]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
jbd2: Avoid possible NULL dereference in jbd2_journal_begin_ordered_truncate()
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(
50                                         EXT4_SB(inode->i_sb)->s_journal,
51                                         &EXT4_I(inode)->jinode,
52                                         new_size);
53 }
54
55 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56
57 /*
58  * Test whether an inode is a fast symlink.
59  */
60 static int ext4_inode_is_fast_symlink(struct inode *inode)
61 {
62         int ea_blocks = EXT4_I(inode)->i_file_acl ?
63                 (inode->i_sb->s_blocksize >> 9) : 0;
64
65         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
66 }
67
68 /*
69  * The ext4 forget function must perform a revoke if we are freeing data
70  * which has been journaled.  Metadata (eg. indirect blocks) must be
71  * revoked in all cases.
72  *
73  * "bh" may be NULL: a metadata block may have been freed from memory
74  * but there may still be a record of it in the journal, and that record
75  * still needs to be revoked.
76  */
77 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
78                         struct buffer_head *bh, ext4_fsblk_t blocknr)
79 {
80         int err;
81
82         might_sleep();
83
84         BUFFER_TRACE(bh, "enter");
85
86         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
87                   "data mode %lx\n",
88                   bh, is_metadata, inode->i_mode,
89                   test_opt(inode->i_sb, DATA_FLAGS));
90
91         /* Never use the revoke function if we are doing full data
92          * journaling: there is no need to, and a V1 superblock won't
93          * support it.  Otherwise, only skip the revoke on un-journaled
94          * data blocks. */
95
96         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
97             (!is_metadata && !ext4_should_journal_data(inode))) {
98                 if (bh) {
99                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
100                         return ext4_journal_forget(handle, bh);
101                 }
102                 return 0;
103         }
104
105         /*
106          * data!=journal && (is_metadata || should_journal_data(inode))
107          */
108         BUFFER_TRACE(bh, "call ext4_journal_revoke");
109         err = ext4_journal_revoke(handle, blocknr, bh);
110         if (err)
111                 ext4_abort(inode->i_sb, __func__,
112                            "error %d when attempting revoke", err);
113         BUFFER_TRACE(bh, "exit");
114         return err;
115 }
116
117 /*
118  * Work out how many blocks we need to proceed with the next chunk of a
119  * truncate transaction.
120  */
121 static unsigned long blocks_for_truncate(struct inode *inode)
122 {
123         ext4_lblk_t needed;
124
125         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
126
127         /* Give ourselves just enough room to cope with inodes in which
128          * i_blocks is corrupt: we've seen disk corruptions in the past
129          * which resulted in random data in an inode which looked enough
130          * like a regular file for ext4 to try to delete it.  Things
131          * will go a bit crazy if that happens, but at least we should
132          * try not to panic the whole kernel. */
133         if (needed < 2)
134                 needed = 2;
135
136         /* But we need to bound the transaction so we don't overflow the
137          * journal. */
138         if (needed > EXT4_MAX_TRANS_DATA)
139                 needed = EXT4_MAX_TRANS_DATA;
140
141         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
142 }
143
144 /*
145  * Truncate transactions can be complex and absolutely huge.  So we need to
146  * be able to restart the transaction at a conventient checkpoint to make
147  * sure we don't overflow the journal.
148  *
149  * start_transaction gets us a new handle for a truncate transaction,
150  * and extend_transaction tries to extend the existing one a bit.  If
151  * extend fails, we need to propagate the failure up and restart the
152  * transaction in the top-level truncate loop. --sct
153  */
154 static handle_t *start_transaction(struct inode *inode)
155 {
156         handle_t *result;
157
158         result = ext4_journal_start(inode, blocks_for_truncate(inode));
159         if (!IS_ERR(result))
160                 return result;
161
162         ext4_std_error(inode->i_sb, PTR_ERR(result));
163         return result;
164 }
165
166 /*
167  * Try to extend this transaction for the purposes of truncation.
168  *
169  * Returns 0 if we managed to create more room.  If we can't create more
170  * room, and the transaction must be restarted we return 1.
171  */
172 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
173 {
174         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
175                 return 0;
176         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
177                 return 0;
178         return 1;
179 }
180
181 /*
182  * Restart the transaction associated with *handle.  This does a commit,
183  * so before we call here everything must be consistently dirtied against
184  * this transaction.
185  */
186 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
187 {
188         jbd_debug(2, "restarting handle %p\n", handle);
189         return ext4_journal_restart(handle, blocks_for_truncate(inode));
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_delete_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 handle->h_sync = 1;
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb, __func__,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (handle->h_buffer_credits < 3) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb, __func__,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         goto no_delete;
247                 }
248         }
249
250         /*
251          * Kill off the orphan record which ext4_truncate created.
252          * AKPM: I think this can be inside the above `if'.
253          * Note that ext4_orphan_del() has to be able to cope with the
254          * deletion of a non-existent orphan - this is because we don't
255          * know if ext4_truncate() actually created an orphan record.
256          * (Well, we could do this if we need to, but heck - it works)
257          */
258         ext4_orphan_del(handle, inode);
259         EXT4_I(inode)->i_dtime  = get_seconds();
260
261         /*
262          * One subtle ordering requirement: if anything has gone wrong
263          * (transaction abort, IO errors, whatever), then we can still
264          * do these next steps (the fs will already have been marked as
265          * having errors), but we can't free the inode if the mark_dirty
266          * fails.
267          */
268         if (ext4_mark_inode_dirty(handle, inode))
269                 /* If that failed, just do the required in-core inode clear. */
270                 clear_inode(inode);
271         else
272                 ext4_free_inode(handle, inode);
273         ext4_journal_stop(handle);
274         return;
275 no_delete:
276         clear_inode(inode);     /* We must guarantee clearing of inode... */
277 }
278
279 typedef struct {
280         __le32  *p;
281         __le32  key;
282         struct buffer_head *bh;
283 } Indirect;
284
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 {
287         p->key = *(p->p = v);
288         p->bh = bh;
289 }
290
291 /**
292  *      ext4_block_to_path - parse the block number into array of offsets
293  *      @inode: inode in question (we are only interested in its superblock)
294  *      @i_block: block number to be parsed
295  *      @offsets: array to store the offsets in
296  *      @boundary: set this non-zero if the referred-to block is likely to be
297  *             followed (on disk) by an indirect block.
298  *
299  *      To store the locations of file's data ext4 uses a data structure common
300  *      for UNIX filesystems - tree of pointers anchored in the inode, with
301  *      data blocks at leaves and indirect blocks in intermediate nodes.
302  *      This function translates the block number into path in that tree -
303  *      return value is the path length and @offsets[n] is the offset of
304  *      pointer to (n+1)th node in the nth one. If @block is out of range
305  *      (negative or too large) warning is printed and zero returned.
306  *
307  *      Note: function doesn't find node addresses, so no IO is needed. All
308  *      we need to know is the capacity of indirect blocks (taken from the
309  *      inode->i_sb).
310  */
311
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321
322 static int ext4_block_to_path(struct inode *inode,
323                         ext4_lblk_t i_block,
324                         ext4_lblk_t offsets[4], int *boundary)
325 {
326         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328         const long direct_blocks = EXT4_NDIR_BLOCKS,
329                 indirect_blocks = ptrs,
330                 double_blocks = (1 << (ptrs_bits * 2));
331         int n = 0;
332         int final = 0;
333
334         if (i_block < 0) {
335                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
336         } else if (i_block < direct_blocks) {
337                 offsets[n++] = i_block;
338                 final = direct_blocks;
339         } else if ((i_block -= direct_blocks) < indirect_blocks) {
340                 offsets[n++] = EXT4_IND_BLOCK;
341                 offsets[n++] = i_block;
342                 final = ptrs;
343         } else if ((i_block -= indirect_blocks) < double_blocks) {
344                 offsets[n++] = EXT4_DIND_BLOCK;
345                 offsets[n++] = i_block >> ptrs_bits;
346                 offsets[n++] = i_block & (ptrs - 1);
347                 final = ptrs;
348         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
349                 offsets[n++] = EXT4_TIND_BLOCK;
350                 offsets[n++] = i_block >> (ptrs_bits * 2);
351                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
352                 offsets[n++] = i_block & (ptrs - 1);
353                 final = ptrs;
354         } else {
355                 ext4_warning(inode->i_sb, "ext4_block_to_path",
356                                 "block %lu > max in inode %lu",
357                                 i_block + direct_blocks +
358                                 indirect_blocks + double_blocks, inode->i_ino);
359         }
360         if (boundary)
361                 *boundary = final - 1 - (i_block & (ptrs - 1));
362         return n;
363 }
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_bread(sb, le32_to_cpu(p->key));
410                 if (!bh)
411                         goto failure;
412                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
413                 /* Reader: end */
414                 if (!p->key)
415                         goto no_block;
416         }
417         return NULL;
418
419 failure:
420         *err = -EIO;
421 no_block:
422         return p;
423 }
424
425 /**
426  *      ext4_find_near - find a place for allocation with sufficient locality
427  *      @inode: owner
428  *      @ind: descriptor of indirect block.
429  *
430  *      This function returns the preferred place for block allocation.
431  *      It is used when heuristic for sequential allocation fails.
432  *      Rules are:
433  *        + if there is a block to the left of our position - allocate near it.
434  *        + if pointer will live in indirect block - allocate near that block.
435  *        + if pointer will live in inode - allocate in the same
436  *          cylinder group.
437  *
438  * In the latter case we colour the starting block by the callers PID to
439  * prevent it from clashing with concurrent allocations for a different inode
440  * in the same block group.   The PID is used here so that functionally related
441  * files will be close-by on-disk.
442  *
443  *      Caller must make sure that @ind is valid and will stay that way.
444  */
445 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
446 {
447         struct ext4_inode_info *ei = EXT4_I(inode);
448         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
449         __le32 *p;
450         ext4_fsblk_t bg_start;
451         ext4_fsblk_t last_block;
452         ext4_grpblk_t colour;
453
454         /* Try to find previous block */
455         for (p = ind->p - 1; p >= start; p--) {
456                 if (*p)
457                         return le32_to_cpu(*p);
458         }
459
460         /* No such thing, so let's try location of indirect block */
461         if (ind->bh)
462                 return ind->bh->b_blocknr;
463
464         /*
465          * It is going to be referred to from the inode itself? OK, just put it
466          * into the same cylinder group then.
467          */
468         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
469         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
470
471         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
472                 colour = (current->pid % 16) *
473                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
474         else
475                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
476         return bg_start + colour;
477 }
478
479 /**
480  *      ext4_find_goal - find a preferred place for allocation.
481  *      @inode: owner
482  *      @block:  block we want
483  *      @partial: pointer to the last triple within a chain
484  *
485  *      Normally this function find the preferred place for block allocation,
486  *      returns it.
487  */
488 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
489                 Indirect *partial)
490 {
491         /*
492          * XXX need to get goal block from mballoc's data structures
493          */
494
495         return ext4_find_near(inode, partial);
496 }
497
498 /**
499  *      ext4_blks_to_allocate: Look up the block map and count the number
500  *      of direct blocks need to be allocated for the given branch.
501  *
502  *      @branch: chain of indirect blocks
503  *      @k: number of blocks need for indirect blocks
504  *      @blks: number of data blocks to be mapped.
505  *      @blocks_to_boundary:  the offset in the indirect block
506  *
507  *      return the total number of blocks to be allocate, including the
508  *      direct and indirect blocks.
509  */
510 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
511                 int blocks_to_boundary)
512 {
513         unsigned long count = 0;
514
515         /*
516          * Simple case, [t,d]Indirect block(s) has not allocated yet
517          * then it's clear blocks on that path have not allocated
518          */
519         if (k > 0) {
520                 /* right now we don't handle cross boundary allocation */
521                 if (blks < blocks_to_boundary + 1)
522                         count += blks;
523                 else
524                         count += blocks_to_boundary + 1;
525                 return count;
526         }
527
528         count++;
529         while (count < blks && count <= blocks_to_boundary &&
530                 le32_to_cpu(*(branch[0].p + count)) == 0) {
531                 count++;
532         }
533         return count;
534 }
535
536 /**
537  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
538  *      @indirect_blks: the number of blocks need to allocate for indirect
539  *                      blocks
540  *
541  *      @new_blocks: on return it will store the new block numbers for
542  *      the indirect blocks(if needed) and the first direct block,
543  *      @blks:  on return it will store the total number of allocated
544  *              direct blocks
545  */
546 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
547                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
548                                 int indirect_blks, int blks,
549                                 ext4_fsblk_t new_blocks[4], int *err)
550 {
551         int target, i;
552         unsigned long count = 0, blk_allocated = 0;
553         int index = 0;
554         ext4_fsblk_t current_block = 0;
555         int ret = 0;
556
557         /*
558          * Here we try to allocate the requested multiple blocks at once,
559          * on a best-effort basis.
