]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/indirect.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25
26 #include <trace/events/ext4.h>
27
28 typedef struct {
29         __le32  *p;
30         __le32  key;
31         struct buffer_head *bh;
32 } Indirect;
33
34 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
35 {
36         p->key = *(p->p = v);
37         p->bh = bh;
38 }
39
40 /**
41  *      ext4_block_to_path - parse the block number into array of offsets
42  *      @inode: inode in question (we are only interested in its superblock)
43  *      @i_block: block number to be parsed
44  *      @offsets: array to store the offsets in
45  *      @boundary: set this non-zero if the referred-to block is likely to be
46  *             followed (on disk) by an indirect block.
47  *
48  *      To store the locations of file's data ext4 uses a data structure common
49  *      for UNIX filesystems - tree of pointers anchored in the inode, with
50  *      data blocks at leaves and indirect blocks in intermediate nodes.
51  *      This function translates the block number into path in that tree -
52  *      return value is the path length and @offsets[n] is the offset of
53  *      pointer to (n+1)th node in the nth one. If @block is out of range
54  *      (negative or too large) warning is printed and zero returned.
55  *
56  *      Note: function doesn't find node addresses, so no IO is needed. All
57  *      we need to know is the capacity of indirect blocks (taken from the
58  *      inode->i_sb).
59  */
60
61 /*
62  * Portability note: the last comparison (check that we fit into triple
63  * indirect block) is spelled differently, because otherwise on an
64  * architecture with 32-bit longs and 8Kb pages we might get into trouble
65  * if our filesystem had 8Kb blocks. We might use long long, but that would
66  * kill us on x86. Oh, well, at least the sign propagation does not matter -
67  * i_block would have to be negative in the very beginning, so we would not
68  * get there at all.
69  */
70
71 static int ext4_block_to_path(struct inode *inode,
72                               ext4_lblk_t i_block,
73                               ext4_lblk_t offsets[4], int *boundary)
74 {
75         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
76         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
77         const long direct_blocks = EXT4_NDIR_BLOCKS,
78                 indirect_blocks = ptrs,
79                 double_blocks = (1 << (ptrs_bits * 2));
80         int n = 0;
81         int final = 0;
82
83         if (i_block < direct_blocks) {
84                 offsets[n++] = i_block;
85                 final = direct_blocks;
86         } else if ((i_block -= direct_blocks) < indirect_blocks) {
87                 offsets[n++] = EXT4_IND_BLOCK;
88                 offsets[n++] = i_block;
89                 final = ptrs;
90         } else if ((i_block -= indirect_blocks) < double_blocks) {
91                 offsets[n++] = EXT4_DIND_BLOCK;
92                 offsets[n++] = i_block >> ptrs_bits;
93                 offsets[n++] = i_block & (ptrs - 1);
94                 final = ptrs;
95         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
96                 offsets[n++] = EXT4_TIND_BLOCK;
97                 offsets[n++] = i_block >> (ptrs_bits * 2);
98                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
99                 offsets[n++] = i_block & (ptrs - 1);
100                 final = ptrs;
101         } else {
102                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
103                              i_block + direct_blocks +
104                              indirect_blocks + double_blocks, inode->i_ino);
105         }
106         if (boundary)
107                 *boundary = final - 1 - (i_block & (ptrs - 1));
108         return n;
109 }
110
111 /**
112  *      ext4_get_branch - read the chain of indirect blocks leading to data
113  *      @inode: inode in question
114  *      @depth: depth of the chain (1 - direct pointer, etc.)
115  *      @offsets: offsets of pointers in inode/indirect blocks
116  *      @chain: place to store the result
117  *      @err: here we store the error value
118  *
119  *      Function fills the array of triples <key, p, bh> and returns %NULL
120  *      if everything went OK or the pointer to the last filled triple
121  *      (incomplete one) otherwise. Upon the return chain[i].key contains
122  *      the number of (i+1)-th block in the chain (as it is stored in memory,
123  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
124  *      number (it points into struct inode for i==0 and into the bh->b_data
125  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
126  *      block for i>0 and NULL for i==0. In other words, it holds the block
127  *      numbers of the chain, addresses they were taken from (and where we can
128  *      verify that chain did not change) and buffer_heads hosting these
129  *      numbers.
130  *
131  *      Function stops when it stumbles upon zero pointer (absent block)
132  *              (pointer to last triple returned, *@err == 0)
133  *      or when it gets an IO error reading an indirect block
134  *              (ditto, *@err == -EIO)
135  *      or when it reads all @depth-1 indirect blocks successfully and finds
136  *      the whole chain, all way to the data (returns %NULL, *err == 0).
137  *
138  *      Need to be called with
139  *      down_read(&EXT4_I(inode)->i_data_sem)
140  */
141 static Indirect *ext4_get_branch(struct inode *inode, int depth,
142                                  ext4_lblk_t  *offsets,
143                                  Indirect chain[4], int *err)
144 {
145         struct super_block *sb = inode->i_sb;
146         Indirect *p = chain;
147         struct buffer_head *bh;
148
149         *err = 0;
150         /* i_data is not going away, no lock needed */
151         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
152         if (!p->key)
153                 goto no_block;
154         while (--depth) {
155                 bh = sb_getblk(sb, le32_to_cpu(p->key));
156                 if (unlikely(!bh))
157                         goto failure;
158
159                 if (!bh_uptodate_or_lock(bh)) {
160                         if (bh_submit_read(bh) < 0) {
161                                 put_bh(bh);
162                                 goto failure;
163                         }
164                         /* validate block references */
165                         if (ext4_check_indirect_blockref(inode, bh)) {
166                                 put_bh(bh);
167                                 goto failure;
168                         }
169                 }
170
171                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
172                 /* Reader: end */
173                 if (!p->key)
174                         goto no_block;
175         }
176         return NULL;
177
178 failure:
179         *err = -EIO;
180 no_block:
181         return p;
182 }
183
184 /**
185  *      ext4_find_near - find a place for allocation with sufficient locality
186  *      @inode: owner
187  *      @ind: descriptor of indirect block.
188  *
189  *      This function returns the preferred place for block allocation.
190  *      It is used when heuristic for sequential allocation fails.
191  *      Rules are:
192  *        + if there is a block to the left of our position - allocate near it.
