866                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2867                               EXT4_EXT_MAY_ZEROOUT : 0;
2868                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2869                 if (uninitialized)
2870                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2871                                        EXT4_EXT_MARK_UNINIT2;
2872                 err = ext4_split_extent_at(handle, inode, path,
2873                                 map->m_lblk + map->m_len, split_flag1, flags1);
2874                 if (err)
2875                         goto out;
2876         }
2877
2878         ext4_ext_drop_refs(path);
2879         path = ext4_ext_find_extent(inode, map->m_lblk, path);
2880         if (IS_ERR(path))
2881                 return PTR_ERR(path);
2882
2883         if (map->m_lblk >= ee_block) {
2884                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2885                               EXT4_EXT_MAY_ZEROOUT : 0;
2886                 if (uninitialized)
2887                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2888                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2889                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2890                 err = ext4_split_extent_at(handle, inode, path,
2891                                 map->m_lblk, split_flag1, flags);
2892                 if (err)
2893                         goto out;
2894         }
2895
2896         ext4_ext_show_leaf(inode, path);
2897 out:
2898         return err ? err : map->m_len;
2899 }
2900
2901 #define EXT4_EXT_ZERO_LEN 7
2902 /*
2903  * This function is called by ext4_ext_map_blocks() if someone tries to write
2904  * to an uninitialized extent. It may result in splitting the uninitialized
2905  * extent into multiple extents (up to three - one initialized and two
2906  * uninitialized).
2907  * There are three possibilities:
2908  *   a> There is no split required: Entire extent should be initialized
2909  *   b> Splits in two extents: Write is happening at either end of the extent
2910  *   c> Splits in three extents: Somone is writing in middle of the extent
2911  *
2912  * Pre-conditions:
2913  *  - The extent pointed to by 'path' is uninitialized.
2914  *  - The extent pointed to by 'path' contains a superset
2915  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2916  *
2917  * Post-conditions on success:
2918  *  - the returned value is the number of blocks beyond map->l_lblk
2919  *    that are allocated and initialized.
2920  *    It is guaranteed to be >= map->m_len.
2921  */
2922 static int ext4_ext_convert_to_initialized(handle_t *handle,
2923                                            struct inode *inode,
2924                                            struct ext4_map_blocks *map,
2925                                            struct ext4_ext_path *path)
2926 {
2927         struct ext4_extent_header *eh;
2928         struct ext4_map_blocks split_map;
2929         struct ext4_extent zero_ex;
2930         struct ext4_extent *ex;
2931         ext4_lblk_t ee_block, eof_block;
2932         unsigned int ee_len, depth;
2933         int allocated;
2934         int err = 0;
2935         int split_flag = 0;
2936
2937         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938                 "block %llu, max_blocks %u\n", inode->i_ino,
2939                 (unsigned long long)map->m_lblk, map->m_len);
2940
2941         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2942                 inode->i_sb->s_blocksize_bits;
2943         if (eof_block < map->m_lblk + map->m_len)
2944                 eof_block = map->m_lblk + map->m_len;
2945
2946         depth = ext_depth(inode);
2947         eh = path[depth].p_hdr;
2948         ex = path[depth].p_ext;
2949         ee_block = le32_to_cpu(ex->ee_block);
2950         ee_len = ext4_ext_get_actual_len(ex);
2951         allocated = ee_len - (map->m_lblk - ee_block);
2952
2953         trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2954
2955         /* Pre-conditions */
2956         BUG_ON(!ext4_ext_is_uninitialized(ex));
2957         BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2958
2959         /*
2960          * Attempt to transfer newly initialized blocks from the currently
2961          * uninitialized extent to its left neighbor. This is much cheaper
2962          * than an insertion followed by a merge as those involve costly
2963          * memmove() calls. This is the common case in steady state for
2964          * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2965          * writes.
2966          *
2967          * Limitations of the current logic:
2968          *  - L1: we only deal with writes at the start of the extent.
2969          *    The approach could be extended to writes at the end
2970          *    of the extent but this scenario was deemed less common.
2971          *  - L2: we do not deal with writes covering the whole extent.
2972          *    This would require removing the extent if the transfer
2973          *    is possible.
2974          *  - L3: we only attempt to merge with an extent stored in the
2975          *    same extent tree node.
2976          */
2977         if ((map->m_lblk == ee_block) &&        /*L1*/
2978                 (map->m_len < ee_len) &&        /*L2*/
2979                 (ex > EXT_FIRST_EXTENT(eh))) {  /*L3*/
2980                 struct ext4_extent *prev_ex;
2981                 ext4_lblk_t prev_lblk;
2982                 ext4_fsblk_t prev_pblk, ee_pblk;
2983                 unsigned int prev_len, write_len;
2984
2985                 prev_ex = ex - 1;
2986                 prev_lblk = le32_to_cpu(prev_ex->ee_block);
2987                 prev_len = ext4_ext_get_actual_len(prev_ex);
2988                 prev_pblk = ext4_ext_pblock(prev_ex);
2989                 ee_pblk = ext4_ext_pblock(ex);
2990                 write_len = map->m_len;
2991
2992                 /*
2993                  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2994                  * upon those conditions:
2995                  * - C1: prev_ex is initialized,
2996                  * - C2: prev_ex is logically abutting ex,
2997                  * - C3: prev_ex is physically abutting ex,
2998                  * - C4: prev_ex can receive the additional blocks without
2999                  *   overflowing the (initialized) length limit.
3000                  */
3001                 if ((!ext4_ext_is_uninitialized(prev_ex)) &&            /*C1*/
3002                         ((prev_lblk + prev_len) == ee_block) &&         /*C2*/
3003                         ((prev_pblk + prev_len) == ee_pblk) &&          /*C3*/
3004                         (prev_len < (EXT_INIT_MAX_LEN - write_len))) {  /*C4*/
3005                         err = ext4_ext_get_access(handle, inode, path + depth);
3006                         if (err)
3007                                 goto out;
3008
3009                         trace_ext4_ext_convert_to_initialized_fastpath(inode,
3010                                 map, ex, prev_ex);
3011
3012                         /* Shift the start of ex by 'write_len' blocks */
3013                         ex->ee_block = cpu_to_le32(ee_block + write_len);
3014                         ext4_ext_store_pblock(ex, ee_pblk + write_len);
3015                         ex->ee_len = cpu_to_le16(ee_len - write_len);
3016                         ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3017
3018                         /* Extend prev_ex by 'write_len' blocks */
3019                         prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3020
3021                         /* Mark the block containing both extents as dirty */
3022                         ext4_ext_dirty(handle, inode, path + depth);
3023
3024                         /* Update path to point to the right extent */
3025                         path[depth].p_ext = prev_ex;
3026
3027                         /* Result: number of initialized blocks past m_lblk */
3028                         allocated = write_len;
3029                         goto out;
3030                 }
3031         }
3032
3033         WARN_ON(map->m_lblk < ee_block);
3034         /*
3035          * It is safe to convert extent to initialized via explicit
3036          * zeroout only if extent is fully insde i_size or new_size.
3037          */
3038         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3039
3040         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3041         if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3042             (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3043                 err = ext4_ext_zeroout(inode, ex);
3044                 if (err)
3045                         goto out;
3046
3047                 err = ext4_ext_get_access(handle, inode, path + depth);
3048                 if (err)
3049                         goto out;
3050                 ext4_ext_mark_initialized(ex);
3051                 ext4_ext_try_to_merge(inode, path, ex);
3052                 err = ext4_ext_dirty(handle, inode, path + depth);
3053                 goto out;
3054         }
3055
3056         /*
3057          * four cases:
3058          * 1. split the extent into three extents.
3059          * 2. split the extent into two extents, zeroout the first half.
3060          * 3. split the extent into two extents, zeroout the second half.
3061          * 4. split the extent into two extents with out zeroout.
3062          */
3063         split_map.m_lblk = map->m_lblk;
3064         split_map.m_len = map->m_len;
3065
3066         if (allocated > map->m_len) {
3067                 if (allocated <= EXT4_EXT_ZERO_LEN &&
3068                     (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3069                         /* case 3 */
3070                         zero_ex.ee_block =
3071                                          cpu_to_le32(map->m_lblk);
3072                         zero_ex.ee_len = cpu_to_le16(allocated);
3073                         ext4_ext_store_pblock(&zero_ex,
3074                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3075                         err = ext4_ext_zeroout(inode, &zero_ex);
3076                         if (err)
3077                                 goto out;
3078                         split_map.m_lblk = map->m_lblk;
3079                         split_map.m_len = allocated;
3080                 } else if ((map->m_lblk - ee_block + map->m_len <
3081                            EXT4_EXT_ZERO_LEN) &&
3082                            (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3083                         /* case 2 */
3084                         if (map->m_lblk != ee_block) {
3085                                 zero_ex.ee_block = ex->ee_block;
3086                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3087                                                         ee_block);
3088                                 ext4_ext_store_pblock(&zero_ex,
3089                                                       ext4_ext_pblock(ex));
3090                                 err = ext4_ext_zeroout(inode, &zero_ex);
3091                                 if (err)
3092                                         goto out;
3093                         }
3094
3095                         split_map.m_lblk = ee_block;
3096                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3097                         allocated = map->m_len;
3098                 }
3099         }
3100
3101         allocated = ext4_split_extent(handle, inode, path,
3102                                        &split_map, split_flag, 0);
3103         if (allocated < 0)
3104                 err = allocated;
3105
3106 out:
3107         return err ? err : allocated;
3108 }
3109
3110 /*
3111  * This function is called by ext4_ext_map_blocks() from
3112  * ext4_get_blocks_dio_write() when DIO to write
3113  * to an uninitialized extent.