560          * To build a branch, we should allocate blocks for
561          * the indirect blocks(if not allocated yet), and at least
562          * the first direct block of this branch.  That's the
563          * minimum number of blocks need to allocate(required)
564          */
565         /* first we try to allocate the indirect blocks */
566         target = indirect_blks;
567         while (target > 0) {
568                 count = target;
569                 /* allocating blocks for indirect blocks and direct blocks */
570                 current_block = ext4_new_meta_blocks(handle, inode,
571                                                         goal, &count, err);
572                 if (*err)
573                         goto failed_out;
574
575                 target -= count;
576                 /* allocate blocks for indirect blocks */
577                 while (index < indirect_blks && count) {
578                         new_blocks[index++] = current_block++;
579                         count--;
580                 }
581                 if (count > 0) {
582                         /*
583                          * save the new block number
584                          * for the first direct block
585                          */
586                         new_blocks[index] = current_block;
587                         printk(KERN_INFO "%s returned more blocks than "
588                                                 "requested\n", __func__);
589                         WARN_ON(1);
590                         break;
591                 }
592         }
593
594         target = blks - count ;
595         blk_allocated = count;
596         if (!target)
597                 goto allocated;
598         /* Now allocate data blocks */
599         count = target;
600         /* allocating blocks for data blocks */
601         current_block = ext4_new_blocks(handle, inode, iblock,
602                                                 goal, &count, err);
603         if (*err && (target == blks)) {
604                 /*
605                  * if the allocation failed and we didn't allocate
606                  * any blocks before
607                  */
608                 goto failed_out;
609         }
610         if (!*err) {
611                 if (target == blks) {
612                 /*
613                  * save the new block number
614                  * for the first direct block
615                  */
616                         new_blocks[index] = current_block;
617                 }
618                 blk_allocated += count;
619         }
620 allocated:
621         /* total number of blocks allocated for direct blocks */
622         ret = blk_allocated;
623         *err = 0;
624         return ret;
625 failed_out:
626         for (i = 0; i < index; i++)
627                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
628         return ret;
629 }
630
631 /**
632  *      ext4_alloc_branch - allocate and set up a chain of blocks.
633  *      @inode: owner
634  *      @indirect_blks: number of allocated indirect blocks
635  *      @blks: number of allocated direct blocks
636  *      @offsets: offsets (in the blocks) to store the pointers to next.
637  *      @branch: place to store the chain in.
638  *
639  *      This function allocates blocks, zeroes out all but the last one,
640  *      links them into chain and (if we are synchronous) writes them to disk.
641  *      In other words, it prepares a branch that can be spliced onto the
642  *      inode. It stores the information about that chain in the branch[], in
643  *      the same format as ext4_get_branch() would do. We are calling it after
644  *      we had read the existing part of chain and partial points to the last
645  *      triple of that (one with zero ->key). Upon the exit we have the same
646  *      picture as after the successful ext4_get_block(), except that in one
647  *      place chain is disconnected - *branch->p is still zero (we did not
648  *      set the last link), but branch->key contains the number that should
649  *      be placed into *branch->p to fill that gap.
650  *
651  *      If allocation fails we free all blocks we've allocated (and forget
652  *      their buffer_heads) and return the error value the from failed
653  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
654  *      as described above and return 0.
655  */
656 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
657                                 ext4_lblk_t iblock, int indirect_blks,
658                                 int *blks, ext4_fsblk_t goal,
659                                 ext4_lblk_t *offsets, Indirect *branch)
660 {
661         int blocksize = inode->i_sb->s_blocksize;
662         int i, n = 0;
663         int err = 0;
664         struct buffer_head *bh;
665         int num;
666         ext4_fsblk_t new_blocks[4];
667         ext4_fsblk_t current_block;
668
669         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
670                                 *blks, new_blocks, &err);
671         if (err)
672                 return err;
673
674         branch[0].key = cpu_to_le32(new_blocks[0]);
675         /*
676          * metadata blocks and data blocks are allocated.
677          */
678         for (n = 1; n <= indirect_blks;  n++) {
679                 /*
680                  * Get buffer_head for parent block, zero it out
681                  * and set the pointer to new one, then send
682                  * parent to disk.
683                  */
684                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
685                 branch[n].bh = bh;
686                 lock_buffer(bh);
687                 BUFFER_TRACE(bh, "call get_create_access");
688                 err = ext4_journal_get_create_access(handle, bh);
689                 if (err) {
690                         unlock_buffer(bh);
691                         brelse(bh);
692                         goto failed;
693                 }
694
695                 memset(bh->b_data, 0, blocksize);
696                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
697                 branch[n].key = cpu_to_le32(new_blocks[n]);
698                 *branch[n].p = branch[n].key;
699                 if (n == indirect_blks) {
700                         current_block = new_blocks[n];
701                         /*
702                          * End of chain, update the last new metablock of
703                          * the chain to point to the new allocated
704                          * data blocks numbers
705                          */
706                         for (i=1; i < num; i++)
707                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
708                 }
709                 BUFFER_TRACE(bh, "marking uptodate");
710                 set_buffer_uptodate(bh);
711                 unlock_buffer(bh);
712
713                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
714                 err = ext4_journal_dirty_metadata(handle, bh);
715                 if (err)
716                         goto failed;
717         }
718         *blks = num;
719         return err;
720 failed:
721         /* Allocation failed, free what we already allocated */
722         for (i = 1; i <= n ; i++) {
723                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
724                 ext4_journal_forget(handle, branch[i].bh);
725         }
726         for (i = 0; i < indirect_blks; i++)
727                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
728
729         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
730
731         return err;
732 }
733
734 /**
735  * ext4_splice_branch - splice the allocated branch onto inode.
736  * @inode: owner
737  * @block: (logical) number of block we are adding
738  * @chain: chain of indirect blocks (with a missing link - see
739  *      ext4_alloc_branch)
740  * @where: location of missing link
741  * @num:   number of indirect blocks we are adding
742  * @blks:  number of direct blocks we are adding
743  *
744  * This function fills the missing link and does all housekeeping needed in
745  * inode (->i_blocks, etc.). In case of success we end up with the full
746  * chain to new block and return 0.
747  */
748 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
749                         ext4_lblk_t block, Indirect *where, int num, int blks)
750 {
751         int i;
752         int err = 0;
753         ext4_fsblk_t current_block;
754
755         /*
756          * If we're splicing into a [td]indirect block (as opposed to the
757          * inode) then we need to get write access to the [td]indirect block
758          * before the splice.
759          */
760         if (where->bh) {
761                 BUFFER_TRACE(where->bh, "get_write_access");
762                 err = ext4_journal_get_write_access(handle, where->bh);
763                 if (err)
764                         goto err_out;
765         }
766         /* That's it */
767
768         *where->p = where->key;
769
770         /*
771          * Update the host buffer_head or inode to point to more just allocated
772          * direct blocks blocks
773          */
774         if (num == 0 && blks > 1) {
775                 current_block = le32_to_cpu(where->key) + 1;
776                 for (i = 1; i < blks; i++)
777                         *(where->p + i) = cpu_to_le32(current_block++);
778         }
779
780         /* We are done with atomic stuff, now do the rest of housekeeping */
781
782         inode->i_ctime = ext4_current_time(inode);
783         ext4_mark_inode_dirty(handle, inode);
784
785         /* had we spliced it onto indirect block? */
786         if (where->bh) {
787                 /*
788                  * If we spliced it onto an indirect block, we haven't
789                  * altered the inode.  Note however that if it is being spliced
790                  * onto an indirect block at the very end of the file (the
791                  * file is growing) then we *will* alter the inode to reflect
792                  * the new i_size.  But that is not done here - it is done in
793                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
794                  */
795                 jbd_debug(5, "splicing indirect only\n");
796                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
797                 err = ext4_journal_dirty_metadata(handle, where->bh);
798                 if (err)
799                         goto err_out;
800         } else {
801                 /*
802                  * OK, we spliced it into the inode itself on a direct block.
803                  * Inode was dirtied above.
804                  */
805                 jbd_debug(5, "splicing direct\n");
806         }
807         return err;
808
809 err_out:
810         for (i = 1; i <= num; i++) {
811                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
812                 ext4_journal_forget(handle, where[i].bh);
813                 ext4_free_blocks(handle, inode,
814                                         le32_to_cpu(where[i-1].key), 1, 0);
815         }
816         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
817
818         return err;
819 }
820
821 /*
822  * Allocation strategy is simple: if we have to allocate something, we will
823  * have to go the whole way to leaf. So let's do it before attaching anything
824  * to tree, set linkage between the newborn blocks, write them if sync is
825  * required, recheck the path, free and repeat if check fails, otherwise
826  * set the last missing link (that will protect us from any truncate-generated
827  * removals - all blocks on the path are immune now) and possibly force the
828  * write on the parent block.
829  * That has a nice additional property: no special recovery from the failed
830  * allocations is needed - we simply release blocks and do not touch anything
831  * reachable from inode.
832  *
833  * `handle' can be NULL if create == 0.
834  *
835  * return > 0, # of blocks mapped or allocated.
836  * return = 0, if plain lookup failed.
837  * return < 0, error case.
838  *
839  *
840  * Need to be called with
841  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
842  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
843  */
844 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
845                 ext4_lblk_t iblock, unsigned long maxblocks,
846                 struct buffer_head *bh_result,
847                 int create, int extend_disksize)
848 {
849         int err = -EIO;
850         ext4_lblk_t offsets[4];
851         Indirect chain[4];
852         Indirect *partial;
853         ext4_fsblk_t goal;
854         int indirect_blks;
855         int blocks_to_boundary = 0;
856         int depth;
857         struct ext4_inode_info *ei = EXT4_I(inode);
858         int count = 0;
859         ext4_fsblk_t first_block = 0;
860         loff_t disksize;
861
862
863         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
864         J_ASSERT(handle != NULL || create == 0);
865         depth = ext4_block_to_path(inode, iblock, offsets,
866                                         &blocks_to_boundary);
867
868         if (depth == 0)
869                 goto out;
870
871         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
872
873         /* Simplest case - block found, no allocation needed */
874         if (!partial) {
875                 first_block = le32_to_cpu(chain[depth - 1].key);
876                 clear_buffer_new(bh_result);
877                 count++;
878                 /*map more blocks*/
879                 while (count < maxblocks && count <= blocks_to_boundary) {
880                         ext4_fsblk_t blk;
881
882                         blk = le32_to_cpu(*(chain[depth-1].p + count));
883
884                         if (blk == first_block + count)
885                                 count++;
886                         else
887                                 break;
888                 }
889                 goto got_it;
890         }
891
892         /* Next simple case - plain lookup or failed read of indirect block */
893         if (!create || err == -EIO)
894                 goto cleanup;
895
896         /*
897          * Okay, we need to do block allocation.
898         */
899         goal = ext4_find_goal(inode, iblock, partial);
900
901         /* the number of blocks need to allocate for [d,t]indirect blocks */
902         indirect_blks = (chain + depth) - partial - 1;
903
904         /*
905          * Next look up the indirect map to count the totoal number of
906          * direct blocks to allocate for this branch.
907          */
908         count = ext4_blks_to_allocate(partial, indirect_blks,
909                                         maxblocks, blocks_to_boundary);
910         /*
911          * Block out ext4_truncate while we alter the tree
912          */
913         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
914                                         &count, goal,
915                                         offsets + (partial - chain), partial);
916
917         /*
918          * The ext4_splice_branch call will free and forget any buffers
919          * on the new chain if there is a failure, but that risks using
920          * up transaction credits, especially for bitmaps where the
921          * credits cannot be returned.  Can we handle this somehow?  We
922          * may need to return -EAGAIN upwards in the worst case.  --sct
923          */
924         if (!err)
925                 err = ext4_splice_branch(handle, inode, iblock,
926                                         partial, indirect_blks, count);
927         /*
928          * i_disksize growing is protected by i_data_sem.  Don't forget to
929          * protect it if you're about to implement concurrent
930          * ext4_get_block() -bzzz
931         */
932         if (!err && extend_disksize) {
933                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
934                 if (disksize > i_size_read(inode))
935                         disksize = i_size_read(inode);
936                 if (disksize > ei->i_disksize)
937                         ei->i_disksize = disksize;
938         }
939         if (err)
940                 goto cleanup;
941
942         set_buffer_new(bh_result);
943 got_it:
944         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
945         if (count > blocks_to_boundary)
946                 set_buffer_boundary(bh_result);
947         err = count;
948         /* Clean up and exit */
949         partial = chain + depth - 1;    /* the whole chain */
950 cleanup:
951         while (partial > chain) {
952                 BUFFER_TRACE(partial->bh, "call brelse");
953                 brelse(partial->bh);
954                 partial--;
955         }
956         BUFFER_TRACE(bh_result, "returned");
957 out:
958         return err;
959 }
960
961 /*
962  * Calculate the number of metadata blocks need to reserve
963  * to allocate @blocks for non extent file based file
964  */
965 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
966 {
967         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
968         int ind_blks, dind_blks, tind_blks;
969
970         /* number of new indirect blocks needed */
971         ind_blks = (blocks + icap - 1) / icap;
972
973         dind_blks = (ind_blks + icap - 1) / icap;
974
975         tind_blks = 1;
976
977         return ind_blks + dind_blks + tind_blks;
978 }
979
980 /*
981  * Calculate the number of metadata blocks need to reserve
982  * to allocate given number of blocks
983  */
984 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
985 {
986         if (!blocks)
987                 return 0;
988
989         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
990                 return ext4_ext_calc_metadata_amount(inode, blocks);
991
992         return ext4_indirect_calc_metadata_amount(inode, blocks);
993 }
994
995 static void ext4_da_update_reserve_space(struct inode *inode, int used)
996 {
997         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
998         int total, mdb, mdb_free;
999
1000         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1001         /* recalculate the number of metablocks still need to be reserved */
1002         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1003         mdb = ext4_calc_metadata_amount(inode, total);
1004
1005         /* figure out how many metablocks to release */
1006         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1007         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1008
1009         if (mdb_free) {
1010                 /* Account for allocated meta_blocks */
1011                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1012
1013                 /* update fs dirty blocks counter */
1014                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1015                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1016                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1017         }
1018
1019         /* update per-inode reservations */
1020         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1021         EXT4_I(inode)->i_reserved_data_blocks -= used;
1022
1023         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1024 }
1025
1026 /*
1027  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1028  * and returns if the blocks are already mapped.