193  *        + if pointer will live in indirect block - allocate near that block.
194  *        + if pointer will live in inode - allocate in the same
195  *          cylinder group.
196  *
197  * In the latter case we colour the starting block by the callers PID to
198  * prevent it from clashing with concurrent allocations for a different inode
199  * in the same block group.   The PID is used here so that functionally related
200  * files will be close-by on-disk.
201  *
202  *      Caller must make sure that @ind is valid and will stay that way.
203  */
204 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
205 {
206         struct ext4_inode_info *ei = EXT4_I(inode);
207         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
208         __le32 *p;
209
210         /* Try to find previous block */
211         for (p = ind->p - 1; p >= start; p--) {
212                 if (*p)
213                         return le32_to_cpu(*p);
214         }
215
216         /* No such thing, so let's try location of indirect block */
217         if (ind->bh)
218                 return ind->bh->b_blocknr;
219
220         /*
221          * It is going to be referred to from the inode itself? OK, just put it
222          * into the same cylinder group then.
223          */
224         return ext4_inode_to_goal_block(inode);
225 }
226
227 /**
228  *      ext4_find_goal - find a preferred place for allocation.
229  *      @inode: owner
230  *      @block:  block we want
231  *      @partial: pointer to the last triple within a chain
232  *
233  *      Normally this function find the preferred place for block allocation,
234  *      returns it.
235  *      Because this is only used for non-extent files, we limit the block nr
236  *      to 32 bits.
237  */
238 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
239                                    Indirect *partial)
240 {
241         ext4_fsblk_t goal;
242
243         /*
244          * XXX need to get goal block from mballoc's data structures
245          */
246
247         goal = ext4_find_near(inode, partial);
248         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
249         return goal;
250 }
251
252 /**
253  *      ext4_blks_to_allocate - Look up the block map and count the number
254  *      of direct blocks need to be allocated for the given branch.
255  *
256  *      @branch: chain of indirect blocks
257  *      @k: number of blocks need for indirect blocks
258  *      @blks: number of data blocks to be mapped.
259  *      @blocks_to_boundary:  the offset in the indirect block
260  *
261  *      return the total number of blocks to be allocate, including the
262  *      direct and indirect blocks.
263  */
264 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
265                                  int blocks_to_boundary)
266 {
267         unsigned int count = 0;
268
269         /*
270          * Simple case, [t,d]Indirect block(s) has not allocated yet
271          * then it's clear blocks on that path have not allocated
272          */
273         if (k > 0) {
274                 /* right now we don't handle cross boundary allocation */
275                 if (blks < blocks_to_boundary + 1)
276                         count += blks;
277                 else
278                         count += blocks_to_boundary + 1;
279                 return count;
280         }
281
282         count++;
283         while (count < blks && count <= blocks_to_boundary &&
284                 le32_to_cpu(*(branch[0].p + count)) == 0) {
285                 count++;
286         }
287         return count;
288 }
289
290 /**
291  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
292  *      @handle: handle for this transaction
293  *      @inode: inode which needs allocated blocks
294  *      @iblock: the logical block to start allocated at
295  *      @goal: preferred physical block of allocation
296  *      @indirect_blks: the number of blocks need to allocate for indirect
297  *                      blocks
298  *      @blks: number of desired blocks
299  *      @new_blocks: on return it will store the new block numbers for
300  *      the indirect blocks(if needed) and the first direct block,
301  *      @err: on return it will store the error code
302  *
303  *      This function will return the number of blocks allocated as
304  *      requested by the passed-in parameters.
305  */
306 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
307                              ext4_lblk_t iblock, ext4_fsblk_t goal,
308                              int indirect_blks, int blks,
309                              ext4_fsblk_t new_blocks[4], int *err)
310 {
311         struct ext4_allocation_request ar;
312         int target, i;
313         unsigned long count = 0, blk_allocated = 0;
314         int index = 0;
315         ext4_fsblk_t current_block = 0;
316         int ret = 0;
317
318         /*
319          * Here we try to allocate the requested multiple blocks at once,
320          * on a best-effort basis.
321          * To build a branch, we should allocate blocks for
322          * the indirect blocks(if not allocated yet), and at least
323          * the first direct block of this branch.  That's the
324          * minimum number of blocks need to allocate(required)
325          */
326         /* first we try to allocate the indirect blocks */
327         target = indirect_blks;
328         while (target > 0) {
329                 count = target;
330                 /* allocating blocks for indirect blocks and direct blocks */
331                 current_block = ext4_new_meta_blocks(handle, inode, goal,
332                                                      0, &count, err);
333                 if (*err)
334                         goto failed_out;
335
336                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
337                         EXT4_ERROR_INODE(inode,
338                                          "current_block %llu + count %lu > %d!",
339                                          current_block, count,
340                                          EXT4_MAX_BLOCK_FILE_PHYS);
341                         *err = -EIO;
342                         goto failed_out;
343                 }
344
345                 target -= count;
346                 /* allocate blocks for indirect blocks */
347                 while (index < indirect_blks && count) {
348                         new_blocks[index++] = current_block++;
349                         count--;
350                 }
351                 if (count > 0) {
352                         /*
353                          * save the new block number
354                          * for the first direct block
355                          */
356                         new_blocks[index] = current_block;
357                         printk(KERN_INFO "%s returned more blocks than "
358                                                 "requested\n", __func__);
359                         WARN_ON(1);
360                         break;
361                 }
362         }
363
364         target = blks - count ;
365         blk_allocated = count;
366         if (!target)
367                 goto allocated;
368         /* Now allocate data blocks */
369         memset(&ar, 0, sizeof(ar));
370         ar.inode = inode;
371         ar.goal = goal;
372         ar.len = target;
373         ar.logical = iblock;
374         if (S_ISREG(inode->i_mode))
375                 /* enable in-core preallocation only for regular files */
376                 ar.flags = EXT4_MB_HINT_DATA;
377
378         current_block = ext4_mb_new_blocks(handle, &ar, err);
379         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
380                 EXT4_ERROR_INODE(inode,
381                                  "current_block %llu + ar.len %d > %d!",
382                                  current_block, ar.len,
383                                  EXT4_MAX_BLOCK_FILE_PHYS);
384                 *err = -EIO;
385                 goto failed_out;
386         }
387
388         if (*err && (target == blks)) {
389                 /*
390                  * if the allocation failed and we didn't allocate
391                  * any blocks before
392                  */
393                 goto failed_out;
394         }
395         if (!*err) {
396                 if (target == blks) {
397                         /*
398                          * save the new block number
399                          * for the first direct block
400                          */
401                         new_blocks[index] = current_block;
402                 }
403                 blk_allocated += ar.len;
404         }
405 allocated:
406         /* total number of blocks allocated for direct blocks */
407         ret = blk_allocated;
408         *err = 0;
409         return ret;
410 failed_out:
411         for (i = 0; i < index; i++)
412                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
413         return ret;
414 }
415
416 /**
417  *      ext4_alloc_branch - allocate and set up a chain of blocks.
