]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: Wait for proper transaction commit on fsync
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * The ext4 forget function must perform a revoke if we are freeing data
75  * which has been journaled.  Metadata (eg. indirect blocks) must be
76  * revoked in all cases.
77  *
78  * "bh" may be NULL: a metadata block may have been freed from memory
79  * but there may still be a record of it in the journal, and that record
80  * still needs to be revoked.
81  *
82  * If the handle isn't valid we're not journaling, but we still need to
83  * call into ext4_journal_revoke() to put the buffer head.
84  */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86                 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88         int err;
89
90         might_sleep();
91
92         BUFFER_TRACE(bh, "enter");
93
94         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95                   "data mode %x\n",
96                   bh, is_metadata, inode->i_mode,
97                   test_opt(inode->i_sb, DATA_FLAGS));
98
99         /* Never use the revoke function if we are doing full data
100          * journaling: there is no need to, and a V1 superblock won't
101          * support it.  Otherwise, only skip the revoke on un-journaled
102          * data blocks. */
103
104         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105             (!is_metadata && !ext4_should_journal_data(inode))) {
106                 if (bh) {
107                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
108                         return ext4_journal_forget(handle, bh);
109                 }
110                 return 0;
111         }
112
113         /*
114          * data!=journal && (is_metadata || should_journal_data(inode))
115          */
116         BUFFER_TRACE(bh, "call ext4_journal_revoke");
117         err = ext4_journal_revoke(handle, blocknr, bh);
118         if (err)
119                 ext4_abort(inode->i_sb, __func__,
120                            "error %d when attempting revoke", err);
121         BUFFER_TRACE(bh, "exit");
122         return err;
123 }
124
125 /*
126  * Work out how many blocks we need to proceed with the next chunk of a
127  * truncate transaction.
128  */
129 static unsigned long blocks_for_truncate(struct inode *inode)
130 {
131         ext4_lblk_t needed;
132
133         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134
135         /* Give ourselves just enough room to cope with inodes in which
136          * i_blocks is corrupt: we've seen disk corruptions in the past
137          * which resulted in random data in an inode which looked enough
138          * like a regular file for ext4 to try to delete it.  Things
139          * will go a bit crazy if that happens, but at least we should
140          * try not to panic the whole kernel. */
141         if (needed < 2)
142                 needed = 2;
143
144         /* But we need to bound the transaction so we don't overflow the
145          * journal. */
146         if (needed > EXT4_MAX_TRANS_DATA)
147                 needed = EXT4_MAX_TRANS_DATA;
148
149         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 }
151
152 /*
153  * Truncate transactions can be complex and absolutely huge.  So we need to
154  * be able to restart the transaction at a conventient checkpoint to make
155  * sure we don't overflow the journal.
156  *
157  * start_transaction gets us a new handle for a truncate transaction,
158  * and extend_transaction tries to extend the existing one a bit.  If
159  * extend fails, we need to propagate the failure up and restart the
160  * transaction in the top-level truncate loop. --sct
161  */
162 static handle_t *start_transaction(struct inode *inode)
163 {
164         handle_t *result;
165
166         result = ext4_journal_start(inode, blocks_for_truncate(inode));
167         if (!IS_ERR(result))
168                 return result;
169
170         ext4_std_error(inode->i_sb, PTR_ERR(result));
171         return result;
172 }
173
174 /*
175  * Try to extend this transaction for the purposes of truncation.
176  *
177  * Returns 0 if we managed to create more room.  If we can't create more
178  * room, and the transaction must be restarted we return 1.
179  */
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 {
182         if (!ext4_handle_valid(handle))
183                 return 0;
184         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185                 return 0;
186         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187                 return 0;
188         return 1;
189 }
190
191 /*
192  * Restart the transaction associated with *handle.  This does a commit,
193  * so before we call here everything must be consistently dirtied against
194  * this transaction.
195  */
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197                                  int nblocks)
198 {
199         int ret;
200
201         /*
202          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203          * moment, get_block can be called only for blocks inside i_size since
204          * page cache has been already dropped and writes are blocked by
205          * i_mutex. So we can safely drop the i_data_sem here.
206          */
207         BUG_ON(EXT4_JOURNAL(inode) == NULL);
208         jbd_debug(2, "restarting handle %p\n", handle);
209         up_write(&EXT4_I(inode)->i_data_sem);
210         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211         down_write(&EXT4_I(inode)->i_data_sem);
212         ext4_discard_preallocations(inode);
213
214         return ret;
215 }
216
217 /*
218  * Called at the last iput() if i_nlink is zero.
219  */
220 void ext4_delete_inode(struct inode *inode)
221 {
222         handle_t *handle;
223         int err;
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233         if (IS_ERR(handle)) {
234                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
235                 /*
236                  * If we're going to skip the normal cleanup, we still need to
237                  * make sure that the in-core orphan linked list is properly
238                  * cleaned up.
239                  */
240                 ext4_orphan_del(NULL, inode);
241                 goto no_delete;
242         }
243
244         if (IS_SYNC(inode))
245                 ext4_handle_sync(handle);
246         inode->i_size = 0;
247         err = ext4_mark_inode_dirty(handle, inode);
248         if (err) {
249                 ext4_warning(inode->i_sb, __func__,
250                              "couldn't mark inode dirty (err %d)", err);
251                 goto stop_handle;
252         }
253         if (inode->i_blocks)
254                 ext4_truncate(inode);
255
256         /*
257          * ext4_ext_truncate() doesn't reserve any slop when it
258          * restarts journal transactions; therefore there may not be
259          * enough credits left in the handle to remove the inode from
260          * the orphan list and set the dtime field.
261          */
262         if (!ext4_handle_has_enough_credits(handle, 3)) {
263                 err = ext4_journal_extend(handle, 3);
264                 if (err > 0)
265                         err = ext4_journal_restart(handle, 3);
266                 if (err != 0) {
267                         ext4_warning(inode->i_sb, __func__,
268                                      "couldn't extend journal (err %d)", err);
269                 stop_handle:
270                         ext4_journal_stop(handle);
271                         goto no_delete;
272                 }
273         }
274
275         /*
276          * Kill off the orphan record which ext4_truncate created.
277          * AKPM: I think this can be inside the above `if'.
278          * Note that ext4_orphan_del() has to be able to cope with the
279          * deletion of a non-existent orphan - this is because we don't
280          * know if ext4_truncate() actually created an orphan record.
281          * (Well, we could do this if we need to, but heck - it works)
282          */
283         ext4_orphan_del(handle, inode);
284         EXT4_I(inode)->i_dtime  = get_seconds();
285
286         /*
287          * One subtle ordering requirement: if anything has gone wrong
288          * (transaction abort, IO errors, whatever), then we can still
289          * do these next steps (the fs will already have been marked as
290          * having errors), but we can't free the inode if the mark_dirty
291          * fails.
292          */
293         if (ext4_mark_inode_dirty(handle, inode))
294                 /* If that failed, just do the required in-core inode clear. */
295                 clear_inode(inode);
296         else
297                 ext4_free_inode(handle, inode);
298         ext4_journal_stop(handle);
299         return;
300 no_delete:
301         clear_inode(inode);     /* We must guarantee clearing of inode... */
302 }
303
304 typedef struct {
305         __le32  *p;
306         __le32  key;
307         struct buffer_head *bh;
308 } Indirect;
309
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
311 {
312         p->key = *(p->p = v);
313         p->bh = bh;
314 }
315
316 /**
317  *      ext4_block_to_path - parse the block number into array of offsets
318  *      @inode: inode in question (we are only interested in its superblock)
319  *      @i_block: block number to be parsed
320  *      @offsets: array to store the offsets in
321  *      @boundary: set this non-zero if the referred-to block is likely to be
322  *             followed (on disk) by an indirect block.
323  *
324  *      To store the locations of file's data ext4 uses a data structure common
325  *      for UNIX filesystems - tree of pointers anchored in the inode, with
326  *      data blocks at leaves and indirect blocks in intermediate nodes.
327  *      This function translates the block number into path in that tree -
328  *      return value is the path length and @offsets[n] is the offset of
329  *      pointer to (n+1)th node in the nth one. If @block is out of range
330  *      (negative or too large) warning is printed and zero returned.
331  *
332  *      Note: function doesn't find node addresses, so no IO is needed. All
333  *      we need to know is the capacity of indirect blocks (taken from the
334  *      inode->i_sb).
335  */
336
337 /*
338  * Portability note: the last comparison (check that we fit into triple
339  * indirect block) is spelled differently, because otherwise on an
340  * architecture with 32-bit longs and 8Kb pages we might get into trouble
341  * if our filesystem had 8Kb blocks. We might use long long, but that would
342  * kill us on x86. Oh, well, at least the sign propagation does not matter -
343  * i_block would have to be negative in the very beginning, so we would not
344  * get there at all.
345  */
346
347 static int ext4_block_to_path(struct inode *inode,
348                               ext4_lblk_t i_block,
349                               ext4_lblk_t offsets[4], int *boundary)
350 {
351         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353         const long direct_blocks = EXT4_NDIR_BLOCKS,
354                 indirect_blocks = ptrs,
355                 double_blocks = (1 << (ptrs_bits * 2));
356         int n = 0;
357         int final = 0;
358
359         if (i_block < direct_blocks) {
360                 offsets[n++] = i_block;
361                 final = direct_blocks;
362         } else if ((i_block -= direct_blocks) < indirect_blocks) {
363                 offsets[n++] = EXT4_IND_BLOCK;
364                 offsets[n++] = i_block;
365                 final = ptrs;
366         } else if ((i_block -= indirect_blocks) < double_blocks) {
367                 offsets[n++] = EXT4_DIND_BLOCK;
368                 offsets[n++] = i_block >> ptrs_bits;
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372                 offsets[n++] = EXT4_TIND_BLOCK;
373                 offsets[n++] = i_block >> (ptrs_bits * 2);
374                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375                 offsets[n++] = i_block & (ptrs - 1);
376                 final = ptrs;
377         } else {
378                 ext4_warning(inode->i_sb, "ext4_block_to_path",
379                              "block %lu > max in inode %lu",
380                              i_block + direct_blocks +
381                              indirect_blocks + double_blocks, inode->i_ino);
382         }
383         if (boundary)
384                 *boundary = final - 1 - (i_block & (ptrs - 1));
385         return n;
386 }
387
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389                                  __le32 *p, unsigned int max)
390 {
391         __le32 *bref = p;
392         unsigned int blk;
393
394         while (bref < p+max) {
395                 blk = le32_to_cpu(*bref++);
396                 if (blk &&
397                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398                                                     blk, 1))) {
399                         ext4_error(inode->i_sb, function,
400                                    "invalid block reference %u "
401                                    "in inode #%lu", blk, inode->i_ino);
402                         return -EIO;
403                 }
404         }
405         return 0;
406 }
407
408
409 #define ext4_check_indirect_blockref(inode, bh)                         \
410         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
411                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412
413 #define ext4_check_inode_blockref(inode)                                \
414         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
415                               EXT4_NDIR_BLOCKS)
416
417 /**
418  *      ext4_get_branch - read the chain of indirect blocks leading to data
419  *      @inode: inode in question
420  *      @depth: depth of the chain (1 - direct pointer, etc.)
421  *      @offsets: offsets of pointers in inode/indirect blocks
422  *      @chain: place to store the result
423  *      @err: here we store the error value
424  *
425  *      Function fills the array of triples <key, p, bh> and returns %NULL
426  *      if everything went OK or the pointer to the last filled triple
427  *      (incomplete one) otherwise. Upon the return chain[i].key contains
428  *      the number of (i+1)-th block in the chain (as it is stored in memory,
429  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
430  *      number (it points into struct inode for i==0 and into the bh->b_data
431  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432  *      block for i>0 and NULL for i==0. In other words, it holds the block
433  *      numbers of the chain, addresses they were taken from (and where we can
434  *      verify that chain did not change) and buffer_heads hosting these
435  *      numbers.
436  *
437  *      Function stops when it stumbles upon zero pointer (absent block)
438  *              (pointer to last triple returned, *@err == 0)
439  *      or when it gets an IO error reading an indirect block
440  *              (ditto, *@err == -EIO)
441  *      or when it reads all @depth-1 indirect blocks successfully and finds
442  *      the whole chain, all way to the data (returns %NULL, *err == 0).
443  *
444  *      Need to be called with
445  *      down_read(&EXT4_I(inode)->i_data_sem)
446  */
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448                                  ext4_lblk_t  *offsets,
449                                  Indirect chain[4], int *err)
450 {
451         struct super_block *sb = inode->i_sb;
452         Indirect *p = chain;
453         struct buffer_head *bh;
454
455         *err = 0;
456         /* i_data is not going away, no lock needed */
457         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458         if (!p->key)
459                 goto no_block;
460         while (--depth) {
461                 bh = sb_getblk(sb, le32_to_cpu(p->key));
462                 if (unlikely(!bh))
463                         goto failure;
464
465                 if (!bh_uptodate_or_lock(bh)) {
466                         if (bh_submit_read(bh) < 0) {
467                                 put_bh(bh);
468                                 goto failure;
469                         }
470                         /* validate block references */
471                         if (ext4_check_indirect_blockref(inode, bh)) {
472                                 put_bh(bh);
473                                 goto failure;
474                         }
475                 }
476
477                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478                 /* Reader: end */
479                 if (!p->key)
480                         goto no_block;
481         }
482         return NULL;
483
484 failure:
485         *err = -EIO;
486 no_block:
487         return p;
488 }
489
490 /**
491  *      ext4_find_near - find a place for allocation with sufficient locality
492  *      @inode: owner
493  *      @ind: descriptor of indirect block.
494  *
495  *      This function returns the preferred place for block allocation.
496  *      It is used when heuristic for sequential allocation fails.
497  *      Rules are:
498  *        + if there is a block to the left of our position - allocate near it.
499  *        + if pointer will live in indirect block - allocate near that block.
500  *        + if pointer will live in inode - allocate in the same
501  *          cylinder group.
502  *
503  * In the latter case we colour the starting block by the callers PID to
504  * prevent it from clashing with concurrent allocations for a different inode
505  * in the same block group.   The PID is used here so that functionally related
506  * files will be close-by on-disk.
507  *
508  *      Caller must make sure that @ind is valid and will stay that way.
509  */
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
511 {
512         struct ext4_inode_info *ei = EXT4_I(inode);
513         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514         __le32 *p;
515         ext4_fsblk_t bg_start;
516         ext4_fsblk_t last_block;
517         ext4_grpblk_t colour;
518         ext4_group_t block_group;
519         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
520
521         /* Try to find previous block */
522         for (p = ind->p - 1; p >= start; p--) {
523                 if (*p)
524                         return le32_to_cpu(*p);
525         }
526
527         /* No such thing, so let's try location of indirect block */
528         if (ind->bh)
529                 return ind->bh->b_blocknr;
530
531         /*
532          * It is going to be referred to from the inode itself? OK, just put it
533          * into the same cylinder group then.
534          */
535         block_group = ei->i_block_group;
536         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537                 block_group &= ~(flex_size-1);
538                 if (S_ISREG(inode->i_mode))
539                         block_group++;
540         }
541         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543
544         /*
545          * If we are doing delayed allocation, we don't need take
546          * colour into account.
547          */
548         if (test_opt(inode->i_sb, DELALLOC))
549                 return bg_start;
550
551         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552                 colour = (current->pid % 16) *
553                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554         else
555                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556         return bg_start + colour;
557 }
558
559 /**
560  *      ext4_find_goal - find a preferred place for allocation.
561  *      @inode: owner
562  *      @block:  block we want
563  *      @partial: pointer to the last triple within a chain
564  *
565  *      Normally this function find the preferred place for block allocation,
566  *      returns it.
567  *      Because this is only used for non-extent files, we limit the block nr
568  *      to 32 bits.
569  */
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571                                    Indirect *partial)
572 {
573         ext4_fsblk_t goal;
574
575         /*
576          * XXX need to get goal block from mballoc's data structures
577          */
578
579         goal = ext4_find_near(inode, partial);
580         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581         return goal;
582 }
583
584 /**
585  *      ext4_blks_to_allocate: Look up the block map and count the number
586  *      of direct blocks need to be allocated for the given branch.
587  *
588  *      @branch: chain of indirect blocks
589  *      @k: number of blocks need for indirect blocks
590  *      @blks: number of data blocks to be mapped.
591  *      @blocks_to_boundary:  the offset in the indirect block
592  *
593  *      return the total number of blocks to be allocate, including the
594  *      direct and indirect blocks.
595  */
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597                                  int blocks_to_boundary)
598 {
599         unsigned int count = 0;
600
601         /*
602          * Simple case, [t,d]Indirect block(s) has not allocated yet
603          * then it's clear blocks on that path have not allocated
604          */
605         if (k > 0) {
606                 /* right now we don't handle cross boundary allocation */
607                 if (blks < blocks_to_boundary + 1)
608                         count += blks;
609                 else
610                         count += blocks_to_boundary + 1;
611                 return count;
612         }
613
614         count++;
615         while (count < blks && count <= blocks_to_boundary &&
616                 le32_to_cpu(*(branch[0].p + count)) == 0) {
617                 count++;
618         }
619         return count;
620 }
621
622 /**
623  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
624  *      @indirect_blks: the number of blocks need to allocate for indirect
625  *                      blocks
626  *
627  *      @new_blocks: on return it will store the new block numbers for
628  *      the indirect blocks(if needed) and the first direct block,
629  *      @blks:  on return it will store the total number of allocated
630  *              direct blocks
631  */
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633                              ext4_lblk_t iblock, ext4_fsblk_t goal,
634                              int indirect_blks, int blks,
635                              ext4_fsblk_t new_blocks[4], int *err)
636 {
637         struct ext4_allocation_request ar;
638         int target, i;
639         unsigned long count = 0, blk_allocated = 0;
640         int index = 0;
641         ext4_fsblk_t current_block = 0;
642         int ret = 0;
643
644         /*
645          * Here we try to allocate the requested multiple blocks at once,
646          * on a best-effort basis.
647          * To build a branch, we should allocate blocks for
648          * the indirect blocks(if not allocated yet), and at least
649          * the first direct block of this branch.  That's the
650          * minimum number of blocks need to allocate(required)
651          */
652         /* first we try to allocate the indirect blocks */
653         target = indirect_blks;
654         while (target > 0) {
655                 count = target;
656                 /* allocating blocks for indirect blocks and direct blocks */
657                 current_block = ext4_new_meta_blocks(handle, inode,
658                                                         goal, &count, err);
659                 if (*err)
660                         goto failed_out;
661
662                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
663
664                 target -= count;
665                 /* allocate blocks for indirect blocks */
666                 while (index < indirect_blks && count) {
667                         new_blocks[index++] = current_block++;
668                         count--;
669                 }
670                 if (count > 0) {
671                         /*
672                          * save the new block number
673                          * for the first direct block
674                          */
675                         new_blocks[index] = current_block;
676                         printk(KERN_INFO "%s returned more blocks than "
677                                                 "requested\n", __func__);
678                         WARN_ON(1);
679                         break;
680                 }
681         }
682
683         target = blks - count ;
684         blk_allocated = count;
685         if (!target)
686                 goto allocated;
687         /* Now allocate data blocks */
688         memset(&ar, 0, sizeof(ar));
689         ar.inode = inode;
690         ar.goal = goal;
691         ar.len = target;
692         ar.logical = iblock;
693         if (S_ISREG(inode->i_mode))
694                 /* enable in-core preallocation only for regular files */
695                 ar.flags = EXT4_MB_HINT_DATA;
696
697         current_block = ext4_mb_new_blocks(handle, &ar, err);
698         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
699
700         if (*err && (target == blks)) {
701                 /*
702                  * if the allocation failed and we didn't allocate
703                  * any blocks before
704                  */
705                 goto failed_out;
706         }
707         if (!*err) {
708                 if (target == blks) {
709                         /*
710                          * save the new block number
711                          * for the first direct block
712                          */
713                         new_blocks[index] = current_block;
714                 }
715                 blk_allocated += ar.len;
716         }
717 allocated:
718         /* total number of blocks allocated for direct blocks */
719         ret = blk_allocated;
720         *err = 0;
721         return ret;
722 failed_out:
723         for (i = 0; i < index; i++)
724                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725         return ret;
726 }
727
728 /**
729  *      ext4_alloc_branch - allocate and set up a chain of blocks.
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @offsets: offsets (in the blocks) to store the pointers to next.
734  *      @branch: place to store the chain in.
735  *
736  *      This function allocates blocks, zeroes out all but the last one,
737  *      links them into chain and (if we are synchronous) writes them to disk.
738  *      In other words, it prepares a branch that can be spliced onto the
739  *      inode. It stores the information about that chain in the branch[], in
740  *      the same format as ext4_get_branch() would do. We are calling it after
741  *      we had read the existing part of chain and partial points to the last
742  *      triple of that (one with zero ->key). Upon the exit we have the same
743  *      picture as after the successful ext4_get_block(), except that in one
744  *      place chain is disconnected - *branch->p is still zero (we did not
745  *      set the last link), but branch->key contains the number that should
746  *      be placed into *branch->p to fill that gap.
747  *
748  *      If allocation fails we free all blocks we've allocated (and forget
749  *      their buffer_heads) and return the error value the from failed
750  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *      as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754                              ext4_lblk_t iblock, int indirect_blks,
755                              int *blks, ext4_fsblk_t goal,
756                              ext4_lblk_t *offsets, Indirect *branch)
757 {
758         int blocksize = inode->i_sb->s_blocksize;
759         int i, n = 0;
760         int err = 0;
761         struct buffer_head *bh;
762         int num;
763         ext4_fsblk_t new_blocks[4];
764         ext4_fsblk_t current_block;
765
766         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767                                 *blks, new_blocks, &err);
768         if (err)
769                 return err;
770
771         branch[0].key = cpu_to_le32(new_blocks[0]);
772         /*
773          * metadata blocks and data blocks are allocated.
774          */
775         for (n = 1; n <= indirect_blks;  n++) {
776                 /*
777                  * Get buffer_head for parent block, zero it out
778                  * and set the pointer to new one, then send
779                  * parent to disk.
780                  */
781                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782                 branch[n].bh = bh;
783                 lock_buffer(bh);
784                 BUFFER_TRACE(bh, "call get_create_access");
785                 err = ext4_journal_get_create_access(handle, bh);
786                 if (err) {
787                         /* Don't brelse(bh) here; it's done in
788                          * ext4_journal_forget() below */
789                         unlock_buffer(bh);
790                         goto failed;
791                 }
792
793                 memset(bh->b_data, 0, blocksize);
794                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795                 branch[n].key = cpu_to_le32(new_blocks[n]);
796                 *branch[n].p = branch[n].key;
797                 if (n == indirect_blks) {
798                         current_block = new_blocks[n];
799                         /*
800                          * End of chain, update the last new metablock of
801                          * the chain to point to the new allocated
802                          * data blocks numbers
803                          */
804                         for (i = 1; i < num; i++)
805                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
806                 }
807                 BUFFER_TRACE(bh, "marking uptodate");
808                 set_buffer_uptodate(bh);
809                 unlock_buffer(bh);
810
811                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812                 err = ext4_handle_dirty_metadata(handle, inode, bh);
813                 if (err)
814                         goto failed;
815         }
816         *blks = num;
817         return err;
818 failed:
819         /* Allocation failed, free what we already allocated */
820         for (i = 1; i <= n ; i++) {
821                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822                 ext4_journal_forget(handle, branch[i].bh);
823         }
824         for (i = 0; i < indirect_blks; i++)
825                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
826
827         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
828
829         return err;
830 }
831
832 /**
833  * ext4_splice_branch - splice the allocated branch onto inode.