1029  *
1030  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1031  * and store the allocated blocks in the result buffer head and mark it
1032  * mapped.
1033  *
1034  * If file type is extents based, it will call ext4_ext_get_blocks(),
1035  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1036  * based files
1037  *
1038  * On success, it returns the number of blocks being mapped or allocate.
1039  * if create==0 and the blocks are pre-allocated and uninitialized block,
1040  * the result buffer head is unmapped. If the create ==1, it will make sure
1041  * the buffer head is mapped.
1042  *
1043  * It returns 0 if plain look up failed (blocks have not been allocated), in
1044  * that casem, buffer head is unmapped
1045  *
1046  * It returns the error in case of allocation failure.
1047  */
1048 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1049                         unsigned long max_blocks, struct buffer_head *bh,
1050                         int create, int extend_disksize, int flag)
1051 {
1052         int retval;
1053
1054         clear_buffer_mapped(bh);
1055
1056         /*
1057          * Try to see if we can get  the block without requesting
1058          * for new file system block.
1059          */
1060         down_read((&EXT4_I(inode)->i_data_sem));
1061         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1062                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1063                                 bh, 0, 0);
1064         } else {
1065                 retval = ext4_get_blocks_handle(handle,
1066                                 inode, block, max_blocks, bh, 0, 0);
1067         }
1068         up_read((&EXT4_I(inode)->i_data_sem));
1069
1070         /* If it is only a block(s) look up */
1071         if (!create)
1072                 return retval;
1073
1074         /*
1075          * Returns if the blocks have already allocated
1076          *
1077          * Note that if blocks have been preallocated
1078          * ext4_ext_get_block() returns th create = 0
1079          * with buffer head unmapped.
1080          */
1081         if (retval > 0 && buffer_mapped(bh))
1082                 return retval;
1083
1084         /*
1085          * New blocks allocate and/or writing to uninitialized extent
1086          * will possibly result in updating i_data, so we take
1087          * the write lock of i_data_sem, and call get_blocks()
1088          * with create == 1 flag.
1089          */
1090         down_write((&EXT4_I(inode)->i_data_sem));
1091
1092         /*
1093          * if the caller is from delayed allocation writeout path
1094          * we have already reserved fs blocks for allocation
1095          * let the underlying get_block() function know to
1096          * avoid double accounting
1097          */
1098         if (flag)
1099                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1100         /*
1101          * We need to check for EXT4 here because migrate
1102          * could have changed the inode type in between
1103          */
1104         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1105                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1106                                 bh, create, extend_disksize);
1107         } else {
1108                 retval = ext4_get_blocks_handle(handle, inode, block,
1109                                 max_blocks, bh, create, extend_disksize);
1110
1111                 if (retval > 0 && buffer_new(bh)) {
1112                         /*
1113                          * We allocated new blocks which will result in
1114                          * i_data's format changing.  Force the migrate
1115                          * to fail by clearing migrate flags
1116                          */
1117                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1118                                                         ~EXT4_EXT_MIGRATE;
1119                 }
1120         }
1121
1122         if (flag) {
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1124                 /*
1125                  * Update reserved blocks/metadata blocks
1126                  * after successful block allocation
1127                  * which were deferred till now
1128                  */
1129                 if ((retval > 0) && buffer_delay(bh))
1130                         ext4_da_update_reserve_space(inode, retval);
1131         }
1132
1133         up_write((&EXT4_I(inode)->i_data_sem));
1134         return retval;
1135 }
1136
1137 /* Maximum number of blocks we map for direct IO at once. */
1138 #define DIO_MAX_BLOCKS 4096
1139
1140 int ext4_get_block(struct inode *inode, sector_t iblock,
1141                    struct buffer_head *bh_result, int create)
1142 {
1143         handle_t *handle = ext4_journal_current_handle();
1144         int ret = 0, started = 0;
1145         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1146         int dio_credits;
1147
1148         if (create && !handle) {
1149                 /* Direct IO write... */
1150                 if (max_blocks > DIO_MAX_BLOCKS)
1151                         max_blocks = DIO_MAX_BLOCKS;
1152                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1153                 handle = ext4_journal_start(inode, dio_credits);
1154                 if (IS_ERR(handle)) {
1155                         ret = PTR_ERR(handle);
1156                         goto out;
1157                 }
1158                 started = 1;
1159         }
1160
1161         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1162                                         max_blocks, bh_result, create, 0, 0);
1163         if (ret > 0) {
1164                 bh_result->b_size = (ret << inode->i_blkbits);
1165                 ret = 0;
1166         }
1167         if (started)
1168                 ext4_journal_stop(handle);
1169 out:
1170         return ret;
1171 }
1172
1173 /*
1174  * `handle' can be NULL if create is zero
1175  */
1176 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1177                                 ext4_lblk_t block, int create, int *errp)
1178 {
1179         struct buffer_head dummy;
1180         int fatal = 0, err;
1181
1182         J_ASSERT(handle != NULL || create == 0);
1183
1184         dummy.b_state = 0;
1185         dummy.b_blocknr = -1000;
1186         buffer_trace_init(&dummy.b_history);
1187         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1188                                         &dummy, create, 1, 0);
1189         /*
1190          * ext4_get_blocks_handle() returns number of blocks
1191          * mapped. 0 in case of a HOLE.
1192          */
1193         if (err > 0) {
1194                 if (err > 1)
1195                         WARN_ON(1);
1196                 err = 0;
1197         }
1198         *errp = err;
1199         if (!err && buffer_mapped(&dummy)) {
1200                 struct buffer_head *bh;
1201                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1202                 if (!bh) {
1203                         *errp = -EIO;
1204                         goto err;
1205                 }
1206                 if (buffer_new(&dummy)) {
1207                         J_ASSERT(create != 0);
1208                         J_ASSERT(handle != NULL);
1209
1210                         /*
1211                          * Now that we do not always journal data, we should
1212                          * keep in mind whether this should always journal the
1213                          * new buffer as metadata.  For now, regular file
1214                          * writes use ext4_get_block instead, so it's not a
1215                          * problem.
1216                          */
1217                         lock_buffer(bh);
1218                         BUFFER_TRACE(bh, "call get_create_access");
1219                         fatal = ext4_journal_get_create_access(handle, bh);
1220                         if (!fatal && !buffer_uptodate(bh)) {
1221                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1222                                 set_buffer_uptodate(bh);
1223                         }
1224                         unlock_buffer(bh);
1225                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1226                         err = ext4_journal_dirty_metadata(handle, bh);
1227                         if (!fatal)
1228                                 fatal = err;
1229                 } else {
1230                         BUFFER_TRACE(bh, "not a new buffer");
1231                 }
1232                 if (fatal) {
1233                         *errp = fatal;
1234                         brelse(bh);
1235                         bh = NULL;
1236                 }
1237                 return bh;
1238         }
1239 err:
1240         return NULL;
1241 }
1242
1243 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1244                                ext4_lblk_t block, int create, int *err)
1245 {
1246         struct buffer_head *bh;
1247
1248         bh = ext4_getblk(handle, inode, block, create, err);
1249         if (!bh)
1250                 return bh;
1251         if (buffer_uptodate(bh))
1252                 return bh;
1253         ll_rw_block(READ_META, 1, &bh);
1254         wait_on_buffer(bh);
1255         if (buffer_uptodate(bh))
1256                 return bh;
1257         put_bh(bh);
1258         *err = -EIO;
1259         return NULL;
1260 }
1261
1262 static int walk_page_buffers(handle_t *handle,
1263                              struct buffer_head *head,
1264                              unsigned from,
1265                              unsigned to,
1266                              int *partial,
1267                              int (*fn)(handle_t *handle,
1268                                        struct buffer_head *bh))
1269 {
1270         struct buffer_head *bh;
1271         unsigned block_start, block_end;
1272         unsigned blocksize = head->b_size;
1273         int err, ret = 0;
1274         struct buffer_head *next;
1275
1276         for (bh = head, block_start = 0;
1277              ret == 0 && (bh != head || !block_start);
1278              block_start = block_end, bh = next)
1279         {
1280                 next = bh->b_this_page;
1281                 block_end = block_start + blocksize;
1282                 if (block_end <= from || block_start >= to) {
1283                         if (partial && !buffer_uptodate(bh))
1284                                 *partial = 1;
1285                         continue;
1286                 }
1287                 err = (*fn)(handle, bh);
1288                 if (!ret)
1289                         ret = err;
1290         }
1291         return ret;
1292 }
1293
1294 /*
1295  * To preserve ordering, it is essential that the hole instantiation and
1296  * the data write be encapsulated in a single transaction.  We cannot
1297  * close off a transaction and start a new one between the ext4_get_block()
1298  * and the commit_write().  So doing the jbd2_journal_start at the start of
1299  * prepare_write() is the right place.
1300  *
1301  * Also, this function can nest inside ext4_writepage() ->
1302  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1303  * has generated enough buffer credits to do the whole page.  So we won't
1304  * block on the journal in that case, which is good, because the caller may
1305  * be PF_MEMALLOC.
1306  *
1307  * By accident, ext4 can be reentered when a transaction is open via
1308  * quota file writes.  If we were to commit the transaction while thus
1309  * reentered, there can be a deadlock - we would be holding a quota
1310  * lock, and the commit would never complete if another thread had a
1311  * transaction open and was blocking on the quota lock - a ranking
1312  * violation.
1313  *
1314  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1315  * will _not_ run commit under these circumstances because handle->h_ref
1316  * is elevated.  We'll still have enough credits for the tiny quotafile
1317  * write.
1318  */
1319 static int do_journal_get_write_access(handle_t *handle,
1320                                         struct buffer_head *bh)
1321 {
1322         if (!buffer_mapped(bh) || buffer_freed(bh))
1323                 return 0;
1324         return ext4_journal_get_write_access(handle, bh);
1325 }
1326
1327 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1328                                 loff_t pos, unsigned len, unsigned flags,
1329                                 struct page **pagep, void **fsdata)
1330 {
1331         struct inode *inode = mapping->host;
1332         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1333         handle_t *handle;
1334         int retries = 0;
1335         struct page *page;
1336         pgoff_t index;
1337         unsigned from, to;
1338
1339         index = pos >> PAGE_CACHE_SHIFT;
1340         from = pos & (PAGE_CACHE_SIZE - 1);
1341         to = from + len;
1342
1343 retry:
1344         handle = ext4_journal_start(inode, needed_blocks);
1345         if (IS_ERR(handle)) {
1346                 ret = PTR_ERR(handle);
1347                 goto out;
1348         }
1349
1350         page = grab_cache_page_write_begin(mapping, index, flags);
1351         if (!page) {
1352                 ext4_journal_stop(handle);
1353                 ret = -ENOMEM;
1354                 goto out;
1355         }
1356         *pagep = page;
1357
1358         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1359                                                         ext4_get_block);
1360
1361         if (!ret && ext4_should_journal_data(inode)) {
1362                 ret = walk_page_buffers(handle, page_buffers(page),
1363                                 from, to, NULL, do_journal_get_write_access);
1364         }
1365
1366         if (ret) {
1367                 unlock_page(page);
1368                 ext4_journal_stop(handle);
1369                 page_cache_release(page);
1370                 /*
1371                  * block_write_begin may have instantiated a few blocks
1372                  * outside i_size.  Trim these off again. Don't need
1373                  * i_size_read because we hold i_mutex.