3114  *
3115  * Writing to an uninitialized extent may result in splitting the uninitialized
3116  * extent into multiple /initialized uninitialized extents (up to three)
3117  * There are three possibilities:
3118  *   a> There is no split required: Entire extent should be uninitialized
3119  *   b> Splits in two extents: Write is happening at either end of the extent
3120  *   c> Splits in three extents: Somone is writing in middle of the extent
3121  *
3122  * One of more index blocks maybe needed if the extent tree grow after
3123  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3124  * complete, we need to split the uninitialized extent before DIO submit
3125  * the IO. The uninitialized extent called at this time will be split
3126  * into three uninitialized extent(at most). After IO complete, the part
3127  * being filled will be convert to initialized by the end_io callback function
3128  * via ext4_convert_unwritten_extents().
3129  *
3130  * Returns the size of uninitialized extent to be written on success.
3131  */
3132 static int ext4_split_unwritten_extents(handle_t *handle,
3133                                         struct inode *inode,
3134                                         struct ext4_map_blocks *map,
3135                                         struct ext4_ext_path *path,
3136                                         int flags)
3137 {
3138         ext4_lblk_t eof_block;
3139         ext4_lblk_t ee_block;
3140         struct ext4_extent *ex;
3141         unsigned int ee_len;
3142         int split_flag = 0, depth;
3143
3144         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3145                 "block %llu, max_blocks %u\n", inode->i_ino,
3146                 (unsigned long long)map->m_lblk, map->m_len);
3147
3148         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3149                 inode->i_sb->s_blocksize_bits;
3150         if (eof_block < map->m_lblk + map->m_len)
3151                 eof_block = map->m_lblk + map->m_len;
3152         /*
3153          * It is safe to convert extent to initialized via explicit
3154          * zeroout only if extent is fully insde i_size or new_size.
3155          */
3156         depth = ext_depth(inode);
3157         ex = path[depth].p_ext;
3158         ee_block = le32_to_cpu(ex->ee_block);
3159         ee_len = ext4_ext_get_actual_len(ex);
3160
3161         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3162         split_flag |= EXT4_EXT_MARK_UNINIT2;
3163
3164         flags |= EXT4_GET_BLOCKS_PRE_IO;
3165         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3166 }
3167
3168 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3169                                               struct inode *inode,
3170                                               struct ext4_ext_path *path)
3171 {
3172         struct ext4_extent *ex;
3173         int depth;
3174         int err = 0;
3175
3176         depth = ext_depth(inode);
3177         ex = path[depth].p_ext;
3178
3179         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3180                 "block %llu, max_blocks %u\n", inode->i_ino,
3181                 (unsigned long long)le32_to_cpu(ex->ee_block),
3182                 ext4_ext_get_actual_len(ex));
3183
3184         err = ext4_ext_get_access(handle, inode, path + depth);
3185         if (err)
3186                 goto out;
3187         /* first mark the extent as initialized */
3188         ext4_ext_mark_initialized(ex);
3189
3190         /* note: ext4_ext_correct_indexes() isn't needed here because
3191          * borders are not changed
3192          */
3193         ext4_ext_try_to_merge(inode, path, ex);
3194
3195         /* Mark modified extent as dirty */
3196         err = ext4_ext_dirty(handle, inode, path + depth);
3197 out:
3198         ext4_ext_show_leaf(inode, path);
3199         return err;
3200 }
3201
3202 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3203                         sector_t block, int count)
3204 {
3205         int i;
3206         for (i = 0; i < count; i++)
3207                 unmap_underlying_metadata(bdev, block + i);
3208 }
3209
3210 /*
3211  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3212  */
3213 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3214                               ext4_lblk_t lblk,
3215                               struct ext4_ext_path *path,
3216                               unsigned int len)
3217 {
3218         int i, depth;
3219         struct ext4_extent_header *eh;
3220         struct ext4_extent *last_ex;
3221
3222         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3223                 return 0;
3224
3225         depth = ext_depth(inode);
3226         eh = path[depth].p_hdr;
3227
3228         if (unlikely(!eh->eh_entries)) {
3229                 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3230                                  "EOFBLOCKS_FL set");
3231                 return -EIO;
3232         }
3233         last_ex = EXT_LAST_EXTENT(eh);
3234         /*
3235          * We should clear the EOFBLOCKS_FL flag if we are writing the
3236          * last block in the last extent in the file.  We test this by
3237          * first checking to see if the caller to
3238          * ext4_ext_get_blocks() was interested in the last block (or
3239          * a block beyond the last block) in the current extent.  If
3240          * this turns out to be false, we can bail out from this
3241          * function immediately.
3242          */
3243         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3244             ext4_ext_get_actual_len(last_ex))
3245                 return 0;
3246         /*
3247          * If the caller does appear to be planning to write at or
3248          * beyond the end of the current extent, we then test to see
3249          * if the current extent is the last extent in the file, by
3250          * checking to make sure it was reached via the rightmost node
3251          * at each level of the tree.
3252          */
3253         for (i = depth-1; i >= 0; i--)
3254                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3255                         return 0;
3256         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3257         return ext4_mark_inode_dirty(handle, inode);
3258 }
3259
3260 /**
3261  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3262  *
3263  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3264  * whether there are any buffers marked for delayed allocation. It returns '1'
3265  * on the first delalloc'ed buffer head found. If no buffer head in the given
3266  * range is marked for delalloc, it returns 0.
3267  * lblk_start should always be <= lblk_end.
3268  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3269  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3270  * block sooner). This is useful when blocks are truncated sequentially from
3271  * lblk_start towards lblk_end.
3272  */
3273 static int ext4_find_delalloc_range(struct inode *inode,
3274                                     ext4_lblk_t lblk_start,
3275                                     ext4_lblk_t lblk_end,
3276                                     int search_hint_reverse)
3277 {
3278         struct address_space *mapping = inode->i_mapping;
3279         struct buffer_head *head, *bh = NULL;
3280         struct page *page;
3281         ext4_lblk_t i, pg_lblk;
3282         pgoff_t index;
3283
3284         if (!test_opt(inode->i_sb, DELALLOC))
3285                 return 0;
3286
3287         /* reverse search wont work if fs block size is less than page size */
3288         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3289                 search_hint_reverse = 0;
3290
3291         if (search_hint_reverse)
3292                 i = lblk_end;
3293         else
3294                 i = lblk_start;
3295
3296         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3297
3298         while ((i >= lblk_start) && (i <= lblk_end)) {
3299                 page = find_get_page(mapping, index);
3300                 if (!page)
3301                         goto nextpage;
3302
3303                 if (!page_has_buffers(page))
3304                         goto nextpage;
3305
3306                 head = page_buffers(page);
3307                 if (!head)
3308                         goto nextpage;
3309
3310                 bh = head;
3311                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3312                                                 inode->i_blkbits);
3313                 do {
3314                         if (unlikely(pg_lblk < lblk_start)) {
3315                                 /*
3316                                  * This is possible when fs block size is less
3317                                  * than page size and our cluster starts/ends in
3318                                  * middle of the page. So we need to skip the
3319                                  * initial few blocks till we reach the 'lblk'
3320                                  */
3321                                 pg_lblk++;
3322                                 continue;
3323                         }
3324
3325                         /* Check if the buffer is delayed allocated and that it
3326                          * is not yet mapped. (when da-buffers are mapped during
3327                          * their writeout, their da_mapped bit is set.)
3328                          */
3329                         if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3330                                 page_cache_release(page);
3331                                 trace_ext4_find_delalloc_range(inode,
3332                                                 lblk_start, lblk_end,
3333                                                 search_hint_reverse,
3334                                                 1, i);
3335                                 return 1;
3336                         }
3337                         if (search_hint_reverse)
3338                                 i--;
3339                         else
3340                                 i++;
3341                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3342                                 ((bh = bh->b_this_page) != head));
3343 nextpage:
3344                 if (page)
3345                         page_cache_release(page);
3346                 /*
3347                  * Move to next page. 'i' will be the first lblk in the next
3348                  * page.