418  *      @handle: handle for this transaction
419  *      @inode: owner
420  *      @indirect_blks: number of allocated indirect blocks
421  *      @blks: number of allocated direct blocks
422  *      @goal: preferred place for allocation
423  *      @offsets: offsets (in the blocks) to store the pointers to next.
424  *      @branch: place to store the chain in.
425  *
426  *      This function allocates blocks, zeroes out all but the last one,
427  *      links them into chain and (if we are synchronous) writes them to disk.
428  *      In other words, it prepares a branch that can be spliced onto the
429  *      inode. It stores the information about that chain in the branch[], in
430  *      the same format as ext4_get_branch() would do. We are calling it after
431  *      we had read the existing part of chain and partial points to the last
432  *      triple of that (one with zero ->key). Upon the exit we have the same
433  *      picture as after the successful ext4_get_block(), except that in one
434  *      place chain is disconnected - *branch->p is still zero (we did not
435  *      set the last link), but branch->key contains the number that should
436  *      be placed into *branch->p to fill that gap.
437  *
438  *      If allocation fails we free all blocks we've allocated (and forget
439  *      their buffer_heads) and return the error value the from failed
440  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
441  *      as described above and return 0.
442  */
443 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
444                              ext4_lblk_t iblock, int indirect_blks,
445                              int *blks, ext4_fsblk_t goal,
446                              ext4_lblk_t *offsets, Indirect *branch)
447 {
448         int blocksize = inode->i_sb->s_blocksize;
449         int i, n = 0;
450         int err = 0;
451         struct buffer_head *bh;
452         int num;
453         ext4_fsblk_t new_blocks[4];
454         ext4_fsblk_t current_block;
455
456         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
457                                 *blks, new_blocks, &err);
458         if (err)
459                 return err;
460
461         branch[0].key = cpu_to_le32(new_blocks[0]);
462         /*
463          * metadata blocks and data blocks are allocated.
464          */
465         for (n = 1; n <= indirect_blks;  n++) {
466                 /*
467                  * Get buffer_head for parent block, zero it out
468                  * and set the pointer to new one, then send
469                  * parent to disk.
470                  */
471                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
472                 if (unlikely(!bh)) {
473                         err = -EIO;
474                         goto failed;
475                 }
476
477                 branch[n].bh = bh;
478                 lock_buffer(bh);
479                 BUFFER_TRACE(bh, "call get_create_access");
480                 err = ext4_journal_get_create_access(handle, bh);
481                 if (err) {
482                         /* Don't brelse(bh) here; it's done in
483                          * ext4_journal_forget() below */
484                         unlock_buffer(bh);
485                         goto failed;
486                 }
487
488                 memset(bh->b_data, 0, blocksize);
489                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
490                 branch[n].key = cpu_to_le32(new_blocks[n]);
491                 *branch[n].p = branch[n].key;
492                 if (n == indirect_blks) {
493                         current_block = new_blocks[n];
494                         /*
495                          * End of chain, update the last new metablock of
496                          * the chain to point to the new allocated
497                          * data blocks numbers
498                          */
499                         for (i = 1; i < num; i++)
500                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
501                 }
502                 BUFFER_TRACE(bh, "marking uptodate");
503                 set_buffer_uptodate(bh);
504                 unlock_buffer(bh);
505
506                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
507                 err = ext4_handle_dirty_metadata(handle, inode, bh);
508                 if (err)
509                         goto failed;
510         }
511         *blks = num;
512         return err;
513 failed:
514         /* Allocation failed, free what we already allocated */
515         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
516         for (i = 1; i <= n ; i++) {
517                 /*
518                  * branch[i].bh is newly allocated, so there is no
519                  * need to revoke the block, which is why we don't
520                  * need to set EXT4_FREE_BLOCKS_METADATA.
521                  */
522                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
523                                  EXT4_FREE_BLOCKS_FORGET);
524         }
525         for (i = n+1; i < indirect_blks; i++)
526                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
527
528         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
529
530         return err;
531 }
532
533 /**
534  * ext4_splice_branch - splice the allocated branch onto inode.
535  * @handle: handle for this transaction
536  * @inode: owner
537  * @block: (logical) number of block we are adding
538  * @chain: chain of indirect blocks (with a missing link - see
539  *      ext4_alloc_branch)
540  * @where: location of missing link
541  * @num:   number of indirect blocks we are adding
542  * @blks:  number of direct blocks we are adding
543  *
544  * This function fills the missing link and does all housekeeping needed in
545  * inode (->i_blocks, etc.). In case of success we end up with the full
546  * chain to new block and return 0.
547  */
548 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
549                               ext4_lblk_t block, Indirect *where, int num,
550                               int blks)
551 {
552         int i;
553         int err = 0;
554         ext4_fsblk_t current_block;
555
556         /*
557          * If we're splicing into a [td]indirect block (as opposed to the
558          * inode) then we need to get write access to the [td]indirect block
559          * before the splice.