1374                  */
1375                 if (pos + len > inode->i_size)
1376                         vmtruncate(inode, inode->i_size);
1377         }
1378
1379         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1380                 goto retry;
1381 out:
1382         return ret;
1383 }
1384
1385 /* For write_end() in data=journal mode */
1386 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1387 {
1388         if (!buffer_mapped(bh) || buffer_freed(bh))
1389                 return 0;
1390         set_buffer_uptodate(bh);
1391         return ext4_journal_dirty_metadata(handle, bh);
1392 }
1393
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_ordered_write_end(struct file *file,
1402                                 struct address_space *mapping,
1403                                 loff_t pos, unsigned len, unsigned copied,
1404                                 struct page *page, void *fsdata)
1405 {
1406         handle_t *handle = ext4_journal_current_handle();
1407         struct inode *inode = mapping->host;
1408         int ret = 0, ret2;
1409
1410         ret = ext4_jbd2_file_inode(handle, inode);
1411
1412         if (ret == 0) {
1413                 loff_t new_i_size;
1414
1415                 new_i_size = pos + copied;
1416                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1417                         ext4_update_i_disksize(inode, new_i_size);
1418                         /* We need to mark inode dirty even if
1419                          * new_i_size is less that inode->i_size
1420                          * bu greater than i_disksize.(hint delalloc)
1421                          */
1422                         ext4_mark_inode_dirty(handle, inode);
1423                 }
1424
1425                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1426                                                         page, fsdata);
1427                 copied = ret2;
1428                 if (ret2 < 0)
1429                         ret = ret2;
1430         }
1431         ret2 = ext4_journal_stop(handle);
1432         if (!ret)
1433                 ret = ret2;
1434
1435         return ret ? ret : copied;
1436 }
1437
1438 static int ext4_writeback_write_end(struct file *file,
1439                                 struct address_space *mapping,
1440                                 loff_t pos, unsigned len, unsigned copied,
1441                                 struct page *page, void *fsdata)
1442 {
1443         handle_t *handle = ext4_journal_current_handle();
1444         struct inode *inode = mapping->host;
1445         int ret = 0, ret2;
1446         loff_t new_i_size;
1447
1448         new_i_size = pos + copied;
1449         if (new_i_size > EXT4_I(inode)->i_disksize) {
1450                 ext4_update_i_disksize(inode, new_i_size);
1451                 /* We need to mark inode dirty even if
1452                  * new_i_size is less that inode->i_size
1453                  * bu greater than i_disksize.(hint delalloc)
1454                  */
1455                 ext4_mark_inode_dirty(handle, inode);
1456         }
1457
1458         ret2 = generic_write_end(file, mapping, pos, len, copied,
1459                                                         page, fsdata);
1460         copied = ret2;
1461         if (ret2 < 0)
1462                 ret = ret2;
1463
1464         ret2 = ext4_journal_stop(handle);
1465         if (!ret)
1466                 ret = ret2;
1467
1468         return ret ? ret : copied;
1469 }
1470
1471 static int ext4_journalled_write_end(struct file *file,
1472                                 struct address_space *mapping,
1473                                 loff_t pos, unsigned len, unsigned copied,
1474                                 struct page *page, void *fsdata)
1475 {
1476         handle_t *handle = ext4_journal_current_handle();
1477         struct inode *inode = mapping->host;
1478         int ret = 0, ret2;
1479         int partial = 0;
1480         unsigned from, to;
1481         loff_t new_i_size;
1482
1483         from = pos & (PAGE_CACHE_SIZE - 1);
1484         to = from + len;
1485
1486         if (copied < len) {
1487                 if (!PageUptodate(page))
1488                         copied = 0;
1489                 page_zero_new_buffers(page, from+copied, to);
1490         }
1491
1492         ret = walk_page_buffers(handle, page_buffers(page), from,
1493                                 to, &partial, write_end_fn);
1494         if (!partial)
1495                 SetPageUptodate(page);
1496         new_i_size = pos + copied;
1497         if (new_i_size > inode->i_size)
1498                 i_size_write(inode, pos+copied);
1499         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1500         if (new_i_size > EXT4_I(inode)->i_disksize) {
1501                 ext4_update_i_disksize(inode, new_i_size);
1502                 ret2 = ext4_mark_inode_dirty(handle, inode);
1503                 if (!ret)
1504                         ret = ret2;
1505         }
1506
1507         unlock_page(page);
1508         ret2 = ext4_journal_stop(handle);
1509         if (!ret)
1510                 ret = ret2;
1511         page_cache_release(page);
1512
1513         return ret ? ret : copied;
1514 }
1515
1516 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1517 {
1518         int retries = 0;
1519        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1520        unsigned long md_needed, mdblocks, total = 0;
1521
1522         /*
1523          * recalculate the amount of metadata blocks to reserve
1524          * in order to allocate nrblocks
1525          * worse case is one extent per block
1526          */
1527 repeat:
1528         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1529         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1530         mdblocks = ext4_calc_metadata_amount(inode, total);
1531         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1532
1533         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1534         total = md_needed + nrblocks;
1535
1536         if (ext4_claim_free_blocks(sbi, total)) {
1537                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1538                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1539                         yield();
1540                         goto repeat;
1541                 }
1542                 return -ENOSPC;
1543         }
1544         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1545         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1546
1547         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1548         return 0;       /* success */
1549 }
1550
1551 static void ext4_da_release_space(struct inode *inode, int to_free)
1552 {
1553         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1554         int total, mdb, mdb_free, release;
1555
1556         if (!to_free)
1557                 return;         /* Nothing to release, exit */
1558
1559         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1560
1561         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1562                 /*
1563                  * if there is no reserved blocks, but we try to free some
1564                  * then the counter is messed up somewhere.
1565                  * but since this function is called from invalidate
1566                  * page, it's harmless to return without any action
1567                  */
1568                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1569                             "blocks for inode %lu, but there is no reserved "
1570                             "data blocks\n", to_free, inode->i_ino);
1571                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572                 return;
1573         }
1574
1575         /* recalculate the number of metablocks still need to be reserved */
1576         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1577         mdb = ext4_calc_metadata_amount(inode, total);
1578
1579         /* figure out how many metablocks to release */
1580         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1581         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1582
1583         release = to_free + mdb_free;
1584
1585         /* update fs dirty blocks counter for truncate case */
1586         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1587
1588         /* update per-inode reservations */
1589         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1590         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1591
1592         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1593         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1594         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1595 }
1596
1597 static void ext4_da_page_release_reservation(struct page *page,
1598                                                 unsigned long offset)
1599 {
1600         int to_release = 0;
1601         struct buffer_head *head, *bh;
1602         unsigned int curr_off = 0;
1603
1604         head = page_buffers(page);
1605         bh = head;
1606         do {
1607                 unsigned int next_off = curr_off + bh->b_size;
1608
1609                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1610                         to_release++;
1611                         clear_buffer_delay(bh);
1612                 }
1613                 curr_off = next_off;
1614         } while ((bh = bh->b_this_page) != head);
1615         ext4_da_release_space(page->mapping->host, to_release);
1616 }
1617
1618 /*
1619  * Delayed allocation stuff
1620  */
1621
1622 struct mpage_da_data {
1623         struct inode *inode;
1624         struct buffer_head lbh;                 /* extent of blocks */
1625         unsigned long first_page, next_page;    /* extent of pages */
1626         get_block_t *get_block;
1627         struct writeback_control *wbc;
1628         int io_done;
1629         long pages_written;
1630         int retval;
1631 };
1632
1633 /*
1634  * mpage_da_submit_io - walks through extent of pages and try to write
1635  * them with writepage() call back
1636  *
1637  * @mpd->inode: inode
1638  * @mpd->first_page: first page of the extent
1639  * @mpd->next_page: page after the last page of the extent
1640  * @mpd->get_block: the filesystem's block mapper function
1641  *
1642  * By the time mpage_da_submit_io() is called we expect all blocks
1643  * to be allocated. this may be wrong if allocation failed.
1644  *
1645  * As pages are already locked by write_cache_pages(), we can't use it
1646  */
1647 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1648 {
1649         long pages_skipped;
1650         struct pagevec pvec;
1651         unsigned long index, end;
1652         int ret = 0, err, nr_pages, i;
1653         struct inode *inode = mpd->inode;
1654         struct address_space *mapping = inode->i_mapping;
1655
1656         BUG_ON(mpd->next_page <= mpd->first_page);
1657         /*
1658          * We need to start from the first_page to the next_page - 1
1659          * to make sure we also write the mapped dirty buffer_heads.
1660          * If we look at mpd->lbh.b_blocknr we would only be looking
1661          * at the currently mapped buffer_heads.
1662          */
1663         index = mpd->first_page;
1664         end = mpd->next_page - 1;
1665
1666         pagevec_init(&pvec, 0);
1667         while (index <= end) {
1668                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1669                 if (nr_pages == 0)
1670                         break;
1671                 for (i = 0; i < nr_pages; i++) {
1672                         struct page *page = pvec.pages[i];
1673
1674                         index = page->index;
1675                         if (index > end)
1676                                 break;
1677                         index++;
1678
1679                         BUG_ON(!PageLocked(page));
1680                         BUG_ON(PageWriteback(page));
1681
1682                         pages_skipped = mpd->wbc->pages_skipped;
1683                         err = mapping->a_ops->writepage(page, mpd->wbc);
1684                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1685                                 /*
1686                                  * have successfully written the page
1687                                  * without skipping the same
1688                                  */
1689                                 mpd->pages_written++;
1690                         /*
1691                          * In error case, we have to continue because
1692                          * remaining pages are still locked
1693                          * XXX: unlock and re-dirty them?
1694                          */
1695                         if (ret == 0)
1696                                 ret = err;
1697                 }
1698                 pagevec_release(&pvec);
1699         }
1700         return ret;
1701 }
1702
1703 /*
1704  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1705  *
1706  * @mpd->inode - inode to walk through
1707  * @exbh->b_blocknr - first block on a disk
1708  * @exbh->b_size - amount of space in bytes
1709  * @logical - first logical block to start assignment with
1710  *
1711  * the function goes through all passed space and put actual disk
1712  * block numbers into buffer heads, dropping BH_Delay
1713  */
1714 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1715                                  struct buffer_head *exbh)
1716 {
1717         struct inode *inode = mpd->inode;
1718         struct address_space *mapping = inode->i_mapping;
1719         int blocks = exbh->b_size >> inode->i_blkbits;
1720         sector_t pblock = exbh->b_blocknr, cur_logical;
1721         struct buffer_head *head, *bh;
1722         pgoff_t index, end;
1723         struct pagevec pvec;
1724         int nr_pages, i;
1725
1726         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1727         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1728         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1729
1730         pagevec_init(&pvec, 0);
1731
1732         while (index <= end) {
1733                 /* XXX: optimize tail */
1734                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1735                 if (nr_pages == 0)
1736                         break;
1737                 for (i = 0; i < nr_pages; i++) {
1738                         struct page *page = pvec.pages[i];
1739
1740                         index = page->index;
1741                         if (index > end)
1742                                 break;
1743                         index++;
1744
1745                         BUG_ON(!PageLocked(page));
1746                         BUG_ON(PageWriteback(page));
1747                         BUG_ON(!page_has_buffers(page));
1748
1749                         bh = page_buffers(page);
1750                         head = bh;
1751
1752                         /* skip blocks out of the range */
1753                         do {
1754                                 if (cur_logical >= logical)
1755                                         break;
1756                                 cur_logical++;
1757                         } while ((bh = bh->b_this_page) != head);
1758
1759                         do {
1760                                 if (cur_logical >= logical + blocks)
1761                                         break;
1762                                 if (buffer_delay(bh)) {
1763                                         bh->b_blocknr = pblock;
1764                                         clear_buffer_delay(bh);
1765                                         bh->b_bdev = inode->i_sb->s_bdev;
1766                                 } else if (buffer_unwritten(bh)) {
1767                                         bh->b_blocknr = pblock;
1768                                         clear_buffer_unwritten(bh);
1769                                         set_buffer_mapped(bh);
1770                                         set_buffer_new(bh);
1771                                         bh->b_bdev = inode->i_sb->s_bdev;
1772                                 } else if (buffer_mapped(bh))
1773                                         BUG_ON(bh->b_blocknr != pblock);
1774
1775                                 cur_logical++;
1776                                 pblock++;
1777                         } while ((bh = bh->b_this_page) != head);
1778                 }
1779                 pagevec_release(&pvec);
1780         }
1781 }
1782
1783
1784 /*
1785  * __unmap_underlying_blocks - just a helper function to unmap
1786  * set of blocks described by @bh
1787  */
1788 static inline void __unmap_underlying_blocks(struct inode *inode,
1789                                              struct buffer_head *bh)
1790 {
1791         struct block_device *bdev = inode->i_sb->s_bdev;
1792         int blocks, i;
1793
1794         blocks = bh->b_size >> inode->i_blkbits;
1795         for (i = 0; i < blocks; i++)
1796                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1797 }
1798
1799 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1800                                         sector_t logical, long blk_cnt)
1801 {
1802         int nr_pages, i;
1803         pgoff_t index, end;
1804         struct pagevec pvec;
1805         struct inode *inode = mpd->inode;
1806         struct address_space *mapping = inode->i_mapping;
1807
1808         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1809         end   = (logical + blk_cnt - 1) >>
1810                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1811         while (index <= end) {
1812                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1813                 if (nr_pages == 0)
1814                         break;
1815                 for (i = 0; i < nr_pages; i++) {
1816                         struct page *page = pvec.pages[i];
1817                         index = page->index;
1818                         if (index > end)
1819                                 break;
1820                         index++;
1821
1822                         BUG_ON(!PageLocked(page));
1823                         BUG_ON(PageWriteback(page));
1824                         block_invalidatepage(page, 0);
1825                         ClearPageUptodate(page);
1826                         unlock_page(page);
1827                 }
1828         }
1829         return;
1830 }
1831
1832 static void ext4_print_free_blocks(struct inode *inode)
1833 {
1834         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1835         printk(KERN_EMERG "Total free blocks count %lld\n",
1836                         ext4_count_free_blocks(inode->i_sb));
1837         printk(KERN_EMERG "Free/Dirty block details\n");
1838         printk(KERN_EMERG "free_blocks=%lld\n",
1839                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1840         printk(KERN_EMERG "dirty_blocks=%lld\n",
1841                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1842         printk(KERN_EMERG "Block reservation details\n");
1843         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1844                         EXT4_I(inode)->i_reserved_data_blocks);
1845         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1846                         EXT4_I(inode)->i_reserved_meta_blocks);
1847         return;
1848 }
1849
1850 /*
1851  * mpage_da_map_blocks - go through given space
1852  *
1853  * @mpd->lbh - bh describing space
1854  * @mpd->get_block - the filesystem's block mapper function
1855  *
1856  * The function skips space we know is already mapped to disk blocks.