3349                  */
3350                 if (search_hint_reverse)
3351                         index--;
3352                 else
3353                         index++;
3354                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3355         }
3356
3357         trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3358                                         search_hint_reverse, 0, 0);
3359         return 0;
3360 }
3361
3362 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3363                                int search_hint_reverse)
3364 {
3365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3366         ext4_lblk_t lblk_start, lblk_end;
3367         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3368         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3369
3370         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3371                                         search_hint_reverse);
3372 }
3373
3374 /**
3375  * Determines how many complete clusters (out of those specified by the 'map')
3376  * are under delalloc and were reserved quota for.
3377  * This function is called when we are writing out the blocks that were
3378  * originally written with their allocation delayed, but then the space was
3379  * allocated using fallocate() before the delayed allocation could be resolved.
3380  * The cases to look for are:
3381  * ('=' indicated delayed allocated blocks
3382  *  '-' indicates non-delayed allocated blocks)
3383  * (a) partial clusters towards beginning and/or end outside of allocated range
3384  *     are not delalloc'ed.
3385  *      Ex:
3386  *      |----c---=|====c====|====c====|===-c----|
3387  *               |++++++ allocated ++++++|
3388  *      ==> 4 complete clusters in above example
3389  *
3390  * (b) partial cluster (outside of allocated range) towards either end is
3391  *     marked for delayed allocation. In this case, we will exclude that
3392  *     cluster.
3393  *      Ex:
3394  *      |----====c========|========c========|
3395  *           |++++++ allocated ++++++|
3396  *      ==> 1 complete clusters in above example
3397  *
3398  *      Ex:
3399  *      |================c================|
3400  *            |++++++ allocated ++++++|
3401  *      ==> 0 complete clusters in above example
3402  *
3403  * The ext4_da_update_reserve_space will be called only if we
3404  * determine here that there were some "entire" clusters that span
3405  * this 'allocated' range.
3406  * In the non-bigalloc case, this function will just end up returning num_blks
3407  * without ever calling ext4_find_delalloc_range.
3408  */
3409 static unsigned int
3410 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3411                            unsigned int num_blks)
3412 {
3413         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3415         ext4_lblk_t lblk_from, lblk_to, c_offset;
3416         unsigned int allocated_clusters = 0;
3417
3418         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3419         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3420
3421         /* max possible clusters for this allocation */
3422         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3423
3424         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3425
3426         /* Check towards left side */
3427         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3428         if (c_offset) {
3429                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3430                 lblk_to = lblk_from + c_offset - 1;
3431
3432                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3433                         allocated_clusters--;
3434         }
3435
3436         /* Now check towards right. */
3437         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3438         if (allocated_clusters && c_offset) {
3439                 lblk_from = lblk_start + num_blks;
3440                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3441
3442                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3443                         allocated_clusters--;
3444         }
3445
3446         return allocated_clusters;
3447 }
3448
3449 static int
3450 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3451                         struct ext4_map_blocks *map,
3452                         struct ext4_ext_path *path, int flags,
3453                         unsigned int allocated, ext4_fsblk_t newblock)
3454 {
3455         int ret = 0;
3456         int err = 0;
3457         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3458
3459         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3460                   "block %llu, max_blocks %u, flags %d, allocated %u",
3461                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3462                   flags, allocated);
3463         ext4_ext_show_leaf(inode, path);
3464
3465         trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3466                                                     newblock);
3467
3468         /* get_block() before submit the IO, split the extent */
3469         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3470                 ret = ext4_split_unwritten_extents(handle, inode, map,
3471                                                    path, flags);
3472                 /*
3473                  * Flag the inode(non aio case) or end_io struct (aio case)
3474                  * that this IO needs to conversion to written when IO is
3475                  * completed
3476                  */
3477                 if (io)
3478                         ext4_set_io_unwritten_flag(inode, io);
3479                 else
3480                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3481                 if (ext4_should_dioread_nolock(inode))
3482                         map->m_flags |= EXT4_MAP_UNINIT;
3483                 goto out;
3484         }
3485         /* IO end_io complete, convert the filled extent to written */
3486         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3487                 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3488                                                         path);
3489                 if (ret >= 0) {
3490                         ext4_update_inode_fsync_trans(handle, inode, 1);
3491                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3492                                                  path, map->m_len);
3493                 } else
3494                         err = ret;
3495                 goto out2;
3496         }
3497         /* buffered IO case */
3498         /*
3499          * repeat fallocate creation request
3500          * we already have an unwritten extent
3501          */
3502         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3503                 goto map_out;
3504
3505         /* buffered READ or buffered write_begin() lookup */
3506         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3507                 /*
3508                  * We have blocks reserved already.  We
3509                  * return allocated blocks so that delalloc
3510                  * won't do block reservation for us.  But
3511                  * the buffer head will be unmapped so that
3512                  * a read from the block returns 0s.
3513                  */
3514                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3515                 goto out1;
3516         }
3517
3518         /* buffered write, writepage time, convert*/
3519         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3520         if (ret >= 0)
3521                 ext4_update_inode_fsync_trans(handle, inode, 1);
3522 out:
3523         if (ret <= 0) {
3524                 err = ret;
3525                 goto out2;
3526         } else
3527                 allocated = ret;
3528         map->m_flags |= EXT4_MAP_NEW;
3529         /*
3530          * if we allocated more blocks than requested
3531          * we need to make sure we unmap the extra block
3532          * allocated. The actual needed block will get
3533          * unmapped later when we find the buffer_head marked
3534          * new.
3535          */
3536         if (allocated > map->m_len) {
3537                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3538                                         newblock + map->m_len,
3539                                         allocated - map->m_len);
3540                 allocated = map->m_len;
3541         }
3542
3543         /*
3544          * If we have done fallocate with the offset that is already
3545          * delayed allocated, we would have block reservation
3546          * and quota reservation done in the delayed write path.
3547          * But fallocate would have already updated quota and block
3548          * count for this offset. So cancel these reservation
3549          */
3550         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3551                 unsigned int reserved_clusters;
3552                 reserved_clusters = get_reserved_cluster_alloc(inode,
3553                                 map->m_lblk, map->m_len);
3554                 if (reserved_clusters)
3555                         ext4_da_update_reserve_space(inode,
3556                                                      reserved_clusters,
3557                                                      0);
3558         }
3559
3560 map_out:
3561         map->m_flags |= EXT4_MAP_MAPPED;
3562         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3563                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3564                                          map->m_len);
3565                 if (err < 0)
3566                         goto out2;
3567         }
3568 out1:
3569         if (allocated > map->m_len)
3570                 allocated = map->m_len;
3571         ext4_ext_show_leaf(inode, path);
3572         map->m_pblk = newblock;
3573         map->m_len = allocated;
3574 out2:
3575         if (path) {
3576                 ext4_ext_drop_refs(path);
3577                 kfree(path);
3578         }
3579         return err ? err : allocated;
3580 }
3581
3582 /*
3583  * get_implied_cluster_alloc - check to see if the requested
3584  * allocation (in the map structure) overlaps with a cluster already
3585  * allocated in an extent.
3586  *      @sb     The filesystem superblock structure
3587  *      @map    The requested lblk->pblk mapping
3588  *      @ex     The extent structure which might contain an implied
3589  *                      cluster allocation
3590  *
3591  * This function is called by ext4_ext_map_blocks() after we failed to
3592  * find blocks that were already in the inode's extent tree.  Hence,
3593  * we know that the beginning of the requested region cannot overlap
3594  * the extent from the inode's extent tree.  There are three cases we
3595  * want to catch.  The first is this case:
3596  *
3597  *               |--- cluster # N--|
3598  *    |--- extent ---|  |---- requested region ---|
3599  *                      |==========|
3600  *
3601  * The second case that we need to test for is this one:
3602  *
3603  *   |--------- cluster # N ----------------|
3604  *         |--- requested region --|   |------- extent ----|
3605  *         |=======================|
3606  *
3607  * The third case is when the requested region lies between two extents
3608  * within the same cluster:
3609  *          |------------- cluster # N-------------|
3610  * |----- ex -----|                  |---- ex_right ----|
3611  *                  |------ requested region ------|
3612  *                  |================|
3613  *
3614  * In each of the above cases, we need to set the map->m_pblk and
3615  * map->m_len so it corresponds to the return the extent labelled as
3616  * "|====|" from cluster #N, since it is already in use for data in
3617  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3618  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3619  * as a new "allocated" block region.  Otherwise, we will return 0 and
3620  * ext4_ext_map_blocks() will then allocate one or more new clusters
3621  * by calling ext4_mb_new_blocks().