834  * @inode: owner
835  * @block: (logical) number of block we are adding
836  * @chain: chain of indirect blocks (with a missing link - see
837  *      ext4_alloc_branch)
838  * @where: location of missing link
839  * @num:   number of indirect blocks we are adding
840  * @blks:  number of direct blocks we are adding
841  *
842  * This function fills the missing link and does all housekeeping needed in
843  * inode (->i_blocks, etc.). In case of success we end up with the full
844  * chain to new block and return 0.
845  */
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847                               ext4_lblk_t block, Indirect *where, int num,
848                               int blks)
849 {
850         int i;
851         int err = 0;
852         ext4_fsblk_t current_block;
853
854         /*
855          * If we're splicing into a [td]indirect block (as opposed to the
856          * inode) then we need to get write access to the [td]indirect block
857          * before the splice.
858          */
859         if (where->bh) {
860                 BUFFER_TRACE(where->bh, "get_write_access");
861                 err = ext4_journal_get_write_access(handle, where->bh);
862                 if (err)
863                         goto err_out;
864         }
865         /* That's it */
866
867         *where->p = where->key;
868
869         /*
870          * Update the host buffer_head or inode to point to more just allocated
871          * direct blocks blocks
872          */
873         if (num == 0 && blks > 1) {
874                 current_block = le32_to_cpu(where->key) + 1;
875                 for (i = 1; i < blks; i++)
876                         *(where->p + i) = cpu_to_le32(current_block++);
877         }
878
879         /* We are done with atomic stuff, now do the rest of housekeeping */
880         /* had we spliced it onto indirect block? */
881         if (where->bh) {
882                 /*
883                  * If we spliced it onto an indirect block, we haven't
884                  * altered the inode.  Note however that if it is being spliced
885                  * onto an indirect block at the very end of the file (the
886                  * file is growing) then we *will* alter the inode to reflect
887                  * the new i_size.  But that is not done here - it is done in
888                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
889                  */
890                 jbd_debug(5, "splicing indirect only\n");
891                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893                 if (err)
894                         goto err_out;
895         } else {
896                 /*
897                  * OK, we spliced it into the inode itself on a direct block.
898                  */
899                 ext4_mark_inode_dirty(handle, inode);
900                 jbd_debug(5, "splicing direct\n");
901         }
902         return err;
903
904 err_out:
905         for (i = 1; i <= num; i++) {
906                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907                 ext4_journal_forget(handle, where[i].bh);
908                 ext4_free_blocks(handle, inode,
909                                         le32_to_cpu(where[i-1].key), 1, 0);
910         }
911         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
912
913         return err;
914 }
915
916 /*
917  * The ext4_ind_get_blocks() function handles non-extents inodes
918  * (i.e., using the traditional indirect/double-indirect i_blocks
919  * scheme) for ext4_get_blocks().
920  *
921  * Allocation strategy is simple: if we have to allocate something, we will
922  * have to go the whole way to leaf. So let's do it before attaching anything
923  * to tree, set linkage between the newborn blocks, write them if sync is
924  * required, recheck the path, free and repeat if check fails, otherwise
925  * set the last missing link (that will protect us from any truncate-generated
926  * removals - all blocks on the path are immune now) and possibly force the
927  * write on the parent block.
928  * That has a nice additional property: no special recovery from the failed
929  * allocations is needed - we simply release blocks and do not touch anything
930  * reachable from inode.
931  *
932  * `handle' can be NULL if create == 0.
933  *
934  * return > 0, # of blocks mapped or allocated.
935  * return = 0, if plain lookup failed.
936  * return < 0, error case.
937  *
938  * The ext4_ind_get_blocks() function should be called with
939  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942  * blocks.
943  */
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945                                ext4_lblk_t iblock, unsigned int maxblocks,
946                                struct buffer_head *bh_result,
947                                int flags)
948 {
949         int err = -EIO;
950         ext4_lblk_t offsets[4];
951         Indirect chain[4];
952         Indirect *partial;
953         ext4_fsblk_t goal;
954         int indirect_blks;
955         int blocks_to_boundary = 0;
956         int depth;
957         int count = 0;
958         ext4_fsblk_t first_block = 0;
959
960         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962         depth = ext4_block_to_path(inode, iblock, offsets,
963                                    &blocks_to_boundary);
964
965         if (depth == 0)
966                 goto out;
967
968         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
969
970         /* Simplest case - block found, no allocation needed */
971         if (!partial) {
972                 first_block = le32_to_cpu(chain[depth - 1].key);
973                 clear_buffer_new(bh_result);
974                 count++;
975                 /*map more blocks*/
976                 while (count < maxblocks && count <= blocks_to_boundary) {
977                         ext4_fsblk_t blk;
978
979                         blk = le32_to_cpu(*(chain[depth-1].p + count));
980
981                         if (blk == first_block + count)
982                                 count++;
983                         else
984                                 break;
985                 }
986                 goto got_it;
987         }
988
989         /* Next simple case - plain lookup or failed read of indirect block */
990         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991                 goto cleanup;
992
993         /*
994          * Okay, we need to do block allocation.
995         */
996         goal = ext4_find_goal(inode, iblock, partial);
997
998         /* the number of blocks need to allocate for [d,t]indirect blocks */
999         indirect_blks = (chain + depth) - partial - 1;
1000
1001         /*
1002          * Next look up the indirect map to count the totoal number of
1003          * direct blocks to allocate for this branch.
1004          */
1005         count = ext4_blks_to_allocate(partial, indirect_blks,
1006                                         maxblocks, blocks_to_boundary);
1007         /*
1008          * Block out ext4_truncate while we alter the tree
1009          */
1010         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011                                 &count, goal,
1012                                 offsets + (partial - chain), partial);
1013
1014         /*
1015          * The ext4_splice_branch call will free and forget any buffers
1016          * on the new chain if there is a failure, but that risks using
1017          * up transaction credits, especially for bitmaps where the
1018          * credits cannot be returned.  Can we handle this somehow?  We
1019          * may need to return -EAGAIN upwards in the worst case.  --sct
1020          */
1021         if (!err)
1022                 err = ext4_splice_branch(handle, inode, iblock,
1023                                          partial, indirect_blks, count);
1024         if (err)
1025                 goto cleanup;
1026
1027         set_buffer_new(bh_result);
1028
1029         ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032         if (count > blocks_to_boundary)
1033                 set_buffer_boundary(bh_result);
1034         err = count;
1035         /* Clean up and exit */
1036         partial = chain + depth - 1;    /* the whole chain */
1037 cleanup:
1038         while (partial > chain) {
1039                 BUFFER_TRACE(partial->bh, "call brelse");
1040                 brelse(partial->bh);
1041                 partial--;
1042         }
1043         BUFFER_TRACE(bh_result, "returned");
1044 out:
1045         return err;
1046 }
1047
1048 qsize_t ext4_get_reserved_space(struct inode *inode)
1049 {
1050         unsigned long long total;
1051
1052         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1053         total = EXT4_I(inode)->i_reserved_data_blocks +
1054                 EXT4_I(inode)->i_reserved_meta_blocks;
1055         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1056
1057         return (total << inode->i_blkbits);
1058 }
1059 /*
1060  * Calculate the number of metadata blocks need to reserve
1061  * to allocate @blocks for non extent file based file
1062  */
1063 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1064 {
1065         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1066         int ind_blks, dind_blks, tind_blks;
1067
1068         /* number of new indirect blocks needed */
1069         ind_blks = (blocks + icap - 1) / icap;
1070
1071         dind_blks = (ind_blks + icap - 1) / icap;
1072
1073         tind_blks = 1;
1074
1075         return ind_blks + dind_blks + tind_blks;
1076 }
1077
1078 /*
1079  * Calculate the number of metadata blocks need to reserve
1080  * to allocate given number of blocks
1081  */
1082 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1083 {
1084         if (!blocks)
1085                 return 0;
1086
1087         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1088                 return ext4_ext_calc_metadata_amount(inode, blocks);
1089
1090         return ext4_indirect_calc_metadata_amount(inode, blocks);
1091 }
1092
1093 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1094 {
1095         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096         int total, mdb, mdb_free;
1097
1098         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1099         /* recalculate the number of metablocks still need to be reserved */
1100         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1101         mdb = ext4_calc_metadata_amount(inode, total);
1102
1103         /* figure out how many metablocks to release */
1104         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1105         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1106
1107         if (mdb_free) {
1108                 /* Account for allocated meta_blocks */
1109                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1110
1111                 /* update fs dirty blocks counter */
1112                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1113                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1114                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1115         }
1116
1117         /* update per-inode reservations */
1118         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1119         EXT4_I(inode)->i_reserved_data_blocks -= used;
1120         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1121
1122         /*
1123          * free those over-booking quota for metadata blocks
1124          */
1125         if (mdb_free)
1126                 vfs_dq_release_reservation_block(inode, mdb_free);
1127
1128         /*
1129          * If we have done all the pending block allocations and if
1130          * there aren't any writers on the inode, we can discard the
1131          * inode's preallocations.
1132          */
1133         if (!total && (atomic_read(&inode->i_writecount) == 0))
1134                 ext4_discard_preallocations(inode);
1135 }
1136
1137 static int check_block_validity(struct inode *inode, const char *msg,
1138                                 sector_t logical, sector_t phys, int len)
1139 {
1140         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1141                 ext4_error(inode->i_sb, msg,
1142                            "inode #%lu logical block %llu mapped to %llu "
1143                            "(size %d)", inode->i_ino,
1144                            (unsigned long long) logical,
1145                            (unsigned long long) phys, len);
1146                 return -EIO;
1147         }
1148         return 0;
1149 }
1150
1151 /*
1152  * Return the number of contiguous dirty pages in a given inode
1153  * starting at page frame idx.
1154  */
1155 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1156                                     unsigned int max_pages)
1157 {
1158         struct address_space *mapping = inode->i_mapping;
1159         pgoff_t index;
1160         struct pagevec pvec;
1161         pgoff_t num = 0;
1162         int i, nr_pages, done = 0;
1163
1164         if (max_pages == 0)
1165                 return 0;
1166         pagevec_init(&pvec, 0);
1167         while (!done) {
1168                 index = idx;
1169                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1170                                               PAGECACHE_TAG_DIRTY,
1171                                               (pgoff_t)PAGEVEC_SIZE);
1172                 if (nr_pages == 0)
1173                         break;
1174                 for (i = 0; i < nr_pages; i++) {
1175                         struct page *page = pvec.pages[i];
1176                         struct buffer_head *bh, *head;
1177
1178                         lock_page(page);
1179                         if (unlikely(page->mapping != mapping) ||
1180                             !PageDirty(page) ||
1181                             PageWriteback(page) ||
1182                             page->index != idx) {
1183                                 done = 1;
1184                                 unlock_page(page);
1185                                 break;
1186                         }
1187                         if (page_has_buffers(page)) {
1188                                 bh = head = page_buffers(page);
1189                                 do {
1190                                         if (!buffer_delay(bh) &&
1191                                             !buffer_unwritten(bh))
1192                                                 done = 1;
1193                                         bh = bh->b_this_page;
1194                                 } while (!done && (bh != head));
1195                         }
1196                         unlock_page(page);
1197                         if (done)
1198                                 break;
1199                         idx++;
1200                         num++;
1201                         if (num >= max_pages)
1202                                 break;
1203                 }
1204                 pagevec_release(&pvec);
1205         }
1206         return num;
1207 }
1208
1209 /*
1210  * The ext4_get_blocks() function tries to look up the requested blocks,
1211  * and returns if the blocks are already mapped.
1212  *
1213  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1214  * and store the allocated blocks in the result buffer head and mark it
1215  * mapped.
1216  *
1217  * If file type is extents based, it will call ext4_ext_get_blocks(),
1218  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1219  * based files
1220  *
1221  * On success, it returns the number of blocks being mapped or allocate.
1222  * if create==0 and the blocks are pre-allocated and uninitialized block,
1223  * the result buffer head is unmapped. If the create ==1, it will make sure
1224  * the buffer head is mapped.
1225  *
1226  * It returns 0 if plain look up failed (blocks have not been allocated), in
1227  * that casem, buffer head is unmapped
1228  *
1229  * It returns the error in case of allocation failure.
1230  */
1231 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1232                     unsigned int max_blocks, struct buffer_head *bh,
1233                     int flags)
1234 {
1235         int retval;
1236
1237         clear_buffer_mapped(bh);
1238         clear_buffer_unwritten(bh);
1239
1240         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1241                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1242                   (unsigned long)block);
1243         /*
1244          * Try to see if we can get the block without requesting a new
1245          * file system block.
1246          */
1247         down_read((&EXT4_I(inode)->i_data_sem));
1248         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1249                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1250                                 bh, 0);
1251         } else {
1252                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1253                                              bh, 0);
1254         }
1255         up_read((&EXT4_I(inode)->i_data_sem));
1256
1257         if (retval > 0 && buffer_mapped(bh)) {
1258                 int ret = check_block_validity(inode, "file system corruption",
1259                                                block, bh->b_blocknr, retval);
1260                 if (ret != 0)
1261                         return ret;
1262         }
1263
1264         /* If it is only a block(s) look up */
1265         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1266                 return retval;
1267
1268         /*
1269          * Returns if the blocks have already allocated
1270          *
1271          * Note that if blocks have been preallocated
1272          * ext4_ext_get_block() returns th create = 0
1273          * with buffer head unmapped.
1274          */
1275         if (retval > 0 && buffer_mapped(bh))
1276                 return retval;
1277
1278         /*
1279          * When we call get_blocks without the create flag, the
1280          * BH_Unwritten flag could have gotten set if the blocks
1281          * requested were part of a uninitialized extent.  We need to
1282          * clear this flag now that we are committed to convert all or
1283          * part of the uninitialized extent to be an initialized
1284          * extent.  This is because we need to avoid the combination
1285          * of BH_Unwritten and BH_Mapped flags being simultaneously
1286          * set on the buffer_head.
1287          */
1288         clear_buffer_unwritten(bh);
1289
1290         /*
1291          * New blocks allocate and/or writing to uninitialized extent
1292          * will possibly result in updating i_data, so we take
1293          * the write lock of i_data_sem, and call get_blocks()
1294          * with create == 1 flag.
1295          */
1296         down_write((&EXT4_I(inode)->i_data_sem));
1297
1298         /*
1299          * if the caller is from delayed allocation writeout path
1300          * we have already reserved fs blocks for allocation
1301          * let the underlying get_block() function know to
1302          * avoid double accounting
1303          */
1304         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1305                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1306         /*
1307          * We need to check for EXT4 here because migrate
1308          * could have changed the inode type in between
1309          */
1310         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1311                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1312                                               bh, flags);
1313         } else {
1314                 retval = ext4_ind_get_blocks(handle, inode, block,
1315                                              max_blocks, bh, flags);
1316
1317                 if (retval > 0 && buffer_new(bh)) {
1318                         /*
1319                          * We allocated new blocks which will result in
1320                          * i_data's format changing.  Force the migrate
1321                          * to fail by clearing migrate flags
1322                          */
1323                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1324                 }
1325         }
1326
1327         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1328                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1329
1330         /*
1331          * Update reserved blocks/metadata blocks after successful
1332          * block allocation which had been deferred till now.
1333          */
1334         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1335                 ext4_da_update_reserve_space(inode, retval);
1336
1337         up_write((&EXT4_I(inode)->i_data_sem));
1338         if (retval > 0 && buffer_mapped(bh)) {
1339                 int ret = check_block_validity(inode, "file system "
1340                                                "corruption after allocation",
1341                                                block, bh->b_blocknr, retval);
1342                 if (ret != 0)
1343                         return ret;
1344         }
1345         return retval;
1346 }
1347
1348 /* Maximum number of blocks we map for direct IO at once. */
1349 #define DIO_MAX_BLOCKS 4096
1350
1351 int ext4_get_block(struct inode *inode, sector_t iblock,
1352                    struct buffer_head *bh_result, int create)
1353 {
1354         handle_t *handle = ext4_journal_current_handle();
1355         int ret = 0, started = 0;
1356         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1357         int dio_credits;
1358
1359         if (create && !handle) {
1360                 /* Direct IO write... */
1361                 if (max_blocks > DIO_MAX_BLOCKS)
1362                         max_blocks = DIO_MAX_BLOCKS;
1363                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1364                 handle = ext4_journal_start(inode, dio_credits);
1365                 if (IS_ERR(handle)) {
1366                         ret = PTR_ERR(handle);
1367                         goto out;
1368                 }
1369                 started = 1;
1370         }
1371
1372         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1373                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1374         if (ret > 0) {
1375                 bh_result->b_size = (ret << inode->i_blkbits);
1376                 ret = 0;
1377         }
1378         if (started)
1379                 ext4_journal_stop(handle);
1380 out:
1381         return ret;
1382 }
1383
1384 /*
1385  * `handle' can be NULL if create is zero
1386  */
1387 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1388                                 ext4_lblk_t block, int create, int *errp)
1389 {
1390         struct buffer_head dummy;
1391         int fatal = 0, err;
1392         int flags = 0;
1393
1394         J_ASSERT(handle != NULL || create == 0);
1395
1396         dummy.b_state = 0;
1397         dummy.b_blocknr = -1000;
1398         buffer_trace_init(&dummy.b_history);
1399         if (create)
1400                 flags |= EXT4_GET_BLOCKS_CREATE;
1401         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1402         /*
1403          * ext4_get_blocks() returns number of blocks mapped. 0 in
1404          * case of a HOLE.
1405          */
1406         if (err > 0) {
1407                 if (err > 1)
1408                         WARN_ON(1);
1409                 err = 0;
1410         }
1411         *errp = err;
1412         if (!err && buffer_mapped(&dummy)) {
1413                 struct buffer_head *bh;
1414                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1415                 if (!bh) {
1416                         *errp = -EIO;
1417                         goto err;
1418                 }
1419                 if (buffer_new(&dummy)) {
1420                         J_ASSERT(create != 0);
1421                         J_ASSERT(handle != NULL);
1422
1423                         /*
1424                          * Now that we do not always journal data, we should
1425                          * keep in mind whether this should always journal the
1426                          * new buffer as metadata.  For now, regular file
1427                          * writes use ext4_get_block instead, so it's not a
1428                          * problem.
1429                          */
1430                         lock_buffer(bh);
1431                         BUFFER_TRACE(bh, "call get_create_access");
1432                         fatal = ext4_journal_get_create_access(handle, bh);
1433                         if (!fatal && !buffer_uptodate(bh)) {
1434                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1435                                 set_buffer_uptodate(bh);
1436                         }
1437                         unlock_buffer(bh);
1438                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1439                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1440                         if (!fatal)
1441                                 fatal = err;
1442                 } else {
1443                         BUFFER_TRACE(bh, "not a new buffer");
1444                 }
1445                 if (fatal) {
1446                         *errp = fatal;
1447                         brelse(bh);
1448                         bh = NULL;
1449                 }
1450                 return bh;
1451         }
1452 err:
1453         return NULL;
1454 }
1455
1456 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1457                                ext4_lblk_t block, int create, int *err)
1458 {
1459         struct buffer_head *bh;
1460
1461         bh = ext4_getblk(handle, inode, block, create, err);
1462         if (!bh)
1463                 return bh;
1464         if (buffer_uptodate(bh))
1465                 return bh;
1466         ll_rw_block(READ_META, 1, &bh);
1467         wait_on_buffer(bh);
1468         if (buffer_uptodate(bh))
1469                 return bh;
1470         put_bh(bh);
1471         *err = -EIO;
1472         return NULL;
1473 }
1474
1475 static int walk_page_buffers(handle_t *handle,
1476                              struct buffer_head *head,
1477                              unsigned from,
1478                              unsigned to,
1479                              int *partial,
1480                              int (*fn)(handle_t *handle,
1481                                        struct buffer_head *bh))
1482 {
1483         struct buffer_head *bh;
1484         unsigned block_start, block_end;
1485         unsigned blocksize = head->b_size;
1486         int err, ret = 0;
1487         struct buffer_head *next;
1488
1489         for (bh = head, block_start = 0;
1490              ret == 0 && (bh != head || !block_start);
1491              block_start = block_end, bh = next) {
1492                 next = bh->b_this_page;
1493                 block_end = block_start + blocksize;
1494                 if (block_end <= from || block_start >= to) {
1495                         if (partial && !buffer_uptodate(bh))
1496                                 *partial = 1;
1497                         continue;
1498                 }
1499                 err = (*fn)(handle, bh);
1500                 if (!ret)
1501                         ret = err;
1502         }
1503         return ret;
1504 }
1505
1506 /*
1507  * To preserve ordering, it is essential that the hole instantiation and
1508  * the data write be encapsulated in a single transaction.  We cannot
1509  * close off a transaction and start a new one between the ext4_get_block()
1510  * and the commit_write().  So doing the jbd2_journal_start at the start of
1511  * prepare_write() is the right place.
1512  *
1513  * Also, this function can nest inside ext4_writepage() ->
1514  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1515  * has generated enough buffer credits to do the whole page.  So we won't
1516  * block on the journal in that case, which is good, because the caller may
1517  * be PF_MEMALLOC.
1518  *
1519  * By accident, ext4 can be reentered when a transaction is open via
1520  * quota file writes.  If we were to commit the transaction while thus
1521  * reentered, there can be a deadlock - we would be holding a quota
1522  * lock, and the commit would never complete if another thread had a
1523  * transaction open and was blocking on the quota lock - a ranking
1524  * violation.
1525  *
1526  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1527  * will _not_ run commit under these circumstances because handle->h_ref
1528  * is elevated.  We'll still have enough credits for the tiny quotafile
1529  * write.
1530  */
1531 static int do_journal_get_write_access(handle_t *handle,
1532                                        struct buffer_head *bh)
1533 {
1534         if (!buffer_mapped(bh) || buffer_freed(bh))
1535                 return 0;
1536         return ext4_journal_get_write_access(handle, bh);
1537 }
1538
1539 /*
1540  * Truncate blocks that were not used by write. We have to truncate the
1541  * pagecache as well so that corresponding buffers get properly unmapped.