1857  *
1858  */
1859 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1860 {
1861         int err = 0;
1862         struct buffer_head new;
1863         struct buffer_head *lbh = &mpd->lbh;
1864         sector_t next;
1865
1866         /*
1867          * We consider only non-mapped and non-allocated blocks
1868          */
1869         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1870                 return 0;
1871         new.b_state = lbh->b_state;
1872         new.b_blocknr = 0;
1873         new.b_size = lbh->b_size;
1874         next = lbh->b_blocknr;
1875         /*
1876          * If we didn't accumulate anything
1877          * to write simply return
1878          */
1879         if (!new.b_size)
1880                 return 0;
1881         err = mpd->get_block(mpd->inode, next, &new, 1);
1882         if (err) {
1883
1884                 /* If get block returns with error
1885                  * we simply return. Later writepage
1886                  * will redirty the page and writepages
1887                  * will find the dirty page again
1888                  */
1889                 if (err == -EAGAIN)
1890                         return 0;
1891
1892                 if (err == -ENOSPC &&
1893                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1894                         mpd->retval = err;
1895                         return 0;
1896                 }
1897
1898                 /*
1899                  * get block failure will cause us
1900                  * to loop in writepages. Because
1901                  * a_ops->writepage won't be able to
1902                  * make progress. The page will be redirtied
1903                  * by writepage and writepages will again
1904                  * try to write the same.
1905                  */
1906                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1907                                   "at logical offset %llu with max blocks "
1908                                   "%zd with error %d\n",
1909                                   __func__, mpd->inode->i_ino,
1910                                   (unsigned long long)next,
1911                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1912                 printk(KERN_EMERG "This should not happen.!! "
1913                                         "Data will be lost\n");
1914                 if (err == -ENOSPC) {
1915                         ext4_print_free_blocks(mpd->inode);
1916                 }
1917                 /* invlaidate all the pages */
1918                 ext4_da_block_invalidatepages(mpd, next,
1919                                 lbh->b_size >> mpd->inode->i_blkbits);
1920                 return err;
1921         }
1922         BUG_ON(new.b_size == 0);
1923
1924         if (buffer_new(&new))
1925                 __unmap_underlying_blocks(mpd->inode, &new);
1926
1927         /*
1928          * If blocks are delayed marked, we need to
1929          * put actual blocknr and drop delayed bit
1930          */
1931         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1932                 mpage_put_bnr_to_bhs(mpd, next, &new);
1933
1934         return 0;
1935 }
1936
1937 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1938                 (1 << BH_Delay) | (1 << BH_Unwritten))
1939
1940 /*
1941  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1942  *
1943  * @mpd->lbh - extent of blocks
1944  * @logical - logical number of the block in the file
1945  * @bh - bh of the block (used to access block's state)
1946  *
1947  * the function is used to collect contig. blocks in same state
1948  */
1949 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1950                                    sector_t logical, struct buffer_head *bh)
1951 {
1952         sector_t next;
1953         size_t b_size = bh->b_size;
1954         struct buffer_head *lbh = &mpd->lbh;
1955         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1956
1957         /* check if thereserved journal credits might overflow */
1958         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1959                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1960                         /*
1961                          * With non-extent format we are limited by the journal
1962                          * credit available.  Total credit needed to insert
1963                          * nrblocks contiguous blocks is dependent on the
1964                          * nrblocks.  So limit nrblocks.
1965                          */
1966                         goto flush_it;
1967                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1968                                 EXT4_MAX_TRANS_DATA) {
1969                         /*
1970                          * Adding the new buffer_head would make it cross the
1971                          * allowed limit for which we have journal credit
1972                          * reserved. So limit the new bh->b_size
1973                          */
1974                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1975                                                 mpd->inode->i_blkbits;
1976                         /* we will do mpage_da_submit_io in the next loop */
1977                 }
1978         }
1979         /*
1980          * First block in the extent
1981          */
1982         if (lbh->b_size == 0) {
1983                 lbh->b_blocknr = logical;
1984                 lbh->b_size = b_size;
1985                 lbh->b_state = bh->b_state & BH_FLAGS;
1986                 return;
1987         }
1988
1989         next = lbh->b_blocknr + nrblocks;
1990         /*
1991          * Can we merge the block to our big extent?
1992          */
1993         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1994                 lbh->b_size += b_size;
1995                 return;
1996         }
1997
1998 flush_it:
1999         /*
2000          * We couldn't merge the block to our extent, so we
2001          * need to flush current  extent and start new one
2002          */
2003         if (mpage_da_map_blocks(mpd) == 0)
2004                 mpage_da_submit_io(mpd);
2005         mpd->io_done = 1;
2006         return;
2007 }
2008
2009 /*
2010  * __mpage_da_writepage - finds extent of pages and blocks
2011  *
2012  * @page: page to consider
2013  * @wbc: not used, we just follow rules
2014  * @data: context
2015  *
2016  * The function finds extents of pages and scan them for all blocks.
2017  */
2018 static int __mpage_da_writepage(struct page *page,
2019                                 struct writeback_control *wbc, void *data)
2020 {
2021         struct mpage_da_data *mpd = data;
2022         struct inode *inode = mpd->inode;
2023         struct buffer_head *bh, *head, fake;
2024         sector_t logical;
2025
2026         if (mpd->io_done) {
2027                 /*
2028                  * Rest of the page in the page_vec
2029                  * redirty then and skip then. We will
2030                  * try to to write them again after
2031                  * starting a new transaction
2032                  */
2033                 redirty_page_for_writepage(wbc, page);
2034                 unlock_page(page);
2035                 return MPAGE_DA_EXTENT_TAIL;
2036         }
2037         /*
2038          * Can we merge this page to current extent?
2039          */
2040         if (mpd->next_page != page->index) {
2041                 /*
2042                  * Nope, we can't. So, we map non-allocated blocks
2043                  * and start IO on them using writepage()
2044                  */
2045                 if (mpd->next_page != mpd->first_page) {
2046                         if (mpage_da_map_blocks(mpd) == 0)
2047                                 mpage_da_submit_io(mpd);
2048                         /*
2049                          * skip rest of the page in the page_vec
2050                          */
2051                         mpd->io_done = 1;
2052                         redirty_page_for_writepage(wbc, page);
2053                         unlock_page(page);
2054                         return MPAGE_DA_EXTENT_TAIL;
2055                 }
2056
2057                 /*
2058                  * Start next extent of pages ...
2059                  */
2060                 mpd->first_page = page->index;
2061
2062                 /*
2063                  * ... and blocks
2064                  */
2065                 mpd->lbh.b_size = 0;
2066                 mpd->lbh.b_state = 0;
2067                 mpd->lbh.b_blocknr = 0;
2068         }
2069
2070         mpd->next_page = page->index + 1;
2071         logical = (sector_t) page->index <<
2072                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2073
2074         if (!page_has_buffers(page)) {
2075                 /*
2076                  * There is no attached buffer heads yet (mmap?)
2077                  * we treat the page asfull of dirty blocks
2078                  */
2079                 bh = &fake;
2080                 bh->b_size = PAGE_CACHE_SIZE;
2081                 bh->b_state = 0;
2082                 set_buffer_dirty(bh);
2083                 set_buffer_uptodate(bh);
2084                 mpage_add_bh_to_extent(mpd, logical, bh);
2085                 if (mpd->io_done)
2086                         return MPAGE_DA_EXTENT_TAIL;
2087         } else {
2088                 /*
2089                  * Page with regular buffer heads, just add all dirty ones
2090                  */
2091                 head = page_buffers(page);
2092                 bh = head;
2093                 do {
2094                         BUG_ON(buffer_locked(bh));
2095                         /*
2096                          * We need to try to allocate
2097                          * unmapped blocks in the same page.
2098                          * Otherwise we won't make progress
2099                          * with the page in ext4_da_writepage
2100                          */
2101                         if (buffer_dirty(bh) &&
2102                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2103                                 mpage_add_bh_to_extent(mpd, logical, bh);
2104                                 if (mpd->io_done)
2105                                         return MPAGE_DA_EXTENT_TAIL;
2106                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2107                                 /*
2108                                  * mapped dirty buffer. We need to update
2109                                  * the b_state because we look at
2110                                  * b_state in mpage_da_map_blocks. We don't
2111                                  * update b_size because if we find an
2112                                  * unmapped buffer_head later we need to
2113                                  * use the b_state flag of that buffer_head.
2114                                  */
2115                                 if (mpd->lbh.b_size == 0)
2116                                         mpd->lbh.b_state =
2117                                                 bh->b_state & BH_FLAGS;
2118                         }
2119                         logical++;
2120                 } while ((bh = bh->b_this_page) != head);
2121         }
2122
2123         return 0;
2124 }
2125
2126 /*
2127  * mpage_da_writepages - walk the list of dirty pages of the given
2128  * address space, allocates non-allocated blocks, maps newly-allocated
2129  * blocks to existing bhs and issue IO them
2130  *
2131  * @mapping: address space structure to write
2132  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2133  * @get_block: the filesystem's block mapper function.
2134  *
2135  * This is a library function, which implements the writepages()
2136  * address_space_operation.
2137  */
2138 static int mpage_da_writepages(struct address_space *mapping,
2139                                struct writeback_control *wbc,
2140                                struct mpage_da_data *mpd)
2141 {
2142         int ret;
2143
2144         if (!mpd->get_block)
2145                 return generic_writepages(mapping, wbc);
2146
2147         mpd->lbh.b_size = 0;
2148         mpd->lbh.b_state = 0;
2149         mpd->lbh.b_blocknr = 0;
2150         mpd->first_page = 0;
2151         mpd->next_page = 0;
2152         mpd->io_done = 0;
2153         mpd->pages_written = 0;
2154         mpd->retval = 0;
2155
2156         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2157         /*
2158          * Handle last extent of pages
2159          */
2160         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2161                 if (mpage_da_map_blocks(mpd) == 0)
2162                         mpage_da_submit_io(mpd);
2163
2164                 mpd->io_done = 1;
2165                 ret = MPAGE_DA_EXTENT_TAIL;
2166         }
2167         wbc->nr_to_write -= mpd->pages_written;
2168         return ret;
2169 }
2170
2171 /*
2172  * this is a special callback for ->write_begin() only
2173  * it's intention is to return mapped block or reserve space
2174  */
2175 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2176                                   struct buffer_head *bh_result, int create)
2177 {
2178         int ret = 0;
2179
2180         BUG_ON(create == 0);
2181         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2182
2183         /*
2184          * first, we need to know whether the block is allocated already
2185          * preallocated blocks are unmapped but should treated
2186          * the same as allocated blocks.
2187          */
2188         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2189         if ((ret == 0) && !buffer_delay(bh_result)) {
2190                 /* the block isn't (pre)allocated yet, let's reserve space */
2191                 /*
2192                  * XXX: __block_prepare_write() unmaps passed block,
2193                  * is it OK?