3622  */
3623 static int get_implied_cluster_alloc(struct super_block *sb,
3624                                      struct ext4_map_blocks *map,
3625                                      struct ext4_extent *ex,
3626                                      struct ext4_ext_path *path)
3627 {
3628         struct ext4_sb_info *sbi = EXT4_SB(sb);
3629         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3630         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3631         ext4_lblk_t rr_cluster_start;
3632         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3633         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3634         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3635
3636         /* The extent passed in that we are trying to match */
3637         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3638         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3639
3640         /* The requested region passed into ext4_map_blocks() */
3641         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3642
3643         if ((rr_cluster_start == ex_cluster_end) ||
3644             (rr_cluster_start == ex_cluster_start)) {
3645                 if (rr_cluster_start == ex_cluster_end)
3646                         ee_start += ee_len - 1;
3647                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3648                         c_offset;
3649                 map->m_len = min(map->m_len,
3650                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3651                 /*
3652                  * Check for and handle this case:
3653                  *
3654                  *   |--------- cluster # N-------------|
3655                  *                     |------- extent ----|
3656                  *         |--- requested region ---|
3657                  *         |===========|
3658                  */
3659
3660                 if (map->m_lblk < ee_block)
3661                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3662
3663                 /*
3664                  * Check for the case where there is already another allocated
3665                  * block to the right of 'ex' but before the end of the cluster.
3666                  *
3667                  *          |------------- cluster # N-------------|
3668                  * |----- ex -----|                  |---- ex_right ----|
3669                  *                  |------ requested region ------|
3670                  *                  |================|
3671                  */
3672                 if (map->m_lblk > ee_block) {
3673                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3674                         map->m_len = min(map->m_len, next - map->m_lblk);
3675                 }
3676
3677                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3678                 return 1;
3679         }
3680
3681         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3682         return 0;
3683 }
3684
3685
3686 /*
3687  * Block allocation/map/preallocation routine for extents based files
3688  *
3689  *
3690  * Need to be called with
3691  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3692  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3693  *
3694  * return > 0, number of of blocks already mapped/allocated
3695  *          if create == 0 and these are pre-allocated blocks
3696  *              buffer head is unmapped
3697  *          otherwise blocks are mapped
3698  *
3699  * return = 0, if plain look up failed (blocks have not been allocated)
3700  *          buffer head is unmapped
3701  *
3702  * return < 0, error case.
3703  */
3704 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3705                         struct ext4_map_blocks *map, int flags)
3706 {
3707         struct ext4_ext_path *path = NULL;
3708         struct ext4_extent newex, *ex, *ex2;
3709         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3710         ext4_fsblk_t newblock = 0;
3711         int free_on_err = 0, err = 0, depth, ret;
3712         unsigned int allocated = 0, offset = 0;
3713         unsigned int allocated_clusters = 0;
3714         unsigned int punched_out = 0;
3715         unsigned int result = 0;
3716         struct ext4_allocation_request ar;
3717         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3718         ext4_lblk_t cluster_offset;
3719
3720         ext_debug("blocks %u/%u requested for inode %lu\n",
3721                   map->m_lblk, map->m_len, inode->i_ino);
3722         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3723
3724         /* check in cache */
3725         if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3726                 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3727                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3728                         if ((sbi->s_cluster_ratio > 1) &&
3729                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3730                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3731
3732                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3733                                 /*
3734                                  * block isn't allocated yet and
3735                                  * user doesn't want to allocate it
3736                                  */
3737                                 goto out2;
3738                         }
3739                         /* we should allocate requested block */
3740                 } else {
3741                         /* block is already allocated */
3742                         if (sbi->s_cluster_ratio > 1)
3743                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3744                         newblock = map->m_lblk
3745                                    - le32_to_cpu(newex.ee_block)
3746                                    + ext4_ext_pblock(&newex);
3747                         /* number of remaining blocks in the extent */
3748                         allocated = ext4_ext_get_actual_len(&newex) -
3749                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3750                         goto out;
3751                 }
3752         }
3753
3754         /* find extent for this block */
3755         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3756         if (IS_ERR(path)) {
3757                 err = PTR_ERR(path);
3758                 path = NULL;
3759                 goto out2;
3760         }
3761
3762         depth = ext_depth(inode);
3763
3764         /*
3765          * consistent leaf must not be empty;
3766          * this situation is possible, though, _during_ tree modification;
3767          * this is why assert can't be put in ext4_ext_find_extent()
3768          */
3769         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3770                 EXT4_ERROR_INODE(inode, "bad extent address "
3771                                  "lblock: %lu, depth: %d pblock %lld",
3772                                  (unsigned long) map->m_lblk, depth,
3773                                  path[depth].p_block);
3774                 err = -EIO;
3775                 goto out2;
3776         }
3777
3778         ex = path[depth].p_ext;
3779         if (ex) {
3780                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3781                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3782                 unsigned short ee_len;
3783
3784                 /*
3785                  * Uninitialized extents are treated as holes, except that
3786                  * we split out initialized portions during a write.
3787                  */
3788                 ee_len = ext4_ext_get_actual_len(ex);
3789
3790                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3791
3792                 /* if found extent covers block, simply return it */
3793                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3794                         struct ext4_map_blocks punch_map;
3795                         ext4_fsblk_t partial_cluster = 0;
3796
3797                         newblock = map->m_lblk - ee_block + ee_start;
3798                         /* number of remaining blocks in the extent */
3799                         allocated = ee_len - (map->m_lblk - ee_block);
3800                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3801                                   ee_block, ee_len, newblock);
3802
3803                         if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3804                                 /*
3805                                  * Do not put uninitialized extent
3806                                  * in the cache
3807                                  */
3808                                 if (!ext4_ext_is_uninitialized(ex)) {
3809                                         ext4_ext_put_in_cache(inode, ee_block,
3810                                                 ee_len, ee_start);
3811                                         goto out;
3812                                 }
3813                                 ret = ext4_ext_handle_uninitialized_extents(
3814                                         handle, inode, map, path, flags,
3815                                         allocated, newblock);
3816                                 return ret;
3817                         }
3818
3819                         /*
3820                          * Punch out the map length, but only to the
3821                          * end of the extent
3822                          */
3823                         punched_out = allocated < map->m_len ?
3824                                 allocated : map->m_len;
3825
3826                         /*
3827                          * Sense extents need to be converted to
3828                          * uninitialized, they must fit in an
3829                          * uninitialized extent
3830                          */
3831                         if (punched_out > EXT_UNINIT_MAX_LEN)
3832                                 punched_out = EXT_UNINIT_MAX_LEN;
3833
3834                         punch_map.m_lblk = map->m_lblk;
3835                         punch_map.m_pblk = newblock;
3836                         punch_map.m_len = punched_out;
3837                         punch_map.m_flags = 0;
3838
3839                         /* Check to see if the extent needs to be split */
3840                         if (punch_map.m_len != ee_len ||
3841                                 punch_map.m_lblk != ee_block) {
3842
3843                                 ret = ext4_split_extent(handle, inode,
3844                                 path, &punch_map, 0,
3845                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3846                                 EXT4_GET_BLOCKS_PRE_IO);
3847
3848                                 if (ret < 0) {
3849                                         err = ret;
3850                                         goto out2;
3851                                 }
3852                                 /*
3853                                  * find extent for the block at
3854                                  * the start of the hole
3855                                  */
3856                                 ext4_ext_drop_refs(path);
3857                                 kfree(path);
3858
3859                                 path = ext4_ext_find_extent(inode,
3860                                 map->m_lblk, NULL);
3861                                 if (IS_ERR(path)) {
3862                                         err = PTR_ERR(path);
3863                                         path = NULL;
3864                                         goto out2;
3865                                 }
3866
3867                                 depth = ext_depth(inode);
3868                                 ex = path[depth].p_ext;
3869                                 ee_len = ext4_ext_get_actual_len(ex);
3870                                 ee_block = le32_to_cpu(ex->ee_block);
3871                                 ee_start = ext4_ext_pblock(ex);
3872
3873                         }
3874
3875                         ext4_ext_mark_uninitialized(ex);
3876
3877                         ext4_ext_invalidate_cache(inode);
3878
3879                         err = ext4_ext_rm_leaf(handle, inode, path,
3880                                                &partial_cluster, map->m_lblk,
3881                                                map->m_lblk + punched_out);
3882
3883                         if (!err && path->p_hdr->eh_entries == 0) {
3884                                 /*
3885                                  * Punch hole freed all of this sub tree,
3886                                  * so we need to correct eh_depth
3887                                  */
3888                                 err = ext4_ext_get_access(handle, inode, path);
3889                                 if (err == 0) {
3890                                         ext_inode_hdr(inode)->eh_depth = 0;
3891                                         ext_inode_hdr(inode)->eh_max =
3892                                         cpu_to_le16(ext4_ext_space_root(
3893                                                 inode, 0));
3894
3895                                         err = ext4_ext_dirty(
3896                                                 handle, inode, path);
3897                                 }
3898                         }
3899
3900                         goto out2;
3901                 }
3902         }
3903
3904         if ((sbi->s_cluster_ratio > 1) &&
3905             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3906                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3907
3908         /*
3909          * requested block isn't allocated yet;
3910          * we couldn't try to create block if create flag is zero
3911          */
3912         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3913                 /*
3914                  * put just found gap into cache to speed up
3915                  * subsequent requests
3916                  */
3917                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3918                 goto out2;
3919         }
3920
3921         /*
3922          * Okay, we need to do block allocation.