560          */
561         if (where->bh) {
562                 BUFFER_TRACE(where->bh, "get_write_access");
563                 err = ext4_journal_get_write_access(handle, where->bh);
564                 if (err)
565                         goto err_out;
566         }
567         /* That's it */
568
569         *where->p = where->key;
570
571         /*
572          * Update the host buffer_head or inode to point to more just allocated
573          * direct blocks blocks
574          */
575         if (num == 0 && blks > 1) {
576                 current_block = le32_to_cpu(where->key) + 1;
577                 for (i = 1; i < blks; i++)
578                         *(where->p + i) = cpu_to_le32(current_block++);
579         }
580
581         /* We are done with atomic stuff, now do the rest of housekeeping */
582         /* had we spliced it onto indirect block? */
583         if (where->bh) {
584                 /*
585                  * If we spliced it onto an indirect block, we haven't
586                  * altered the inode.  Note however that if it is being spliced
587                  * onto an indirect block at the very end of the file (the
588                  * file is growing) then we *will* alter the inode to reflect
589                  * the new i_size.  But that is not done here - it is done in
590                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
591                  */
592                 jbd_debug(5, "splicing indirect only\n");
593                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
594                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
595                 if (err)
596                         goto err_out;
597         } else {
598                 /*
599                  * OK, we spliced it into the inode itself on a direct block.
600                  */
601                 ext4_mark_inode_dirty(handle, inode);
602                 jbd_debug(5, "splicing direct\n");
603         }
604         return err;
605
606 err_out:
607         for (i = 1; i <= num; i++) {
608                 /*
609                  * branch[i].bh is newly allocated, so there is no
610                  * need to revoke the block, which is why we don't
611                  * need to set EXT4_FREE_BLOCKS_METADATA.
612                  */
613                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
614                                  EXT4_FREE_BLOCKS_FORGET);
615         }
616         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
617                          blks, 0);
618
619         return err;
620 }
621
622 /*
623  * The ext4_ind_map_blocks() function handles non-extents inodes
624  * (i.e., using the traditional indirect/double-indirect i_blocks
625  * scheme) for ext4_map_blocks().
626  *
627  * Allocation strategy is simple: if we have to allocate something, we will
628  * have to go the whole way to leaf. So let's do it before attaching anything
629  * to tree, set linkage between the newborn blocks, write them if sync is
630  * required, recheck the path, free and repeat if check fails, otherwise
631  * set the last missing link (that will protect us from any truncate-generated
632  * removals - all blocks on the path are immune now) and possibly force the
633  * write on the parent block.
634  * That has a nice additional property: no special recovery from the failed
635  * allocations is needed - we simply release blocks and do not touch anything
636  * reachable from inode.
637  *
638  * `handle' can be NULL if create == 0.
639  *
640  * return > 0, # of blocks mapped or allocated.
641  * return = 0, if plain lookup failed.
642  * return < 0, error case.
643  *
644  * The ext4_ind_get_blocks() function should be called with
645  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
646  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
647  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
648  * blocks.
649  */
650 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
651                         struct ext4_map_blocks *map,
652                         int flags)
653 {
654         int err = -EIO;
655         ext4_lblk_t offsets[4];
656         Indirect chain[4];
657         Indirect *partial;
658         ext4_fsblk_t goal;
659         int indirect_blks;
660         int blocks_to_boundary = 0;
661         int depth;
662         int count = 0;
663         ext4_fsblk_t first_block = 0;
664
665         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
666         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
667         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
668         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
669                                    &blocks_to_boundary);
670
671         if (depth == 0)
672                 goto out;
673
674         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
675
676         /* Simplest case - block found, no allocation needed */
677         if (!partial) {
678                 first_block = le32_to_cpu(chain[depth - 1].key);
679                 count++;
680                 /*map more blocks*/
681                 while (count < map->m_len && count <= blocks_to_boundary) {
682                         ext4_fsblk_t blk;
683
684                         blk = le32_to_cpu(*(chain[depth-1].p + count));
685
686                         if (blk == first_block + count)
687                                 count++;
688                         else
689                                 break;
690                 }
691                 goto got_it;
692         }
693
694         /* Next simple case - plain lookup or failed read of indirect block */
695         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
696                 goto cleanup;
697
698         /*
699          * Okay, we need to do block allocation.
700         */
701         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
702                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
703                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
704                                  "non-extent mapped inodes with bigalloc");
705                 return -ENOSPC;
706         }
707
708         goal = ext4_find_goal(inode, map->m_lblk, partial);
709
710         /* the number of blocks need to allocate for [d,t]indirect blocks */
711         indirect_blks = (chain + depth) - partial - 1;
712
713         /*
714          * Next look up the indirect map to count the totoal number of
715          * direct blocks to allocate for this branch.
716          */
717         count = ext4_blks_to_allocate(partial, indirect_blks,
718                                       map->m_len, blocks_to_boundary);
719         /*
720          * Block out ext4_truncate while we alter the tree
721          */
722         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
723                                 &count, goal,
724                                 offsets + (partial - chain), partial);
725
726         /*
727          * The ext4_splice_branch call will free and forget any buffers
728          * on the new chain if there is a failure, but that risks using
729          * up transaction credits, especially for bitmaps where the
730          * credits cannot be returned.  Can we handle this somehow?  We
731          * may need to return -EAGAIN upwards in the worst case.  --sct
732          */
733         if (!err)
734                 err = ext4_splice_branch(handle, inode, map->m_lblk,
735                                          partial, indirect_blks, count);
736         if (err)
737                 goto cleanup;
738
739         map->m_flags |= EXT4_MAP_NEW;
740
741         ext4_update_inode_fsync_trans(handle, inode, 1);
742 got_it:
743         map->m_flags |= EXT4_MAP_MAPPED;
744         map->m_pblk = le32_to_cpu(chain[depth-1].key);
745         map->m_len = count;
746         if (count > blocks_to_boundary)
747                 map->m_flags |= EXT4_MAP_BOUNDARY;
748         err = count;
749         /* Clean up and exit */
750         partial = chain + depth - 1;    /* the whole chain */
751 cleanup:
752         while (partial > chain) {
753                 BUFFER_TRACE(partial->bh, "call brelse");
754                 brelse(partial->bh);
755                 partial--;
756         }
757 out:
758         trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
759                                 map->m_pblk, map->m_len, err);
760         return err;
761 }
762
763 /*
764  * O_DIRECT for ext3 (or indirect map) based files
765  *
766  * If the O_DIRECT write will extend the file then add this inode to the
767  * orphan list.  So recovery will truncate it back to the original size
768  * if the machine crashes during the write.
769  *
770  * If the O_DIRECT write is intantiating holes inside i_size and the machine
771  * crashes then stale disk data _may_ be exposed inside the file. But current
772  * VFS code falls back into buffered path in that case so we are safe.
