]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/file.c
Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[karo-tx-linux.git] / fs / ext4 / file.c
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *      (jj@sunsite.ms.mff.cuni.cz)
19  */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37         struct inode *inode = file_inode(iocb->ki_filp);
38         ssize_t ret;
39
40         inode_lock_shared(inode);
41         /*
42          * Recheck under inode lock - at this point we are sure it cannot
43          * change anymore
44          */
45         if (!IS_DAX(inode)) {
46                 inode_unlock_shared(inode);
47                 /* Fallback to buffered IO in case we cannot support DAX */
48                 return generic_file_read_iter(iocb, to);
49         }
50         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51         inode_unlock_shared(inode);
52
53         file_accessed(iocb->ki_filp);
54         return ret;
55 }
56 #endif
57
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
59 {
60         if (!iov_iter_count(to))
61                 return 0; /* skip atime */
62
63 #ifdef CONFIG_FS_DAX
64         if (IS_DAX(file_inode(iocb->ki_filp)))
65                 return ext4_dax_read_iter(iocb, to);
66 #endif
67         return generic_file_read_iter(iocb, to);
68 }
69
70 /*
71  * Called when an inode is released. Note that this is different
72  * from ext4_file_open: open gets called at every open, but release
73  * gets called only when /all/ the files are closed.
74  */
75 static int ext4_release_file(struct inode *inode, struct file *filp)
76 {
77         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
78                 ext4_alloc_da_blocks(inode);
79                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
80         }
81         /* if we are the last writer on the inode, drop the block reservation */
82         if ((filp->f_mode & FMODE_WRITE) &&
83                         (atomic_read(&inode->i_writecount) == 1) &&
84                         !EXT4_I(inode)->i_reserved_data_blocks)
85         {
86                 down_write(&EXT4_I(inode)->i_data_sem);
87                 ext4_discard_preallocations(inode);
88                 up_write(&EXT4_I(inode)->i_data_sem);
89         }
90         if (is_dx(inode) && filp->private_data)
91                 ext4_htree_free_dir_info(filp->private_data);
92
93         return 0;
94 }
95
96 static void ext4_unwritten_wait(struct inode *inode)
97 {
98         wait_queue_head_t *wq = ext4_ioend_wq(inode);
99
100         wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101 }
102
103 /*
104  * This tests whether the IO in question is block-aligned or not.
105  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106  * are converted to written only after the IO is complete.  Until they are
107  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108  * it needs to zero out portions of the start and/or end block.  If 2 AIO
109  * threads are at work on the same unwritten block, they must be synchronized
110  * or one thread will zero the other's data, causing corruption.
111  */
112 static int
113 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114 {
115         struct super_block *sb = inode->i_sb;
116         int blockmask = sb->s_blocksize - 1;
117
118         if (pos >= i_size_read(inode))
119                 return 0;
120
121         if ((pos | iov_iter_alignment(from)) & blockmask)
122                 return 1;
123
124         return 0;
125 }
126
127 /* Is IO overwriting allocated and initialized blocks? */
128 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129 {
130         struct ext4_map_blocks map;
131         unsigned int blkbits = inode->i_blkbits;
132         int err, blklen;
133
134         if (pos + len > i_size_read(inode))
135                 return false;
136
137         map.m_lblk = pos >> blkbits;
138         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139         blklen = map.m_len;
140
141         err = ext4_map_blocks(NULL, inode, &map, 0);
142         /*
143          * 'err==len' means that all of the blocks have been preallocated,
144          * regardless of whether they have been initialized or not. To exclude
145          * unwritten extents, we need to check m_flags.
146          */
147         return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148 }
149
150 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
151 {
152         struct inode *inode = file_inode(iocb->ki_filp);
153         ssize_t ret;
154
155         ret = generic_write_checks(iocb, from);
156         if (ret <= 0)
157                 return ret;
158         /*
159          * If we have encountered a bitmap-format file, the size limit
160          * is smaller than s_maxbytes, which is for extent-mapped files.