3923          */
3924         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3925         newex.ee_block = cpu_to_le32(map->m_lblk);
3926         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3927
3928         /*
3929          * If we are doing bigalloc, check to see if the extent returned
3930          * by ext4_ext_find_extent() implies a cluster we can use.
3931          */
3932         if (cluster_offset && ex &&
3933             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3934                 ar.len = allocated = map->m_len;
3935                 newblock = map->m_pblk;
3936                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3937                 goto got_allocated_blocks;
3938         }
3939
3940         /* find neighbour allocated blocks */
3941         ar.lleft = map->m_lblk;
3942         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3943         if (err)
3944                 goto out2;
3945         ar.lright = map->m_lblk;
3946         ex2 = NULL;
3947         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3948         if (err)
3949                 goto out2;
3950
3951         /* Check if the extent after searching to the right implies a
3952          * cluster we can use. */
3953         if ((sbi->s_cluster_ratio > 1) && ex2 &&
3954             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3955                 ar.len = allocated = map->m_len;
3956                 newblock = map->m_pblk;
3957                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3958                 goto got_allocated_blocks;
3959         }
3960
3961         /*
3962          * See if request is beyond maximum number of blocks we can have in
3963          * a single extent. For an initialized extent this limit is
3964          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3965          * EXT_UNINIT_MAX_LEN.
3966          */
3967         if (map->m_len > EXT_INIT_MAX_LEN &&
3968             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3969                 map->m_len = EXT_INIT_MAX_LEN;
3970         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3971                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3972                 map->m_len = EXT_UNINIT_MAX_LEN;
3973
3974         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3975         newex.ee_len = cpu_to_le16(map->m_len);
3976         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3977         if (err)
3978                 allocated = ext4_ext_get_actual_len(&newex);
3979         else
3980                 allocated = map->m_len;
3981
3982         /* allocate new block */
3983         ar.inode = inode;
3984         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3985         ar.logical = map->m_lblk;
3986         /*
3987          * We calculate the offset from the beginning of the cluster
3988          * for the logical block number, since when we allocate a
3989          * physical cluster, the physical block should start at the
3990          * same offset from the beginning of the cluster.  This is
3991          * needed so that future calls to get_implied_cluster_alloc()
3992          * work correctly.
3993          */
3994         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3995         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3996         ar.goal -= offset;
3997         ar.logical -= offset;
3998         if (S_ISREG(inode->i_mode))
3999                 ar.flags = EXT4_MB_HINT_DATA;
4000         else
4001                 /* disable in-core preallocation for non-regular files */
4002                 ar.flags = 0;
4003         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4004                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4005         newblock = ext4_mb_new_blocks(handle, &ar, &err);
4006         if (!newblock)
4007                 goto out2;
4008         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4009                   ar.goal, newblock, allocated);
4010         free_on_err = 1;
4011         allocated_clusters = ar.len;
4012         ar.len = EXT4_C2B(sbi, ar.len) - offset;
4013         if (ar.len > allocated)
4014                 ar.len = allocated;
4015
4016 got_allocated_blocks:
4017         /* try to insert new extent into found leaf and return */
4018         ext4_ext_store_pblock(&newex, newblock + offset);
4019         newex.ee_len = cpu_to_le16(ar.len);
4020         /* Mark uninitialized */
4021         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4022                 ext4_ext_mark_uninitialized(&newex);
4023                 /*
4024                  * io_end structure was created for every IO write to an
4025                  * uninitialized extent. To avoid unnecessary conversion,
4026                  * here we flag the IO that really needs the conversion.
4027                  * For non asycn direct IO case, flag the inode state
4028                  * that we need to perform conversion when IO is done.
4029                  */
4030                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4031                         if (io)
4032                                 ext4_set_io_unwritten_flag(inode, io);
4033                         else
4034                                 ext4_set_inode_state(inode,
4035                                                      EXT4_STATE_DIO_UNWRITTEN);
4036                 }
4037                 if (ext4_should_dioread_nolock(inode))
4038                         map->m_flags |= EXT4_MAP_UNINIT;
4039         }
4040
4041         err = 0;
4042         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4043                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4044                                          path, ar.len);
4045         if (!err)
4046                 err = ext4_ext_insert_extent(handle, inode, path,
4047                                              &newex, flags);
4048         if (err && free_on_err) {
4049                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4050                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4051                 /* free data blocks we just allocated */
4052                 /* not a good idea to call discard here directly,
4053                  * but otherwise we'd need to call it every free() */
4054                 ext4_discard_preallocations(inode);
4055                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4056                                  ext4_ext_get_actual_len(&newex), fb_flags);
4057                 goto out2;
4058         }
4059
4060         /* previous routine could use block we allocated */
4061         newblock = ext4_ext_pblock(&newex);
4062         allocated = ext4_ext_get_actual_len(&newex);
4063         if (allocated > map->m_len)
4064                 allocated = map->m_len;
4065         map->m_flags |= EXT4_MAP_NEW;
4066
4067         /*
4068          * Update reserved blocks/metadata blocks after successful
4069          * block allocation which had been deferred till now.
4070          */
4071         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4072                 unsigned int reserved_clusters;
4073                 /*
4074                  * Check how many clusters we had reserved this allocated range
4075                  */
4076                 reserved_clusters = get_reserved_cluster_alloc(inode,
4077                                                 map->m_lblk, allocated);
4078                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4079                         if (reserved_clusters) {
4080                                 /*
4081                                  * We have clusters reserved for this range.
4082                                  * But since we are not doing actual allocation
4083                                  * and are simply using blocks from previously
4084                                  * allocated cluster, we should release the
4085                                  * reservation and not claim quota.
4086                                  */
4087                                 ext4_da_update_reserve_space(inode,
4088                                                 reserved_clusters, 0);
4089                         }
4090                 } else {
4091                         BUG_ON(allocated_clusters < reserved_clusters);
4092                         /* We will claim quota for all newly allocated blocks.*/
4093                         ext4_da_update_reserve_space(inode, allocated_clusters,
4094                                                         1);
4095                         if (reserved_clusters < allocated_clusters) {
4096                                 struct ext4_inode_info *ei = EXT4_I(inode);
4097                                 int reservation = allocated_clusters -
4098                                                   reserved_clusters;
4099                                 /*
4100                                  * It seems we claimed few clusters outside of
4101                                  * the range of this allocation. We should give
4102                                  * it back to the reservation pool. This can
4103                                  * happen in the following case:
4104                                  *
4105                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4106                                  *   cluster has 4 blocks. Thus, the clusters
4107                                  *   are [0-3],[4-7],[8-11]...
4108                                  * * First comes delayed allocation write for
4109                                  *   logical blocks 10 & 11. Since there were no
4110                                  *   previous delayed allocated blocks in the
4111                                  *   range [8-11], we would reserve 1 cluster
4112                                  *   for this write.
4113                                  * * Next comes write for logical blocks 3 to 8.
4114                                  *   In this case, we will reserve 2 clusters
4115                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4116                                  *   that range has a delayed allocated blocks.
4117                                  *   Thus total reserved clusters now becomes 3.
4118                                  * * Now, during the delayed allocation writeout
4119                                  *   time, we will first write blocks [3-8] and
4120                                  *   allocate 3 clusters for writing these
4121                                  *   blocks. Also, we would claim all these
4122                                  *   three clusters above.
4123                                  * * Now when we come here to writeout the
4124                                  *   blocks [10-11], we would expect to claim
4125                                  *   the reservation of 1 cluster we had made
4126                                  *   (and we would claim it since there are no
4127                                  *   more delayed allocated blocks in the range
4128                                  *   [8-11]. But our reserved cluster count had
4129                                  *   already gone to 0.
4130                                  *
4131                                  *   Thus, at the step 4 above when we determine
4132                                  *   that there are still some unwritten delayed
4133                                  *   allocated blocks outside of our current
4134                                  *   block range, we should increment the
4135                                  *   reserved clusters count so that when the
4136                                  *   remaining blocks finally gets written, we
4137                                  *   could claim them.