1542  */
1543 static void ext4_truncate_failed_write(struct inode *inode)
1544 {
1545         truncate_inode_pages(inode->i_mapping, inode->i_size);
1546         ext4_truncate(inode);
1547 }
1548
1549 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1550                             loff_t pos, unsigned len, unsigned flags,
1551                             struct page **pagep, void **fsdata)
1552 {
1553         struct inode *inode = mapping->host;
1554         int ret, needed_blocks;
1555         handle_t *handle;
1556         int retries = 0;
1557         struct page *page;
1558         pgoff_t index;
1559         unsigned from, to;
1560
1561         trace_ext4_write_begin(inode, pos, len, flags);
1562         /*
1563          * Reserve one block more for addition to orphan list in case
1564          * we allocate blocks but write fails for some reason
1565          */
1566         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1567         index = pos >> PAGE_CACHE_SHIFT;
1568         from = pos & (PAGE_CACHE_SIZE - 1);
1569         to = from + len;
1570
1571 retry:
1572         handle = ext4_journal_start(inode, needed_blocks);
1573         if (IS_ERR(handle)) {
1574                 ret = PTR_ERR(handle);
1575                 goto out;
1576         }
1577
1578         /* We cannot recurse into the filesystem as the transaction is already
1579          * started */
1580         flags |= AOP_FLAG_NOFS;
1581
1582         page = grab_cache_page_write_begin(mapping, index, flags);
1583         if (!page) {
1584                 ext4_journal_stop(handle);
1585                 ret = -ENOMEM;
1586                 goto out;
1587         }
1588         *pagep = page;
1589
1590         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1591                                 ext4_get_block);
1592
1593         if (!ret && ext4_should_journal_data(inode)) {
1594                 ret = walk_page_buffers(handle, page_buffers(page),
1595                                 from, to, NULL, do_journal_get_write_access);
1596         }
1597
1598         if (ret) {
1599                 unlock_page(page);
1600                 page_cache_release(page);
1601                 /*
1602                  * block_write_begin may have instantiated a few blocks
1603                  * outside i_size.  Trim these off again. Don't need
1604                  * i_size_read because we hold i_mutex.
1605                  *
1606                  * Add inode to orphan list in case we crash before
1607                  * truncate finishes
1608                  */
1609                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1610                         ext4_orphan_add(handle, inode);
1611
1612                 ext4_journal_stop(handle);
1613                 if (pos + len > inode->i_size) {
1614                         ext4_truncate_failed_write(inode);
1615                         /*
1616                          * If truncate failed early the inode might
1617                          * still be on the orphan list; we need to
1618                          * make sure the inode is removed from the
1619                          * orphan list in that case.
1620                          */
1621                         if (inode->i_nlink)
1622                                 ext4_orphan_del(NULL, inode);
1623                 }
1624         }
1625
1626         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1627                 goto retry;
1628 out:
1629         return ret;
1630 }
1631
1632 /* For write_end() in data=journal mode */
1633 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1634 {
1635         if (!buffer_mapped(bh) || buffer_freed(bh))
1636                 return 0;
1637         set_buffer_uptodate(bh);
1638         return ext4_handle_dirty_metadata(handle, NULL, bh);
1639 }
1640
1641 static int ext4_generic_write_end(struct file *file,
1642                                   struct address_space *mapping,
1643                                   loff_t pos, unsigned len, unsigned copied,
1644                                   struct page *page, void *fsdata)
1645 {
1646         int i_size_changed = 0;
1647         struct inode *inode = mapping->host;
1648         handle_t *handle = ext4_journal_current_handle();
1649
1650         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1651
1652         /*
1653          * No need to use i_size_read() here, the i_size
1654          * cannot change under us because we hold i_mutex.
1655          *
1656          * But it's important to update i_size while still holding page lock:
1657          * page writeout could otherwise come in and zero beyond i_size.
1658          */
1659         if (pos + copied > inode->i_size) {
1660                 i_size_write(inode, pos + copied);
1661                 i_size_changed = 1;
1662         }
1663
1664         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1665                 /* We need to mark inode dirty even if
1666                  * new_i_size is less that inode->i_size
1667                  * bu greater than i_disksize.(hint delalloc)
1668                  */
1669                 ext4_update_i_disksize(inode, (pos + copied));
1670                 i_size_changed = 1;
1671         }
1672         unlock_page(page);
1673         page_cache_release(page);
1674
1675         /*
1676          * Don't mark the inode dirty under page lock. First, it unnecessarily
1677          * makes the holding time of page lock longer. Second, it forces lock
1678          * ordering of page lock and transaction start for journaling
1679          * filesystems.
1680          */
1681         if (i_size_changed)
1682                 ext4_mark_inode_dirty(handle, inode);
1683
1684         return copied;
1685 }
1686
1687 /*
1688  * We need to pick up the new inode size which generic_commit_write gave us
1689  * `file' can be NULL - eg, when called from page_symlink().
1690  *
1691  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1692  * buffers are managed internally.
1693  */
1694 static int ext4_ordered_write_end(struct file *file,
1695                                   struct address_space *mapping,
1696                                   loff_t pos, unsigned len, unsigned copied,
1697                                   struct page *page, void *fsdata)
1698 {
1699         handle_t *handle = ext4_journal_current_handle();
1700         struct inode *inode = mapping->host;
1701         int ret = 0, ret2;
1702
1703         trace_ext4_ordered_write_end(inode, pos, len, copied);
1704         ret = ext4_jbd2_file_inode(handle, inode);
1705
1706         if (ret == 0) {
1707                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1708                                                         page, fsdata);
1709                 copied = ret2;
1710                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1711                         /* if we have allocated more blocks and copied
1712                          * less. We will have blocks allocated outside
1713                          * inode->i_size. So truncate them
1714                          */
1715                         ext4_orphan_add(handle, inode);
1716                 if (ret2 < 0)
1717                         ret = ret2;
1718         }
1719         ret2 = ext4_journal_stop(handle);
1720         if (!ret)
1721                 ret = ret2;
1722
1723         if (pos + len > inode->i_size) {
1724                 ext4_truncate_failed_write(inode);
1725                 /*
1726                  * If truncate failed early the inode might still be
1727                  * on the orphan list; we need to make sure the inode
1728                  * is removed from the orphan list in that case.
1729                  */
1730                 if (inode->i_nlink)
1731                         ext4_orphan_del(NULL, inode);
1732         }
1733
1734
1735         return ret ? ret : copied;
1736 }
1737
1738 static int ext4_writeback_write_end(struct file *file,
1739                                     struct address_space *mapping,
1740                                     loff_t pos, unsigned len, unsigned copied,
1741                                     struct page *page, void *fsdata)
1742 {
1743         handle_t *handle = ext4_journal_current_handle();
1744         struct inode *inode = mapping->host;
1745         int ret = 0, ret2;
1746
1747         trace_ext4_writeback_write_end(inode, pos, len, copied);
1748         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1749                                                         page, fsdata);
1750         copied = ret2;
1751         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1752                 /* if we have allocated more blocks and copied
1753                  * less. We will have blocks allocated outside
1754                  * inode->i_size. So truncate them
1755                  */
1756                 ext4_orphan_add(handle, inode);
1757
1758         if (ret2 < 0)
1759                 ret = ret2;
1760
1761         ret2 = ext4_journal_stop(handle);
1762         if (!ret)
1763                 ret = ret2;
1764
1765         if (pos + len > inode->i_size) {
1766                 ext4_truncate_failed_write(inode);
1767                 /*
1768                  * If truncate failed early the inode might still be
1769                  * on the orphan list; we need to make sure the inode
1770                  * is removed from the orphan list in that case.
1771                  */
1772                 if (inode->i_nlink)
1773                         ext4_orphan_del(NULL, inode);
1774         }
1775
1776         return ret ? ret : copied;
1777 }
1778
1779 static int ext4_journalled_write_end(struct file *file,
1780                                      struct address_space *mapping,
1781                                      loff_t pos, unsigned len, unsigned copied,
1782                                      struct page *page, void *fsdata)
1783 {
1784         handle_t *handle = ext4_journal_current_handle();
1785         struct inode *inode = mapping->host;
1786         int ret = 0, ret2;
1787         int partial = 0;
1788         unsigned from, to;
1789         loff_t new_i_size;
1790
1791         trace_ext4_journalled_write_end(inode, pos, len, copied);
1792         from = pos & (PAGE_CACHE_SIZE - 1);
1793         to = from + len;
1794
1795         if (copied < len) {
1796                 if (!PageUptodate(page))
1797                         copied = 0;
1798                 page_zero_new_buffers(page, from+copied, to);
1799         }
1800
1801         ret = walk_page_buffers(handle, page_buffers(page), from,
1802                                 to, &partial, write_end_fn);
1803         if (!partial)
1804                 SetPageUptodate(page);
1805         new_i_size = pos + copied;
1806         if (new_i_size > inode->i_size)
1807                 i_size_write(inode, pos+copied);
1808         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1809         if (new_i_size > EXT4_I(inode)->i_disksize) {
1810                 ext4_update_i_disksize(inode, new_i_size);
1811                 ret2 = ext4_mark_inode_dirty(handle, inode);
1812                 if (!ret)
1813                         ret = ret2;
1814         }
1815
1816         unlock_page(page);
1817         page_cache_release(page);
1818         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1819                 /* if we have allocated more blocks and copied
1820                  * less. We will have blocks allocated outside
1821                  * inode->i_size. So truncate them
1822                  */
1823                 ext4_orphan_add(handle, inode);
1824
1825         ret2 = ext4_journal_stop(handle);
1826         if (!ret)
1827                 ret = ret2;
1828         if (pos + len > inode->i_size) {
1829                 ext4_truncate_failed_write(inode);
1830                 /*
1831                  * If truncate failed early the inode might still be
1832                  * on the orphan list; we need to make sure the inode
1833                  * is removed from the orphan list in that case.
1834                  */
1835                 if (inode->i_nlink)
1836                         ext4_orphan_del(NULL, inode);
1837         }
1838
1839         return ret ? ret : copied;
1840 }
1841
1842 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1843 {
1844         int retries = 0;
1845         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1846         unsigned long md_needed, mdblocks, total = 0;
1847
1848         /*
1849          * recalculate the amount of metadata blocks to reserve
1850          * in order to allocate nrblocks
1851          * worse case is one extent per block
1852          */
1853 repeat:
1854         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1855         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1856         mdblocks = ext4_calc_metadata_amount(inode, total);
1857         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1858
1859         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1860         total = md_needed + nrblocks;
1861
1862         /*
1863          * Make quota reservation here to prevent quota overflow
1864          * later. Real quota accounting is done at pages writeout
1865          * time.
1866          */
1867         if (vfs_dq_reserve_block(inode, total)) {
1868                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1869                 return -EDQUOT;
1870         }
1871
1872         if (ext4_claim_free_blocks(sbi, total)) {
1873                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1874                 vfs_dq_release_reservation_block(inode, total);
1875                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1876                         yield();
1877                         goto repeat;
1878                 }
1879                 return -ENOSPC;
1880         }
1881         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1882         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1883
1884         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1885         return 0;       /* success */
1886 }
1887
1888 static void ext4_da_release_space(struct inode *inode, int to_free)
1889 {
1890         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1891         int total, mdb, mdb_free, release;
1892
1893         if (!to_free)
1894                 return;         /* Nothing to release, exit */
1895
1896         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1897
1898         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1899                 /*
1900                  * if there is no reserved blocks, but we try to free some
1901                  * then the counter is messed up somewhere.
1902                  * but since this function is called from invalidate
1903                  * page, it's harmless to return without any action
1904                  */
1905                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1906                             "blocks for inode %lu, but there is no reserved "
1907                             "data blocks\n", to_free, inode->i_ino);
1908                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1909                 return;
1910         }
1911
1912         /* recalculate the number of metablocks still need to be reserved */
1913         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1914         mdb = ext4_calc_metadata_amount(inode, total);
1915
1916         /* figure out how many metablocks to release */
1917         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1919
1920         release = to_free + mdb_free;
1921
1922         /* update fs dirty blocks counter for truncate case */
1923         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1924
1925         /* update per-inode reservations */
1926         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1927         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1928
1929         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1930         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1931         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1932
1933         vfs_dq_release_reservation_block(inode, release);
1934 }
1935
1936 static void ext4_da_page_release_reservation(struct page *page,
1937                                              unsigned long offset)
1938 {
1939         int to_release = 0;
1940         struct buffer_head *head, *bh;
1941         unsigned int curr_off = 0;
1942
1943         head = page_buffers(page);
1944         bh = head;
1945         do {
1946                 unsigned int next_off = curr_off + bh->b_size;
1947
1948                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1949                         to_release++;
1950                         clear_buffer_delay(bh);
1951                 }
1952                 curr_off = next_off;
1953         } while ((bh = bh->b_this_page) != head);
1954         ext4_da_release_space(page->mapping->host, to_release);
1955 }
1956
1957 /*
1958  * Delayed allocation stuff
1959  */
1960
1961 /*
1962  * mpage_da_submit_io - walks through extent of pages and try to write
1963  * them with writepage() call back
1964  *
1965  * @mpd->inode: inode
1966  * @mpd->first_page: first page of the extent
1967  * @mpd->next_page: page after the last page of the extent
1968  *
1969  * By the time mpage_da_submit_io() is called we expect all blocks
1970  * to be allocated. this may be wrong if allocation failed.
1971  *
1972  * As pages are already locked by write_cache_pages(), we can't use it
1973  */
1974 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1975 {
1976         long pages_skipped;
1977         struct pagevec pvec;
1978         unsigned long index, end;
1979         int ret = 0, err, nr_pages, i;
1980         struct inode *inode = mpd->inode;
1981         struct address_space *mapping = inode->i_mapping;
1982
1983         BUG_ON(mpd->next_page <= mpd->first_page);
1984         /*
1985          * We need to start from the first_page to the next_page - 1
1986          * to make sure we also write the mapped dirty buffer_heads.
1987          * If we look at mpd->b_blocknr we would only be looking
1988          * at the currently mapped buffer_heads.
1989          */
1990         index = mpd->first_page;
1991         end = mpd->next_page - 1;
1992
1993         pagevec_init(&pvec, 0);
1994         while (index <= end) {
1995                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1996                 if (nr_pages == 0)
1997                         break;
1998                 for (i = 0; i < nr_pages; i++) {
1999                         struct page *page = pvec.pages[i];
2000
2001                         index = page->index;
2002                         if (index > end)
2003                                 break;
2004                         index++;
2005
2006                         BUG_ON(!PageLocked(page));
2007                         BUG_ON(PageWriteback(page));
2008
2009                         pages_skipped = mpd->wbc->pages_skipped;
2010                         err = mapping->a_ops->writepage(page, mpd->wbc);
2011                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2012                                 /*
2013                                  * have successfully written the page
2014                                  * without skipping the same
2015                                  */
2016                                 mpd->pages_written++;
2017                         /*
2018                          * In error case, we have to continue because
2019                          * remaining pages are still locked
2020                          * XXX: unlock and re-dirty them?
2021                          */
2022                         if (ret == 0)
2023                                 ret = err;
2024                 }
2025                 pagevec_release(&pvec);
2026         }
2027         return ret;
2028 }
2029
2030 /*
2031  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2032  *
2033  * @mpd->inode - inode to walk through
2034  * @exbh->b_blocknr - first block on a disk
2035  * @exbh->b_size - amount of space in bytes
2036  * @logical - first logical block to start assignment with
2037  *
2038  * the function goes through all passed space and put actual disk
2039  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2040  */
2041 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2042                                  struct buffer_head *exbh)
2043 {
2044         struct inode *inode = mpd->inode;
2045         struct address_space *mapping = inode->i_mapping;
2046         int blocks = exbh->b_size >> inode->i_blkbits;
2047         sector_t pblock = exbh->b_blocknr, cur_logical;
2048         struct buffer_head *head, *bh;
2049         pgoff_t index, end;
2050         struct pagevec pvec;
2051         int nr_pages, i;
2052
2053         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2056
2057         pagevec_init(&pvec, 0);
2058
2059         while (index <= end) {
2060                 /* XXX: optimize tail */
2061                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2062                 if (nr_pages == 0)
2063                         break;
2064                 for (i = 0; i < nr_pages; i++) {
2065                         struct page *page = pvec.pages[i];
2066
2067                         index = page->index;
2068                         if (index > end)
2069                                 break;
2070                         index++;
2071
2072                         BUG_ON(!PageLocked(page));
2073                         BUG_ON(PageWriteback(page));
2074                         BUG_ON(!page_has_buffers(page));
2075
2076                         bh = page_buffers(page);
2077                         head = bh;
2078
2079                         /* skip blocks out of the range */
2080                         do {
2081                                 if (cur_logical >= logical)
2082                                         break;
2083                                 cur_logical++;
2084                         } while ((bh = bh->b_this_page) != head);
2085
2086                         do {
2087                                 if (cur_logical >= logical + blocks)
2088                                         break;
2089
2090                                 if (buffer_delay(bh) ||
2091                                                 buffer_unwritten(bh)) {
2092
2093                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2094
2095                                         if (buffer_delay(bh)) {
2096                                                 clear_buffer_delay(bh);
2097                                                 bh->b_blocknr = pblock;
2098                                         } else {
2099                                                 /*
2100                                                  * unwritten already should have
2101                                                  * blocknr assigned. Verify that
2102                                                  */
2103                                                 clear_buffer_unwritten(bh);
2104                                                 BUG_ON(bh->b_blocknr != pblock);
2105                                         }
2106
2107                                 } else if (buffer_mapped(bh))
2108                                         BUG_ON(bh->b_blocknr != pblock);
2109
2110                                 cur_logical++;
2111                                 pblock++;
2112                         } while ((bh = bh->b_this_page) != head);
2113                 }
2114                 pagevec_release(&pvec);
2115         }
2116 }
2117
2118
2119 /*
2120  * __unmap_underlying_blocks - just a helper function to unmap
2121  * set of blocks described by @bh
2122  */
2123 static inline void __unmap_underlying_blocks(struct inode *inode,
2124                                              struct buffer_head *bh)
2125 {
2126         struct block_device *bdev = inode->i_sb->s_bdev;
2127         int blocks, i;
2128
2129         blocks = bh->b_size >> inode->i_blkbits;
2130         for (i = 0; i < blocks; i++)
2131                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2132 }
2133
2134 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2135                                         sector_t logical, long blk_cnt)
2136 {
2137         int nr_pages, i;
2138         pgoff_t index, end;
2139         struct pagevec pvec;
2140         struct inode *inode = mpd->inode;
2141         struct address_space *mapping = inode->i_mapping;
2142
2143         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2144         end   = (logical + blk_cnt - 1) >>
2145                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2146         while (index <= end) {
2147                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2148                 if (nr_pages == 0)
2149                         break;
2150                 for (i = 0; i < nr_pages; i++) {
2151                         struct page *page = pvec.pages[i];
2152                         index = page->index;
2153                         if (index > end)
2154                                 break;
2155                         index++;
2156
2157                         BUG_ON(!PageLocked(page));
2158                         BUG_ON(PageWriteback(page));
2159                         block_invalidatepage(page, 0);
2160                         ClearPageUptodate(page);
2161                         unlock_page(page);
2162                 }
2163         }
2164         return;
2165 }
2166
2167 static void ext4_print_free_blocks(struct inode *inode)
2168 {
2169         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2170         printk(KERN_CRIT "Total free blocks count %lld\n",
2171                ext4_count_free_blocks(inode->i_sb));
2172         printk(KERN_CRIT "Free/Dirty block details\n");
2173         printk(KERN_CRIT "free_blocks=%lld\n",
2174                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2175         printk(KERN_CRIT "dirty_blocks=%lld\n",
2176                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2177         printk(KERN_CRIT "Block reservation details\n");
2178         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2179                EXT4_I(inode)->i_reserved_data_blocks);
2180         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2181                EXT4_I(inode)->i_reserved_meta_blocks);
2182         return;
2183 }
2184
2185 /*
2186  * mpage_da_map_blocks - go through given space
2187  *
2188  * @mpd - bh describing space
2189  *
2190  * The function skips space we know is already mapped to disk blocks.
2191  *
2192  */
2193 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2194 {
2195         int err, blks, get_blocks_flags;
2196         struct buffer_head new;
2197         sector_t next = mpd->b_blocknr;
2198         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2199         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2200         handle_t *handle = NULL;
2201
2202         /*
2203          * We consider only non-mapped and non-allocated blocks
2204          */
2205         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2206                 !(mpd->b_state & (1 << BH_Delay)) &&
2207                 !(mpd->b_state & (1 << BH_Unwritten)))
2208                 return 0;
2209
2210         /*
2211          * If we didn't accumulate anything to write simply return
2212          */
2213         if (!mpd->b_size)
2214                 return 0;
2215
2216         handle = ext4_journal_current_handle();
2217         BUG_ON(!handle);
2218
2219         /*
2220          * Call ext4_get_blocks() to allocate any delayed allocation
2221          * blocks, or to convert an uninitialized extent to be
2222          * initialized (in the case where we have written into
2223          * one or more preallocated blocks).
2224          *
2225          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2226          * indicate that we are on the delayed allocation path.  This
2227          * affects functions in many different parts of the allocation
2228          * call path.  This flag exists primarily because we don't
2229          * want to change *many* call functions, so ext4_get_blocks()
2230          * will set the magic i_delalloc_reserved_flag once the
2231          * inode's allocation semaphore is taken.
2232          *
2233          * If the blocks in questions were delalloc blocks, set
2234          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2235          * variables are updated after the blocks have been allocated.
2236          */
2237         new.b_state = 0;
2238         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2239                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2240         if (mpd->b_state & (1 << BH_Delay))
2241                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2242         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2243                                &new, get_blocks_flags);
2244         if (blks < 0) {
2245                 err = blks;
2246                 /*
2247                  * If get block returns with error we simply
2248                  * return. Later writepage will redirty the page and
2249                  * writepages will find the dirty page again
2250                  */
2251                 if (err == -EAGAIN)
2252                         return 0;
2253
2254                 if (err == -ENOSPC &&
2255                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2256                         mpd->retval = err;
2257                         return 0;
2258                 }
2259
2260                 /*
2261                  * get block failure will cause us to loop in
2262                  * writepages, because a_ops->writepage won't be able
2263                  * to make progress. The page will be redirtied by
2264                  * writepage and writepages will again try to write
2265                  * the same.
2266                  */
2267                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2268                          "delayed block allocation failed for inode %lu at "
2269                          "logical offset %llu with max blocks %zd with "
2270                          "error %d\n", mpd->inode->i_ino,
2271                          (unsigned long long) next,
2272                          mpd->b_size >> mpd->inode->i_blkbits, err);
2273                 printk(KERN_CRIT "This should not happen!!  "
2274                        "Data will be lost\n");
2275                 if (err == -ENOSPC) {
2276                         ext4_print_free_blocks(mpd->inode);
2277                 }
2278                 /* invalidate all the pages */
2279                 ext4_da_block_invalidatepages(mpd, next,
2280                                 mpd->b_size >> mpd->inode->i_blkbits);
2281                 return err;
2282         }
2283         BUG_ON(blks == 0);
2284
2285         new.b_size = (blks << mpd->inode->i_blkbits);
2286
2287         if (buffer_new(&new))
2288                 __unmap_underlying_blocks(mpd->inode, &new);
2289
2290         /*
2291          * If blocks are delayed marked, we need to
2292          * put actual blocknr and drop delayed bit
2293          */
2294         if ((mpd->b_state & (1 << BH_Delay)) ||
2295             (mpd->b_state & (1 << BH_Unwritten)))
2296                 mpage_put_bnr_to_bhs(mpd, next, &new);
2297
2298         if (ext4_should_order_data(mpd->inode)) {
2299                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2300                 if (err)
2301                         return err;
2302         }
2303
2304         /*
2305          * Update on-disk size along with block allocation.