161          */
162         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164
165                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166                         return -EFBIG;
167                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168         }
169         return iov_iter_count(from);
170 }
171
172 #ifdef CONFIG_FS_DAX
173 static ssize_t
174 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
175 {
176         struct inode *inode = file_inode(iocb->ki_filp);
177         ssize_t ret;
178         bool overwrite = false;
179
180         inode_lock(inode);
181         ret = ext4_write_checks(iocb, from);
182         if (ret <= 0)
183                 goto out;
184         ret = file_remove_privs(iocb->ki_filp);
185         if (ret)
186                 goto out;
187         ret = file_update_time(iocb->ki_filp);
188         if (ret)
189                 goto out;
190
191         if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192                 overwrite = true;
193                 downgrade_write(&inode->i_rwsem);
194         }
195         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196 out:
197         if (!overwrite)
198                 inode_unlock(inode);
199         else
200                 inode_unlock_shared(inode);
201         if (ret > 0)
202                 ret = generic_write_sync(iocb, ret);
203         return ret;
204 }
205 #endif
206
207 static ssize_t
208 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209 {
210         struct inode *inode = file_inode(iocb->ki_filp);
211         int o_direct = iocb->ki_flags & IOCB_DIRECT;
212         int unaligned_aio = 0;
213         int overwrite = 0;
214         ssize_t ret;
215
216 #ifdef CONFIG_FS_DAX
217         if (IS_DAX(inode))
218                 return ext4_dax_write_iter(iocb, from);
219 #endif
220
221         inode_lock(inode);
222         ret = ext4_write_checks(iocb, from);
223         if (ret <= 0)
224                 goto out;
225
226         /*
227          * Unaligned direct AIO must be serialized among each other as zeroing
228          * of partial blocks of two competing unaligned AIOs can result in data
229          * corruption.
230          */
231         if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232             !is_sync_kiocb(iocb) &&
233             ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234                 unaligned_aio = 1;
235                 ext4_unwritten_wait(inode);
236         }
237
238         iocb->private = &overwrite;
239         /* Check whether we do a DIO overwrite or not */
240         if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241             ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242                 overwrite = 1;
243
244         ret = __generic_file_write_iter(iocb, from);
245         inode_unlock(inode);
246
247         if (ret > 0)
248                 ret = generic_write_sync(iocb, ret);
249
250         return ret;
251
252 out:
253         inode_unlock(inode);
254         return ret;
255 }
256
257 #ifdef CONFIG_FS_DAX
258 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259 {
260         int result;
261         handle_t *handle = NULL;
262         struct inode *inode = file_inode(vma->vm_file);
263         struct super_block *sb = inode->i_sb;
264         bool write = vmf->flags & FAULT_FLAG_WRITE;
265
266         if (write) {
267                 sb_start_pagefault(sb);
268                 file_update_time(vma->vm_file);
269                 down_read(&EXT4_I(inode)->i_mmap_sem);
270                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
271                                                 EXT4_DATA_TRANS_BLOCKS(sb));
272         } else
273                 down_read(&EXT4_I(inode)->i_mmap_sem);
274
275         if (IS_ERR(handle))
276                 result = VM_FAULT_SIGBUS;
277         else
278                 result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
279
280         if (write) {
281                 if (!IS_ERR(handle))
282                         ext4_journal_stop(handle);
283                 up_read(&EXT4_I(inode)->i_mmap_sem);
284                 sb_end_pagefault(sb);
285         } else
286                 up_read(&EXT4_I(inode)->i_mmap_sem);
287
288         return result;
289 }
290
291 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
292                                                 pmd_t *pmd, unsigned int flags)
293 {
294         int result;
295         handle_t *handle = NULL;
296         struct inode *inode = file_inode(vma->vm_file);