773  */
774 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
775                            const struct iovec *iov, loff_t offset,
776                            unsigned long nr_segs)
777 {
778         struct file *file = iocb->ki_filp;
779         struct inode *inode = file->f_mapping->host;
780         struct ext4_inode_info *ei = EXT4_I(inode);
781         handle_t *handle;
782         ssize_t ret;
783         int orphan = 0;
784         size_t count = iov_length(iov, nr_segs);
785         int retries = 0;
786
787         if (rw == WRITE) {
788                 loff_t final_size = offset + count;
789
790                 if (final_size > inode->i_size) {
791                         /* Credits for sb + inode write */
792                         handle = ext4_journal_start(inode, 2);
793                         if (IS_ERR(handle)) {
794                                 ret = PTR_ERR(handle);
795                                 goto out;
796                         }
797                         ret = ext4_orphan_add(handle, inode);
798                         if (ret) {
799                                 ext4_journal_stop(handle);
800                                 goto out;
801                         }
802                         orphan = 1;
803                         ei->i_disksize = inode->i_size;
804                         ext4_journal_stop(handle);
805                 }
806         }
807
808 retry:
809         if (rw == READ && ext4_should_dioread_nolock(inode)) {
810                 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
811                         mutex_lock(&inode->i_mutex);
812                         ext4_flush_unwritten_io(inode);
813                         mutex_unlock(&inode->i_mutex);
814                 }
815                 /*
816                  * Nolock dioread optimization may be dynamically disabled
817                  * via ext4_inode_block_unlocked_dio(). Check inode's state
818                  * while holding extra i_dio_count ref.
819                  */
820                 atomic_inc(&inode->i_dio_count);
821                 smp_mb();
822                 if (unlikely(ext4_test_inode_state(inode,
823                                                     EXT4_STATE_DIOREAD_LOCK))) {
824                         inode_dio_done(inode);
825                         goto locked;
826                 }
827                 ret = __blockdev_direct_IO(rw, iocb, inode,
828                                  inode->i_sb->s_bdev, iov,
829                                  offset, nr_segs,
830                                  ext4_get_block, NULL, NULL, 0);
831                 inode_dio_done(inode);
832         } else {
833 locked:
834                 ret = blockdev_direct_IO(rw, iocb, inode, iov,
835                                  offset, nr_segs, ext4_get_block);
836
837                 if (unlikely((rw & WRITE) && ret < 0)) {
838                         loff_t isize = i_size_read(inode);
839                         loff_t end = offset + iov_length(iov, nr_segs);
840
841                         if (end > isize)
842                                 ext4_truncate_failed_write(inode);
843                 }
844         }
845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846                 goto retry;
847
848         if (orphan) {
849                 int err;
850
851                 /* Credits for sb + inode write */
852                 handle = ext4_journal_start(inode, 2);
853                 if (IS_ERR(handle)) {
854                         /* This is really bad luck. We've written the data
855                          * but cannot extend i_size. Bail out and pretend
856                          * the write failed... */
857                         ret = PTR_ERR(handle);
858                         if (inode->i_nlink)
859                                 ext4_orphan_del(NULL, inode);
860
861                         goto out;
862                 }
863                 if (inode->i_nlink)
864                         ext4_orphan_del(handle, inode);
865                 if (ret > 0) {
866                         loff_t end = offset + ret;
867                         if (end > inode->i_size) {
868                                 ei->i_disksize = end;
869                                 i_size_write(inode, end);
870                                 /*
871                                  * We're going to return a positive `ret'
872                                  * here due to non-zero-length I/O, so there's
873                                  * no way of reporting error returns from
874                                  * ext4_mark_inode_dirty() to userspace.  So
875                                  * ignore it.
876                                  */
877                                 ext4_mark_inode_dirty(handle, inode);
878                         }
879                 }
880                 err = ext4_journal_stop(handle);
881                 if (ret == 0)
882                         ret = err;
883         }
884 out:
885         return ret;
886 }
887
888 /*
889  * Calculate the number of metadata blocks need to reserve
890  * to allocate a new block at @lblocks for non extent file based file
891  */
892 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
893 {
894         struct ext4_inode_info *ei = EXT4_I(inode);
895         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
896         int blk_bits;
897
898         if (lblock < EXT4_NDIR_BLOCKS)
899                 return 0;
900
901         lblock -= EXT4_NDIR_BLOCKS;
902
903         if (ei->i_da_metadata_calc_len &&
904             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
905                 ei->i_da_metadata_calc_len++;
906                 return 0;
907         }
908         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
909         ei->i_da_metadata_calc_len = 1;
910         blk_bits = order_base_2(lblock);
911         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
912 }
913
914 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
915 {
916         int indirects;
917
918         /* if nrblocks are contiguous */
919         if (chunk) {
920                 /*
921                  * With N contiguous data blocks, we need at most
922                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
923                  * 2 dindirect blocks, and 1 tindirect block
924                  */
925                 return DIV_ROUND_UP(nrblocks,
926                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
927         }
928         /*
929          * if nrblocks are not contiguous, worse case, each block touch
930          * a indirect block, and each indirect block touch a double indirect
931          * block, plus a triple indirect block
932          */
933         indirects = nrblocks * 2 + 1;
934         return indirects;
935 }
936
937 /*
938  * Truncate transactions can be complex and absolutely huge.  So we need to
939  * be able to restart the transaction at a conventient checkpoint to make
940  * sure we don't overflow the journal.
941  *
942  * start_transaction gets us a new handle for a truncate transaction,
943  * and extend_transaction tries to extend the existing one a bit.  If
944  * extend fails, we need to propagate the failure up and restart the
945  * transaction in the top-level truncate loop. --sct
946  */
947 static handle_t *start_transaction(struct inode *inode)
948 {
949         handle_t *result;
950
951         result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
952         if (!IS_ERR(result))
953                 return result;
954
955         ext4_std_error(inode->i_sb, PTR_ERR(result));
956         return result;
957 }
958
959 /*
960  * Try to extend this transaction for the purposes of truncation.
961  *
962  * Returns 0 if we managed to create more room.  If we can't create more
963  * room, and the transaction must be restarted we return 1.