2306          */
2307         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2308         if (disksize > i_size_read(mpd->inode))
2309                 disksize = i_size_read(mpd->inode);
2310         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2311                 ext4_update_i_disksize(mpd->inode, disksize);
2312                 return ext4_mark_inode_dirty(handle, mpd->inode);
2313         }
2314
2315         return 0;
2316 }
2317
2318 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2319                 (1 << BH_Delay) | (1 << BH_Unwritten))
2320
2321 /*
2322  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2323  *
2324  * @mpd->lbh - extent of blocks
2325  * @logical - logical number of the block in the file
2326  * @bh - bh of the block (used to access block's state)
2327  *
2328  * the function is used to collect contig. blocks in same state
2329  */
2330 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2331                                    sector_t logical, size_t b_size,
2332                                    unsigned long b_state)
2333 {
2334         sector_t next;
2335         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2336
2337         /* check if thereserved journal credits might overflow */
2338         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2339                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2340                         /*
2341                          * With non-extent format we are limited by the journal
2342                          * credit available.  Total credit needed to insert
2343                          * nrblocks contiguous blocks is dependent on the
2344                          * nrblocks.  So limit nrblocks.
2345                          */
2346                         goto flush_it;
2347                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2348                                 EXT4_MAX_TRANS_DATA) {
2349                         /*
2350                          * Adding the new buffer_head would make it cross the
2351                          * allowed limit for which we have journal credit
2352                          * reserved. So limit the new bh->b_size
2353                          */
2354                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2355                                                 mpd->inode->i_blkbits;
2356                         /* we will do mpage_da_submit_io in the next loop */
2357                 }
2358         }
2359         /*
2360          * First block in the extent
2361          */
2362         if (mpd->b_size == 0) {
2363                 mpd->b_blocknr = logical;
2364                 mpd->b_size = b_size;
2365                 mpd->b_state = b_state & BH_FLAGS;
2366                 return;
2367         }
2368
2369         next = mpd->b_blocknr + nrblocks;
2370         /*
2371          * Can we merge the block to our big extent?
2372          */
2373         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2374                 mpd->b_size += b_size;
2375                 return;
2376         }
2377
2378 flush_it:
2379         /*
2380          * We couldn't merge the block to our extent, so we
2381          * need to flush current  extent and start new one
2382          */
2383         if (mpage_da_map_blocks(mpd) == 0)
2384                 mpage_da_submit_io(mpd);
2385         mpd->io_done = 1;
2386         return;
2387 }
2388
2389 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2390 {
2391         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2392 }
2393
2394 /*
2395  * __mpage_da_writepage - finds extent of pages and blocks
2396  *
2397  * @page: page to consider
2398  * @wbc: not used, we just follow rules
2399  * @data: context
2400  *
2401  * The function finds extents of pages and scan them for all blocks.
2402  */
2403 static int __mpage_da_writepage(struct page *page,
2404                                 struct writeback_control *wbc, void *data)
2405 {
2406         struct mpage_da_data *mpd = data;
2407         struct inode *inode = mpd->inode;
2408         struct buffer_head *bh, *head;
2409         sector_t logical;
2410
2411         if (mpd->io_done) {
2412                 /*
2413                  * Rest of the page in the page_vec
2414                  * redirty then and skip then. We will
2415                  * try to write them again after
2416                  * starting a new transaction
2417                  */
2418                 redirty_page_for_writepage(wbc, page);
2419                 unlock_page(page);
2420                 return MPAGE_DA_EXTENT_TAIL;
2421         }
2422         /*
2423          * Can we merge this page to current extent?
2424          */
2425         if (mpd->next_page != page->index) {
2426                 /*
2427                  * Nope, we can't. So, we map non-allocated blocks
2428                  * and start IO on them using writepage()
2429                  */
2430                 if (mpd->next_page != mpd->first_page) {
2431                         if (mpage_da_map_blocks(mpd) == 0)
2432                                 mpage_da_submit_io(mpd);
2433                         /*
2434                          * skip rest of the page in the page_vec
2435                          */
2436                         mpd->io_done = 1;
2437                         redirty_page_for_writepage(wbc, page);
2438                         unlock_page(page);
2439                         return MPAGE_DA_EXTENT_TAIL;
2440                 }
2441
2442                 /*
2443                  * Start next extent of pages ...
2444                  */
2445                 mpd->first_page = page->index;
2446
2447                 /*
2448                  * ... and blocks
2449                  */
2450                 mpd->b_size = 0;
2451                 mpd->b_state = 0;
2452                 mpd->b_blocknr = 0;
2453         }
2454
2455         mpd->next_page = page->index + 1;
2456         logical = (sector_t) page->index <<
2457                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2458
2459         if (!page_has_buffers(page)) {
2460                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2461                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2462                 if (mpd->io_done)
2463                         return MPAGE_DA_EXTENT_TAIL;
2464         } else {
2465                 /*
2466                  * Page with regular buffer heads, just add all dirty ones
2467                  */
2468                 head = page_buffers(page);
2469                 bh = head;
2470                 do {
2471                         BUG_ON(buffer_locked(bh));
2472                         /*
2473                          * We need to try to allocate
2474                          * unmapped blocks in the same page.
2475                          * Otherwise we won't make progress
2476                          * with the page in ext4_writepage
2477                          */
2478                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2479                                 mpage_add_bh_to_extent(mpd, logical,
2480                                                        bh->b_size,
2481                                                        bh->b_state);
2482                                 if (mpd->io_done)
2483                                         return MPAGE_DA_EXTENT_TAIL;
2484                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2485                                 /*
2486                                  * mapped dirty buffer. We need to update
2487                                  * the b_state because we look at
2488                                  * b_state in mpage_da_map_blocks. We don't
2489                                  * update b_size because if we find an
2490                                  * unmapped buffer_head later we need to
2491                                  * use the b_state flag of that buffer_head.
2492                                  */
2493                                 if (mpd->b_size == 0)
2494                                         mpd->b_state = bh->b_state & BH_FLAGS;
2495                         }
2496                         logical++;
2497                 } while ((bh = bh->b_this_page) != head);
2498         }
2499
2500         return 0;
2501 }
2502
2503 /*
2504  * This is a special get_blocks_t callback which is used by
2505  * ext4_da_write_begin().  It will either return mapped block or
2506  * reserve space for a single block.
2507  *
2508  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2509  * We also have b_blocknr = -1 and b_bdev initialized properly
2510  *
2511  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2512  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2513  * initialized properly.
2514  */
2515 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2516                                   struct buffer_head *bh_result, int create)
2517 {
2518         int ret = 0;
2519         sector_t invalid_block = ~((sector_t) 0xffff);
2520
2521         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2522                 invalid_block = ~0;
2523
2524         BUG_ON(create == 0);
2525         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2526
2527         /*
2528          * first, we need to know whether the block is allocated already
2529          * preallocated blocks are unmapped but should treated
2530          * the same as allocated blocks.
2531          */
2532         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2533         if ((ret == 0) && !buffer_delay(bh_result)) {
2534                 /* the block isn't (pre)allocated yet, let's reserve space */
2535                 /*
2536                  * XXX: __block_prepare_write() unmaps passed block,
2537                  * is it OK?
2538                  */
2539                 ret = ext4_da_reserve_space(inode, 1);
2540                 if (ret)
2541                         /* not enough space to reserve */
2542                         return ret;
2543
2544                 map_bh(bh_result, inode->i_sb, invalid_block);
2545                 set_buffer_new(bh_result);
2546                 set_buffer_delay(bh_result);
2547         } else if (ret > 0) {
2548                 bh_result->b_size = (ret << inode->i_blkbits);
2549                 if (buffer_unwritten(bh_result)) {
2550                         /* A delayed write to unwritten bh should
2551                          * be marked new and mapped.  Mapped ensures
2552                          * that we don't do get_block multiple times
2553                          * when we write to the same offset and new
2554                          * ensures that we do proper zero out for
2555                          * partial write.
2556                          */
2557                         set_buffer_new(bh_result);
2558                         set_buffer_mapped(bh_result);
2559                 }
2560                 ret = 0;
2561         }
2562
2563         return ret;
2564 }
2565
2566 /*
2567  * This function is used as a standard get_block_t calback function
2568  * when there is no desire to allocate any blocks.  It is used as a
2569  * callback function for block_prepare_write(), nobh_writepage(), and
2570  * block_write_full_page().  These functions should only try to map a
2571  * single block at a time.
2572  *
2573  * Since this function doesn't do block allocations even if the caller
2574  * requests it by passing in create=1, it is critically important that
2575  * any caller checks to make sure that any buffer heads are returned
2576  * by this function are either all already mapped or marked for
2577  * delayed allocation before calling nobh_writepage() or
2578  * block_write_full_page().  Otherwise, b_blocknr could be left
2579  * unitialized, and the page write functions will be taken by
2580  * surprise.
2581  */
2582 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2583                                    struct buffer_head *bh_result, int create)
2584 {
2585         int ret = 0;
2586         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2587
2588         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2589
2590         /*
2591          * we don't want to do block allocation in writepage
2592          * so call get_block_wrap with create = 0
2593          */
2594         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2595         if (ret > 0) {
2596                 bh_result->b_size = (ret << inode->i_blkbits);
2597                 ret = 0;
2598         }
2599         return ret;
2600 }
2601
2602 static int bget_one(handle_t *handle, struct buffer_head *bh)
2603 {
2604         get_bh(bh);
2605         return 0;
2606 }
2607
2608 static int bput_one(handle_t *handle, struct buffer_head *bh)
2609 {
2610         put_bh(bh);
2611         return 0;
2612 }
2613
2614 static int __ext4_journalled_writepage(struct page *page,
2615                                        struct writeback_control *wbc,
2616                                        unsigned int len)
2617 {
2618         struct address_space *mapping = page->mapping;
2619         struct inode *inode = mapping->host;
2620         struct buffer_head *page_bufs;
2621         handle_t *handle = NULL;
2622         int ret = 0;
2623         int err;
2624
2625         page_bufs = page_buffers(page);
2626         BUG_ON(!page_bufs);
2627         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2628         /* As soon as we unlock the page, it can go away, but we have
2629          * references to buffers so we are safe */
2630         unlock_page(page);
2631
2632         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2633         if (IS_ERR(handle)) {
2634                 ret = PTR_ERR(handle);
2635                 goto out;
2636         }
2637
2638         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2639                                 do_journal_get_write_access);
2640
2641         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2642                                 write_end_fn);
2643         if (ret == 0)
2644                 ret = err;
2645         err = ext4_journal_stop(handle);
2646         if (!ret)
2647                 ret = err;
2648
2649         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2650         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2651 out:
2652         return ret;
2653 }
2654
2655 /*
2656  * Note that we don't need to start a transaction unless we're journaling data
2657  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2658  * need to file the inode to the transaction's list in ordered mode because if
2659  * we are writing back data added by write(), the inode is already there and if
2660  * we are writing back data modified via mmap(), noone guarantees in which
2661  * transaction the data will hit the disk. In case we are journaling data, we
2662  * cannot start transaction directly because transaction start ranks above page
2663  * lock so we have to do some magic.
2664  *
2665  * This function can get called via...
2666  *   - ext4_da_writepages after taking page lock (have journal handle)
2667  *   - journal_submit_inode_data_buffers (no journal handle)
2668  *   - shrink_page_list via pdflush (no journal handle)
2669  *   - grab_page_cache when doing write_begin (have journal handle)
2670  *
2671  * We don't do any block allocation in this function. If we have page with
2672  * multiple blocks we need to write those buffer_heads that are mapped. This
2673  * is important for mmaped based write. So if we do with blocksize 1K
2674  * truncate(f, 1024);
2675  * a = mmap(f, 0, 4096);
2676  * a[0] = 'a';
2677  * truncate(f, 4096);
2678  * we have in the page first buffer_head mapped via page_mkwrite call back
2679  * but other bufer_heads would be unmapped but dirty(dirty done via the
2680  * do_wp_page). So writepage should write the first block. If we modify
2681  * the mmap area beyond 1024 we will again get a page_fault and the
2682  * page_mkwrite callback will do the block allocation and mark the
2683  * buffer_heads mapped.
2684  *
2685  * We redirty the page if we have any buffer_heads that is either delay or
2686  * unwritten in the page.
2687  *
2688  * We can get recursively called as show below.
2689  *
2690  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2691  *              ext4_writepage()
2692  *
2693  * But since we don't do any block allocation we should not deadlock.
2694  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2695  */
2696 static int ext4_writepage(struct page *page,
2697                           struct writeback_control *wbc)
2698 {
2699         int ret = 0;
2700         loff_t size;
2701         unsigned int len;
2702         struct buffer_head *page_bufs;
2703         struct inode *inode = page->mapping->host;
2704
2705         trace_ext4_writepage(inode, page);
2706         size = i_size_read(inode);
2707         if (page->index == size >> PAGE_CACHE_SHIFT)
2708                 len = size & ~PAGE_CACHE_MASK;
2709         else
2710                 len = PAGE_CACHE_SIZE;
2711
2712         if (page_has_buffers(page)) {
2713                 page_bufs = page_buffers(page);
2714                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2715                                         ext4_bh_delay_or_unwritten)) {
2716                         /*
2717                          * We don't want to do  block allocation
2718                          * So redirty the page and return
2719                          * We may reach here when we do a journal commit
2720                          * via journal_submit_inode_data_buffers.
2721                          * If we don't have mapping block we just ignore
2722                          * them. We can also reach here via shrink_page_list
2723                          */
2724                         redirty_page_for_writepage(wbc, page);
2725                         unlock_page(page);
2726                         return 0;
2727                 }
2728         } else {
2729                 /*
2730                  * The test for page_has_buffers() is subtle:
2731                  * We know the page is dirty but it lost buffers. That means
2732                  * that at some moment in time after write_begin()/write_end()
2733                  * has been called all buffers have been clean and thus they
2734                  * must have been written at least once. So they are all
2735                  * mapped and we can happily proceed with mapping them
2736                  * and writing the page.
2737                  *
2738                  * Try to initialize the buffer_heads and check whether
2739                  * all are mapped and non delay. We don't want to
2740                  * do block allocation here.
2741                  */
2742                 ret = block_prepare_write(page, 0, len,
2743                                           noalloc_get_block_write);
2744                 if (!ret) {
2745                         page_bufs = page_buffers(page);
2746                         /* check whether all are mapped and non delay */
2747                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2748                                                 ext4_bh_delay_or_unwritten)) {
2749                                 redirty_page_for_writepage(wbc, page);
2750                                 unlock_page(page);
2751                                 return 0;
2752                         }
2753                 } else {
2754                         /*
2755                          * We can't do block allocation here
2756                          * so just redity the page and unlock
2757                          * and return
2758                          */
2759                         redirty_page_for_writepage(wbc, page);
2760                         unlock_page(page);
2761                         return 0;
2762                 }
2763                 /* now mark the buffer_heads as dirty and uptodate */
2764                 block_commit_write(page, 0, len);
2765         }
2766
2767         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2768                 /*
2769                  * It's mmapped pagecache.  Add buffers and journal it.  There
2770                  * doesn't seem much point in redirtying the page here.
2771                  */
2772                 ClearPageChecked(page);
2773                 return __ext4_journalled_writepage(page, wbc, len);
2774         }
2775
2776         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2777                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2778         else
2779                 ret = block_write_full_page(page, noalloc_get_block_write,
2780                                             wbc);
2781
2782         return ret;
2783 }
2784
2785 /*
2786  * This is called via ext4_da_writepages() to
2787  * calulate the total number of credits to reserve to fit
2788  * a single extent allocation into a single transaction,
2789  * ext4_da_writpeages() will loop calling this before
2790  * the block allocation.
2791  */
2792
2793 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2794 {
2795         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2796
2797         /*
2798          * With non-extent format the journal credit needed to
2799          * insert nrblocks contiguous block is dependent on
2800          * number of contiguous block. So we will limit
2801          * number of contiguous block to a sane value
2802          */
2803         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2804             (max_blocks > EXT4_MAX_TRANS_DATA))
2805                 max_blocks = EXT4_MAX_TRANS_DATA;
2806
2807         return ext4_chunk_trans_blocks(inode, max_blocks);
2808 }
2809
2810 static int ext4_da_writepages(struct address_space *mapping,
2811                               struct writeback_control *wbc)
2812 {
2813         pgoff_t index;
2814         int range_whole = 0;
2815         handle_t *handle = NULL;
2816         struct mpage_da_data mpd;
2817         struct inode *inode = mapping->host;
2818         int no_nrwrite_index_update;
2819         int pages_written = 0;
2820         long pages_skipped;
2821         unsigned int max_pages;
2822         int range_cyclic, cycled = 1, io_done = 0;
2823         int needed_blocks, ret = 0;
2824         long desired_nr_to_write, nr_to_writebump = 0;
2825         loff_t range_start = wbc->range_start;
2826         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2827
2828         trace_ext4_da_writepages(inode, wbc);
2829
2830         /*
2831          * No pages to write? This is mainly a kludge to avoid starting
2832          * a transaction for special inodes like journal inode on last iput()
2833          * because that could violate lock ordering on umount
2834          */
2835         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2836                 return 0;
2837
2838         /*
2839          * If the filesystem has aborted, it is read-only, so return
2840          * right away instead of dumping stack traces later on that
2841          * will obscure the real source of the problem.  We test
2842          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2843          * the latter could be true if the filesystem is mounted
2844          * read-only, and in that case, ext4_da_writepages should
2845          * *never* be called, so if that ever happens, we would want
2846          * the stack trace.
2847          */
2848         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2849                 return -EROFS;
2850
2851         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2852                 range_whole = 1;
2853
2854         range_cyclic = wbc->range_cyclic;
2855         if (wbc->range_cyclic) {
2856                 index = mapping->writeback_index;
2857                 if (index)
2858                         cycled = 0;
2859                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2860                 wbc->range_end  = LLONG_MAX;
2861                 wbc->range_cyclic = 0;
2862         } else
2863                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2864
2865         /*
2866          * This works around two forms of stupidity.  The first is in
2867          * the writeback code, which caps the maximum number of pages
2868          * written to be 1024 pages.  This is wrong on multiple
2869          * levels; different architectues have a different page size,
2870          * which changes the maximum amount of data which gets
2871          * written.  Secondly, 4 megabytes is way too small.  XFS
2872          * forces this value to be 16 megabytes by multiplying
2873          * nr_to_write parameter by four, and then relies on its
2874          * allocator to allocate larger extents to make them
2875          * contiguous.  Unfortunately this brings us to the second
2876          * stupidity, which is that ext4's mballoc code only allocates
2877          * at most 2048 blocks.  So we force contiguous writes up to
2878          * the number of dirty blocks in the inode, or
2879          * sbi->max_writeback_mb_bump whichever is smaller.
2880          */
2881         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2882         if (!range_cyclic && range_whole)
2883                 desired_nr_to_write = wbc->nr_to_write * 8;
2884         else
2885                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2886                                                            max_pages);
2887         if (desired_nr_to_write > max_pages)
2888                 desired_nr_to_write = max_pages;
2889
2890         if (wbc->nr_to_write < desired_nr_to_write) {
2891                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2892                 wbc->nr_to_write = desired_nr_to_write;
2893         }
2894
2895         mpd.wbc = wbc;
2896         mpd.inode = mapping->host;
2897
2898         /*
2899          * we don't want write_cache_pages to update
2900          * nr_to_write and writeback_index
2901          */
2902         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2903         wbc->no_nrwrite_index_update = 1;
2904         pages_skipped = wbc->pages_skipped;
2905
2906 retry:
2907         while (!ret && wbc->nr_to_write > 0) {
2908
2909                 /*
2910                  * we  insert one extent at a time. So we need
2911                  * credit needed for single extent allocation.
2912                  * journalled mode is currently not supported
2913                  * by delalloc
2914                  */
2915                 BUG_ON(ext4_should_journal_data(inode));
2916                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2917
2918                 /* start a new transaction*/
2919                 handle = ext4_journal_start(inode, needed_blocks);
2920                 if (IS_ERR(handle)) {
2921                         ret = PTR_ERR(handle);
2922                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2923                                "%ld pages, ino %lu; err %d\n", __func__,
2924                                 wbc->nr_to_write, inode->i_ino, ret);
2925                         goto out_writepages;
2926                 }
2927
2928                 /*
2929                  * Now call __mpage_da_writepage to find the next
2930                  * contiguous region of logical blocks that need
2931                  * blocks to be allocated by ext4.  We don't actually
2932                  * submit the blocks for I/O here, even though
2933                  * write_cache_pages thinks it will, and will set the
2934                  * pages as clean for write before calling
2935                  * __mpage_da_writepage().
2936                  */
2937                 mpd.b_size = 0;
2938                 mpd.b_state = 0;
2939                 mpd.b_blocknr = 0;
2940                 mpd.first_page = 0;
2941                 mpd.next_page = 0;
2942                 mpd.io_done = 0;
2943                 mpd.pages_written = 0;
2944                 mpd.retval = 0;
2945                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2946                                         &mpd);
2947                 /*
2948                  * If we have a contigous extent of pages and we
2949                  * haven't done the I/O yet, map the blocks and submit
2950                  * them for I/O.
2951                  */
2952                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2953                         if (mpage_da_map_blocks(&mpd) == 0)
2954                                 mpage_da_submit_io(&mpd);
2955                         mpd.io_done = 1;
2956                         ret = MPAGE_DA_EXTENT_TAIL;
2957                 }
2958                 trace_ext4_da_write_pages(inode, &mpd);
2959                 wbc->nr_to_write -= mpd.pages_written;
2960
2961                 ext4_journal_stop(handle);
2962
2963                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2964                         /* commit the transaction which would
2965                          * free blocks released in the transaction
2966                          * and try again
2967                          */
2968                         jbd2_journal_force_commit_nested(sbi->s_journal);
2969                         wbc->pages_skipped = pages_skipped;
2970                         ret = 0;
2971                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2972                         /*
2973                          * got one extent now try with
2974                          * rest of the pages
2975                          */
2976                         pages_written += mpd.pages_written;
2977                         wbc->pages_skipped = pages_skipped;
2978                         ret = 0;
2979                         io_done = 1;
2980                 } else if (wbc->nr_to_write)
2981                         /*
2982                          * There is no more writeout needed
2983                          * or we requested for a noblocking writeout
2984                          * and we found the device congested
2985                          */
2986                         break;
2987         }
2988         if (!io_done && !cycled) {
2989                 cycled = 1;
2990                 index = 0;
2991                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2992                 wbc->range_end  = mapping->writeback_index - 1;
2993                 goto retry;
2994         }
2995         if (pages_skipped != wbc->pages_skipped)
2996                 ext4_msg(inode->i_sb, KERN_CRIT,
2997                          "This should not happen leaving %s "
2998                          "with nr_to_write = %ld ret = %d\n",
2999                          __func__, wbc->nr_to_write, ret);
3000
3001         /* Update index */
3002         index += pages_written;
3003         wbc->range_cyclic = range_cyclic;
3004         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3005                 /*
3006                  * set the writeback_index so that range_cyclic
3007                  * mode will write it back later
3008                  */
3009                 mapping->writeback_index = index;
3010
3011 out_writepages:
3012         if (!no_nrwrite_index_update)
3013                 wbc->no_nrwrite_index_update = 0;
3014         if (wbc->nr_to_write > nr_to_writebump)
3015                 wbc->nr_to_write -= nr_to_writebump;
3016         wbc->range_start = range_start;
3017         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3018         return ret;
3019 }
3020
3021 #define FALL_BACK_TO_NONDELALLOC 1
3022 static int ext4_nonda_switch(struct super_block *sb)
3023 {
3024         s64 free_blocks, dirty_blocks;
3025         struct ext4_sb_info *sbi = EXT4_SB(sb);
3026
3027         /*
3028          * switch to non delalloc mode if we are running low
3029          * on free block. The free block accounting via percpu
3030          * counters can get slightly wrong with percpu_counter_batch getting
3031          * accumulated on each CPU without updating global counters
3032          * Delalloc need an accurate free block accounting. So switch
3033          * to non delalloc when we are near to error range.