297         struct super_block *sb = inode->i_sb;
298         bool write = flags & FAULT_FLAG_WRITE;
299
300         if (write) {
301                 sb_start_pagefault(sb);
302                 file_update_time(vma->vm_file);
303                 down_read(&EXT4_I(inode)->i_mmap_sem);
304                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
305                                 ext4_chunk_trans_blocks(inode,
306                                                         PMD_SIZE / PAGE_SIZE));
307         } else
308                 down_read(&EXT4_I(inode)->i_mmap_sem);
309
310         if (IS_ERR(handle))
311                 result = VM_FAULT_SIGBUS;
312         else {
313                 result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
314                                              &ext4_iomap_ops);
315         }
316
317         if (write) {
318                 if (!IS_ERR(handle))
319                         ext4_journal_stop(handle);
320                 up_read(&EXT4_I(inode)->i_mmap_sem);
321                 sb_end_pagefault(sb);
322         } else
323                 up_read(&EXT4_I(inode)->i_mmap_sem);
324
325         return result;
326 }
327
328 /*
329  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
330  * handler we check for races agaist truncate. Note that since we cycle through
331  * i_mmap_sem, we are sure that also any hole punching that began before we
332  * were called is finished by now and so if it included part of the file we
333  * are working on, our pte will get unmapped and the check for pte_same() in
334  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
335  * desired.
336  */
337 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
338                                 struct vm_fault *vmf)
339 {
340         struct inode *inode = file_inode(vma->vm_file);
341         struct super_block *sb = inode->i_sb;
342         loff_t size;
343         int ret;
344
345         sb_start_pagefault(sb);
346         file_update_time(vma->vm_file);
347         down_read(&EXT4_I(inode)->i_mmap_sem);
348         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
349         if (vmf->pgoff >= size)
350                 ret = VM_FAULT_SIGBUS;
351         else
352                 ret = dax_pfn_mkwrite(vma, vmf);
353         up_read(&EXT4_I(inode)->i_mmap_sem);
354         sb_end_pagefault(sb);
355
356         return ret;
357 }
358
359 static const struct vm_operations_struct ext4_dax_vm_ops = {
360         .fault          = ext4_dax_fault,
361         .pmd_fault      = ext4_dax_pmd_fault,
362         .page_mkwrite   = ext4_dax_fault,
363         .pfn_mkwrite    = ext4_dax_pfn_mkwrite,
364 };
365 #else
366 #define ext4_dax_vm_ops ext4_file_vm_ops
367 #endif
368
369 static const struct vm_operations_struct ext4_file_vm_ops = {
370         .fault          = ext4_filemap_fault,
371         .map_pages      = filemap_map_pages,
372         .page_mkwrite   = ext4_page_mkwrite,
373 };
374
375 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
376 {
377         struct inode *inode = file->f_mapping->host;
378
379         if (ext4_encrypted_inode(inode)) {
380                 int err = fscrypt_get_encryption_info(inode);
381                 if (err)
382                         return 0;
383                 if (!fscrypt_has_encryption_key(inode))
384                         return -ENOKEY;
385         }
386         file_accessed(file);
387         if (IS_DAX(file_inode(file))) {
388                 vma->vm_ops = &ext4_dax_vm_ops;
389                 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
390         } else {
391                 vma->vm_ops = &ext4_file_vm_ops;
392         }
393         return 0;
394 }
395
396 static int ext4_file_open(struct inode * inode, struct file * filp)
397 {
398         struct super_block *sb = inode->i_sb;
399         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
400         struct vfsmount *mnt = filp->f_path.mnt;
401         struct dentry *dir;
402         struct path path;
403         char buf[64], *cp;
404         int ret;
405
406         if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
407                      !(sb->s_flags & MS_RDONLY))) {
408                 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
409                 /*
410                  * Sample where the filesystem has been mounted and
411                  * store it in the superblock for sysadmin convenience
412                  * when trying to sort through large numbers of block
413                  * devices or filesystem images.