2194                  */
2195                 ret = ext4_da_reserve_space(inode, 1);
2196                 if (ret)
2197                         /* not enough space to reserve */
2198                         return ret;
2199
2200                 map_bh(bh_result, inode->i_sb, 0);
2201                 set_buffer_new(bh_result);
2202                 set_buffer_delay(bh_result);
2203         } else if (ret > 0) {
2204                 bh_result->b_size = (ret << inode->i_blkbits);
2205                 ret = 0;
2206         }
2207
2208         return ret;
2209 }
2210 #define         EXT4_DELALLOC_RSVED     1
2211 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2212                                    struct buffer_head *bh_result, int create)
2213 {
2214         int ret;
2215         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2216         loff_t disksize = EXT4_I(inode)->i_disksize;
2217         handle_t *handle = NULL;
2218
2219         handle = ext4_journal_current_handle();
2220         BUG_ON(!handle);
2221         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2222                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2223         if (ret > 0) {
2224
2225                 bh_result->b_size = (ret << inode->i_blkbits);
2226
2227                 if (ext4_should_order_data(inode)) {
2228                         int retval;
2229                         retval = ext4_jbd2_file_inode(handle, inode);
2230                         if (retval)
2231                                 /*
2232                                  * Failed to add inode for ordered
2233                                  * mode. Don't update file size
2234                                  */
2235                                 return retval;
2236                 }
2237
2238                 /*
2239                  * Update on-disk size along with block allocation
2240                  * we don't use 'extend_disksize' as size may change
2241                  * within already allocated block -bzzz
2242                  */
2243                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2244                 if (disksize > i_size_read(inode))
2245                         disksize = i_size_read(inode);
2246                 if (disksize > EXT4_I(inode)->i_disksize) {
2247                         ext4_update_i_disksize(inode, disksize);
2248                         ret = ext4_mark_inode_dirty(handle, inode);
2249                         return ret;
2250                 }
2251                 ret = 0;
2252         }
2253         return ret;
2254 }
2255
2256 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2257 {
2258         /*
2259          * unmapped buffer is possible for holes.
2260          * delay buffer is possible with delayed allocation
2261          */
2262         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2263 }
2264
2265 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2266                                    struct buffer_head *bh_result, int create)
2267 {
2268         int ret = 0;
2269         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2270
2271         /*
2272          * we don't want to do block allocation in writepage
2273          * so call get_block_wrap with create = 0
2274          */
2275         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2276                                    bh_result, 0, 0, 0);
2277         if (ret > 0) {
2278                 bh_result->b_size = (ret << inode->i_blkbits);
2279                 ret = 0;
2280         }
2281         return ret;
2282 }
2283
2284 /*
2285  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2286  * get called via journal_submit_inode_data_buffers (no journal handle)
2287  * get called via shrink_page_list via pdflush (no journal handle)
2288  * or grab_page_cache when doing write_begin (have journal handle)
2289  */
2290 static int ext4_da_writepage(struct page *page,
2291                                 struct writeback_control *wbc)
2292 {
2293         int ret = 0;
2294         loff_t size;
2295         unsigned long len;
2296         struct buffer_head *page_bufs;
2297         struct inode *inode = page->mapping->host;
2298
2299         size = i_size_read(inode);
2300         if (page->index == size >> PAGE_CACHE_SHIFT)
2301                 len = size & ~PAGE_CACHE_MASK;
2302         else
2303                 len = PAGE_CACHE_SIZE;
2304
2305         if (page_has_buffers(page)) {
2306                 page_bufs = page_buffers(page);
2307                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2308                                         ext4_bh_unmapped_or_delay)) {
2309                         /*
2310                          * We don't want to do  block allocation
2311                          * So redirty the page and return
2312                          * We may reach here when we do a journal commit
2313                          * via journal_submit_inode_data_buffers.
2314                          * If we don't have mapping block we just ignore
2315                          * them. We can also reach here via shrink_page_list
2316                          */
2317                         redirty_page_for_writepage(wbc, page);
2318                         unlock_page(page);
2319                         return 0;
2320                 }
2321         } else {
2322                 /*
2323                  * The test for page_has_buffers() is subtle:
2324                  * We know the page is dirty but it lost buffers. That means
2325                  * that at some moment in time after write_begin()/write_end()
2326                  * has been called all buffers have been clean and thus they
2327                  * must have been written at least once. So they are all
2328                  * mapped and we can happily proceed with mapping them
2329                  * and writing the page.
2330                  *
2331                  * Try to initialize the buffer_heads and check whether
2332                  * all are mapped and non delay. We don't want to
2333                  * do block allocation here.
2334                  */
2335                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2336                                                 ext4_normal_get_block_write);
2337                 if (!ret) {
2338                         page_bufs = page_buffers(page);
2339                         /* check whether all are mapped and non delay */
2340                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2341                                                 ext4_bh_unmapped_or_delay)) {
2342                                 redirty_page_for_writepage(wbc, page);
2343                                 unlock_page(page);
2344                                 return 0;
2345                         }
2346                 } else {
2347                         /*
2348                          * We can't do block allocation here
2349                          * so just redity the page and unlock
2350                          * and return
2351                          */
2352                         redirty_page_for_writepage(wbc, page);
2353                         unlock_page(page);
2354                         return 0;
2355                 }
2356                 /* now mark the buffer_heads as dirty and uptodate */
2357                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2358         }
2359
2360         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2361                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2362         else
2363                 ret = block_write_full_page(page,
2364                                                 ext4_normal_get_block_write,
2365                                                 wbc);
2366
2367         return ret;
2368 }
2369
2370 /*
2371  * This is called via ext4_da_writepages() to
2372  * calulate the total number of credits to reserve to fit
2373  * a single extent allocation into a single transaction,
2374  * ext4_da_writpeages() will loop calling this before
2375  * the block allocation.
2376  */
2377
2378 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2379 {
2380         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2381
2382         /*
2383          * With non-extent format the journal credit needed to
2384          * insert nrblocks contiguous block is dependent on
2385          * number of contiguous block. So we will limit
2386          * number of contiguous block to a sane value
2387          */
2388         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2389             (max_blocks > EXT4_MAX_TRANS_DATA))
2390                 max_blocks = EXT4_MAX_TRANS_DATA;
2391
2392         return ext4_chunk_trans_blocks(inode, max_blocks);
2393 }
2394
2395 static int ext4_da_writepages(struct address_space *mapping,
2396                               struct writeback_control *wbc)
2397 {
2398         pgoff_t index;
2399         int range_whole = 0;
2400         handle_t *handle = NULL;
2401         struct mpage_da_data mpd;
2402         struct inode *inode = mapping->host;
2403         int no_nrwrite_index_update;
2404         long pages_written = 0, pages_skipped;
2405         int needed_blocks, ret = 0, nr_to_writebump = 0;
2406         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2407
2408         /*
2409          * No pages to write? This is mainly a kludge to avoid starting
2410          * a transaction for special inodes like journal inode on last iput()
2411          * because that could violate lock ordering on umount
2412          */
2413         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2414                 return 0;
2415
2416         /*
2417          * If the filesystem has aborted, it is read-only, so return
2418          * right away instead of dumping stack traces later on that
2419          * will obscure the real source of the problem.  We test
2420          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2421          * the latter could be true if the filesystem is mounted
2422          * read-only, and in that case, ext4_da_writepages should
2423          * *never* be called, so if that ever happens, we would want
2424          * the stack trace.
2425          */
2426         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2427                 return -EROFS;
2428
2429         /*
2430          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2431          * This make sure small files blocks are allocated in
2432          * single attempt. This ensure that small files
2433          * get less fragmented.
2434          */
2435         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2436                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2437                 wbc->nr_to_write = sbi->s_mb_stream_request;
2438         }
2439         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2440                 range_whole = 1;
2441
2442         if (wbc->range_cyclic)
2443                 index = mapping->writeback_index;
2444         else
2445                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2446
2447         mpd.wbc = wbc;
2448         mpd.inode = mapping->host;
2449
2450         /*
2451          * we don't want write_cache_pages to update
2452          * nr_to_write and writeback_index
2453          */
2454         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2455         wbc->no_nrwrite_index_update = 1;
2456         pages_skipped = wbc->pages_skipped;
2457
2458         while (!ret && wbc->nr_to_write > 0) {
2459
2460                 /*
2461                  * we  insert one extent at a time. So we need
2462                  * credit needed for single extent allocation.
2463                  * journalled mode is currently not supported
2464                  * by delalloc
2465                  */
2466                 BUG_ON(ext4_should_journal_data(inode));
2467                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2468
2469                 /* start a new transaction*/
2470                 handle = ext4_journal_start(inode, needed_blocks);
2471                 if (IS_ERR(handle)) {
2472                         ret = PTR_ERR(handle);
2473                         printk(KERN_CRIT "%s: jbd2_start: "
2474                                "%ld pages, ino %lu; err %d\n", __func__,
2475                                 wbc->nr_to_write, inode->i_ino, ret);
2476                         dump_stack();
2477                         goto out_writepages;
2478                 }
2479                 mpd.get_block = ext4_da_get_block_write;
2480                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2481
2482                 ext4_journal_stop(handle);
2483
2484                 if (mpd.retval == -ENOSPC) {
2485                         /* commit the transaction which would
2486                          * free blocks released in the transaction
2487                          * and try again
2488                          */
2489                         jbd2_journal_force_commit_nested(sbi->s_journal);
2490                         wbc->pages_skipped = pages_skipped;
2491                         ret = 0;
2492                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2493                         /*
2494                          * got one extent now try with
2495                          * rest of the pages
2496                          */
2497                         pages_written += mpd.pages_written;
2498                         wbc->pages_skipped = pages_skipped;
2499                         ret = 0;
2500                 } else if (wbc->nr_to_write)
2501                         /*
2502                          * There is no more writeout needed
2503                          * or we requested for a noblocking writeout
2504                          * and we found the device congested
2505                          */
2506                         break;
2507         }
2508         if (pages_skipped != wbc->pages_skipped)
2509                 printk(KERN_EMERG "This should not happen leaving %s "
2510                                 "with nr_to_write = %ld ret = %d\n",
2511                                 __func__, wbc->nr_to_write, ret);
2512
2513         /* Update index */
2514         index += pages_written;
2515         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2516                 /*
2517                  * set the writeback_index so that range_cyclic
2518                  * mode will write it back later
2519                  */
2520                 mapping->writeback_index = index;
2521
2522 out_writepages:
2523         if (!no_nrwrite_index_update)
2524                 wbc->no_nrwrite_index_update = 0;
2525         wbc->nr_to_write -= nr_to_writebump;
2526         return ret;
2527 }
2528
2529 #define FALL_BACK_TO_NONDELALLOC 1
2530 static int ext4_nonda_switch(struct super_block *sb)
2531 {
2532         s64 free_blocks, dirty_blocks;
2533         struct ext4_sb_info *sbi = EXT4_SB(sb);
2534
2535         /*
2536          * switch to non delalloc mode if we are running low
2537          * on free block. The free block accounting via percpu
2538          * counters can get slightly wrong with FBC_BATCH getting
2539          * accumulated on each CPU without updating global counters
2540          * Delalloc need an accurate free block accounting. So switch
2541          * to non delalloc when we are near to error range.
2542          */
2543         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2544         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2545         if (2 * free_blocks < 3 * dirty_blocks ||
2546                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2547                 /*
2548                  * free block count is less that 150% of dirty blocks
2549                  * or free blocks is less that watermark
2550                  */
2551                 return 1;
2552         }
2553         return 0;
2554 }
2555
2556 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2557                                 loff_t pos, unsigned len, unsigned flags,
2558                                 struct page **pagep, void **fsdata)
2559 {
2560         int ret, retries = 0;
2561         struct page *page;
2562         pgoff_t index;
2563         unsigned from, to;
2564         struct inode *inode = mapping->host;
2565         handle_t *handle;
2566
2567         index = pos >> PAGE_CACHE_SHIFT;
2568         from = pos & (PAGE_CACHE_SIZE - 1);
2569         to = from + len;
2570
2571         if (ext4_nonda_switch(inode->i_sb)) {
2572                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2573                 return ext4_write_begin(file, mapping, pos,
2574                                         len, flags, pagep, fsdata);
2575         }
2576         *fsdata = (void *)0;
2577 retry:
2578         /*
2579          * With delayed allocation, we don't log the i_disksize update
2580          * if there is delayed block allocation. But we still need
2581          * to journalling the i_disksize update if writes to the end
2582          * of file which has an already mapped buffer.