3034          */
3035         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3036         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3037         if (2 * free_blocks < 3 * dirty_blocks ||
3038                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3039                 /*
3040                  * free block count is less that 150% of dirty blocks
3041                  * or free blocks is less that watermark
3042                  */
3043                 return 1;
3044         }
3045         return 0;
3046 }
3047
3048 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3049                                loff_t pos, unsigned len, unsigned flags,
3050                                struct page **pagep, void **fsdata)
3051 {
3052         int ret, retries = 0;
3053         struct page *page;
3054         pgoff_t index;
3055         unsigned from, to;
3056         struct inode *inode = mapping->host;
3057         handle_t *handle;
3058
3059         index = pos >> PAGE_CACHE_SHIFT;
3060         from = pos & (PAGE_CACHE_SIZE - 1);
3061         to = from + len;
3062
3063         if (ext4_nonda_switch(inode->i_sb)) {
3064                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3065                 return ext4_write_begin(file, mapping, pos,
3066                                         len, flags, pagep, fsdata);
3067         }
3068         *fsdata = (void *)0;
3069         trace_ext4_da_write_begin(inode, pos, len, flags);
3070 retry:
3071         /*
3072          * With delayed allocation, we don't log the i_disksize update
3073          * if there is delayed block allocation. But we still need
3074          * to journalling the i_disksize update if writes to the end
3075          * of file which has an already mapped buffer.
3076          */
3077         handle = ext4_journal_start(inode, 1);
3078         if (IS_ERR(handle)) {
3079                 ret = PTR_ERR(handle);
3080                 goto out;
3081         }
3082         /* We cannot recurse into the filesystem as the transaction is already
3083          * started */
3084         flags |= AOP_FLAG_NOFS;
3085
3086         page = grab_cache_page_write_begin(mapping, index, flags);
3087         if (!page) {
3088                 ext4_journal_stop(handle);
3089                 ret = -ENOMEM;
3090                 goto out;
3091         }
3092         *pagep = page;
3093
3094         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3095                                 ext4_da_get_block_prep);
3096         if (ret < 0) {
3097                 unlock_page(page);
3098                 ext4_journal_stop(handle);
3099                 page_cache_release(page);
3100                 /*
3101                  * block_write_begin may have instantiated a few blocks
3102                  * outside i_size.  Trim these off again. Don't need
3103                  * i_size_read because we hold i_mutex.
3104                  */
3105                 if (pos + len > inode->i_size)
3106                         ext4_truncate_failed_write(inode);
3107         }
3108
3109         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3110                 goto retry;
3111 out:
3112         return ret;
3113 }
3114
3115 /*
3116  * Check if we should update i_disksize
3117  * when write to the end of file but not require block allocation
3118  */
3119 static int ext4_da_should_update_i_disksize(struct page *page,
3120                                             unsigned long offset)
3121 {
3122         struct buffer_head *bh;
3123         struct inode *inode = page->mapping->host;
3124         unsigned int idx;
3125         int i;
3126
3127         bh = page_buffers(page);
3128         idx = offset >> inode->i_blkbits;
3129
3130         for (i = 0; i < idx; i++)
3131                 bh = bh->b_this_page;
3132
3133         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3134                 return 0;
3135         return 1;
3136 }
3137
3138 static int ext4_da_write_end(struct file *file,
3139                              struct address_space *mapping,
3140                              loff_t pos, unsigned len, unsigned copied,
3141                              struct page *page, void *fsdata)
3142 {
3143         struct inode *inode = mapping->host;
3144         int ret = 0, ret2;
3145         handle_t *handle = ext4_journal_current_handle();
3146         loff_t new_i_size;
3147         unsigned long start, end;
3148         int write_mode = (int)(unsigned long)fsdata;
3149
3150         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3151                 if (ext4_should_order_data(inode)) {
3152                         return ext4_ordered_write_end(file, mapping, pos,
3153                                         len, copied, page, fsdata);
3154                 } else if (ext4_should_writeback_data(inode)) {
3155                         return ext4_writeback_write_end(file, mapping, pos,
3156                                         len, copied, page, fsdata);
3157                 } else {
3158                         BUG();
3159                 }
3160         }
3161
3162         trace_ext4_da_write_end(inode, pos, len, copied);
3163         start = pos & (PAGE_CACHE_SIZE - 1);
3164         end = start + copied - 1;
3165
3166         /*
3167          * generic_write_end() will run mark_inode_dirty() if i_size
3168          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3169          * into that.
3170          */
3171
3172         new_i_size = pos + copied;
3173         if (new_i_size > EXT4_I(inode)->i_disksize) {
3174                 if (ext4_da_should_update_i_disksize(page, end)) {
3175                         down_write(&EXT4_I(inode)->i_data_sem);
3176                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3177                                 /*
3178                                  * Updating i_disksize when extending file
3179                                  * without needing block allocation
3180                                  */
3181                                 if (ext4_should_order_data(inode))
3182                                         ret = ext4_jbd2_file_inode(handle,
3183                                                                    inode);
3184
3185                                 EXT4_I(inode)->i_disksize = new_i_size;
3186                         }
3187                         up_write(&EXT4_I(inode)->i_data_sem);
3188                         /* We need to mark inode dirty even if
3189                          * new_i_size is less that inode->i_size
3190                          * bu greater than i_disksize.(hint delalloc)
3191                          */
3192                         ext4_mark_inode_dirty(handle, inode);
3193                 }
3194         }
3195         ret2 = generic_write_end(file, mapping, pos, len, copied,
3196                                                         page, fsdata);
3197         copied = ret2;
3198         if (ret2 < 0)
3199                 ret = ret2;
3200         ret2 = ext4_journal_stop(handle);
3201         if (!ret)
3202                 ret = ret2;
3203
3204         return ret ? ret : copied;
3205 }
3206
3207 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3208 {
3209         /*
3210          * Drop reserved blocks
3211          */
3212         BUG_ON(!PageLocked(page));
3213         if (!page_has_buffers(page))
3214                 goto out;
3215
3216         ext4_da_page_release_reservation(page, offset);
3217
3218 out:
3219         ext4_invalidatepage(page, offset);
3220
3221         return;
3222 }
3223
3224 /*
3225  * Force all delayed allocation blocks to be allocated for a given inode.
3226  */
3227 int ext4_alloc_da_blocks(struct inode *inode)
3228 {
3229         trace_ext4_alloc_da_blocks(inode);
3230
3231         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3232             !EXT4_I(inode)->i_reserved_meta_blocks)
3233                 return 0;
3234
3235         /*
3236          * We do something simple for now.  The filemap_flush() will
3237          * also start triggering a write of the data blocks, which is
3238          * not strictly speaking necessary (and for users of
3239          * laptop_mode, not even desirable).  However, to do otherwise
3240          * would require replicating code paths in:
3241          *
3242          * ext4_da_writepages() ->
3243          *    write_cache_pages() ---> (via passed in callback function)
3244          *        __mpage_da_writepage() -->
3245          *           mpage_add_bh_to_extent()
3246          *           mpage_da_map_blocks()
3247          *
3248          * The problem is that write_cache_pages(), located in
3249          * mm/page-writeback.c, marks pages clean in preparation for
3250          * doing I/O, which is not desirable if we're not planning on
3251          * doing I/O at all.
3252          *
3253          * We could call write_cache_pages(), and then redirty all of
3254          * the pages by calling redirty_page_for_writeback() but that
3255          * would be ugly in the extreme.  So instead we would need to
3256          * replicate parts of the code in the above functions,
3257          * simplifying them becuase we wouldn't actually intend to
3258          * write out the pages, but rather only collect contiguous
3259          * logical block extents, call the multi-block allocator, and
3260          * then update the buffer heads with the block allocations.
3261          *
3262          * For now, though, we'll cheat by calling filemap_flush(),
3263          * which will map the blocks, and start the I/O, but not
3264          * actually wait for the I/O to complete.
3265          */
3266         return filemap_flush(inode->i_mapping);
3267 }
3268
3269 /*
3270  * bmap() is special.  It gets used by applications such as lilo and by
3271  * the swapper to find the on-disk block of a specific piece of data.
3272  *
3273  * Naturally, this is dangerous if the block concerned is still in the
3274  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3275  * filesystem and enables swap, then they may get a nasty shock when the
3276  * data getting swapped to that swapfile suddenly gets overwritten by
3277  * the original zero's written out previously to the journal and
3278  * awaiting writeback in the kernel's buffer cache.
3279  *
3280  * So, if we see any bmap calls here on a modified, data-journaled file,
3281  * take extra steps to flush any blocks which might be in the cache.
3282  */
3283 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3284 {
3285         struct inode *inode = mapping->host;
3286         journal_t *journal;
3287         int err;
3288
3289         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3290                         test_opt(inode->i_sb, DELALLOC)) {
3291                 /*
3292                  * With delalloc we want to sync the file
3293                  * so that we can make sure we allocate
3294                  * blocks for file
3295                  */
3296                 filemap_write_and_wait(mapping);
3297         }
3298
3299         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3300                 /*
3301                  * This is a REALLY heavyweight approach, but the use of
3302                  * bmap on dirty files is expected to be extremely rare:
3303                  * only if we run lilo or swapon on a freshly made file
3304                  * do we expect this to happen.
3305                  *
3306                  * (bmap requires CAP_SYS_RAWIO so this does not
3307                  * represent an unprivileged user DOS attack --- we'd be
3308                  * in trouble if mortal users could trigger this path at
3309                  * will.)
3310                  *
3311                  * NB. EXT4_STATE_JDATA is not set on files other than
3312                  * regular files.  If somebody wants to bmap a directory
3313                  * or symlink and gets confused because the buffer
3314                  * hasn't yet been flushed to disk, they deserve
3315                  * everything they get.
3316                  */
3317
3318                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3319                 journal = EXT4_JOURNAL(inode);
3320                 jbd2_journal_lock_updates(journal);
3321                 err = jbd2_journal_flush(journal);
3322                 jbd2_journal_unlock_updates(journal);
3323
3324                 if (err)
3325                         return 0;
3326         }
3327
3328         return generic_block_bmap(mapping, block, ext4_get_block);
3329 }
3330
3331 static int ext4_readpage(struct file *file, struct page *page)
3332 {
3333         return mpage_readpage(page, ext4_get_block);
3334 }
3335
3336 static int
3337 ext4_readpages(struct file *file, struct address_space *mapping,
3338                 struct list_head *pages, unsigned nr_pages)
3339 {
3340         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3341 }
3342
3343 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3344 {
3345         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3346
3347         /*
3348          * If it's a full truncate we just forget about the pending dirtying
3349          */
3350         if (offset == 0)
3351                 ClearPageChecked(page);
3352
3353         if (journal)
3354                 jbd2_journal_invalidatepage(journal, page, offset);
3355         else
3356                 block_invalidatepage(page, offset);
3357 }
3358
3359 static int ext4_releasepage(struct page *page, gfp_t wait)
3360 {
3361         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363         WARN_ON(PageChecked(page));
3364         if (!page_has_buffers(page))
3365                 return 0;
3366         if (journal)
3367                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3368         else
3369                 return try_to_free_buffers(page);
3370 }
3371
3372 /*
3373  * O_DIRECT for ext3 (or indirect map) based files
3374  *
3375  * If the O_DIRECT write will extend the file then add this inode to the
3376  * orphan list.  So recovery will truncate it back to the original size
3377  * if the machine crashes during the write.
3378  *
3379  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3380  * crashes then stale disk data _may_ be exposed inside the file. But current
3381  * VFS code falls back into buffered path in that case so we are safe.
3382  */
3383 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3384                               const struct iovec *iov, loff_t offset,
3385                               unsigned long nr_segs)
3386 {
3387         struct file *file = iocb->ki_filp;
3388         struct inode *inode = file->f_mapping->host;
3389         struct ext4_inode_info *ei = EXT4_I(inode);
3390         handle_t *handle;
3391         ssize_t ret;
3392         int orphan = 0;
3393         size_t count = iov_length(iov, nr_segs);
3394         int retries = 0;
3395
3396         if (rw == WRITE) {
3397                 loff_t final_size = offset + count;
3398
3399                 if (final_size > inode->i_size) {
3400                         /* Credits for sb + inode write */
3401                         handle = ext4_journal_start(inode, 2);
3402                         if (IS_ERR(handle)) {
3403                                 ret = PTR_ERR(handle);
3404                                 goto out;
3405                         }
3406                         ret = ext4_orphan_add(handle, inode);
3407                         if (ret) {
3408                                 ext4_journal_stop(handle);
3409                                 goto out;
3410                         }
3411                         orphan = 1;
3412                         ei->i_disksize = inode->i_size;
3413                         ext4_journal_stop(handle);
3414                 }
3415         }
3416
3417 retry:
3418         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3419                                  offset, nr_segs,
3420                                  ext4_get_block, NULL);
3421         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3422                 goto retry;
3423
3424         if (orphan) {
3425                 int err;
3426
3427                 /* Credits for sb + inode write */
3428                 handle = ext4_journal_start(inode, 2);
3429                 if (IS_ERR(handle)) {
3430                         /* This is really bad luck. We've written the data
3431                          * but cannot extend i_size. Bail out and pretend
3432                          * the write failed... */
3433                         ret = PTR_ERR(handle);
3434                         goto out;
3435                 }
3436                 if (inode->i_nlink)
3437                         ext4_orphan_del(handle, inode);
3438                 if (ret > 0) {
3439                         loff_t end = offset + ret;
3440                         if (end > inode->i_size) {
3441                                 ei->i_disksize = end;
3442                                 i_size_write(inode, end);
3443                                 /*
3444                                  * We're going to return a positive `ret'
3445                                  * here due to non-zero-length I/O, so there's
3446                                  * no way of reporting error returns from
3447                                  * ext4_mark_inode_dirty() to userspace.  So
3448                                  * ignore it.
3449                                  */
3450                                 ext4_mark_inode_dirty(handle, inode);
3451                         }
3452                 }
3453                 err = ext4_journal_stop(handle);
3454                 if (ret == 0)
3455                         ret = err;
3456         }
3457 out:
3458         return ret;
3459 }
3460
3461 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3462                    struct buffer_head *bh_result, int create)
3463 {
3464         handle_t *handle = NULL;
3465         int ret = 0;
3466         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3467         int dio_credits;
3468
3469         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3470                    inode->i_ino, create);
3471         /*
3472          * DIO VFS code passes create = 0 flag for write to
3473          * the middle of file. It does this to avoid block
3474          * allocation for holes, to prevent expose stale data
3475          * out when there is parallel buffered read (which does
3476          * not hold the i_mutex lock) while direct IO write has
3477          * not completed. DIO request on holes finally falls back
3478          * to buffered IO for this reason.
3479          *
3480          * For ext4 extent based file, since we support fallocate,
3481          * new allocated extent as uninitialized, for holes, we
3482          * could fallocate blocks for holes, thus parallel
3483          * buffered IO read will zero out the page when read on
3484          * a hole while parallel DIO write to the hole has not completed.
3485          *
3486          * when we come here, we know it's a direct IO write to
3487          * to the middle of file (<i_size)
3488          * so it's safe to override the create flag from VFS.
3489          */
3490         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3491
3492         if (max_blocks > DIO_MAX_BLOCKS)
3493                 max_blocks = DIO_MAX_BLOCKS;
3494         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3495         handle = ext4_journal_start(inode, dio_credits);
3496         if (IS_ERR(handle)) {
3497                 ret = PTR_ERR(handle);
3498                 goto out;
3499         }
3500         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3501                               create);
3502         if (ret > 0) {
3503                 bh_result->b_size = (ret << inode->i_blkbits);
3504                 ret = 0;
3505         }
3506         ext4_journal_stop(handle);
3507 out:
3508         return ret;
3509 }
3510
3511 static void ext4_free_io_end(ext4_io_end_t *io)
3512 {
3513         BUG_ON(!io);
3514         iput(io->inode);
3515         kfree(io);
3516 }
3517 static void dump_aio_dio_list(struct inode * inode)
3518 {
3519 #ifdef  EXT4_DEBUG
3520         struct list_head *cur, *before, *after;
3521         ext4_io_end_t *io, *io0, *io1;
3522
3523         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3524                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3525                 return;
3526         }
3527
3528         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3529         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3530                 cur = &io->list;
3531                 before = cur->prev;
3532                 io0 = container_of(before, ext4_io_end_t, list);
3533                 after = cur->next;
3534                 io1 = container_of(after, ext4_io_end_t, list);
3535
3536                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3537                             io, inode->i_ino, io0, io1);
3538         }
3539 #endif
3540 }
3541
3542 /*
3543  * check a range of space and convert unwritten extents to written.
3544  */
3545 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3546 {
3547         struct inode *inode = io->inode;
3548         loff_t offset = io->offset;
3549         size_t size = io->size;
3550         int ret = 0;
3551
3552         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3553                    "list->prev 0x%p\n",
3554                    io, inode->i_ino, io->list.next, io->list.prev);
3555
3556         if (list_empty(&io->list))
3557                 return ret;
3558
3559         if (io->flag != DIO_AIO_UNWRITTEN)
3560                 return ret;
3561
3562         if (offset + size <= i_size_read(inode))
3563                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3564
3565         if (ret < 0) {
3566                 printk(KERN_EMERG "%s: failed to convert unwritten"
3567                         "extents to written extents, error is %d"
3568                         " io is still on inode %lu aio dio list\n",
3569                        __func__, ret, inode->i_ino);
3570                 return ret;
3571         }
3572
3573         /* clear the DIO AIO unwritten flag */
3574         io->flag = 0;
3575         return ret;
3576 }
3577 /*
3578  * work on completed aio dio IO, to convert unwritten extents to extents
3579  */
3580 static void ext4_end_aio_dio_work(struct work_struct *work)
3581 {
3582         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3583         struct inode *inode = io->inode;
3584         int ret = 0;
3585
3586         mutex_lock(&inode->i_mutex);
3587         ret = ext4_end_aio_dio_nolock(io);
3588         if (ret >= 0) {
3589                 if (!list_empty(&io->list))
3590                         list_del_init(&io->list);
3591                 ext4_free_io_end(io);
3592         }
3593         mutex_unlock(&inode->i_mutex);
3594 }
3595 /*
3596  * This function is called from ext4_sync_file().
3597  *
3598  * When AIO DIO IO is completed, the work to convert unwritten
3599  * extents to written is queued on workqueue but may not get immediately
3600  * scheduled. When fsync is called, we need to ensure the
3601  * conversion is complete before fsync returns.
3602  * The inode keeps track of a list of completed AIO from DIO path
3603  * that might needs to do the conversion. This function walks through
3604  * the list and convert the related unwritten extents to written.
3605  */
3606 int flush_aio_dio_completed_IO(struct inode *inode)
3607 {
3608         ext4_io_end_t *io;
3609         int ret = 0;
3610         int ret2 = 0;
3611
3612         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3613                 return ret;
3614
3615         dump_aio_dio_list(inode);
3616         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3617                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3618                                 ext4_io_end_t, list);
3619                 /*
3620                  * Calling ext4_end_aio_dio_nolock() to convert completed
3621                  * IO to written.
3622                  *
3623                  * When ext4_sync_file() is called, run_queue() may already
3624                  * about to flush the work corresponding to this io structure.
3625                  * It will be upset if it founds the io structure related
3626                  * to the work-to-be schedule is freed.
3627                  *
3628                  * Thus we need to keep the io structure still valid here after
3629                  * convertion finished. The io structure has a flag to
3630                  * avoid double converting from both fsync and background work
3631                  * queue work.
3632                  */
3633                 ret = ext4_end_aio_dio_nolock(io);
3634                 if (ret < 0)
3635                         ret2 = ret;
3636                 else
3637                         list_del_init(&io->list);
3638         }
3639         return (ret2 < 0) ? ret2 : 0;
3640 }
3641
3642 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3643 {
3644         ext4_io_end_t *io = NULL;
3645
3646         io = kmalloc(sizeof(*io), GFP_NOFS);
3647
3648         if (io) {
3649                 igrab(inode);
3650                 io->inode = inode;
3651                 io->flag = 0;
3652                 io->offset = 0;
3653                 io->size = 0;
3654                 io->error = 0;
3655                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3656                 INIT_LIST_HEAD(&io->list);
3657         }
3658
3659         return io;
3660 }
3661
3662 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3663                             ssize_t size, void *private)
3664 {
3665         ext4_io_end_t *io_end = iocb->private;
3666         struct workqueue_struct *wq;
3667
3668         /* if not async direct IO or dio with 0 bytes write, just return */
3669         if (!io_end || !size)
3670                 return;
3671
3672         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3673                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3674                   iocb->private, io_end->inode->i_ino, iocb, offset,
3675                   size);
3676
3677         /* if not aio dio with unwritten extents, just free io and return */
3678         if (io_end->flag != DIO_AIO_UNWRITTEN){
3679                 ext4_free_io_end(io_end);
3680                 iocb->private = NULL;
3681                 return;
3682         }
3683
3684         io_end->offset = offset;
3685         io_end->size = size;
3686         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3687
3688         /* queue the work to convert unwritten extents to written */
3689         queue_work(wq, &io_end->work);
3690
3691         /* Add the io_end to per-inode completed aio dio list*/
3692         list_add_tail(&io_end->list,
3693                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3694         iocb->private = NULL;
3695 }
3696 /*
3697  * For ext4 extent files, ext4 will do direct-io write to holes,
3698  * preallocated extents, and those write extend the file, no need to
3699  * fall back to buffered IO.
3700  *
3701  * For holes, we fallocate those blocks, mark them as unintialized
3702  * If those blocks were preallocated, we mark sure they are splited, but
3703  * still keep the range to write as unintialized.
3704  *
3705  * The unwrritten extents will be converted to written when DIO is completed.
3706  * For async direct IO, since the IO may still pending when return, we
3707  * set up an end_io call back function, which will do the convertion
3708  * when async direct IO completed.
3709  *
3710  * If the O_DIRECT write will extend the file then add this inode to the
3711  * orphan list.  So recovery will truncate it back to the original size
3712  * if the machine crashes during the write.
3713  *
3714  */
3715 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3716                               const struct iovec *iov, loff_t offset,
3717                               unsigned long nr_segs)
3718 {
3719         struct file *file = iocb->ki_filp;
3720         struct inode *inode = file->f_mapping->host;
3721         ssize_t ret;
3722         size_t count = iov_length(iov, nr_segs);
3723
3724         loff_t final_size = offset + count;
3725         if (rw == WRITE && final_size <= inode->i_size) {
3726                 /*
3727                  * We could direct write to holes and fallocate.