414                  */
415                 memset(buf, 0, sizeof(buf));
416                 path.mnt = mnt;
417                 path.dentry = mnt->mnt_root;
418                 cp = d_path(&path, buf, sizeof(buf));
419                 if (!IS_ERR(cp)) {
420                         handle_t *handle;
421                         int err;
422
423                         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
424                         if (IS_ERR(handle))
425                                 return PTR_ERR(handle);
426                         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
427                         err = ext4_journal_get_write_access(handle, sbi->s_sbh);
428                         if (err) {
429                                 ext4_journal_stop(handle);
430                                 return err;
431                         }
432                         strlcpy(sbi->s_es->s_last_mounted, cp,
433                                 sizeof(sbi->s_es->s_last_mounted));
434                         ext4_handle_dirty_super(handle, sb);
435                         ext4_journal_stop(handle);
436                 }
437         }
438         if (ext4_encrypted_inode(inode)) {
439                 ret = fscrypt_get_encryption_info(inode);
440                 if (ret)
441                         return -EACCES;
442                 if (!fscrypt_has_encryption_key(inode))
443                         return -ENOKEY;
444         }
445
446         dir = dget_parent(file_dentry(filp));
447         if (ext4_encrypted_inode(d_inode(dir)) &&
448                         !fscrypt_has_permitted_context(d_inode(dir), inode)) {
449                 ext4_warning(inode->i_sb,
450                              "Inconsistent encryption contexts: %lu/%lu",
451                              (unsigned long) d_inode(dir)->i_ino,
452                              (unsigned long) inode->i_ino);
453                 dput(dir);
454                 return -EPERM;
455         }
456         dput(dir);
457         /*
458          * Set up the jbd2_inode if we are opening the inode for
459          * writing and the journal is present
460          */
461         if (filp->f_mode & FMODE_WRITE) {
462                 ret = ext4_inode_attach_jinode(inode);
463                 if (ret < 0)
464                         return ret;
465         }
466         return dquot_file_open(inode, filp);
467 }
468
469 /*
470  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
471  * file rather than ext4_ext_walk_space() because we can introduce
472  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
473  * function.  When extent status tree has been fully implemented, it will
474  * track all extent status for a file and we can directly use it to
475  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
476  */
477
478 /*
479  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
480  * lookup page cache to check whether or not there has some data between
481  * [startoff, endoff] because, if this range contains an unwritten extent,
482  * we determine this extent as a data or a hole according to whether the
483  * page cache has data or not.
484  */
485 static int ext4_find_unwritten_pgoff(struct inode *inode,
486                                      int whence,
487                                      ext4_lblk_t end_blk,
488                                      loff_t *offset)
489 {
490         struct pagevec pvec;
491         unsigned int blkbits;
492         pgoff_t index;
493         pgoff_t end;
494         loff_t endoff;
495         loff_t startoff;
496         loff_t lastoff;
497         int found = 0;
498
499         blkbits = inode->i_sb->s_blocksize_bits;
500         startoff = *offset;
501         lastoff = startoff;
502         endoff = (loff_t)end_blk << blkbits;
503
504         index = startoff >> PAGE_SHIFT;
505         end = endoff >> PAGE_SHIFT;
506
507         pagevec_init(&pvec, 0);
508         do {
509                 int i, num;
510                 unsigned long nr_pages;
511
512                 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
513                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
514                                           (pgoff_t)num);
515                 if (nr_pages == 0) {
516                         if (whence == SEEK_DATA)
517                                 break;
518
519                         BUG_ON(whence != SEEK_HOLE);
520                         /*
521                          * If this is the first time to go into the loop and
522                          * offset is not beyond the end offset, it will be a
523                          * hole at this offset
524                          */
525                         if (lastoff == startoff || lastoff < endoff)
526                                 found = 1;
527                         break;
528                 }
529
530                 /*
531                  * If this is the first time to go into the loop and
532                  * offset is smaller than the first page offset, it will be a
533                  * hole at this offset.