2583          */
2584         handle = ext4_journal_start(inode, 1);
2585         if (IS_ERR(handle)) {
2586                 ret = PTR_ERR(handle);
2587                 goto out;
2588         }
2589
2590         page = grab_cache_page_write_begin(mapping, index, flags);
2591         if (!page) {
2592                 ext4_journal_stop(handle);
2593                 ret = -ENOMEM;
2594                 goto out;
2595         }
2596         *pagep = page;
2597
2598         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2599                                                         ext4_da_get_block_prep);
2600         if (ret < 0) {
2601                 unlock_page(page);
2602                 ext4_journal_stop(handle);
2603                 page_cache_release(page);
2604                 /*
2605                  * block_write_begin may have instantiated a few blocks
2606                  * outside i_size.  Trim these off again. Don't need
2607                  * i_size_read because we hold i_mutex.
2608                  */
2609                 if (pos + len > inode->i_size)
2610                         vmtruncate(inode, inode->i_size);
2611         }
2612
2613         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2614                 goto retry;
2615 out:
2616         return ret;
2617 }
2618
2619 /*
2620  * Check if we should update i_disksize
2621  * when write to the end of file but not require block allocation
2622  */
2623 static int ext4_da_should_update_i_disksize(struct page *page,
2624                                          unsigned long offset)
2625 {
2626         struct buffer_head *bh;
2627         struct inode *inode = page->mapping->host;
2628         unsigned int idx;
2629         int i;
2630
2631         bh = page_buffers(page);
2632         idx = offset >> inode->i_blkbits;
2633
2634         for (i = 0; i < idx; i++)
2635                 bh = bh->b_this_page;
2636
2637         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2638                 return 0;
2639         return 1;
2640 }
2641
2642 static int ext4_da_write_end(struct file *file,
2643                                 struct address_space *mapping,
2644                                 loff_t pos, unsigned len, unsigned copied,
2645                                 struct page *page, void *fsdata)
2646 {
2647         struct inode *inode = mapping->host;
2648         int ret = 0, ret2;
2649         handle_t *handle = ext4_journal_current_handle();
2650         loff_t new_i_size;
2651         unsigned long start, end;
2652         int write_mode = (int)(unsigned long)fsdata;
2653
2654         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2655                 if (ext4_should_order_data(inode)) {
2656                         return ext4_ordered_write_end(file, mapping, pos,
2657                                         len, copied, page, fsdata);
2658                 } else if (ext4_should_writeback_data(inode)) {
2659                         return ext4_writeback_write_end(file, mapping, pos,
2660                                         len, copied, page, fsdata);
2661                 } else {
2662                         BUG();
2663                 }
2664         }
2665
2666         start = pos & (PAGE_CACHE_SIZE - 1);
2667         end = start + copied - 1;
2668
2669         /*
2670          * generic_write_end() will run mark_inode_dirty() if i_size
2671          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2672          * into that.
2673          */
2674
2675         new_i_size = pos + copied;
2676         if (new_i_size > EXT4_I(inode)->i_disksize) {
2677                 if (ext4_da_should_update_i_disksize(page, end)) {
2678                         down_write(&EXT4_I(inode)->i_data_sem);
2679                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2680                                 /*
2681                                  * Updating i_disksize when extending file
2682                                  * without needing block allocation
2683                                  */
2684                                 if (ext4_should_order_data(inode))
2685                                         ret = ext4_jbd2_file_inode(handle,
2686                                                                    inode);
2687
2688                                 EXT4_I(inode)->i_disksize = new_i_size;
2689                         }
2690                         up_write(&EXT4_I(inode)->i_data_sem);
2691                         /* We need to mark inode dirty even if
2692                          * new_i_size is less that inode->i_size
2693                          * bu greater than i_disksize.(hint delalloc)
2694                          */
2695                         ext4_mark_inode_dirty(handle, inode);
2696                 }
2697         }
2698         ret2 = generic_write_end(file, mapping, pos, len, copied,
2699                                                         page, fsdata);
2700         copied = ret2;
2701         if (ret2 < 0)
2702                 ret = ret2;
2703         ret2 = ext4_journal_stop(handle);
2704         if (!ret)
2705                 ret = ret2;
2706
2707         return ret ? ret : copied;
2708 }
2709
2710 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2711 {
2712         /*
2713          * Drop reserved blocks
2714          */
2715         BUG_ON(!PageLocked(page));
2716         if (!page_has_buffers(page))
2717                 goto out;
2718
2719         ext4_da_page_release_reservation(page, offset);
2720
2721 out:
2722         ext4_invalidatepage(page, offset);
2723
2724         return;
2725 }
2726
2727
2728 /*
2729  * bmap() is special.  It gets used by applications such as lilo and by
2730  * the swapper to find the on-disk block of a specific piece of data.
2731  *
2732  * Naturally, this is dangerous if the block concerned is still in the
2733  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2734  * filesystem and enables swap, then they may get a nasty shock when the
2735  * data getting swapped to that swapfile suddenly gets overwritten by
2736  * the original zero's written out previously to the journal and
2737  * awaiting writeback in the kernel's buffer cache.
2738  *
2739  * So, if we see any bmap calls here on a modified, data-journaled file,
2740  * take extra steps to flush any blocks which might be in the cache.
2741  */
2742 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2743 {
2744         struct inode *inode = mapping->host;
2745         journal_t *journal;
2746         int err;
2747
2748         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2749                         test_opt(inode->i_sb, DELALLOC)) {
2750                 /*
2751                  * With delalloc we want to sync the file
2752                  * so that we can make sure we allocate
2753                  * blocks for file
2754                  */
2755                 filemap_write_and_wait(mapping);
2756         }
2757
2758         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2759                 /*
2760                  * This is a REALLY heavyweight approach, but the use of
2761                  * bmap on dirty files is expected to be extremely rare:
2762                  * only if we run lilo or swapon on a freshly made file
2763                  * do we expect this to happen.
2764                  *
2765                  * (bmap requires CAP_SYS_RAWIO so this does not
2766                  * represent an unprivileged user DOS attack --- we'd be
2767                  * in trouble if mortal users could trigger this path at
2768                  * will.)
2769                  *
2770                  * NB. EXT4_STATE_JDATA is not set on files other than
2771                  * regular files.  If somebody wants to bmap a directory
2772                  * or symlink and gets confused because the buffer
2773                  * hasn't yet been flushed to disk, they deserve
2774                  * everything they get.
2775                  */
2776
2777                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2778                 journal = EXT4_JOURNAL(inode);
2779                 jbd2_journal_lock_updates(journal);
2780                 err = jbd2_journal_flush(journal);
2781                 jbd2_journal_unlock_updates(journal);
2782
2783                 if (err)
2784                         return 0;
2785         }
2786
2787         return generic_block_bmap(mapping, block, ext4_get_block);
2788 }
2789
2790 static int bget_one(handle_t *handle, struct buffer_head *bh)
2791 {
2792         get_bh(bh);
2793         return 0;
2794 }
2795
2796 static int bput_one(handle_t *handle, struct buffer_head *bh)
2797 {
2798         put_bh(bh);
2799         return 0;
2800 }
2801
2802 /*
2803  * Note that we don't need to start a transaction unless we're journaling data
2804  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2805  * need to file the inode to the transaction's list in ordered mode because if
2806  * we are writing back data added by write(), the inode is already there and if
2807  * we are writing back data modified via mmap(), noone guarantees in which
2808  * transaction the data will hit the disk. In case we are journaling data, we
2809  * cannot start transaction directly because transaction start ranks above page
2810  * lock so we have to do some magic.
2811  *
2812  * In all journaling modes block_write_full_page() will start the I/O.
2813  *
2814  * Problem:
2815  *
2816  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2817  *              ext4_writepage()
2818  *
2819  * Similar for:
2820  *
2821  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2822  *
2823  * Same applies to ext4_get_block().  We will deadlock on various things like
2824  * lock_journal and i_data_sem
2825  *
2826  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2827  * allocations fail.
2828  *
2829  * 16May01: If we're reentered then journal_current_handle() will be
2830  *          non-zero. We simply *return*.
2831  *
2832  * 1 July 2001: @@@ FIXME:
2833  *   In journalled data mode, a data buffer may be metadata against the
2834  *   current transaction.  But the same file is part of a shared mapping
2835  *   and someone does a writepage() on it.
2836  *
2837  *   We will move the buffer onto the async_data list, but *after* it has
2838  *   been dirtied. So there's a small window where we have dirty data on
2839  *   BJ_Metadata.
2840  *
2841  *   Note that this only applies to the last partial page in the file.  The
2842  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2843  *   broken code anyway: it's wrong for msync()).
2844  *
2845  *   It's a rare case: affects the final partial page, for journalled data
2846  *   where the file is subject to bith write() and writepage() in the same
2847  *   transction.  To fix it we'll need a custom block_write_full_page().
2848  *   We'll probably need that anyway for journalling writepage() output.
2849  *
2850  * We don't honour synchronous mounts for writepage().  That would be
2851  * disastrous.  Any write() or metadata operation will sync the fs for
2852  * us.
2853  *
2854  */
2855 static int __ext4_normal_writepage(struct page *page,
2856                                 struct writeback_control *wbc)
2857 {
2858         struct inode *inode = page->mapping->host;
2859
2860         if (test_opt(inode->i_sb, NOBH))
2861                 return nobh_writepage(page,
2862                                         ext4_normal_get_block_write, wbc);
2863         else
2864                 return block_write_full_page(page,
2865                                                 ext4_normal_get_block_write,
2866                                                 wbc);
2867 }
2868
2869 static int ext4_normal_writepage(struct page *page,
2870                                 struct writeback_control *wbc)
2871 {
2872         struct inode *inode = page->mapping->host;
2873         loff_t size = i_size_read(inode);
2874         loff_t len;
2875
2876         J_ASSERT(PageLocked(page));
2877         if (page->index == size >> PAGE_CACHE_SHIFT)
2878                 len = size & ~PAGE_CACHE_MASK;
2879         else
2880                 len = PAGE_CACHE_SIZE;
2881
2882         if (page_has_buffers(page)) {
2883                 /* if page has buffers it should all be mapped
2884                  * and allocated. If there are not buffers attached
2885                  * to the page we know the page is dirty but it lost
2886                  * buffers. That means that at some moment in time
2887                  * after write_begin() / write_end() has been called
2888                  * all buffers have been clean and thus they must have been
2889                  * written at least once. So they are all mapped and we can
2890                  * happily proceed with mapping them and writing the page.
2891                  */
2892                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2893                                         ext4_bh_unmapped_or_delay));
2894         }
2895
2896         if (!ext4_journal_current_handle())
2897                 return __ext4_normal_writepage(page, wbc);
2898
2899         redirty_page_for_writepage(wbc, page);
2900         unlock_page(page);
2901         return 0;
2902 }
2903
2904 static int __ext4_journalled_writepage(struct page *page,
2905                                 struct writeback_control *wbc)
2906 {
2907         struct address_space *mapping = page->mapping;
2908         struct inode *inode = mapping->host;
2909         struct buffer_head *page_bufs;
2910         handle_t *handle = NULL;
2911         int ret = 0;
2912         int err;
2913
2914         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2915                                         ext4_normal_get_block_write);
2916         if (ret != 0)
2917                 goto out_unlock;
2918
2919         page_bufs = page_buffers(page);
2920         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2921                                                                 bget_one);
2922         /* As soon as we unlock the page, it can go away, but we have
2923          * references to buffers so we are safe */
2924         unlock_page(page);
2925
2926         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2927         if (IS_ERR(handle)) {
2928                 ret = PTR_ERR(handle);
2929                 goto out;
2930         }
2931
2932         ret = walk_page_buffers(handle, page_bufs, 0,
2933                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2934
2935         err = walk_page_buffers(handle, page_bufs, 0,
2936                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2937         if (ret == 0)
2938                 ret = err;
2939         err = ext4_journal_stop(handle);
2940         if (!ret)
2941                 ret = err;
2942
2943         walk_page_buffers(handle, page_bufs, 0,
2944                                 PAGE_CACHE_SIZE, NULL, bput_one);
2945         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2946         goto out;
2947
2948 out_unlock:
2949         unlock_page(page);
2950 out:
2951         return ret;
2952 }
2953
2954 static int ext4_journalled_writepage(struct page *page,
2955                                 struct writeback_control *wbc)
2956 {
2957         struct inode *inode = page->mapping->host;
2958         loff_t size = i_size_read(inode);
2959         loff_t len;
2960
2961         J_ASSERT(PageLocked(page));
2962         if (page->index == size >> PAGE_CACHE_SHIFT)
2963                 len = size & ~PAGE_CACHE_MASK;
2964         else
2965                 len = PAGE_CACHE_SIZE;
2966
2967         if (page_has_buffers(page)) {
2968                 /* if page has buffers it should all be mapped
2969                  * and allocated. If there are not buffers attached
2970                  * to the page we know the page is dirty but it lost
2971                  * buffers. That means that at some moment in time
2972                  * after write_begin() / write_end() has been called
2973                  * all buffers have been clean and thus they must have been
2974                  * written at least once. So they are all mapped and we can
2975                  * happily proceed with mapping them and writing the page.