3728                  *
3729                  * Allocated blocks to fill the hole are marked as uninitialized
3730                  * to prevent paralel buffered read to expose the stale data
3731                  * before DIO complete the data IO.
3732                  *
3733                  * As to previously fallocated extents, ext4 get_block
3734                  * will just simply mark the buffer mapped but still
3735                  * keep the extents uninitialized.
3736                  *
3737                  * for non AIO case, we will convert those unwritten extents
3738                  * to written after return back from blockdev_direct_IO.
3739                  *
3740                  * for async DIO, the conversion needs to be defered when
3741                  * the IO is completed. The ext4 end_io callback function
3742                  * will be called to take care of the conversion work.
3743                  * Here for async case, we allocate an io_end structure to
3744                  * hook to the iocb.
3745                  */
3746                 iocb->private = NULL;
3747                 EXT4_I(inode)->cur_aio_dio = NULL;
3748                 if (!is_sync_kiocb(iocb)) {
3749                         iocb->private = ext4_init_io_end(inode);
3750                         if (!iocb->private)
3751                                 return -ENOMEM;
3752                         /*
3753                          * we save the io structure for current async
3754                          * direct IO, so that later ext4_get_blocks()
3755                          * could flag the io structure whether there
3756                          * is a unwritten extents needs to be converted
3757                          * when IO is completed.
3758                          */
3759                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3760                 }
3761
3762                 ret = blockdev_direct_IO(rw, iocb, inode,
3763                                          inode->i_sb->s_bdev, iov,
3764                                          offset, nr_segs,
3765                                          ext4_get_block_dio_write,
3766                                          ext4_end_io_dio);
3767                 if (iocb->private)
3768                         EXT4_I(inode)->cur_aio_dio = NULL;
3769                 /*
3770                  * The io_end structure takes a reference to the inode,
3771                  * that structure needs to be destroyed and the
3772                  * reference to the inode need to be dropped, when IO is
3773                  * complete, even with 0 byte write, or failed.
3774                  *
3775                  * In the successful AIO DIO case, the io_end structure will be
3776                  * desctroyed and the reference to the inode will be dropped
3777                  * after the end_io call back function is called.
3778                  *
3779                  * In the case there is 0 byte write, or error case, since
3780                  * VFS direct IO won't invoke the end_io call back function,
3781                  * we need to free the end_io structure here.
3782                  */
3783                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3784                         ext4_free_io_end(iocb->private);
3785                         iocb->private = NULL;
3786                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3787                                        EXT4_STATE_DIO_UNWRITTEN)) {
3788                         int err;
3789                         /*
3790                          * for non AIO case, since the IO is already
3791                          * completed, we could do the convertion right here
3792                          */
3793                         err = ext4_convert_unwritten_extents(inode,
3794                                                              offset, ret);
3795                         if (err < 0)
3796                                 ret = err;
3797                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3798                 }
3799                 return ret;
3800         }
3801
3802         /* for write the the end of file case, we fall back to old way */
3803         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3804 }
3805
3806 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3807                               const struct iovec *iov, loff_t offset,
3808                               unsigned long nr_segs)
3809 {
3810         struct file *file = iocb->ki_filp;
3811         struct inode *inode = file->f_mapping->host;
3812
3813         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3814                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3815
3816         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3817 }
3818
3819 /*
3820  * Pages can be marked dirty completely asynchronously from ext4's journalling
3821  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3822  * much here because ->set_page_dirty is called under VFS locks.  The page is
3823  * not necessarily locked.
3824  *
3825  * We cannot just dirty the page and leave attached buffers clean, because the
3826  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3827  * or jbddirty because all the journalling code will explode.
3828  *
3829  * So what we do is to mark the page "pending dirty" and next time writepage
3830  * is called, propagate that into the buffers appropriately.
3831  */
3832 static int ext4_journalled_set_page_dirty(struct page *page)
3833 {
3834         SetPageChecked(page);
3835         return __set_page_dirty_nobuffers(page);
3836 }
3837
3838 static const struct address_space_operations ext4_ordered_aops = {
3839         .readpage               = ext4_readpage,
3840         .readpages              = ext4_readpages,
3841         .writepage              = ext4_writepage,
3842         .sync_page              = block_sync_page,
3843         .write_begin            = ext4_write_begin,
3844         .write_end              = ext4_ordered_write_end,
3845         .bmap                   = ext4_bmap,
3846         .invalidatepage         = ext4_invalidatepage,
3847         .releasepage            = ext4_releasepage,
3848         .direct_IO              = ext4_direct_IO,
3849         .migratepage            = buffer_migrate_page,
3850         .is_partially_uptodate  = block_is_partially_uptodate,
3851         .error_remove_page      = generic_error_remove_page,
3852 };
3853
3854 static const struct address_space_operations ext4_writeback_aops = {
3855         .readpage               = ext4_readpage,
3856         .readpages              = ext4_readpages,
3857         .writepage              = ext4_writepage,
3858         .sync_page              = block_sync_page,
3859         .write_begin            = ext4_write_begin,
3860         .write_end              = ext4_writeback_write_end,
3861         .bmap                   = ext4_bmap,
3862         .invalidatepage         = ext4_invalidatepage,
3863         .releasepage            = ext4_releasepage,
3864         .direct_IO              = ext4_direct_IO,
3865         .migratepage            = buffer_migrate_page,
3866         .is_partially_uptodate  = block_is_partially_uptodate,
3867         .error_remove_page      = generic_error_remove_page,
3868 };
3869
3870 static const struct address_space_operations ext4_journalled_aops = {
3871         .readpage               = ext4_readpage,
3872         .readpages              = ext4_readpages,
3873         .writepage              = ext4_writepage,
3874         .sync_page              = block_sync_page,
3875         .write_begin            = ext4_write_begin,
3876         .write_end              = ext4_journalled_write_end,
3877         .set_page_dirty         = ext4_journalled_set_page_dirty,
3878         .bmap                   = ext4_bmap,
3879         .invalidatepage         = ext4_invalidatepage,
3880         .releasepage            = ext4_releasepage,
3881         .is_partially_uptodate  = block_is_partially_uptodate,
3882         .error_remove_page      = generic_error_remove_page,
3883 };
3884
3885 static const struct address_space_operations ext4_da_aops = {
3886         .readpage               = ext4_readpage,
3887         .readpages              = ext4_readpages,
3888         .writepage              = ext4_writepage,
3889         .writepages             = ext4_da_writepages,
3890         .sync_page              = block_sync_page,
3891         .write_begin            = ext4_da_write_begin,
3892         .write_end              = ext4_da_write_end,
3893         .bmap                   = ext4_bmap,
3894         .invalidatepage         = ext4_da_invalidatepage,
3895         .releasepage            = ext4_releasepage,
3896         .direct_IO              = ext4_direct_IO,
3897         .migratepage            = buffer_migrate_page,
3898         .is_partially_uptodate  = block_is_partially_uptodate,
3899         .error_remove_page      = generic_error_remove_page,
3900 };
3901
3902 void ext4_set_aops(struct inode *inode)
3903 {
3904         if (ext4_should_order_data(inode) &&
3905                 test_opt(inode->i_sb, DELALLOC))
3906                 inode->i_mapping->a_ops = &ext4_da_aops;
3907         else if (ext4_should_order_data(inode))
3908                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3909         else if (ext4_should_writeback_data(inode) &&
3910                  test_opt(inode->i_sb, DELALLOC))
3911                 inode->i_mapping->a_ops = &ext4_da_aops;
3912         else if (ext4_should_writeback_data(inode))
3913                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3914         else
3915                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3916 }
3917
3918 /*
3919  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3920  * up to the end of the block which corresponds to `from'.
3921  * This required during truncate. We need to physically zero the tail end
3922  * of that block so it doesn't yield old data if the file is later grown.
3923  */
3924 int ext4_block_truncate_page(handle_t *handle,
3925                 struct address_space *mapping, loff_t from)
3926 {
3927         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3928         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3929         unsigned blocksize, length, pos;
3930         ext4_lblk_t iblock;
3931         struct inode *inode = mapping->host;
3932         struct buffer_head *bh;
3933         struct page *page;
3934         int err = 0;
3935
3936         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3937                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3938         if (!page)
3939                 return -EINVAL;
3940
3941         blocksize = inode->i_sb->s_blocksize;
3942         length = blocksize - (offset & (blocksize - 1));
3943         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3944
3945         /*
3946          * For "nobh" option,  we can only work if we don't need to
3947          * read-in the page - otherwise we create buffers to do the IO.
3948          */
3949         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3950              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3951                 zero_user(page, offset, length);
3952                 set_page_dirty(page);
3953                 goto unlock;
3954         }
3955
3956         if (!page_has_buffers(page))
3957                 create_empty_buffers(page, blocksize, 0);
3958
3959         /* Find the buffer that contains "offset" */
3960         bh = page_buffers(page);
3961         pos = blocksize;
3962         while (offset >= pos) {
3963                 bh = bh->b_this_page;
3964                 iblock++;
3965                 pos += blocksize;
3966         }
3967
3968         err = 0;
3969         if (buffer_freed(bh)) {
3970                 BUFFER_TRACE(bh, "freed: skip");
3971                 goto unlock;
3972         }
3973
3974         if (!buffer_mapped(bh)) {
3975                 BUFFER_TRACE(bh, "unmapped");
3976                 ext4_get_block(inode, iblock, bh, 0);
3977                 /* unmapped? It's a hole - nothing to do */
3978                 if (!buffer_mapped(bh)) {
3979                         BUFFER_TRACE(bh, "still unmapped");
3980                         goto unlock;
3981                 }
3982         }
3983
3984         /* Ok, it's mapped. Make sure it's up-to-date */
3985         if (PageUptodate(page))
3986                 set_buffer_uptodate(bh);
3987
3988         if (!buffer_uptodate(bh)) {
3989                 err = -EIO;
3990                 ll_rw_block(READ, 1, &bh);
3991                 wait_on_buffer(bh);
3992                 /* Uhhuh. Read error. Complain and punt. */
3993                 if (!buffer_uptodate(bh))
3994                         goto unlock;
3995         }
3996
3997         if (ext4_should_journal_data(inode)) {
3998                 BUFFER_TRACE(bh, "get write access");
3999                 err = ext4_journal_get_write_access(handle, bh);
4000                 if (err)
4001                         goto unlock;
4002         }
4003
4004         zero_user(page, offset, length);
4005
4006         BUFFER_TRACE(bh, "zeroed end of block");
4007
4008         err = 0;
4009         if (ext4_should_journal_data(inode)) {
4010                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4011         } else {
4012                 if (ext4_should_order_data(inode))
4013                         err = ext4_jbd2_file_inode(handle, inode);
4014                 mark_buffer_dirty(bh);
4015         }
4016
4017 unlock:
4018         unlock_page(page);
4019         page_cache_release(page);
4020         return err;
4021 }
4022
4023 /*
4024  * Probably it should be a library function... search for first non-zero word
4025  * or memcmp with zero_page, whatever is better for particular architecture.
4026  * Linus?
4027  */
4028 static inline int all_zeroes(__le32 *p, __le32 *q)
4029 {
4030         while (p < q)
4031                 if (*p++)
4032                         return 0;
4033         return 1;
4034 }
4035
4036 /**
4037  *      ext4_find_shared - find the indirect blocks for partial truncation.
4038  *      @inode:   inode in question
4039  *      @depth:   depth of the affected branch
4040  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4041  *      @chain:   place to store the pointers to partial indirect blocks
4042  *      @top:     place to the (detached) top of branch
4043  *
4044  *      This is a helper function used by ext4_truncate().
4045  *
4046  *      When we do truncate() we may have to clean the ends of several
4047  *      indirect blocks but leave the blocks themselves alive. Block is
4048  *      partially truncated if some data below the new i_size is refered
4049  *      from it (and it is on the path to the first completely truncated
4050  *      data block, indeed).  We have to free the top of that path along
4051  *      with everything to the right of the path. Since no allocation
4052  *      past the truncation point is possible until ext4_truncate()
4053  *      finishes, we may safely do the latter, but top of branch may
4054  *      require special attention - pageout below the truncation point
4055  *      might try to populate it.
4056  *
4057  *      We atomically detach the top of branch from the tree, store the
4058  *      block number of its root in *@top, pointers to buffer_heads of
4059  *      partially truncated blocks - in @chain[].bh and pointers to
4060  *      their last elements that should not be removed - in
4061  *      @chain[].p. Return value is the pointer to last filled element
4062  *      of @chain.
4063  *
4064  *      The work left to caller to do the actual freeing of subtrees:
4065  *              a) free the subtree starting from *@top
4066  *              b) free the subtrees whose roots are stored in
4067  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4068  *              c) free the subtrees growing from the inode past the @chain[0].
4069  *                      (no partially truncated stuff there).  */
4070
4071 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4072                                   ext4_lblk_t offsets[4], Indirect chain[4],
4073                                   __le32 *top)
4074 {
4075         Indirect *partial, *p;
4076         int k, err;
4077
4078         *top = 0;
4079         /* Make k index the deepest non-null offest + 1 */
4080         for (k = depth; k > 1 && !offsets[k-1]; k--)
4081                 ;
4082         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4083         /* Writer: pointers */
4084         if (!partial)
4085                 partial = chain + k-1;
4086         /*
4087          * If the branch acquired continuation since we've looked at it -
4088          * fine, it should all survive and (new) top doesn't belong to us.
4089          */
4090         if (!partial->key && *partial->p)
4091                 /* Writer: end */
4092                 goto no_top;
4093         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4094                 ;
4095         /*
4096          * OK, we've found the last block that must survive. The rest of our
4097          * branch should be detached before unlocking. However, if that rest
4098          * of branch is all ours and does not grow immediately from the inode
4099          * it's easier to cheat and just decrement partial->p.
4100          */
4101         if (p == chain + k - 1 && p > chain) {
4102                 p->p--;
4103         } else {
4104                 *top = *p->p;
4105                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4106 #if 0
4107                 *p->p = 0;
4108 #endif
4109         }
4110         /* Writer: end */
4111
4112         while (partial > p) {
4113                 brelse(partial->bh);
4114                 partial--;
4115         }
4116 no_top:
4117         return partial;
4118 }
4119
4120 /*
4121  * Zero a number of block pointers in either an inode or an indirect block.
4122  * If we restart the transaction we must again get write access to the
4123  * indirect block for further modification.
4124  *
4125  * We release `count' blocks on disk, but (last - first) may be greater
4126  * than `count' because there can be holes in there.
4127  */
4128 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4129                               struct buffer_head *bh,
4130                               ext4_fsblk_t block_to_free,
4131                               unsigned long count, __le32 *first,
4132                               __le32 *last)
4133 {
4134         __le32 *p;
4135         int     is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4136
4137         if (try_to_extend_transaction(handle, inode)) {
4138                 if (bh) {
4139                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140                         ext4_handle_dirty_metadata(handle, inode, bh);
4141                 }
4142                 ext4_mark_inode_dirty(handle, inode);
4143                 ext4_truncate_restart_trans(handle, inode,
4144                                             blocks_for_truncate(inode));
4145                 if (bh) {
4146                         BUFFER_TRACE(bh, "retaking write access");
4147                         ext4_journal_get_write_access(handle, bh);
4148                 }
4149         }
4150
4151         /*
4152          * Any buffers which are on the journal will be in memory. We
4153          * find them on the hash table so jbd2_journal_revoke() will
4154          * run jbd2_journal_forget() on them.  We've already detached
4155          * each block from the file, so bforget() in
4156          * jbd2_journal_forget() should be safe.
4157          *
4158          * AKPM: turn on bforget in jbd2_journal_forget()!!!
4159          */
4160         for (p = first; p < last; p++) {
4161                 u32 nr = le32_to_cpu(*p);
4162                 if (nr) {
4163                         struct buffer_head *tbh;
4164
4165                         *p = 0;
4166                         tbh = sb_find_get_block(inode->i_sb, nr);
4167                         ext4_forget(handle, is_metadata, inode, tbh, nr);
4168                 }
4169         }
4170
4171         ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4172 }
4173
4174 /**
4175  * ext4_free_data - free a list of data blocks
4176  * @handle:     handle for this transaction
4177  * @inode:      inode we are dealing with
4178  * @this_bh:    indirect buffer_head which contains *@first and *@last
4179  * @first:      array of block numbers
4180  * @last:       points immediately past the end of array
4181  *
4182  * We are freeing all blocks refered from that array (numbers are stored as
4183  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4184  *
4185  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4186  * blocks are contiguous then releasing them at one time will only affect one
4187  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4188  * actually use a lot of journal space.
4189  *
4190  * @this_bh will be %NULL if @first and @last point into the inode's direct
4191  * block pointers.
4192  */
4193 static void ext4_free_data(handle_t *handle, struct inode *inode,
4194                            struct buffer_head *this_bh,
4195                            __le32 *first, __le32 *last)
4196 {
4197         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4198         unsigned long count = 0;            /* Number of blocks in the run */
4199         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4200                                                corresponding to
4201                                                block_to_free */
4202         ext4_fsblk_t nr;                    /* Current block # */
4203         __le32 *p;                          /* Pointer into inode/ind
4204                                                for current block */
4205         int err;
4206
4207         if (this_bh) {                          /* For indirect block */
4208                 BUFFER_TRACE(this_bh, "get_write_access");
4209                 err = ext4_journal_get_write_access(handle, this_bh);
4210                 /* Important: if we can't update the indirect pointers
4211                  * to the blocks, we can't free them. */
4212                 if (err)
4213                         return;
4214         }
4215
4216         for (p = first; p < last; p++) {
4217                 nr = le32_to_cpu(*p);
4218                 if (nr) {
4219                         /* accumulate blocks to free if they're contiguous */
4220                         if (count == 0) {
4221                                 block_to_free = nr;
4222                                 block_to_free_p = p;
4223                                 count = 1;
4224                         } else if (nr == block_to_free + count) {
4225                                 count++;
4226                         } else {
4227                                 ext4_clear_blocks(handle, inode, this_bh,
4228                                                   block_to_free,
4229                                                   count, block_to_free_p, p);
4230                                 block_to_free = nr;
4231                                 block_to_free_p = p;
4232                                 count = 1;
4233                         }
4234                 }
4235         }
4236
4237         if (count > 0)
4238                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4239                                   count, block_to_free_p, p);
4240
4241         if (this_bh) {
4242                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4243
4244                 /*
4245                  * The buffer head should have an attached journal head at this
4246                  * point. However, if the data is corrupted and an indirect
4247                  * block pointed to itself, it would have been detached when
4248                  * the block was cleared. Check for this instead of OOPSing.
4249                  */
4250                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4251                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4252                 else
4253                         ext4_error(inode->i_sb, __func__,
4254                                    "circular indirect block detected, "
4255                                    "inode=%lu, block=%llu",
4256                                    inode->i_ino,
4257                                    (unsigned long long) this_bh->b_blocknr);
4258         }
4259 }
4260
4261 /**
4262  *      ext4_free_branches - free an array of branches
4263  *      @handle: JBD handle for this transaction
4264  *      @inode: inode we are dealing with
4265  *      @parent_bh: the buffer_head which contains *@first and *@last
4266  *      @first: array of block numbers
4267  *      @last:  pointer immediately past the end of array
4268  *      @depth: depth of the branches to free
4269  *
4270  *      We are freeing all blocks refered from these branches (numbers are
4271  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4272  *      appropriately.
4273  */
4274 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4275                                struct buffer_head *parent_bh,
4276                                __le32 *first, __le32 *last, int depth)
4277 {
4278         ext4_fsblk_t nr;
4279         __le32 *p;
4280
4281         if (ext4_handle_is_aborted(handle))
4282                 return;
4283
4284         if (depth--) {
4285                 struct buffer_head *bh;
4286                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4287                 p = last;
4288                 while (--p >= first) {
4289                         nr = le32_to_cpu(*p);
4290                         if (!nr)
4291                                 continue;               /* A hole */
4292
4293                         /* Go read the buffer for the next level down */
4294                         bh = sb_bread(inode->i_sb, nr);
4295
4296                         /*
4297                          * A read failure? Report error and clear slot
4298                          * (should be rare).
4299                          */
4300                         if (!bh) {
4301                                 ext4_error(inode->i_sb, "ext4_free_branches",
4302                                            "Read failure, inode=%lu, block=%llu",
4303                                            inode->i_ino, nr);
4304                                 continue;
4305                         }
4306
4307                         /* This zaps the entire block.  Bottom up. */
4308                         BUFFER_TRACE(bh, "free child branches");
4309                         ext4_free_branches(handle, inode, bh,
4310                                         (__le32 *) bh->b_data,
4311                                         (__le32 *) bh->b_data + addr_per_block,
4312                                         depth);
4313
4314                         /*
4315                          * We've probably journalled the indirect block several
4316                          * times during the truncate.  But it's no longer
4317                          * needed and we now drop it from the transaction via
4318                          * jbd2_journal_revoke().
4319                          *
4320                          * That's easy if it's exclusively part of this
4321                          * transaction.  But if it's part of the committing
4322                          * transaction then jbd2_journal_forget() will simply
4323                          * brelse() it.  That means that if the underlying
4324                          * block is reallocated in ext4_get_block(),
4325                          * unmap_underlying_metadata() will find this block
4326                          * and will try to get rid of it.  damn, damn.
4327                          *
4328                          * If this block has already been committed to the
4329                          * journal, a revoke record will be written.  And
4330                          * revoke records must be emitted *before* clearing
4331                          * this block's bit in the bitmaps.
4332                          */
4333                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4334
4335                         /*
4336                          * Everything below this this pointer has been
4337                          * released.  Now let this top-of-subtree go.
4338                          *
4339                          * We want the freeing of this indirect block to be
4340                          * atomic in the journal with the updating of the
4341                          * bitmap block which owns it.  So make some room in
4342                          * the journal.
4343                          *
4344                          * We zero the parent pointer *after* freeing its
4345                          * pointee in the bitmaps, so if extend_transaction()
4346                          * for some reason fails to put the bitmap changes and
4347                          * the release into the same transaction, recovery
4348                          * will merely complain about releasing a free block,
4349                          * rather than leaking blocks.
4350                          */
4351                         if (ext4_handle_is_aborted(handle))
4352                                 return;
4353                         if (try_to_extend_transaction(handle, inode)) {
4354                                 ext4_mark_inode_dirty(handle, inode);
4355                                 ext4_truncate_restart_trans(handle, inode,
4356                                             blocks_for_truncate(inode));
4357                         }
4358
4359                         ext4_free_blocks(handle, inode, nr, 1, 1);
4360
4361                         if (parent_bh) {
4362                                 /*
4363                                  * The block which we have just freed is
4364                                  * pointed to by an indirect block: journal it
4365                                  */
4366                                 BUFFER_TRACE(parent_bh, "get_write_access");
4367                                 if (!ext4_journal_get_write_access(handle,
4368                                                                    parent_bh)){
4369                                         *p = 0;
4370                                         BUFFER_TRACE(parent_bh,
4371                                         "call ext4_handle_dirty_metadata");
4372                                         ext4_handle_dirty_metadata(handle,
4373                                                                    inode,
4374                                                                    parent_bh);
4375                                 }
4376                         }
4377                 }
4378         } else {
4379                 /* We have reached the bottom of the tree. */
4380                 BUFFER_TRACE(parent_bh, "free data blocks");
4381                 ext4_free_data(handle, inode, parent_bh, first, last);
4382         }
4383 }
4384
4385 int ext4_can_truncate(struct inode *inode)
4386 {
4387         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4388                 return 0;
4389         if (S_ISREG(inode->i_mode))
4390                 return 1;
4391         if (S_ISDIR(inode->i_mode))
4392                 return 1;
4393         if (S_ISLNK(inode->i_mode))
4394                 return !ext4_inode_is_fast_symlink(inode);
4395         return 0;
4396 }
4397
4398 /*
4399  * ext4_truncate()
4400  *
4401  * We block out ext4_get_block() block instantiations across the entire
4402  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4403  * simultaneously on behalf of the same inode.