964  */
965 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
966 {
967         if (!ext4_handle_valid(handle))
968                 return 0;
969         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
970                 return 0;
971         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
972                 return 0;
973         return 1;
974 }
975
976 /*
977  * Probably it should be a library function... search for first non-zero word
978  * or memcmp with zero_page, whatever is better for particular architecture.
979  * Linus?
980  */
981 static inline int all_zeroes(__le32 *p, __le32 *q)
982 {
983         while (p < q)
984                 if (*p++)
985                         return 0;
986         return 1;
987 }
988
989 /**
990  *      ext4_find_shared - find the indirect blocks for partial truncation.
991  *      @inode:   inode in question
992  *      @depth:   depth of the affected branch
993  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
994  *      @chain:   place to store the pointers to partial indirect blocks
995  *      @top:     place to the (detached) top of branch
996  *
997  *      This is a helper function used by ext4_truncate().
998  *
999  *      When we do truncate() we may have to clean the ends of several
1000  *      indirect blocks but leave the blocks themselves alive. Block is
1001  *      partially truncated if some data below the new i_size is referred
1002  *      from it (and it is on the path to the first completely truncated
1003  *      data block, indeed).  We have to free the top of that path along
1004  *      with everything to the right of the path. Since no allocation
1005  *      past the truncation point is possible until ext4_truncate()
1006  *      finishes, we may safely do the latter, but top of branch may
1007  *      require special attention - pageout below the truncation point
1008  *      might try to populate it.
1009  *
1010  *      We atomically detach the top of branch from the tree, store the
1011  *      block number of its root in *@top, pointers to buffer_heads of
1012  *      partially truncated blocks - in @chain[].bh and pointers to
1013  *      their last elements that should not be removed - in
1014  *      @chain[].p. Return value is the pointer to last filled element
1015  *      of @chain.
1016  *
1017  *      The work left to caller to do the actual freeing of subtrees:
1018  *              a) free the subtree starting from *@top
1019  *              b) free the subtrees whose roots are stored in
1020  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1021  *              c) free the subtrees growing from the inode past the @chain[0].
1022  *                      (no partially truncated stuff there).  */
1023
1024 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1025                                   ext4_lblk_t offsets[4], Indirect chain[4],
1026                                   __le32 *top)
1027 {
1028         Indirect *partial, *p;
1029         int k, err;
1030
1031         *top = 0;
1032         /* Make k index the deepest non-null offset + 1 */
1033         for (k = depth; k > 1 && !offsets[k-1]; k--)
1034                 ;
1035         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1036         /* Writer: pointers */
1037         if (!partial)
1038                 partial = chain + k-1;
1039         /*
1040          * If the branch acquired continuation since we've looked at it -
1041          * fine, it should all survive and (new) top doesn't belong to us.
1042          */
1043         if (!partial->key && *partial->p)
1044                 /* Writer: end */
1045                 goto no_top;
1046         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1047                 ;
1048         /*
1049          * OK, we've found the last block that must survive. The rest of our
1050          * branch should be detached before unlocking. However, if that rest
1051          * of branch is all ours and does not grow immediately from the inode
1052          * it's easier to cheat and just decrement partial->p.
1053          */
1054         if (p == chain + k - 1 && p > chain) {
1055                 p->p--;
1056         } else {
1057                 *top = *p->p;
1058                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1059 #if 0
1060                 *p->p = 0;
1061 #endif
1062         }
1063         /* Writer: end */
1064
1065         while (partial > p) {
1066                 brelse(partial->bh);
1067                 partial--;
1068         }
1069 no_top:
1070         return partial;
1071 }
1072
1073 /*
1074  * Zero a number of block pointers in either an inode or an indirect block.
1075  * If we restart the transaction we must again get write access to the
1076  * indirect block for further modification.
1077  *
1078  * We release `count' blocks on disk, but (last - first) may be greater
1079  * than `count' because there can be holes in there.
1080  *
1081  * Return 0 on success, 1 on invalid block range
1082  * and < 0 on fatal error.
1083  */
1084 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1085                              struct buffer_head *bh,
1086                              ext4_fsblk_t block_to_free,
1087                              unsigned long count, __le32 *first,
1088                              __le32 *last)
1089 {
1090         __le32 *p;
1091         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1092         int     err;
1093
1094         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1095                 flags |= EXT4_FREE_BLOCKS_METADATA;
1096
1097         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1098                                    count)) {
1099                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1100                                  "blocks %llu len %lu",
1101                                  (unsigned long long) block_to_free, count);
1102                 return 1;
1103         }
1104
1105         if (try_to_extend_transaction(handle, inode)) {
1106                 if (bh) {
1107                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1108                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1109                         if (unlikely(err))
1110                                 goto out_err;
1111                 }
1112                 err = ext4_mark_inode_dirty(handle, inode);
1113                 if (unlikely(err))
1114                         goto out_err;
1115                 err = ext4_truncate_restart_trans(handle, inode,
1116                                         ext4_blocks_for_truncate(inode));
1117                 if (unlikely(err))
1118                         goto out_err;
1119                 if (bh) {
1120                         BUFFER_TRACE(bh, "retaking write access");
1121                         err = ext4_journal_get_write_access(handle, bh);
1122                         if (unlikely(err))
1123                                 goto out_err;
1124                 }
1125         }
1126
1127         for (p = first; p < last; p++)
1128                 *p = 0;
1129
1130         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1131         return 0;
1132 out_err:
1133         ext4_std_error(inode->i_sb, err);
1134         return err;
1135 }
1136
1137 /**
1138  * ext4_free_data - free a list of data blocks
1139  * @handle:     handle for this transaction
1140  * @inode:      inode we are dealing with
1141  * @this_bh:    indirect buffer_head which contains *@first and *@last
1142  * @first:      array of block numbers
1143  * @last:       points immediately past the end of array
1144  *
1145  * We are freeing all blocks referred from that array (numbers are stored as
1146  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1147  *
1148  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1149  * blocks are contiguous then releasing them at one time will only affect one
1150  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1151  * actually use a lot of journal space.
1152  *
1153  * @this_bh will be %NULL if @first and @last point into the inode's direct
1154  * block pointers.