534                  */
535                 if (lastoff == startoff && whence == SEEK_HOLE &&
536                     lastoff < page_offset(pvec.pages[0])) {
537                         found = 1;
538                         break;
539                 }
540
541                 for (i = 0; i < nr_pages; i++) {
542                         struct page *page = pvec.pages[i];
543                         struct buffer_head *bh, *head;
544
545                         /*
546                          * If the current offset is not beyond the end of given
547                          * range, it will be a hole.
548                          */
549                         if (lastoff < endoff && whence == SEEK_HOLE &&
550                             page->index > end) {
551                                 found = 1;
552                                 *offset = lastoff;
553                                 goto out;
554                         }
555
556                         lock_page(page);
557
558                         if (unlikely(page->mapping != inode->i_mapping)) {
559                                 unlock_page(page);
560                                 continue;
561                         }
562
563                         if (!page_has_buffers(page)) {
564                                 unlock_page(page);
565                                 continue;
566                         }
567
568                         if (page_has_buffers(page)) {
569                                 lastoff = page_offset(page);
570                                 bh = head = page_buffers(page);
571                                 do {
572                                         if (buffer_uptodate(bh) ||
573                                             buffer_unwritten(bh)) {
574                                                 if (whence == SEEK_DATA)
575                                                         found = 1;
576                                         } else {
577                                                 if (whence == SEEK_HOLE)
578                                                         found = 1;
579                                         }
580                                         if (found) {
581                                                 *offset = max_t(loff_t,
582                                                         startoff, lastoff);
583                                                 unlock_page(page);
584                                                 goto out;
585                                         }
586                                         lastoff += bh->b_size;
587                                         bh = bh->b_this_page;
588                                 } while (bh != head);
589                         }
590
591                         lastoff = page_offset(page) + PAGE_SIZE;
592                         unlock_page(page);
593                 }
594
595                 /*
596                  * The no. of pages is less than our desired, that would be a
597                  * hole in there.
598                  */
599                 if (nr_pages < num && whence == SEEK_HOLE) {
600                         found = 1;
601                         *offset = lastoff;
602                         break;
603                 }
604
605                 index = pvec.pages[i - 1]->index + 1;
606                 pagevec_release(&pvec);
607         } while (index <= end);
608
609 out:
610         pagevec_release(&pvec);
611         return found;
612 }
613
614 /*
615  * ext4_seek_data() retrieves the offset for SEEK_DATA.
616  */
617 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
618 {
619         struct inode *inode = file->f_mapping->host;
620         struct extent_status es;
621         ext4_lblk_t start, last, end;
622         loff_t dataoff, isize;
623         int blkbits;
624         int ret;
625
626         inode_lock(inode);
627
628         isize = i_size_read(inode);
629         if (offset >= isize) {
630                 inode_unlock(inode);
631                 return -ENXIO;
632         }
633
634         blkbits = inode->i_sb->s_blocksize_bits;
635         start = offset >> blkbits;
636         last = start;
637         end = isize >> blkbits;
638         dataoff = offset;
639
640         do {
641                 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
642                 if (ret <= 0) {
643                         /* No extent found -> no data */
644                         if (ret == 0)
645                                 ret = -ENXIO;
646                         inode_unlock(inode);
647                         return ret;
648                 }
649
650                 last = es.es_lblk;
651                 if (last != start)
652                         dataoff = (loff_t)last << blkbits;
653                 if (!ext4_es_is_unwritten(&es))
654                         break;
655
656                 /*
657                  * If there is a unwritten extent at this offset,
658                  * it will be as a data or a hole according to page
659                  * cache that has data or not.