4138                                  */
4139                                 dquot_reserve_block(inode,
4140                                                 EXT4_C2B(sbi, reservation));
4141                                 spin_lock(&ei->i_block_reservation_lock);
4142                                 ei->i_reserved_data_blocks += reservation;
4143                                 spin_unlock(&ei->i_block_reservation_lock);
4144                         }
4145                 }
4146         }
4147
4148         /*
4149          * Cache the extent and update transaction to commit on fdatasync only
4150          * when it is _not_ an uninitialized extent.
4151          */
4152         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4153                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4154                 ext4_update_inode_fsync_trans(handle, inode, 1);
4155         } else
4156                 ext4_update_inode_fsync_trans(handle, inode, 0);
4157 out:
4158         if (allocated > map->m_len)
4159                 allocated = map->m_len;
4160         ext4_ext_show_leaf(inode, path);
4161         map->m_flags |= EXT4_MAP_MAPPED;
4162         map->m_pblk = newblock;
4163         map->m_len = allocated;
4164 out2:
4165         if (path) {
4166                 ext4_ext_drop_refs(path);
4167                 kfree(path);
4168         }
4169         result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4170                         punched_out : allocated;
4171
4172         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4173                 newblock, map->m_len, err ? err : result);
4174
4175         return err ? err : result;
4176 }
4177
4178 void ext4_ext_truncate(struct inode *inode)
4179 {
4180         struct address_space *mapping = inode->i_mapping;
4181         struct super_block *sb = inode->i_sb;
4182         ext4_lblk_t last_block;
4183         handle_t *handle;
4184         loff_t page_len;
4185         int err = 0;
4186
4187         /*
4188          * finish any pending end_io work so we won't run the risk of
4189          * converting any truncated blocks to initialized later
4190          */
4191         ext4_flush_completed_IO(inode);
4192
4193         /*
4194          * probably first extent we're gonna free will be last in block
4195          */
4196         err = ext4_writepage_trans_blocks(inode);
4197         handle = ext4_journal_start(inode, err);
4198         if (IS_ERR(handle))
4199                 return;
4200
4201         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4202                 page_len = PAGE_CACHE_SIZE -
4203                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4204
4205                 err = ext4_discard_partial_page_buffers(handle,
4206                         mapping, inode->i_size, page_len, 0);
4207
4208                 if (err)
4209                         goto out_stop;
4210         }
4211
4212         if (ext4_orphan_add(handle, inode))
4213                 goto out_stop;
4214
4215         down_write(&EXT4_I(inode)->i_data_sem);
4216         ext4_ext_invalidate_cache(inode);
4217
4218         ext4_discard_preallocations(inode);
4219
4220         /*
4221          * TODO: optimization is possible here.
4222          * Probably we need not scan at all,
4223          * because page truncation is enough.
4224          */
4225
4226         /* we have to know where to truncate from in crash case */
4227         EXT4_I(inode)->i_disksize = inode->i_size;
4228         ext4_mark_inode_dirty(handle, inode);
4229
4230         last_block = (inode->i_size + sb->s_blocksize - 1)
4231                         >> EXT4_BLOCK_SIZE_BITS(sb);
4232         err = ext4_ext_remove_space(inode, last_block);
4233
4234         /* In a multi-transaction truncate, we only make the final
4235          * transaction synchronous.
4236          */
4237         if (IS_SYNC(inode))
4238                 ext4_handle_sync(handle);
4239
4240         up_write(&EXT4_I(inode)->i_data_sem);
4241
4242 out_stop:
4243         /*
4244          * If this was a simple ftruncate() and the file will remain alive,
4245          * then we need to clear up the orphan record which we created above.
4246          * However, if this was a real unlink then we were called by
4247          * ext4_delete_inode(), and we allow that function to clean up the
4248          * orphan info for us.
4249          */
4250         if (inode->i_nlink)
4251                 ext4_orphan_del(handle, inode);
4252
4253         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4254         ext4_mark_inode_dirty(handle, inode);
4255         ext4_journal_stop(handle);
4256 }
4257
4258 static void ext4_falloc_update_inode(struct inode *inode,
4259                                 int mode, loff_t new_size, int update_ctime)
4260 {
4261         struct timespec now;
4262
4263         if (update_ctime) {
4264                 now = current_fs_time(inode->i_sb);
4265                 if (!timespec_equal(&inode->i_ctime, &now))
4266                         inode->i_ctime = now;
4267         }
4268         /*
4269          * Update only when preallocation was requested beyond
4270          * the file size.
4271          */
4272         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4273                 if (new_size > i_size_read(inode))
4274                         i_size_write(inode, new_size);
4275                 if (new_size > EXT4_I(inode)->i_disksize)
4276                         ext4_update_i_disksize(inode, new_size);
4277         } else {
4278                 /*
4279                  * Mark that we allocate beyond EOF so the subsequent truncate
4280                  * can proceed even if the new size is the same as i_size.
4281                  */
4282                 if (new_size > i_size_read(inode))
4283                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4284         }
4285
4286 }
4287
4288 /*
4289  * preallocate space for a file. This implements ext4's fallocate file
4290  * operation, which gets called from sys_fallocate system call.
4291  * For block-mapped files, posix_fallocate should fall back to the method
4292  * of writing zeroes to the required new blocks (the same behavior which is
4293  * expected for file systems which do not support fallocate() system call).
4294  */
4295 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4296 {
4297         struct inode *inode = file->f_path.dentry->d_inode;
4298         handle_t *handle;
4299         loff_t new_size;
4300         unsigned int max_blocks;
4301         int ret = 0;
4302         int ret2 = 0;
4303         int retries = 0;
4304         int flags;
4305         struct ext4_map_blocks map;
4306         unsigned int credits, blkbits = inode->i_blkbits;
4307
4308         /*
4309          * currently supporting (pre)allocate mode for extent-based
4310          * files _only_
4311          */
4312         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4313                 return -EOPNOTSUPP;
4314
4315         /* Return error if mode is not supported */
4316         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4317                 return -EOPNOTSUPP;
4318
4319         if (mode & FALLOC_FL_PUNCH_HOLE)
4320                 return ext4_punch_hole(file, offset, len);
4321
4322         trace_ext4_fallocate_enter(inode, offset, len, mode);
4323         map.m_lblk = offset >> blkbits;
4324         /*
4325          * We can't just convert len to max_blocks because
4326          * If blocksize = 4096 offset = 3072 and len = 2048
4327          */
4328         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4329                 - map.m_lblk;
4330         /*
4331          * credits to insert 1 extent into extent tree
4332          */
4333         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4334         mutex_lock(&inode->i_mutex);
4335         ret = inode_newsize_ok(inode, (len + offset));
4336         if (ret) {
4337                 mutex_unlock(&inode->i_mutex);
4338                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4339                 return ret;
4340         }
4341         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4342         if (mode & FALLOC_FL_KEEP_SIZE)
4343                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4344         /*
4345          * Don't normalize the request if it can fit in one extent so
4346          * that it doesn't get unnecessarily split into multiple
4347          * extents.
4348          */
4349         if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4350                 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4351 retry:
4352         while (ret >= 0 && ret < max_blocks) {
4353                 map.m_lblk = map.m_lblk + ret;
4354                 map.m_len = max_blocks = max_blocks - ret;
4355                 handle = ext4_journal_start(inode, credits);
4356                 if (IS_ERR(handle)) {
4357                         ret = PTR_ERR(handle);
4358                         break;
4359                 }
4360                 ret = ext4_map_blocks(handle, inode, &map, flags);
4361                 if (ret <= 0) {
4362 #ifdef EXT4FS_DEBUG
4363                         WARN_ON(ret <= 0);
4364                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4365                                     "returned error inode#%lu, block=%u, "
4366                                     "max_blocks=%u", __func__,
4367                                     inode->i_ino, map.m_lblk, max_blocks);
4368 #endif
4369                         ext4_mark_inode_dirty(handle, inode);
4370                         ret2 = ext4_journal_stop(handle);
4371                         break;
4372                 }
4373                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4374                                                 blkbits) >> blkbits))
4375                         new_size = offset + len;
4376                 else
4377                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4378
4379                 ext4_falloc_update_inode(inode, mode, new_size,
4380                                          (map.m_flags & EXT4_MAP_NEW));
4381                 ext4_mark_inode_dirty(handle, inode);
4382                 ret2 = ext4_journal_stop(handle);
4383                 if (ret2)
4384                         break;
4385         }
4386         if (ret == -ENOSPC &&
4387                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4388                 ret = 0;
4389                 goto retry;
4390         }
4391         mutex_unlock(&inode->i_mutex);
4392         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4393                                 ret > 0 ? ret2 : ret);
4394         return ret > 0 ? ret2 : ret;
4395 }
4396
4397 /*
4398  * This function convert a range of blocks to written extents
4399  * The caller of this function will pass the start offset and the size.