1155  */
1156 static void ext4_free_data(handle_t *handle, struct inode *inode,
1157                            struct buffer_head *this_bh,
1158                            __le32 *first, __le32 *last)
1159 {
1160         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1161         unsigned long count = 0;            /* Number of blocks in the run */
1162         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1163                                                corresponding to
1164                                                block_to_free */
1165         ext4_fsblk_t nr;                    /* Current block # */
1166         __le32 *p;                          /* Pointer into inode/ind
1167                                                for current block */
1168         int err = 0;
1169
1170         if (this_bh) {                          /* For indirect block */
1171                 BUFFER_TRACE(this_bh, "get_write_access");
1172                 err = ext4_journal_get_write_access(handle, this_bh);
1173                 /* Important: if we can't update the indirect pointers
1174                  * to the blocks, we can't free them. */
1175                 if (err)
1176                         return;
1177         }
1178
1179         for (p = first; p < last; p++) {
1180                 nr = le32_to_cpu(*p);
1181                 if (nr) {
1182                         /* accumulate blocks to free if they're contiguous */
1183                         if (count == 0) {
1184                                 block_to_free = nr;
1185                                 block_to_free_p = p;
1186                                 count = 1;
1187                         } else if (nr == block_to_free + count) {
1188                                 count++;
1189                         } else {
1190                                 err = ext4_clear_blocks(handle, inode, this_bh,
1191                                                         block_to_free, count,
1192                                                         block_to_free_p, p);
1193                                 if (err)
1194                                         break;
1195                                 block_to_free = nr;
1196                                 block_to_free_p = p;
1197                                 count = 1;
1198                         }
1199                 }
1200         }
1201
1202         if (!err && count > 0)
1203                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1204                                         count, block_to_free_p, p);
1205         if (err < 0)
1206                 /* fatal error */
1207                 return;
1208
1209         if (this_bh) {
1210                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1211
1212                 /*
1213                  * The buffer head should have an attached journal head at this
1214                  * point. However, if the data is corrupted and an indirect
1215                  * block pointed to itself, it would have been detached when
1216                  * the block was cleared. Check for this instead of OOPSing.
1217                  */
1218                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1219                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1220                 else
1221                         EXT4_ERROR_INODE(inode,
1222                                          "circular indirect block detected at "
1223                                          "block %llu",
1224                                 (unsigned long long) this_bh->b_blocknr);
1225         }
1226 }
1227
1228 /**
1229  *      ext4_free_branches - free an array of branches
1230  *      @handle: JBD handle for this transaction
1231  *      @inode: inode we are dealing with
1232  *      @parent_bh: the buffer_head which contains *@first and *@last
1233  *      @first: array of block numbers
1234  *      @last:  pointer immediately past the end of array
1235  *      @depth: depth of the branches to free
1236  *
1237  *      We are freeing all blocks referred from these branches (numbers are
1238  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1239  *      appropriately.
1240  */
1241 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1242                                struct buffer_head *parent_bh,
1243                                __le32 *first, __le32 *last, int depth)
1244 {
1245         ext4_fsblk_t nr;
1246         __le32 *p;
1247
1248         if (ext4_handle_is_aborted(handle))
1249                 return;
1250
1251         if (depth--) {
1252                 struct buffer_head *bh;
1253                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1254                 p = last;
1255                 while (--p >= first) {
1256                         nr = le32_to_cpu(*p);
1257                         if (!nr)
1258                                 continue;               /* A hole */
1259
1260                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1261                                                    nr, 1)) {
1262                                 EXT4_ERROR_INODE(inode,
1263                                                  "invalid indirect mapped "
1264                                                  "block %lu (level %d)",
1265                                                  (unsigned long) nr, depth);
1266                                 break;
1267                         }
1268
1269                         /* Go read the buffer for the next level down */
1270                         bh = sb_bread(inode->i_sb, nr);
1271
1272                         /*
1273                          * A read failure? Report error and clear slot
1274                          * (should be rare).
1275                          */
1276                         if (!bh) {
1277                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1278                                                        "Read failure");
1279                                 continue;
1280                         }
1281
1282                         /* This zaps the entire block.  Bottom up. */
1283                         BUFFER_TRACE(bh, "free child branches");
1284                         ext4_free_branches(handle, inode, bh,
1285                                         (__le32 *) bh->b_data,
1286                                         (__le32 *) bh->b_data + addr_per_block,
1287                                         depth);
1288                         brelse(bh);
1289
1290                         /*
1291                          * Everything below this this pointer has been
1292                          * released.  Now let this top-of-subtree go.
1293                          *
1294                          * We want the freeing of this indirect block to be
1295                          * atomic in the journal with the updating of the
1296                          * bitmap block which owns it.  So make some room in
1297                          * the journal.
1298                          *
1299                          * We zero the parent pointer *after* freeing its
1300                          * pointee in the bitmaps, so if extend_transaction()
1301                          * for some reason fails to put the bitmap changes and
1302                          * the release into the same transaction, recovery
1303                          * will merely complain about releasing a free block,
1304                          * rather than leaking blocks.
1305                          */
1306                         if (ext4_handle_is_aborted(handle))
1307                                 return;
1308                         if (try_to_extend_transaction(handle, inode)) {
1309                                 ext4_mark_inode_dirty(handle, inode);
1310                                 ext4_truncate_restart_trans(handle, inode,
1311                                             ext4_blocks_for_truncate(inode));
1312                         }
1313
1314                         /*
1315                          * The forget flag here is critical because if
1316                          * we are journaling (and not doing data
1317                          * journaling), we have to make sure a revoke
1318                          * record is written to prevent the journal
1319                          * replay from overwriting the (former)
1320                          * indirect block if it gets reallocated as a
1321                          * data block.  This must happen in the same
1322                          * transaction where the data blocks are
1323                          * actually freed.