660                  */
661                 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
662                                               es.es_lblk + es.es_len, &dataoff))
663                         break;
664                 last += es.es_len;
665                 dataoff = (loff_t)last << blkbits;
666                 cond_resched();
667         } while (last <= end);
668
669         inode_unlock(inode);
670
671         if (dataoff > isize)
672                 return -ENXIO;
673
674         return vfs_setpos(file, dataoff, maxsize);
675 }
676
677 /*
678  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
679  */
680 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
681 {
682         struct inode *inode = file->f_mapping->host;
683         struct extent_status es;
684         ext4_lblk_t start, last, end;
685         loff_t holeoff, isize;
686         int blkbits;
687         int ret;
688
689         inode_lock(inode);
690
691         isize = i_size_read(inode);
692         if (offset >= isize) {
693                 inode_unlock(inode);
694                 return -ENXIO;
695         }
696
697         blkbits = inode->i_sb->s_blocksize_bits;
698         start = offset >> blkbits;
699         last = start;
700         end = isize >> blkbits;
701         holeoff = offset;
702
703         do {
704                 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
705                 if (ret < 0) {
706                         inode_unlock(inode);
707                         return ret;
708                 }
709                 /* Found a hole? */
710                 if (ret == 0 || es.es_lblk > last) {
711                         if (last != start)
712                                 holeoff = (loff_t)last << blkbits;
713                         break;
714                 }
715                 /*
716                  * If there is a unwritten extent at this offset,
717                  * it will be as a data or a hole according to page
718                  * cache that has data or not.
719                  */
720                 if (ext4_es_is_unwritten(&es) &&
721                     ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
722                                               last + es.es_len, &holeoff))
723                         break;
724
725                 last += es.es_len;
726                 holeoff = (loff_t)last << blkbits;
727                 cond_resched();
728         } while (last <= end);
729
730         inode_unlock(inode);
731
732         if (holeoff > isize)
733                 holeoff = isize;
734
735         return vfs_setpos(file, holeoff, maxsize);
736 }
737
738 /*
739  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
740  * by calling generic_file_llseek_size() with the appropriate maxbytes
741  * value for each.
742  */
743 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
744 {
745         struct inode *inode = file->f_mapping->host;
746         loff_t maxbytes;
747
748         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
749                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
750         else
751                 maxbytes = inode->i_sb->s_maxbytes;
752
753         switch (whence) {
754         case SEEK_SET:
755         case SEEK_CUR:
756         case SEEK_END:
757                 return generic_file_llseek_size(file, offset, whence,
758                                                 maxbytes, i_size_read(inode));
759         case SEEK_DATA:
760                 return ext4_seek_data(file, offset, maxbytes);
761         case SEEK_HOLE:
762                 return ext4_seek_hole(file, offset, maxbytes);
763         }
764
765         return -EINVAL;
766 }
767
768 const struct file_operations ext4_file_operations = {
769         .llseek         = ext4_llseek,
770         .read_iter      = ext4_file_read_iter,
771         .write_iter     = ext4_file_write_iter,
772         .unlocked_ioctl = ext4_ioctl,
773 #ifdef CONFIG_COMPAT
774         .compat_ioctl   = ext4_compat_ioctl,
775 #endif
776         .mmap           = ext4_file_mmap,
777         .open           = ext4_file_open,
778         .release        = ext4_release_file,
779         .fsync          = ext4_sync_file,
780         .get_unmapped_area = thp_get_unmapped_area,
781         .splice_read    = generic_file_splice_read,
782         .splice_write   = iter_file_splice_write,
783         .fallocate      = ext4_fallocate,
784 };
785
786 const struct inode_operations ext4_file_inode_operations = {
787         .setattr        = ext4_setattr,
788         .getattr        = ext4_getattr,
789         .listxattr      = ext4_listxattr,
790         .get_acl        = ext4_get_acl,
791         .set_acl        = ext4_set_acl,
792         .fiemap         = ext4_fiemap,
793 };
794