4400  * all unwritten extents within this range will be converted to
4401  * written extents.
4402  *
4403  * This function is called from the direct IO end io call back
4404  * function, to convert the fallocated extents after IO is completed.
4405  * Returns 0 on success.
4406  */
4407 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4408                                     ssize_t len)
4409 {
4410         handle_t *handle;
4411         unsigned int max_blocks;
4412         int ret = 0;
4413         int ret2 = 0;
4414         struct ext4_map_blocks map;
4415         unsigned int credits, blkbits = inode->i_blkbits;
4416
4417         map.m_lblk = offset >> blkbits;
4418         /*
4419          * We can't just convert len to max_blocks because
4420          * If blocksize = 4096 offset = 3072 and len = 2048
4421          */
4422         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4423                       map.m_lblk);
4424         /*
4425          * credits to insert 1 extent into extent tree
4426          */
4427         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4428         while (ret >= 0 && ret < max_blocks) {
4429                 map.m_lblk += ret;
4430                 map.m_len = (max_blocks -= ret);
4431                 handle = ext4_journal_start(inode, credits);
4432                 if (IS_ERR(handle)) {
4433                         ret = PTR_ERR(handle);
4434                         break;
4435                 }
4436                 ret = ext4_map_blocks(handle, inode, &map,
4437                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4438                 if (ret <= 0) {
4439                         WARN_ON(ret <= 0);
4440                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4441                                     "returned error inode#%lu, block=%u, "
4442                                     "max_blocks=%u", __func__,
4443                                     inode->i_ino, map.m_lblk, map.m_len);
4444                 }
4445                 ext4_mark_inode_dirty(handle, inode);
4446                 ret2 = ext4_journal_stop(handle);
4447                 if (ret <= 0 || ret2 )
4448                         break;
4449         }
4450         return ret > 0 ? ret2 : ret;
4451 }
4452
4453 /*
4454  * Callback function called for each extent to gather FIEMAP information.
4455  */
4456 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4457                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4458                        void *data)
4459 {
4460         __u64   logical;
4461         __u64   physical;
4462         __u64   length;
4463         __u32   flags = 0;
4464         int             ret = 0;
4465         struct fiemap_extent_info *fieinfo = data;
4466         unsigned char blksize_bits;
4467
4468         blksize_bits = inode->i_sb->s_blocksize_bits;
4469         logical = (__u64)newex->ec_block << blksize_bits;
4470
4471         if (newex->ec_start == 0) {
4472                 /*
4473                  * No extent in extent-tree contains block @newex->ec_start,
4474                  * then the block may stay in 1)a hole or 2)delayed-extent.
4475                  *
4476                  * Holes or delayed-extents are processed as follows.
4477                  * 1. lookup dirty pages with specified range in pagecache.
4478                  *    If no page is got, then there is no delayed-extent and
4479                  *    return with EXT_CONTINUE.
4480                  * 2. find the 1st mapped buffer,
4481                  * 3. check if the mapped buffer is both in the request range
4482                  *    and a delayed buffer. If not, there is no delayed-extent,
4483                  *    then return.
4484                  * 4. a delayed-extent is found, the extent will be collected.
4485                  */
4486                 ext4_lblk_t     end = 0;
4487                 pgoff_t         last_offset;
4488                 pgoff_t         offset;
4489                 pgoff_t         index;
4490                 pgoff_t         start_index = 0;
4491                 struct page     **pages = NULL;
4492                 struct buffer_head *bh = NULL;
4493                 struct buffer_head *head = NULL;
4494                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4495
4496                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4497                 if (pages == NULL)
4498                         return -ENOMEM;
4499
4500                 offset = logical >> PAGE_SHIFT;
4501 repeat:
4502                 last_offset = offset;
4503                 head = NULL;
4504                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4505                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4506
4507                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4508                         /* First time, try to find a mapped buffer. */
4509                         if (ret == 0) {
4510 out:
4511                                 for (index = 0; index < ret; index++)
4512                                         page_cache_release(pages[index]);
4513                                 /* just a hole. */
4514                                 kfree(pages);
4515                                 return EXT_CONTINUE;
4516                         }
4517                         index = 0;
4518
4519 next_page:
4520                         /* Try to find the 1st mapped buffer. */
4521                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4522                                   blksize_bits;
4523                         if (!page_has_buffers(pages[index]))
4524                                 goto out;
4525                         head = page_buffers(pages[index]);
4526                         if (!head)
4527                                 goto out;
4528
4529                         index++;
4530                         bh = head;
4531                         do {
4532                                 if (end >= newex->ec_block +
4533                                         newex->ec_len)
4534                                         /* The buffer is out of
4535                                          * the request range.
4536                                          */
4537                                         goto out;
4538
4539                                 if (buffer_mapped(bh) &&
4540                                     end >= newex->ec_block) {
4541                                         start_index = index - 1;
4542                                         /* get the 1st mapped buffer. */
4543                                         goto found_mapped_buffer;
4544                                 }
4545
4546                                 bh = bh->b_this_page;
4547                                 end++;
4548                         } while (bh != head);
4549
4550                         /* No mapped buffer in the range found in this page,
4551                          * We need to look up next page.
4552                          */
4553                         if (index >= ret) {
4554                                 /* There is no page left, but we need to limit
4555                                  * newex->ec_len.
4556                                  */
4557                                 newex->ec_len = end - newex->ec_block;
4558                                 goto out;
4559                         }
4560                         goto next_page;
4561                 } else {
4562                         /*Find contiguous delayed buffers. */
4563                         if (ret > 0 && pages[0]->index == last_offset)
4564                                 head = page_buffers(pages[0]);
4565                         bh = head;
4566                         index = 1;
4567                         start_index = 0;
4568                 }
4569
4570 found_mapped_buffer:
4571                 if (bh != NULL && buffer_delay(bh)) {
4572                         /* 1st or contiguous delayed buffer found. */
4573                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4574                                 /*
4575                                  * 1st delayed buffer found, record
4576                                  * the start of extent.
4577                                  */
4578                                 flags |= FIEMAP_EXTENT_DELALLOC;
4579                                 newex->ec_block = end;
4580                                 logical = (__u64)end << blksize_bits;
4581                         }
4582                         /* Find contiguous delayed buffers. */
4583                         do {
4584                                 if (!buffer_delay(bh))
4585                                         goto found_delayed_extent;
4586                                 bh = bh->b_this_page;
4587                                 end++;
4588                         } while (bh != head);
4589
4590                         for (; index < ret; index++) {
4591                                 if (!page_has_buffers(pages[index])) {
4592                                         bh = NULL;
4593                                         break;
4594                                 }
4595                                 head = page_buffers(pages[index]);
4596                                 if (!head) {
4597                                         bh = NULL;
4598                                         break;
4599                                 }
4600
4601                                 if (pages[index]->index !=
4602                                     pages[start_index]->index + index
4603                                     - start_index) {
4604                                         /* Blocks are not contiguous. */
4605                                         bh = NULL;
4606                                         break;
4607                                 }
4608                                 bh = head;
4609                                 do {
4610                                         if (!buffer_delay(bh))
4611                                                 /* Delayed-extent ends. */
4612                                                 goto found_delayed_extent;
4613                                         bh = bh->b_this_page;
4614                                         end++;
4615                                 } while (bh != head);
4616                         }
4617                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4618                         /* a hole found. */
4619                         goto out;
4620
4621 found_delayed_extent:
4622                 newex->ec_len = min(end - newex->ec_block,
4623                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4624                 if (ret == nr_pages && bh != NULL &&
4625                         newex->ec_len < EXT_INIT_MAX_LEN &&
4626                         buffer_delay(bh)) {
4627                         /* Have not collected an extent and continue. */
4628                         for (index = 0; index < ret; index++)
4629                                 page_cache_release(pages[index]);
4630                         goto repeat;
4631                 }
4632
4633                 for (index = 0; index < ret; index++)
4634                         page_cache_release(pages[index]);
4635                 kfree(pages);
4636         }
4637
4638         physical = (__u64)newex->ec_start << blksize_bits;
4639         length =   (__u64)newex->ec_len << blksize_bits;
4640
4641         if (ex && ext4_ext_is_uninitialized(ex))
4642                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4643
4644         if (next == EXT_MAX_BLOCKS)
4645                 flags |= FIEMAP_EXTENT_LAST;
4646
4647         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4648                                         length, flags);
4649         if (ret < 0)
4650                 return ret;
4651         if (ret == 1)
4652                 return EXT_BREAK;
4653         return EXT_CONTINUE;
4654 }
4655 /* fiemap flags we can handle specified here */
4656 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4657
4658 static int ext4_xattr_fiemap(struct inode *inode,
4659                                 struct fiemap_extent_info *fieinfo)
4660 {
4661         __u64 physical = 0;
4662         __u64 length;
4663         __u32 flags = FIEMAP_EXTENT_LAST;
4664         int blockbits = inode->i_sb->s_blocksize_bits;
4665         int error = 0;
4666
4667         /* in-inode? */
4668         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4669                 struct ext4_iloc iloc;
4670                 int offset;     /* offset of xattr in inode */
4671
4672                 error = ext4_get_inode_loc(inode, &iloc);
4673                 if (error)
4674                         return error;
4675                 physical = iloc.bh->b_blocknr << blockbits;
4676                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4677                                 EXT4_I(inode)->i_extra_isize;
4678                 physical += offset;
4679                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4680                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4681                 brelse(iloc.bh);
4682         } else { /* external block */
4683                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4684                 length = inode->i_sb->s_blocksize;
4685         }
4686
4687         if (physical)
4688                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4689                                                 length, flags);
4690         return (error < 0 ? error : 0);
4691 }
4692
4693 /*
4694  * ext4_ext_punch_hole
4695  *
4696  * Punches a hole of "length" bytes in a file starting
4697  * at byte "offset"
4698  *
4699  * @inode:  The inode of the file to punch a hole in
4700  * @offset: The starting byte offset of the hole
4701  * @length: The length of the hole
4702  *
4703  * Returns the number of blocks removed or negative on err
4704  */
4705 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4706 {
4707         struct inode *inode = file->f_path.dentry->d_inode;
4708         struct super_block *sb = inode->i_sb;
4709         struct ext4_ext_cache cache_ex;
4710         ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4711         struct address_space *mapping = inode->i_mapping;
4712         struct ext4_map_blocks map;
4713         handle_t *handle;
4714         loff_t first_page, last_page, page_len;
4715         loff_t first_page_offset, last_page_offset;
4716         int ret, credits, blocks_released, err = 0;
4717
4718         /* No need to punch hole beyond i_size */
4719         if (offset >= inode->i_size)
4720                 return 0;
4721
4722         /*
4723          * If the hole extends beyond i_size, set the hole
4724          * to end after the page that contains i_size
4725          */
4726         if (offset + length > inode->i_size) {
4727                 length = inode->i_size +
4728                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4729                    offset;
4730         }
4731
4732         first_block = (offset + sb->s_blocksize - 1) >>
4733                 EXT4_BLOCK_SIZE_BITS(sb);
4734         last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4735
4736         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4737         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4738
4739         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4740         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4741
4742         /*
4743          * Write out all dirty pages to avoid race conditions
4744          * Then release them.