4404  *
4405  * As we work through the truncate and commmit bits of it to the journal there
4406  * is one core, guiding principle: the file's tree must always be consistent on
4407  * disk.  We must be able to restart the truncate after a crash.
4408  *
4409  * The file's tree may be transiently inconsistent in memory (although it
4410  * probably isn't), but whenever we close off and commit a journal transaction,
4411  * the contents of (the filesystem + the journal) must be consistent and
4412  * restartable.  It's pretty simple, really: bottom up, right to left (although
4413  * left-to-right works OK too).
4414  *
4415  * Note that at recovery time, journal replay occurs *before* the restart of
4416  * truncate against the orphan inode list.
4417  *
4418  * The committed inode has the new, desired i_size (which is the same as
4419  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4420  * that this inode's truncate did not complete and it will again call
4421  * ext4_truncate() to have another go.  So there will be instantiated blocks
4422  * to the right of the truncation point in a crashed ext4 filesystem.  But
4423  * that's fine - as long as they are linked from the inode, the post-crash
4424  * ext4_truncate() run will find them and release them.
4425  */
4426 void ext4_truncate(struct inode *inode)
4427 {
4428         handle_t *handle;
4429         struct ext4_inode_info *ei = EXT4_I(inode);
4430         __le32 *i_data = ei->i_data;
4431         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4432         struct address_space *mapping = inode->i_mapping;
4433         ext4_lblk_t offsets[4];
4434         Indirect chain[4];
4435         Indirect *partial;
4436         __le32 nr = 0;
4437         int n;
4438         ext4_lblk_t last_block;
4439         unsigned blocksize = inode->i_sb->s_blocksize;
4440
4441         if (!ext4_can_truncate(inode))
4442                 return;
4443
4444         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4445                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4446
4447         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4448                 ext4_ext_truncate(inode);
4449                 return;
4450         }
4451
4452         handle = start_transaction(inode);
4453         if (IS_ERR(handle))
4454                 return;         /* AKPM: return what? */
4455
4456         last_block = (inode->i_size + blocksize-1)
4457                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4458
4459         if (inode->i_size & (blocksize - 1))
4460                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4461                         goto out_stop;
4462
4463         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4464         if (n == 0)
4465                 goto out_stop;  /* error */
4466
4467         /*
4468          * OK.  This truncate is going to happen.  We add the inode to the
4469          * orphan list, so that if this truncate spans multiple transactions,
4470          * and we crash, we will resume the truncate when the filesystem
4471          * recovers.  It also marks the inode dirty, to catch the new size.
4472          *
4473          * Implication: the file must always be in a sane, consistent
4474          * truncatable state while each transaction commits.
4475          */
4476         if (ext4_orphan_add(handle, inode))
4477                 goto out_stop;
4478
4479         /*
4480          * From here we block out all ext4_get_block() callers who want to
4481          * modify the block allocation tree.
4482          */
4483         down_write(&ei->i_data_sem);
4484
4485         ext4_discard_preallocations(inode);
4486
4487         /*
4488          * The orphan list entry will now protect us from any crash which
4489          * occurs before the truncate completes, so it is now safe to propagate
4490          * the new, shorter inode size (held for now in i_size) into the
4491          * on-disk inode. We do this via i_disksize, which is the value which
4492          * ext4 *really* writes onto the disk inode.
4493          */
4494         ei->i_disksize = inode->i_size;
4495
4496         if (n == 1) {           /* direct blocks */
4497                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4498                                i_data + EXT4_NDIR_BLOCKS);
4499                 goto do_indirects;
4500         }
4501
4502         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4503         /* Kill the top of shared branch (not detached) */
4504         if (nr) {
4505                 if (partial == chain) {
4506                         /* Shared branch grows from the inode */
4507                         ext4_free_branches(handle, inode, NULL,
4508                                            &nr, &nr+1, (chain+n-1) - partial);
4509                         *partial->p = 0;
4510                         /*
4511                          * We mark the inode dirty prior to restart,
4512                          * and prior to stop.  No need for it here.
4513                          */
4514                 } else {
4515                         /* Shared branch grows from an indirect block */
4516                         BUFFER_TRACE(partial->bh, "get_write_access");
4517                         ext4_free_branches(handle, inode, partial->bh,
4518                                         partial->p,
4519                                         partial->p+1, (chain+n-1) - partial);
4520                 }
4521         }
4522         /* Clear the ends of indirect blocks on the shared branch */
4523         while (partial > chain) {
4524                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4525                                    (__le32*)partial->bh->b_data+addr_per_block,
4526                                    (chain+n-1) - partial);
4527                 BUFFER_TRACE(partial->bh, "call brelse");
4528                 brelse(partial->bh);
4529                 partial--;
4530         }
4531 do_indirects:
4532         /* Kill the remaining (whole) subtrees */
4533         switch (offsets[0]) {
4534         default:
4535                 nr = i_data[EXT4_IND_BLOCK];
4536                 if (nr) {
4537                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4538                         i_data[EXT4_IND_BLOCK] = 0;
4539                 }
4540         case EXT4_IND_BLOCK:
4541                 nr = i_data[EXT4_DIND_BLOCK];
4542                 if (nr) {
4543                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4544                         i_data[EXT4_DIND_BLOCK] = 0;
4545                 }
4546         case EXT4_DIND_BLOCK:
4547                 nr = i_data[EXT4_TIND_BLOCK];
4548                 if (nr) {
4549                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4550                         i_data[EXT4_TIND_BLOCK] = 0;
4551                 }
4552         case EXT4_TIND_BLOCK:
4553                 ;
4554         }
4555
4556         up_write(&ei->i_data_sem);
4557         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4558         ext4_mark_inode_dirty(handle, inode);
4559
4560         /*
4561          * In a multi-transaction truncate, we only make the final transaction
4562          * synchronous
4563          */
4564         if (IS_SYNC(inode))
4565                 ext4_handle_sync(handle);
4566 out_stop:
4567         /*
4568          * If this was a simple ftruncate(), and the file will remain alive
4569          * then we need to clear up the orphan record which we created above.
4570          * However, if this was a real unlink then we were called by
4571          * ext4_delete_inode(), and we allow that function to clean up the
4572          * orphan info for us.
4573          */
4574         if (inode->i_nlink)
4575                 ext4_orphan_del(handle, inode);
4576
4577         ext4_journal_stop(handle);
4578 }
4579
4580 /*
4581  * ext4_get_inode_loc returns with an extra refcount against the inode's
4582  * underlying buffer_head on success. If 'in_mem' is true, we have all
4583  * data in memory that is needed to recreate the on-disk version of this
4584  * inode.
4585  */
4586 static int __ext4_get_inode_loc(struct inode *inode,
4587                                 struct ext4_iloc *iloc, int in_mem)
4588 {
4589         struct ext4_group_desc  *gdp;
4590         struct buffer_head      *bh;
4591         struct super_block      *sb = inode->i_sb;
4592         ext4_fsblk_t            block;
4593         int                     inodes_per_block, inode_offset;
4594
4595         iloc->bh = NULL;
4596         if (!ext4_valid_inum(sb, inode->i_ino))
4597                 return -EIO;
4598
4599         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4600         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4601         if (!gdp)
4602                 return -EIO;
4603
4604         /*
4605          * Figure out the offset within the block group inode table
4606          */
4607         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4608         inode_offset = ((inode->i_ino - 1) %
4609                         EXT4_INODES_PER_GROUP(sb));
4610         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4611         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4612
4613         bh = sb_getblk(sb, block);
4614         if (!bh) {
4615                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4616                            "inode block - inode=%lu, block=%llu",
4617                            inode->i_ino, block);
4618                 return -EIO;
4619         }
4620         if (!buffer_uptodate(bh)) {
4621                 lock_buffer(bh);
4622
4623                 /*
4624                  * If the buffer has the write error flag, we have failed
4625                  * to write out another inode in the same block.  In this
4626                  * case, we don't have to read the block because we may
4627                  * read the old inode data successfully.
4628                  */
4629                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4630                         set_buffer_uptodate(bh);
4631
4632                 if (buffer_uptodate(bh)) {
4633                         /* someone brought it uptodate while we waited */
4634                         unlock_buffer(bh);
4635                         goto has_buffer;
4636                 }
4637
4638                 /*
4639                  * If we have all information of the inode in memory and this
4640                  * is the only valid inode in the block, we need not read the
4641                  * block.
4642                  */
4643                 if (in_mem) {
4644                         struct buffer_head *bitmap_bh;
4645                         int i, start;
4646
4647                         start = inode_offset & ~(inodes_per_block - 1);
4648
4649                         /* Is the inode bitmap in cache? */
4650                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4651                         if (!bitmap_bh)
4652                                 goto make_io;
4653
4654                         /*
4655                          * If the inode bitmap isn't in cache then the
4656                          * optimisation may end up performing two reads instead
4657                          * of one, so skip it.
4658                          */
4659                         if (!buffer_uptodate(bitmap_bh)) {
4660                                 brelse(bitmap_bh);
4661                                 goto make_io;
4662                         }
4663                         for (i = start; i < start + inodes_per_block; i++) {
4664                                 if (i == inode_offset)
4665                                         continue;
4666                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4667                                         break;
4668                         }
4669                         brelse(bitmap_bh);
4670                         if (i == start + inodes_per_block) {
4671                                 /* all other inodes are free, so skip I/O */
4672                                 memset(bh->b_data, 0, bh->b_size);
4673                                 set_buffer_uptodate(bh);
4674                                 unlock_buffer(bh);
4675                                 goto has_buffer;
4676                         }
4677                 }
4678
4679 make_io:
4680                 /*
4681                  * If we need to do any I/O, try to pre-readahead extra
4682                  * blocks from the inode table.
4683                  */
4684                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4685                         ext4_fsblk_t b, end, table;
4686                         unsigned num;
4687
4688                         table = ext4_inode_table(sb, gdp);
4689                         /* s_inode_readahead_blks is always a power of 2 */
4690                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4691                         if (table > b)
4692                                 b = table;
4693                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4694                         num = EXT4_INODES_PER_GROUP(sb);
4695                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4696                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4697                                 num -= ext4_itable_unused_count(sb, gdp);
4698                         table += num / inodes_per_block;
4699                         if (end > table)
4700                                 end = table;
4701                         while (b <= end)
4702                                 sb_breadahead(sb, b++);
4703                 }
4704
4705                 /*
4706                  * There are other valid inodes in the buffer, this inode
4707                  * has in-inode xattrs, or we don't have this inode in memory.
4708                  * Read the block from disk.
4709                  */
4710                 get_bh(bh);
4711                 bh->b_end_io = end_buffer_read_sync;
4712                 submit_bh(READ_META, bh);
4713                 wait_on_buffer(bh);
4714                 if (!buffer_uptodate(bh)) {
4715                         ext4_error(sb, __func__,
4716                                    "unable to read inode block - inode=%lu, "
4717                                    "block=%llu", inode->i_ino, block);
4718                         brelse(bh);
4719                         return -EIO;
4720                 }
4721         }
4722 has_buffer:
4723         iloc->bh = bh;
4724         return 0;
4725 }
4726
4727 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4728 {
4729         /* We have all inode data except xattrs in memory here. */
4730         return __ext4_get_inode_loc(inode, iloc,
4731                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4732 }
4733
4734 void ext4_set_inode_flags(struct inode *inode)
4735 {
4736         unsigned int flags = EXT4_I(inode)->i_flags;
4737
4738         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4739         if (flags & EXT4_SYNC_FL)
4740                 inode->i_flags |= S_SYNC;
4741         if (flags & EXT4_APPEND_FL)
4742                 inode->i_flags |= S_APPEND;
4743         if (flags & EXT4_IMMUTABLE_FL)
4744                 inode->i_flags |= S_IMMUTABLE;
4745         if (flags & EXT4_NOATIME_FL)
4746                 inode->i_flags |= S_NOATIME;
4747         if (flags & EXT4_DIRSYNC_FL)
4748                 inode->i_flags |= S_DIRSYNC;
4749 }
4750
4751 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4752 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4753 {
4754         unsigned int flags = ei->vfs_inode.i_flags;
4755
4756         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4757                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4758         if (flags & S_SYNC)
4759                 ei->i_flags |= EXT4_SYNC_FL;
4760         if (flags & S_APPEND)
4761                 ei->i_flags |= EXT4_APPEND_FL;
4762         if (flags & S_IMMUTABLE)
4763                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4764         if (flags & S_NOATIME)
4765                 ei->i_flags |= EXT4_NOATIME_FL;
4766         if (flags & S_DIRSYNC)
4767                 ei->i_flags |= EXT4_DIRSYNC_FL;
4768 }
4769
4770 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4771                                   struct ext4_inode_info *ei)
4772 {
4773         blkcnt_t i_blocks ;
4774         struct inode *inode = &(ei->vfs_inode);
4775         struct super_block *sb = inode->i_sb;
4776
4777         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4778                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4779                 /* we are using combined 48 bit field */
4780                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4781                                         le32_to_cpu(raw_inode->i_blocks_lo);
4782                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4783                         /* i_blocks represent file system block size */
4784                         return i_blocks  << (inode->i_blkbits - 9);
4785                 } else {
4786                         return i_blocks;
4787                 }
4788         } else {
4789                 return le32_to_cpu(raw_inode->i_blocks_lo);
4790         }
4791 }
4792
4793 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4794 {
4795         struct ext4_iloc iloc;
4796         struct ext4_inode *raw_inode;
4797         struct ext4_inode_info *ei;
4798         struct inode *inode;
4799         journal_t *journal = EXT4_SB(sb)->s_journal;
4800         long ret;
4801         int block;
4802
4803         inode = iget_locked(sb, ino);
4804         if (!inode)
4805                 return ERR_PTR(-ENOMEM);
4806         if (!(inode->i_state & I_NEW))
4807                 return inode;
4808
4809         ei = EXT4_I(inode);
4810         iloc.bh = 0;
4811
4812         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4813         if (ret < 0)
4814                 goto bad_inode;
4815         raw_inode = ext4_raw_inode(&iloc);
4816         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4817         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4818         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4819         if (!(test_opt(inode->i_sb, NO_UID32))) {
4820                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4821                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4822         }
4823         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4824
4825         ei->i_state = 0;
4826         ei->i_dir_start_lookup = 0;
4827         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4828         /* We now have enough fields to check if the inode was active or not.
4829          * This is needed because nfsd might try to access dead inodes
4830          * the test is that same one that e2fsck uses
4831          * NeilBrown 1999oct15
4832          */
4833         if (inode->i_nlink == 0) {
4834                 if (inode->i_mode == 0 ||
4835                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4836                         /* this inode is deleted */
4837                         ret = -ESTALE;
4838                         goto bad_inode;
4839                 }
4840                 /* The only unlinked inodes we let through here have
4841                  * valid i_mode and are being read by the orphan
4842                  * recovery code: that's fine, we're about to complete
4843                  * the process of deleting those. */
4844         }
4845         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4846         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4847         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4848         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4849                 ei->i_file_acl |=
4850                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4851         inode->i_size = ext4_isize(raw_inode);
4852         ei->i_disksize = inode->i_size;
4853         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854         ei->i_block_group = iloc.block_group;
4855         ei->i_last_alloc_group = ~0;
4856         /*
4857          * NOTE! The in-memory inode i_data array is in little-endian order
4858          * even on big-endian machines: we do NOT byteswap the block numbers!
4859          */
4860         for (block = 0; block < EXT4_N_BLOCKS; block++)
4861                 ei->i_data[block] = raw_inode->i_block[block];
4862         INIT_LIST_HEAD(&ei->i_orphan);
4863
4864         /*
4865          * Set transaction id's of transactions that have to be committed
4866          * to finish f[data]sync. We set them to currently running transaction
4867          * as we cannot be sure that the inode or some of its metadata isn't
4868          * part of the transaction - the inode could have been reclaimed and
4869          * now it is reread from disk.
4870          */
4871         if (journal) {
4872                 transaction_t *transaction;
4873                 tid_t tid;
4874
4875                 spin_lock(&journal->j_state_lock);
4876                 if (journal->j_running_transaction)
4877                         transaction = journal->j_running_transaction;
4878                 else
4879                         transaction = journal->j_committing_transaction;
4880                 if (transaction)
4881                         tid = transaction->t_tid;
4882                 else
4883                         tid = journal->j_commit_sequence;
4884                 spin_unlock(&journal->j_state_lock);
4885                 ei->i_sync_tid = tid;
4886                 ei->i_datasync_tid = tid;
4887         }
4888
4889         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4891                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4892                     EXT4_INODE_SIZE(inode->i_sb)) {
4893                         ret = -EIO;
4894                         goto bad_inode;
4895                 }
4896                 if (ei->i_extra_isize == 0) {
4897                         /* The extra space is currently unused. Use it. */
4898                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4899                                             EXT4_GOOD_OLD_INODE_SIZE;
4900                 } else {
4901                         __le32 *magic = (void *)raw_inode +
4902                                         EXT4_GOOD_OLD_INODE_SIZE +
4903                                         ei->i_extra_isize;
4904                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4905                                 ei->i_state |= EXT4_STATE_XATTR;
4906                 }
4907         } else
4908                 ei->i_extra_isize = 0;
4909
4910         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4911         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4912         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4913         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4914
4915         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4916         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4917                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4918                         inode->i_version |=
4919                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4920         }
4921
4922         ret = 0;
4923         if (ei->i_file_acl &&
4924             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4925                 ext4_error(sb, __func__,
4926                            "bad extended attribute block %llu in inode #%lu",
4927                            ei->i_file_acl, inode->i_ino);
4928                 ret = -EIO;
4929                 goto bad_inode;
4930         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4931                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4932                     (S_ISLNK(inode->i_mode) &&
4933                      !ext4_inode_is_fast_symlink(inode)))
4934                         /* Validate extent which is part of inode */
4935                         ret = ext4_ext_check_inode(inode);
4936         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4937                    (S_ISLNK(inode->i_mode) &&
4938                     !ext4_inode_is_fast_symlink(inode))) {
4939                 /* Validate block references which are part of inode */
4940                 ret = ext4_check_inode_blockref(inode);
4941         }
4942         if (ret)
4943                 goto bad_inode;
4944
4945         if (S_ISREG(inode->i_mode)) {
4946                 inode->i_op = &ext4_file_inode_operations;
4947                 inode->i_fop = &ext4_file_operations;
4948                 ext4_set_aops(inode);
4949         } else if (S_ISDIR(inode->i_mode)) {
4950                 inode->i_op = &ext4_dir_inode_operations;
4951                 inode->i_fop = &ext4_dir_operations;
4952         } else if (S_ISLNK(inode->i_mode)) {
4953                 if (ext4_inode_is_fast_symlink(inode)) {
4954                         inode->i_op = &ext4_fast_symlink_inode_operations;
4955                         nd_terminate_link(ei->i_data, inode->i_size,
4956                                 sizeof(ei->i_data) - 1);
4957                 } else {
4958                         inode->i_op = &ext4_symlink_inode_operations;
4959                         ext4_set_aops(inode);
4960                 }
4961         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963                 inode->i_op = &ext4_special_inode_operations;
4964                 if (raw_inode->i_block[0])
4965                         init_special_inode(inode, inode->i_mode,
4966                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967                 else
4968                         init_special_inode(inode, inode->i_mode,
4969                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970         } else {
4971                 ret = -EIO;
4972                 ext4_error(inode->i_sb, __func__,
4973                            "bogus i_mode (%o) for inode=%lu",
4974                            inode->i_mode, inode->i_ino);
4975                 goto bad_inode;
4976         }
4977         brelse(iloc.bh);
4978         ext4_set_inode_flags(inode);
4979         unlock_new_inode(inode);
4980         return inode;
4981
4982 bad_inode:
4983         brelse(iloc.bh);
4984         iget_failed(inode);
4985         return ERR_PTR(ret);
4986 }
4987
4988 static int ext4_inode_blocks_set(handle_t *handle,
4989                                 struct ext4_inode *raw_inode,
4990                                 struct ext4_inode_info *ei)
4991 {
4992         struct inode *inode = &(ei->vfs_inode);
4993         u64 i_blocks = inode->i_blocks;
4994         struct super_block *sb = inode->i_sb;
4995
4996         if (i_blocks <= ~0U) {
4997                 /*
4998                  * i_blocks can be represnted in a 32 bit variable
4999                  * as multiple of 512 bytes
5000                  */
5001                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5002                 raw_inode->i_blocks_high = 0;
5003                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5004                 return 0;
5005         }
5006         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5007                 return -EFBIG;
5008
5009         if (i_blocks <= 0xffffffffffffULL) {
5010                 /*
5011                  * i_blocks can be represented in a 48 bit variable
5012                  * as multiple of 512 bytes
5013                  */
5014                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5015                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5016                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5017         } else {
5018                 ei->i_flags |= EXT4_HUGE_FILE_FL;
5019                 /* i_block is stored in file system block size */
5020                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5021                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5022                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5023         }
5024         return 0;
5025 }
5026
5027 /*
5028  * Post the struct inode info into an on-disk inode location in the
5029  * buffer-cache.  This gobbles the caller's reference to the
5030  * buffer_head in the inode location struct.
5031  *
5032  * The caller must have write access to iloc->bh.
5033  */
5034 static int ext4_do_update_inode(handle_t *handle,
5035                                 struct inode *inode,
5036                                 struct ext4_iloc *iloc)
5037 {
5038         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5039         struct ext4_inode_info *ei = EXT4_I(inode);
5040         struct buffer_head *bh = iloc->bh;
5041         int err = 0, rc, block;
5042
5043         /* For fields not not tracking in the in-memory inode,
5044          * initialise them to zero for new inodes. */
5045         if (ei->i_state & EXT4_STATE_NEW)
5046                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5047
5048         ext4_get_inode_flags(ei);
5049         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5050         if (!(test_opt(inode->i_sb, NO_UID32))) {
5051                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5052                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5053 /*
5054  * Fix up interoperability with old kernels. Otherwise, old inodes get
5055  * re-used with the upper 16 bits of the uid/gid intact
5056  */
5057                 if (!ei->i_dtime) {
5058                         raw_inode->i_uid_high =
5059                                 cpu_to_le16(high_16_bits(inode->i_uid));
5060                         raw_inode->i_gid_high =
5061                                 cpu_to_le16(high_16_bits(inode->i_gid));
5062                 } else {
5063                         raw_inode->i_uid_high = 0;
5064                         raw_inode->i_gid_high = 0;
5065                 }
5066         } else {
5067                 raw_inode->i_uid_low =
5068                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5069                 raw_inode->i_gid_low =
5070                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5071                 raw_inode->i_uid_high = 0;
5072                 raw_inode->i_gid_high = 0;
5073         }
5074         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5075
5076         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5080
5081         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5082                 goto out_brelse;
5083         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5084         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5085         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5086             cpu_to_le32(EXT4_OS_HURD))
5087                 raw_inode->i_file_acl_high =
5088                         cpu_to_le16(ei->i_file_acl >> 32);
5089         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090         ext4_isize_set(raw_inode, ei->i_disksize);
5091         if (ei->i_disksize > 0x7fffffffULL) {
5092                 struct super_block *sb = inode->i_sb;
5093                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5094                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5095                                 EXT4_SB(sb)->s_es->s_rev_level ==
5096                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5097                         /* If this is the first large file
5098                          * created, add a flag to the superblock.