1324                          */
1325                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1326                                          EXT4_FREE_BLOCKS_METADATA|
1327                                          EXT4_FREE_BLOCKS_FORGET);
1328
1329                         if (parent_bh) {
1330                                 /*
1331                                  * The block which we have just freed is
1332                                  * pointed to by an indirect block: journal it
1333                                  */
1334                                 BUFFER_TRACE(parent_bh, "get_write_access");
1335                                 if (!ext4_journal_get_write_access(handle,
1336                                                                    parent_bh)){
1337                                         *p = 0;
1338                                         BUFFER_TRACE(parent_bh,
1339                                         "call ext4_handle_dirty_metadata");
1340                                         ext4_handle_dirty_metadata(handle,
1341                                                                    inode,
1342                                                                    parent_bh);
1343                                 }
1344                         }
1345                 }
1346         } else {
1347                 /* We have reached the bottom of the tree. */
1348                 BUFFER_TRACE(parent_bh, "free data blocks");
1349                 ext4_free_data(handle, inode, parent_bh, first, last);
1350         }
1351 }
1352
1353 void ext4_ind_truncate(struct inode *inode)
1354 {
1355         handle_t *handle;
1356         struct ext4_inode_info *ei = EXT4_I(inode);
1357         __le32 *i_data = ei->i_data;
1358         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1359         struct address_space *mapping = inode->i_mapping;
1360         ext4_lblk_t offsets[4];
1361         Indirect chain[4];
1362         Indirect *partial;
1363         __le32 nr = 0;
1364         int n = 0;
1365         ext4_lblk_t last_block, max_block;
1366         loff_t page_len;
1367         unsigned blocksize = inode->i_sb->s_blocksize;
1368         int err;
1369
1370         handle = start_transaction(inode);
1371         if (IS_ERR(handle))
1372                 return;         /* AKPM: return what? */
1373
1374         last_block = (inode->i_size + blocksize-1)
1375                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1376         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1377                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1378
1379         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1380                 page_len = PAGE_CACHE_SIZE -
1381                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
1382
1383                 err = ext4_discard_partial_page_buffers(handle,
1384                         mapping, inode->i_size, page_len, 0);
1385
1386                 if (err)
1387                         goto out_stop;
1388         }
1389
1390         if (last_block != max_block) {
1391                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1392                 if (n == 0)
1393                         goto out_stop;  /* error */
1394         }
1395
1396         /*
1397          * OK.  This truncate is going to happen.  We add the inode to the
1398          * orphan list, so that if this truncate spans multiple transactions,
1399          * and we crash, we will resume the truncate when the filesystem
1400          * recovers.  It also marks the inode dirty, to catch the new size.
1401          *
1402          * Implication: the file must always be in a sane, consistent
1403          * truncatable state while each transaction commits.
1404          */
1405         if (ext4_orphan_add(handle, inode))
1406                 goto out_stop;
1407
1408         /*
1409          * From here we block out all ext4_get_block() callers who want to
1410          * modify the block allocation tree.
1411          */
1412         down_write(&ei->i_data_sem);
1413
1414         ext4_discard_preallocations(inode);
1415
1416         /*
1417          * The orphan list entry will now protect us from any crash which
1418          * occurs before the truncate completes, so it is now safe to propagate
1419          * the new, shorter inode size (held for now in i_size) into the
1420          * on-disk inode. We do this via i_disksize, which is the value which
1421          * ext4 *really* writes onto the disk inode.
1422          */
1423         ei->i_disksize = inode->i_size;
1424
1425         if (last_block == max_block) {
1426                 /*
1427                  * It is unnecessary to free any data blocks if last_block is
1428                  * equal to the indirect block limit.
1429                  */
1430                 goto out_unlock;
1431         } else if (n == 1) {            /* direct blocks */
1432                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1433                                i_data + EXT4_NDIR_BLOCKS);
1434                 goto do_indirects;
1435         }
1436
1437         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1438         /* Kill the top of shared branch (not detached) */
1439         if (nr) {
1440                 if (partial == chain) {
1441                         /* Shared branch grows from the inode */
1442                         ext4_free_branches(handle, inode, NULL,
1443                                            &nr, &nr+1, (chain+n-1) - partial);
1444                         *partial->p = 0;
1445                         /*
1446                          * We mark the inode dirty prior to restart,
1447                          * and prior to stop.  No need for it here.
1448                          */
1449                 } else {
1450                         /* Shared branch grows from an indirect block */
1451                         BUFFER_TRACE(partial->bh, "get_write_access");
1452                         ext4_free_branches(handle, inode, partial->bh,
1453                                         partial->p,
1454                                         partial->p+1, (chain+n-1) - partial);
1455                 }
1456         }
1457         /* Clear the ends of indirect blocks on the shared branch */
1458         while (partial > chain) {
1459                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1460                                    (__le32*)partial->bh->b_data+addr_per_block,
1461                                    (chain+n-1) - partial);
1462                 BUFFER_TRACE(partial->bh, "call brelse");
1463                 brelse(partial->bh);
1464                 partial--;
1465         }
1466 do_indirects:
1467         /* Kill the remaining (whole) subtrees */
1468         switch (offsets[0]) {
1469         default:
1470                 nr = i_data[EXT4_IND_BLOCK];
1471                 if (nr) {
1472                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1473                         i_data[EXT4_IND_BLOCK] = 0;
1474                 }
1475         case EXT4_IND_BLOCK:
1476                 nr = i_data[EXT4_DIND_BLOCK];
1477                 if (nr) {
1478                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1479                         i_data[EXT4_DIND_BLOCK] = 0;
1480                 }
1481         case EXT4_DIND_BLOCK:
1482                 nr = i_data[EXT4_TIND_BLOCK];
1483                 if (nr) {
1484                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1485                         i_data[EXT4_TIND_BLOCK] = 0;
1486                 }
1487         case EXT4_TIND_BLOCK:
1488                 ;
1489         }
1490
1491 out_unlock:
1492         up_write(&ei->i_data_sem);
1493         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1494         ext4_mark_inode_dirty(handle, inode);
1495
1496         /*
1497          * In a multi-transaction truncate, we only make the final transaction
1498          * synchronous
1499          */
1500         if (IS_SYNC(inode))
1501                 ext4_handle_sync(handle);
1502 out_stop:
1503         /*
1504          * If this was a simple ftruncate(), and the file will remain alive
1505          * then we need to clear up the orphan record which we created above.
1506          * However, if this was a real unlink then we were called by
1507          * ext4_delete_inode(), and we allow that function to clean up the
1508          * orphan info for us.
1509          */
1510         if (inode->i_nlink)
1511                 ext4_orphan_del(handle, inode);
1512
1513         ext4_journal_stop(handle);
1514         trace_ext4_truncate_exit(inode);
1515 }
1516