4745          */
4746         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4747                 err = filemap_write_and_wait_range(mapping,
4748                         offset, offset + length - 1);
4749
4750                 if (err)
4751                         return err;
4752         }
4753
4754         /* Now release the pages */
4755         if (last_page_offset > first_page_offset) {
4756                 truncate_inode_pages_range(mapping, first_page_offset,
4757                                            last_page_offset-1);
4758         }
4759
4760         /* finish any pending end_io work */
4761         ext4_flush_completed_IO(inode);
4762
4763         credits = ext4_writepage_trans_blocks(inode);
4764         handle = ext4_journal_start(inode, credits);
4765         if (IS_ERR(handle))
4766                 return PTR_ERR(handle);
4767
4768         err = ext4_orphan_add(handle, inode);
4769         if (err)
4770                 goto out;
4771
4772         /*
4773          * Now we need to zero out the non-page-aligned data in the
4774          * pages at the start and tail of the hole, and unmap the buffer
4775          * heads for the block aligned regions of the page that were
4776          * completely zeroed.
4777          */
4778         if (first_page > last_page) {
4779                 /*
4780                  * If the file space being truncated is contained within a page
4781                  * just zero out and unmap the middle of that page
4782                  */
4783                 err = ext4_discard_partial_page_buffers(handle,
4784                         mapping, offset, length, 0);
4785
4786                 if (err)
4787                         goto out;
4788         } else {
4789                 /*
4790                  * zero out and unmap the partial page that contains
4791                  * the start of the hole
4792                  */
4793                 page_len  = first_page_offset - offset;
4794                 if (page_len > 0) {
4795                         err = ext4_discard_partial_page_buffers(handle, mapping,
4796                                                    offset, page_len, 0);
4797                         if (err)
4798                                 goto out;
4799                 }
4800
4801                 /*
4802                  * zero out and unmap the partial page that contains
4803                  * the end of the hole
4804                  */
4805                 page_len = offset + length - last_page_offset;
4806                 if (page_len > 0) {
4807                         err = ext4_discard_partial_page_buffers(handle, mapping,
4808                                         last_page_offset, page_len, 0);
4809                         if (err)
4810                                 goto out;
4811                 }
4812         }
4813
4814
4815         /*
4816          * If i_size is contained in the last page, we need to
4817          * unmap and zero the partial page after i_size
4818          */
4819         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4820            inode->i_size % PAGE_CACHE_SIZE != 0) {
4821
4822                 page_len = PAGE_CACHE_SIZE -
4823                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4824
4825                 if (page_len > 0) {
4826                         err = ext4_discard_partial_page_buffers(handle,
4827                           mapping, inode->i_size, page_len, 0);
4828
4829                         if (err)
4830                                 goto out;
4831                 }
4832         }
4833
4834         /* If there are no blocks to remove, return now */
4835         if (first_block >= last_block)
4836                 goto out;
4837
4838         down_write(&EXT4_I(inode)->i_data_sem);
4839         ext4_ext_invalidate_cache(inode);
4840         ext4_discard_preallocations(inode);
4841
4842         /*
4843          * Loop over all the blocks and identify blocks
4844          * that need to be punched out
4845          */
4846         iblock = first_block;
4847         blocks_released = 0;
4848         while (iblock < last_block) {
4849                 max_blocks = last_block - iblock;
4850                 num_blocks = 1;
4851                 memset(&map, 0, sizeof(map));
4852                 map.m_lblk = iblock;
4853                 map.m_len = max_blocks;
4854                 ret = ext4_ext_map_blocks(handle, inode, &map,
4855                         EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4856
4857                 if (ret > 0) {
4858                         blocks_released += ret;
4859                         num_blocks = ret;
4860                 } else if (ret == 0) {
4861                         /*
4862                          * If map blocks could not find the block,
4863                          * then it is in a hole.  If the hole was
4864                          * not already cached, then map blocks should
4865                          * put it in the cache.  So we can get the hole
4866                          * out of the cache
4867                          */
4868                         memset(&cache_ex, 0, sizeof(cache_ex));
4869                         if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4870                                 !cache_ex.ec_start) {
4871
4872                                 /* The hole is cached */
4873                                 num_blocks = cache_ex.ec_block +
4874                                 cache_ex.ec_len - iblock;
4875
4876                         } else {
4877                                 /* The block could not be identified */
4878                                 err = -EIO;
4879                                 break;
4880                         }
4881                 } else {
4882                         /* Map blocks error */
4883                         err = ret;
4884                         break;
4885                 }
4886
4887                 if (num_blocks == 0) {
4888                         /* This condition should never happen */
4889                         ext_debug("Block lookup failed");
4890                         err = -EIO;
4891                         break;
4892                 }
4893
4894                 iblock += num_blocks;
4895         }
4896
4897         if (blocks_released > 0) {
4898                 ext4_ext_invalidate_cache(inode);
4899                 ext4_discard_preallocations(inode);
4900         }
4901
4902         if (IS_SYNC(inode))
4903                 ext4_handle_sync(handle);
4904
4905         up_write(&EXT4_I(inode)->i_data_sem);
4906
4907 out:
4908         ext4_orphan_del(handle, inode);
4909         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4910         ext4_mark_inode_dirty(handle, inode);
4911         ext4_journal_stop(handle);
4912         return err;
4913 }
4914 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4915                 __u64 start, __u64 len)
4916 {
4917         ext4_lblk_t start_blk;
4918         int error = 0;
4919
4920         /* fallback to generic here if not in extents fmt */
4921         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4922                 return generic_block_fiemap(inode, fieinfo, start, len,
4923                         ext4_get_block);
4924
4925         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4926                 return -EBADR;
4927
4928         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4929                 error = ext4_xattr_fiemap(inode, fieinfo);
4930         } else {
4931                 ext4_lblk_t len_blks;
4932                 __u64 last_blk;
4933
4934                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4935                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4936                 if (last_blk >= EXT_MAX_BLOCKS)
4937                         last_blk = EXT_MAX_BLOCKS-1;
4938                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4939
4940                 /*
4941                  * Walk the extent tree gathering extent information.
4942                  * ext4_ext_fiemap_cb will push extents back to user.
4943                  */
4944                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4945                                           ext4_ext_fiemap_cb, fieinfo);
4946         }
4947
4948         return error;
4949 }