5099                          */
5100                         err = ext4_journal_get_write_access(handle,
5101                                         EXT4_SB(sb)->s_sbh);
5102                         if (err)
5103                                 goto out_brelse;
5104                         ext4_update_dynamic_rev(sb);
5105                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5106                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5107                         sb->s_dirt = 1;
5108                         ext4_handle_sync(handle);
5109                         err = ext4_handle_dirty_metadata(handle, inode,
5110                                         EXT4_SB(sb)->s_sbh);
5111                 }
5112         }
5113         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5114         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5115                 if (old_valid_dev(inode->i_rdev)) {
5116                         raw_inode->i_block[0] =
5117                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5118                         raw_inode->i_block[1] = 0;
5119                 } else {
5120                         raw_inode->i_block[0] = 0;
5121                         raw_inode->i_block[1] =
5122                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5123                         raw_inode->i_block[2] = 0;
5124                 }
5125         } else
5126                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5127                         raw_inode->i_block[block] = ei->i_data[block];
5128
5129         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5130         if (ei->i_extra_isize) {
5131                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5132                         raw_inode->i_version_hi =
5133                         cpu_to_le32(inode->i_version >> 32);
5134                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5135         }
5136
5137         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5138         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5139         if (!err)
5140                 err = rc;
5141         ei->i_state &= ~EXT4_STATE_NEW;
5142
5143         ext4_update_inode_fsync_trans(handle, inode, 0);
5144 out_brelse:
5145         brelse(bh);
5146         ext4_std_error(inode->i_sb, err);
5147         return err;
5148 }
5149
5150 /*
5151  * ext4_write_inode()
5152  *
5153  * We are called from a few places:
5154  *
5155  * - Within generic_file_write() for O_SYNC files.
5156  *   Here, there will be no transaction running. We wait for any running
5157  *   trasnaction to commit.
5158  *
5159  * - Within sys_sync(), kupdate and such.
5160  *   We wait on commit, if tol to.
5161  *
5162  * - Within prune_icache() (PF_MEMALLOC == true)
5163  *   Here we simply return.  We can't afford to block kswapd on the
5164  *   journal commit.
5165  *
5166  * In all cases it is actually safe for us to return without doing anything,
5167  * because the inode has been copied into a raw inode buffer in
5168  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5169  * knfsd.
5170  *
5171  * Note that we are absolutely dependent upon all inode dirtiers doing the
5172  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5173  * which we are interested.
5174  *
5175  * It would be a bug for them to not do this.  The code:
5176  *
5177  *      mark_inode_dirty(inode)
5178  *      stuff();
5179  *      inode->i_size = expr;
5180  *
5181  * is in error because a kswapd-driven write_inode() could occur while
5182  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5183  * will no longer be on the superblock's dirty inode list.
5184  */
5185 int ext4_write_inode(struct inode *inode, int wait)
5186 {
5187         int err;
5188
5189         if (current->flags & PF_MEMALLOC)
5190                 return 0;
5191
5192         if (EXT4_SB(inode->i_sb)->s_journal) {
5193                 if (ext4_journal_current_handle()) {
5194                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5195                         dump_stack();
5196                         return -EIO;
5197                 }
5198
5199                 if (!wait)
5200                         return 0;
5201
5202                 err = ext4_force_commit(inode->i_sb);
5203         } else {
5204                 struct ext4_iloc iloc;
5205
5206                 err = ext4_get_inode_loc(inode, &iloc);
5207                 if (err)
5208                         return err;
5209                 if (wait)
5210                         sync_dirty_buffer(iloc.bh);
5211                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5212                         ext4_error(inode->i_sb, __func__,
5213                                    "IO error syncing inode, "
5214                                    "inode=%lu, block=%llu",
5215                                    inode->i_ino,
5216                                    (unsigned long long)iloc.bh->b_blocknr);
5217                         err = -EIO;
5218                 }
5219         }
5220         return err;
5221 }
5222
5223 /*
5224  * ext4_setattr()
5225  *
5226  * Called from notify_change.
5227  *
5228  * We want to trap VFS attempts to truncate the file as soon as
5229  * possible.  In particular, we want to make sure that when the VFS
5230  * shrinks i_size, we put the inode on the orphan list and modify
5231  * i_disksize immediately, so that during the subsequent flushing of
5232  * dirty pages and freeing of disk blocks, we can guarantee that any
5233  * commit will leave the blocks being flushed in an unused state on
5234  * disk.  (On recovery, the inode will get truncated and the blocks will
5235  * be freed, so we have a strong guarantee that no future commit will
5236  * leave these blocks visible to the user.)
5237  *
5238  * Another thing we have to assure is that if we are in ordered mode
5239  * and inode is still attached to the committing transaction, we must
5240  * we start writeout of all the dirty pages which are being truncated.
5241  * This way we are sure that all the data written in the previous
5242  * transaction are already on disk (truncate waits for pages under
5243  * writeback).
5244  *
5245  * Called with inode->i_mutex down.
5246  */
5247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5248 {
5249         struct inode *inode = dentry->d_inode;
5250         int error, rc = 0;
5251         const unsigned int ia_valid = attr->ia_valid;
5252
5253         error = inode_change_ok(inode, attr);
5254         if (error)
5255                 return error;
5256
5257         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5258                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5259                 handle_t *handle;
5260
5261                 /* (user+group)*(old+new) structure, inode write (sb,
5262                  * inode block, ? - but truncate inode update has it) */
5263                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5264                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5265                 if (IS_ERR(handle)) {
5266                         error = PTR_ERR(handle);
5267                         goto err_out;
5268                 }
5269                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5270                 if (error) {
5271                         ext4_journal_stop(handle);
5272                         return error;
5273                 }
5274                 /* Update corresponding info in inode so that everything is in
5275                  * one transaction */
5276                 if (attr->ia_valid & ATTR_UID)
5277                         inode->i_uid = attr->ia_uid;
5278                 if (attr->ia_valid & ATTR_GID)
5279                         inode->i_gid = attr->ia_gid;
5280                 error = ext4_mark_inode_dirty(handle, inode);
5281                 ext4_journal_stop(handle);
5282         }
5283
5284         if (attr->ia_valid & ATTR_SIZE) {
5285                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5286                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5287
5288                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5289                                 error = -EFBIG;
5290                                 goto err_out;
5291                         }
5292                 }
5293         }
5294
5295         if (S_ISREG(inode->i_mode) &&
5296             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5297                 handle_t *handle;
5298
5299                 handle = ext4_journal_start(inode, 3);
5300                 if (IS_ERR(handle)) {
5301                         error = PTR_ERR(handle);
5302                         goto err_out;
5303                 }
5304
5305                 error = ext4_orphan_add(handle, inode);
5306                 EXT4_I(inode)->i_disksize = attr->ia_size;
5307                 rc = ext4_mark_inode_dirty(handle, inode);
5308                 if (!error)
5309                         error = rc;
5310                 ext4_journal_stop(handle);
5311
5312                 if (ext4_should_order_data(inode)) {
5313                         error = ext4_begin_ordered_truncate(inode,
5314                                                             attr->ia_size);
5315                         if (error) {
5316                                 /* Do as much error cleanup as possible */
5317                                 handle = ext4_journal_start(inode, 3);
5318                                 if (IS_ERR(handle)) {
5319                                         ext4_orphan_del(NULL, inode);
5320                                         goto err_out;
5321                                 }
5322                                 ext4_orphan_del(handle, inode);
5323                                 ext4_journal_stop(handle);
5324                                 goto err_out;
5325                         }
5326                 }
5327         }
5328
5329         rc = inode_setattr(inode, attr);
5330
5331         /* If inode_setattr's call to ext4_truncate failed to get a
5332          * transaction handle at all, we need to clean up the in-core
5333          * orphan list manually. */
5334         if (inode->i_nlink)
5335                 ext4_orphan_del(NULL, inode);
5336
5337         if (!rc && (ia_valid & ATTR_MODE))
5338                 rc = ext4_acl_chmod(inode);
5339
5340 err_out:
5341         ext4_std_error(inode->i_sb, error);
5342         if (!error)
5343                 error = rc;
5344         return error;
5345 }
5346
5347 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5348                  struct kstat *stat)
5349 {
5350         struct inode *inode;
5351         unsigned long delalloc_blocks;
5352
5353         inode = dentry->d_inode;
5354         generic_fillattr(inode, stat);
5355
5356         /*
5357          * We can't update i_blocks if the block allocation is delayed
5358          * otherwise in the case of system crash before the real block
5359          * allocation is done, we will have i_blocks inconsistent with
5360          * on-disk file blocks.
5361          * We always keep i_blocks updated together with real
5362          * allocation. But to not confuse with user, stat
5363          * will return the blocks that include the delayed allocation
5364          * blocks for this file.
5365          */
5366         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5367         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5368         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5369
5370         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5371         return 0;
5372 }
5373
5374 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5375                                       int chunk)
5376 {
5377         int indirects;
5378
5379         /* if nrblocks are contiguous */
5380         if (chunk) {
5381                 /*
5382                  * With N contiguous data blocks, it need at most
5383                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5384                  * 2 dindirect blocks
5385                  * 1 tindirect block
5386                  */
5387                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5388                 return indirects + 3;
5389         }
5390         /*
5391          * if nrblocks are not contiguous, worse case, each block touch
5392          * a indirect block, and each indirect block touch a double indirect
5393          * block, plus a triple indirect block
5394          */
5395         indirects = nrblocks * 2 + 1;
5396         return indirects;
5397 }
5398
5399 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5400 {
5401         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5402                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5403         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5404 }
5405
5406 /*
5407  * Account for index blocks, block groups bitmaps and block group
5408  * descriptor blocks if modify datablocks and index blocks
5409  * worse case, the indexs blocks spread over different block groups
5410  *
5411  * If datablocks are discontiguous, they are possible to spread over
5412  * different block groups too. If they are contiugous, with flexbg,
5413  * they could still across block group boundary.
5414  *
5415  * Also account for superblock, inode, quota and xattr blocks
5416  */
5417 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5418 {
5419         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5420         int gdpblocks;
5421         int idxblocks;
5422         int ret = 0;
5423
5424         /*
5425          * How many index blocks need to touch to modify nrblocks?
5426          * The "Chunk" flag indicating whether the nrblocks is
5427          * physically contiguous on disk
5428          *
5429          * For Direct IO and fallocate, they calls get_block to allocate
5430          * one single extent at a time, so they could set the "Chunk" flag
5431          */
5432         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5433
5434         ret = idxblocks;
5435
5436         /*
5437          * Now let's see how many group bitmaps and group descriptors need
5438          * to account
5439          */
5440         groups = idxblocks;
5441         if (chunk)
5442                 groups += 1;
5443         else
5444                 groups += nrblocks;
5445
5446         gdpblocks = groups;
5447         if (groups > ngroups)
5448                 groups = ngroups;
5449         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5450                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5451
5452         /* bitmaps and block group descriptor blocks */
5453         ret += groups + gdpblocks;
5454
5455         /* Blocks for super block, inode, quota and xattr blocks */
5456         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5457
5458         return ret;
5459 }
5460
5461 /*
5462  * Calulate the total number of credits to reserve to fit
5463  * the modification of a single pages into a single transaction,
5464  * which may include multiple chunks of block allocations.
5465  *
5466  * This could be called via ext4_write_begin()
5467  *
5468  * We need to consider the worse case, when
5469  * one new block per extent.
5470  */
5471 int ext4_writepage_trans_blocks(struct inode *inode)
5472 {
5473         int bpp = ext4_journal_blocks_per_page(inode);
5474         int ret;
5475
5476         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5477
5478         /* Account for data blocks for journalled mode */
5479         if (ext4_should_journal_data(inode))
5480                 ret += bpp;
5481         return ret;
5482 }
5483
5484 /*
5485  * Calculate the journal credits for a chunk of data modification.
5486  *
5487  * This is called from DIO, fallocate or whoever calling
5488  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5489  *
5490  * journal buffers for data blocks are not included here, as DIO
5491  * and fallocate do no need to journal data buffers.
5492  */
5493 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5494 {
5495         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5496 }
5497
5498 /*
5499  * The caller must have previously called ext4_reserve_inode_write().
5500  * Give this, we know that the caller already has write access to iloc->bh.
5501  */
5502 int ext4_mark_iloc_dirty(handle_t *handle,
5503                          struct inode *inode, struct ext4_iloc *iloc)
5504 {
5505         int err = 0;
5506
5507         if (test_opt(inode->i_sb, I_VERSION))
5508                 inode_inc_iversion(inode);
5509
5510         /* the do_update_inode consumes one bh->b_count */
5511         get_bh(iloc->bh);
5512
5513         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5514         err = ext4_do_update_inode(handle, inode, iloc);
5515         put_bh(iloc->bh);
5516         return err;
5517 }
5518
5519 /*
5520  * On success, We end up with an outstanding reference count against
5521  * iloc->bh.  This _must_ be cleaned up later.
5522  */
5523
5524 int
5525 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5526                          struct ext4_iloc *iloc)
5527 {
5528         int err;
5529
5530         err = ext4_get_inode_loc(inode, iloc);
5531         if (!err) {
5532                 BUFFER_TRACE(iloc->bh, "get_write_access");
5533                 err = ext4_journal_get_write_access(handle, iloc->bh);
5534                 if (err) {
5535                         brelse(iloc->bh);
5536                         iloc->bh = NULL;
5537                 }
5538         }
5539         ext4_std_error(inode->i_sb, err);
5540         return err;
5541 }
5542
5543 /*
5544  * Expand an inode by new_extra_isize bytes.
5545  * Returns 0 on success or negative error number on failure.
5546  */
5547 static int ext4_expand_extra_isize(struct inode *inode,
5548                                    unsigned int new_extra_isize,
5549                                    struct ext4_iloc iloc,
5550                                    handle_t *handle)
5551 {
5552         struct ext4_inode *raw_inode;
5553         struct ext4_xattr_ibody_header *header;
5554         struct ext4_xattr_entry *entry;
5555
5556         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5557                 return 0;
5558
5559         raw_inode = ext4_raw_inode(&iloc);
5560
5561         header = IHDR(inode, raw_inode);
5562         entry = IFIRST(header);
5563
5564         /* No extended attributes present */
5565         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5566                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5567                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5568                         new_extra_isize);
5569                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5570                 return 0;
5571         }
5572
5573         /* try to expand with EAs present */
5574         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5575                                           raw_inode, handle);
5576 }
5577
5578 /*
5579  * What we do here is to mark the in-core inode as clean with respect to inode
5580  * dirtiness (it may still be data-dirty).
5581  * This means that the in-core inode may be reaped by prune_icache
5582  * without having to perform any I/O.  This is a very good thing,
5583  * because *any* task may call prune_icache - even ones which
5584  * have a transaction open against a different journal.
5585  *
5586  * Is this cheating?  Not really.  Sure, we haven't written the
5587  * inode out, but prune_icache isn't a user-visible syncing function.
5588  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5589  * we start and wait on commits.
5590  *
5591  * Is this efficient/effective?  Well, we're being nice to the system
5592  * by cleaning up our inodes proactively so they can be reaped
5593  * without I/O.  But we are potentially leaving up to five seconds'
5594  * worth of inodes floating about which prune_icache wants us to
5595  * write out.  One way to fix that would be to get prune_icache()
5596  * to do a write_super() to free up some memory.  It has the desired
5597  * effect.
5598  */
5599 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5600 {
5601         struct ext4_iloc iloc;
5602         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5603         static unsigned int mnt_count;
5604         int err, ret;
5605
5606         might_sleep();
5607         err = ext4_reserve_inode_write(handle, inode, &iloc);
5608         if (ext4_handle_valid(handle) &&
5609             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5610             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5611                 /*
5612                  * We need extra buffer credits since we may write into EA block
5613                  * with this same handle. If journal_extend fails, then it will
5614                  * only result in a minor loss of functionality for that inode.
5615                  * If this is felt to be critical, then e2fsck should be run to
5616                  * force a large enough s_min_extra_isize.
5617                  */
5618                 if ((jbd2_journal_extend(handle,
5619                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5620                         ret = ext4_expand_extra_isize(inode,
5621                                                       sbi->s_want_extra_isize,
5622                                                       iloc, handle);
5623                         if (ret) {
5624                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5625                                 if (mnt_count !=
5626                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5627                                         ext4_warning(inode->i_sb, __func__,
5628                                         "Unable to expand inode %lu. Delete"
5629                                         " some EAs or run e2fsck.",
5630                                         inode->i_ino);
5631                                         mnt_count =
5632                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5633                                 }
5634                         }
5635                 }
5636         }
5637         if (!err)
5638                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5639         return err;
5640 }
5641
5642 /*
5643  * ext4_dirty_inode() is called from __mark_inode_dirty()
5644  *
5645  * We're really interested in the case where a file is being extended.
5646  * i_size has been changed by generic_commit_write() and we thus need
5647  * to include the updated inode in the current transaction.
5648  *
5649  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5650  * are allocated to the file.
5651  *
5652  * If the inode is marked synchronous, we don't honour that here - doing
5653  * so would cause a commit on atime updates, which we don't bother doing.
5654  * We handle synchronous inodes at the highest possible level.
5655  */
5656 void ext4_dirty_inode(struct inode *inode)
5657 {
5658         handle_t *handle;
5659
5660         handle = ext4_journal_start(inode, 2);
5661         if (IS_ERR(handle))
5662                 goto out;
5663
5664         ext4_mark_inode_dirty(handle, inode);
5665
5666         ext4_journal_stop(handle);
5667 out:
5668         return;
5669 }
5670
5671 #if 0
5672 /*
5673  * Bind an inode's backing buffer_head into this transaction, to prevent
5674  * it from being flushed to disk early.  Unlike
5675  * ext4_reserve_inode_write, this leaves behind no bh reference and
5676  * returns no iloc structure, so the caller needs to repeat the iloc
5677  * lookup to mark the inode dirty later.
5678  */
5679 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5680 {
5681         struct ext4_iloc iloc;
5682
5683         int err = 0;
5684         if (handle) {
5685                 err = ext4_get_inode_loc(inode, &iloc);
5686                 if (!err) {
5687                         BUFFER_TRACE(iloc.bh, "get_write_access");
5688                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5689                         if (!err)
5690                                 err = ext4_handle_dirty_metadata(handle,
5691                                                                  inode,
5692                                                                  iloc.bh);
5693                         brelse(iloc.bh);
5694                 }
5695         }
5696         ext4_std_error(inode->i_sb, err);
5697         return err;
5698 }
5699 #endif
5700
5701 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5702 {
5703         journal_t *journal;
5704         handle_t *handle;
5705         int err;
5706
5707         /*
5708          * We have to be very careful here: changing a data block's
5709          * journaling status dynamically is dangerous.  If we write a
5710          * data block to the journal, change the status and then delete
5711          * that block, we risk forgetting to revoke the old log record
5712          * from the journal and so a subsequent replay can corrupt data.
5713          * So, first we make sure that the journal is empty and that
5714          * nobody is changing anything.
5715          */
5716
5717         journal = EXT4_JOURNAL(inode);
5718         if (!journal)
5719                 return 0;
5720         if (is_journal_aborted(journal))
5721                 return -EROFS;
5722
5723         jbd2_journal_lock_updates(journal);
5724         jbd2_journal_flush(journal);
5725
5726         /*
5727          * OK, there are no updates running now, and all cached data is
5728          * synced to disk.  We are now in a completely consistent state
5729          * which doesn't have anything in the journal, and we know that
5730          * no filesystem updates are running, so it is safe to modify
5731          * the inode's in-core data-journaling state flag now.
5732          */
5733
5734         if (val)
5735                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5736         else
5737                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5738         ext4_set_aops(inode);
5739
5740         jbd2_journal_unlock_updates(journal);
5741
5742         /* Finally we can mark the inode as dirty. */
5743
5744         handle = ext4_journal_start(inode, 1);
5745         if (IS_ERR(handle))
5746                 return PTR_ERR(handle);
5747
5748         err = ext4_mark_inode_dirty(handle, inode);
5749         ext4_handle_sync(handle);
5750         ext4_journal_stop(handle);
5751         ext4_std_error(inode->i_sb, err);
5752
5753         return err;
5754 }
5755
5756 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5757 {
5758         return !buffer_mapped(bh);
5759 }
5760
5761 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5762 {
5763         struct page *page = vmf->page;
5764         loff_t size;
5765         unsigned long len;
5766         int ret = -EINVAL;
5767         void *fsdata;
5768         struct file *file = vma->vm_file;
5769         struct inode *inode = file->f_path.dentry->d_inode;
5770         struct address_space *mapping = inode->i_mapping;
5771
5772         /*
5773          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5774          * get i_mutex because we are already holding mmap_sem.
5775          */
5776         down_read(&inode->i_alloc_sem);
5777         size = i_size_read(inode);
5778         if (page->mapping != mapping || size <= page_offset(page)
5779             || !PageUptodate(page)) {
5780                 /* page got truncated from under us? */
5781                 goto out_unlock;
5782         }
5783         ret = 0;
5784         if (PageMappedToDisk(page))
5785                 goto out_unlock;
5786
5787         if (page->index == size >> PAGE_CACHE_SHIFT)
5788                 len = size & ~PAGE_CACHE_MASK;
5789         else
5790                 len = PAGE_CACHE_SIZE;
5791
5792         lock_page(page);
5793         /*
5794          * return if we have all the buffers mapped. This avoid
5795          * the need to call write_begin/write_end which does a
5796          * journal_start/journal_stop which can block and take
5797          * long time
5798          */
5799         if (page_has_buffers(page)) {
5800                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5801                                         ext4_bh_unmapped)) {
5802                         unlock_page(page);
5803                         goto out_unlock;
5804                 }
5805         }
5806         unlock_page(page);
5807         /*
5808          * OK, we need to fill the hole... Do write_begin write_end
5809          * to do block allocation/reservation.We are not holding
5810          * inode.i__mutex here. That allow * parallel write_begin,
5811          * write_end call. lock_page prevent this from happening
5812          * on the same page though
5813          */
5814         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5815                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5816         if (ret < 0)
5817                 goto out_unlock;
5818         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5819                         len, len, page, fsdata);
5820         if (ret < 0)
5821                 goto out_unlock;
5822         ret = 0;
5823 out_unlock:
5824         if (ret)
5825                 ret = VM_FAULT_SIGBUS;
5826         up_read(&inode->i_alloc_sem);
5827         return ret;
5828 }