2976                  */
2977                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2978                                         ext4_bh_unmapped_or_delay));
2979         }
2980
2981         if (ext4_journal_current_handle())
2982                 goto no_write;
2983
2984         if (PageChecked(page)) {
2985                 /*
2986                  * It's mmapped pagecache.  Add buffers and journal it.  There
2987                  * doesn't seem much point in redirtying the page here.
2988                  */
2989                 ClearPageChecked(page);
2990                 return __ext4_journalled_writepage(page, wbc);
2991         } else {
2992                 /*
2993                  * It may be a page full of checkpoint-mode buffers.  We don't
2994                  * really know unless we go poke around in the buffer_heads.
2995                  * But block_write_full_page will do the right thing.
2996                  */
2997                 return block_write_full_page(page,
2998                                                 ext4_normal_get_block_write,
2999                                                 wbc);
3000         }
3001 no_write:
3002         redirty_page_for_writepage(wbc, page);
3003         unlock_page(page);
3004         return 0;
3005 }
3006
3007 static int ext4_readpage(struct file *file, struct page *page)
3008 {
3009         return mpage_readpage(page, ext4_get_block);
3010 }
3011
3012 static int
3013 ext4_readpages(struct file *file, struct address_space *mapping,
3014                 struct list_head *pages, unsigned nr_pages)
3015 {
3016         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3017 }
3018
3019 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3020 {
3021         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3022
3023         /*
3024          * If it's a full truncate we just forget about the pending dirtying
3025          */
3026         if (offset == 0)
3027                 ClearPageChecked(page);
3028
3029         jbd2_journal_invalidatepage(journal, page, offset);
3030 }
3031
3032 static int ext4_releasepage(struct page *page, gfp_t wait)
3033 {
3034         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3035
3036         WARN_ON(PageChecked(page));
3037         if (!page_has_buffers(page))
3038                 return 0;
3039         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3040 }
3041
3042 /*
3043  * If the O_DIRECT write will extend the file then add this inode to the
3044  * orphan list.  So recovery will truncate it back to the original size
3045  * if the machine crashes during the write.
3046  *
3047  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3048  * crashes then stale disk data _may_ be exposed inside the file. But current
3049  * VFS code falls back into buffered path in that case so we are safe.
3050  */
3051 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3052                         const struct iovec *iov, loff_t offset,
3053                         unsigned long nr_segs)
3054 {
3055         struct file *file = iocb->ki_filp;
3056         struct inode *inode = file->f_mapping->host;
3057         struct ext4_inode_info *ei = EXT4_I(inode);
3058         handle_t *handle;
3059         ssize_t ret;
3060         int orphan = 0;
3061         size_t count = iov_length(iov, nr_segs);
3062
3063         if (rw == WRITE) {
3064                 loff_t final_size = offset + count;
3065
3066                 if (final_size > inode->i_size) {
3067                         /* Credits for sb + inode write */
3068                         handle = ext4_journal_start(inode, 2);
3069                         if (IS_ERR(handle)) {
3070                                 ret = PTR_ERR(handle);
3071                                 goto out;
3072                         }
3073                         ret = ext4_orphan_add(handle, inode);
3074                         if (ret) {
3075                                 ext4_journal_stop(handle);
3076                                 goto out;
3077                         }
3078                         orphan = 1;
3079                         ei->i_disksize = inode->i_size;
3080                         ext4_journal_stop(handle);
3081                 }
3082         }
3083
3084         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3085                                  offset, nr_segs,
3086                                  ext4_get_block, NULL);
3087
3088         if (orphan) {
3089                 int err;
3090
3091                 /* Credits for sb + inode write */
3092                 handle = ext4_journal_start(inode, 2);
3093                 if (IS_ERR(handle)) {
3094                         /* This is really bad luck. We've written the data
3095                          * but cannot extend i_size. Bail out and pretend
3096                          * the write failed... */
3097                         ret = PTR_ERR(handle);
3098                         goto out;
3099                 }
3100                 if (inode->i_nlink)
3101                         ext4_orphan_del(handle, inode);
3102                 if (ret > 0) {
3103                         loff_t end = offset + ret;
3104                         if (end > inode->i_size) {
3105                                 ei->i_disksize = end;
3106                                 i_size_write(inode, end);
3107                                 /*
3108                                  * We're going to return a positive `ret'
3109                                  * here due to non-zero-length I/O, so there's
3110                                  * no way of reporting error returns from
3111                                  * ext4_mark_inode_dirty() to userspace.  So
3112                                  * ignore it.
3113                                  */
3114                                 ext4_mark_inode_dirty(handle, inode);
3115                         }
3116                 }
3117                 err = ext4_journal_stop(handle);
3118                 if (ret == 0)
3119                         ret = err;
3120         }
3121 out:
3122         return ret;
3123 }
3124
3125 /*
3126  * Pages can be marked dirty completely asynchronously from ext4's journalling
3127  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3128  * much here because ->set_page_dirty is called under VFS locks.  The page is
3129  * not necessarily locked.
3130  *
3131  * We cannot just dirty the page and leave attached buffers clean, because the
3132  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3133  * or jbddirty because all the journalling code will explode.
3134  *
3135  * So what we do is to mark the page "pending dirty" and next time writepage
3136  * is called, propagate that into the buffers appropriately.
3137  */
3138 static int ext4_journalled_set_page_dirty(struct page *page)
3139 {
3140         SetPageChecked(page);
3141         return __set_page_dirty_nobuffers(page);
3142 }
3143
3144 static const struct address_space_operations ext4_ordered_aops = {
3145         .readpage               = ext4_readpage,
3146         .readpages              = ext4_readpages,
3147         .writepage              = ext4_normal_writepage,
3148         .sync_page              = block_sync_page,
3149         .write_begin            = ext4_write_begin,
3150         .write_end              = ext4_ordered_write_end,
3151         .bmap                   = ext4_bmap,
3152         .invalidatepage         = ext4_invalidatepage,
3153         .releasepage            = ext4_releasepage,
3154         .direct_IO              = ext4_direct_IO,
3155         .migratepage            = buffer_migrate_page,
3156         .is_partially_uptodate  = block_is_partially_uptodate,
3157 };
3158
3159 static const struct address_space_operations ext4_writeback_aops = {
3160         .readpage               = ext4_readpage,
3161         .readpages              = ext4_readpages,
3162         .writepage              = ext4_normal_writepage,
3163         .sync_page              = block_sync_page,
3164         .write_begin            = ext4_write_begin,
3165         .write_end              = ext4_writeback_write_end,
3166         .bmap                   = ext4_bmap,
3167         .invalidatepage         = ext4_invalidatepage,
3168         .releasepage            = ext4_releasepage,
3169         .direct_IO              = ext4_direct_IO,
3170         .migratepage            = buffer_migrate_page,
3171         .is_partially_uptodate  = block_is_partially_uptodate,
3172 };
3173
3174 static const struct address_space_operations ext4_journalled_aops = {
3175         .readpage               = ext4_readpage,
3176         .readpages              = ext4_readpages,
3177         .writepage              = ext4_journalled_writepage,
3178         .sync_page              = block_sync_page,
3179         .write_begin            = ext4_write_begin,
3180         .write_end              = ext4_journalled_write_end,
3181         .set_page_dirty         = ext4_journalled_set_page_dirty,
3182         .bmap                   = ext4_bmap,
3183         .invalidatepage         = ext4_invalidatepage,
3184         .releasepage            = ext4_releasepage,
3185         .is_partially_uptodate  = block_is_partially_uptodate,
3186 };
3187
3188 static const struct address_space_operations ext4_da_aops = {
3189         .readpage               = ext4_readpage,
3190         .readpages              = ext4_readpages,
3191         .writepage              = ext4_da_writepage,
3192         .writepages             = ext4_da_writepages,
3193         .sync_page              = block_sync_page,
3194         .write_begin            = ext4_da_write_begin,
3195         .write_end              = ext4_da_write_end,
3196         .bmap                   = ext4_bmap,
3197         .invalidatepage         = ext4_da_invalidatepage,
3198         .releasepage            = ext4_releasepage,
3199         .direct_IO              = ext4_direct_IO,
3200         .migratepage            = buffer_migrate_page,
3201         .is_partially_uptodate  = block_is_partially_uptodate,
3202 };
3203
3204 void ext4_set_aops(struct inode *inode)
3205 {
3206         if (ext4_should_order_data(inode) &&
3207                 test_opt(inode->i_sb, DELALLOC))
3208                 inode->i_mapping->a_ops = &ext4_da_aops;
3209         else if (ext4_should_order_data(inode))
3210                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3211         else if (ext4_should_writeback_data(inode) &&
3212                  test_opt(inode->i_sb, DELALLOC))
3213                 inode->i_mapping->a_ops = &ext4_da_aops;
3214         else if (ext4_should_writeback_data(inode))
3215                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3216         else
3217                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3218 }
3219
3220 /*
3221  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3222  * up to the end of the block which corresponds to `from'.
3223  * This required during truncate. We need to physically zero the tail end
3224  * of that block so it doesn't yield old data if the file is later grown.
3225  */
3226 int ext4_block_truncate_page(handle_t *handle,
3227                 struct address_space *mapping, loff_t from)
3228 {
3229         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3230         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3231         unsigned blocksize, length, pos;
3232         ext4_lblk_t iblock;
3233         struct inode *inode = mapping->host;
3234         struct buffer_head *bh;
3235         struct page *page;
3236         int err = 0;
3237
3238         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3239         if (!page)
3240                 return -EINVAL;
3241
3242         blocksize = inode->i_sb->s_blocksize;
3243         length = blocksize - (offset & (blocksize - 1));
3244         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3245
3246         /*
3247          * For "nobh" option,  we can only work if we don't need to
3248          * read-in the page - otherwise we create buffers to do the IO.
3249          */
3250         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3251              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3252                 zero_user(page, offset, length);
3253                 set_page_dirty(page);
3254                 goto unlock;
3255         }
3256
3257         if (!page_has_buffers(page))
3258                 create_empty_buffers(page, blocksize, 0);
3259
3260         /* Find the buffer that contains "offset" */
3261         bh = page_buffers(page);
3262         pos = blocksize;
3263         while (offset >= pos) {
3264                 bh = bh->b_this_page;
3265                 iblock++;
3266                 pos += blocksize;
3267         }
3268
3269         err = 0;
3270         if (buffer_freed(bh)) {
3271                 BUFFER_TRACE(bh, "freed: skip");
3272                 goto unlock;
3273         }
3274
3275         if (!buffer_mapped(bh)) {
3276                 BUFFER_TRACE(bh, "unmapped");
3277                 ext4_get_block(inode, iblock, bh, 0);
3278                 /* unmapped? It's a hole - nothing to do */
3279                 if (!buffer_mapped(bh)) {
3280                         BUFFER_TRACE(bh, "still unmapped");
3281                         goto unlock;
3282                 }
3283         }
3284
3285         /* Ok, it's mapped. Make sure it's up-to-date */
3286         if (PageUptodate(page))
3287                 set_buffer_uptodate(bh);
3288
3289         if (!buffer_uptodate(bh)) {
3290                 err = -EIO;
3291                 ll_rw_block(READ, 1, &bh);
3292                 wait_on_buffer(bh);
3293                 /* Uhhuh. Read error. Complain and punt. */
3294                 if (!buffer_uptodate(bh))
3295                         goto unlock;
3296         }
3297
3298         if (ext4_should_journal_data(inode)) {
3299                 BUFFER_TRACE(bh, "get write access");
3300                 err = ext4_journal_get_write_access(handle, bh);
3301                 if (err)
3302                         goto unlock;
3303         }
3304
3305         zero_user(page, offset, length);
3306
3307         BUFFER_TRACE(bh, "zeroed end of block");
3308
3309         err = 0;
3310         if (ext4_should_journal_data(inode)) {
3311                 err = ext4_journal_dirty_metadata(handle, bh);
3312         } else {
3313                 if (ext4_should_order_data(inode))
3314                         err = ext4_jbd2_file_inode(handle, inode);
3315                 mark_buffer_dirty(bh);
3316         }
3317
3318 unlock:
3319         unlock_page(page);
3320         page_cache_release(page);
3321         return err;
3322 }
3323
3324 /*
3325  * Probably it should be a library function... search for first non-zero word
3326  * or memcmp with zero_page, whatever is better for particular architecture.
3327  * Linus?
3328  */
3329 static inline int all_zeroes(__le32 *p, __le32 *q)
3330 {
3331         while (p < q)
3332                 if (*p++)
3333                         return 0;
3334         return 1;
3335 }
3336
3337 /**
3338  *      ext4_find_shared - find the indirect blocks for partial truncation.
3339  *      @inode:   inode in question
3340  *      @depth:   depth of the affected branch
3341  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3342  *      @chain:   place to store the pointers to partial indirect blocks
3343  *      @top:     place to the (detached) top of branch
3344  *
3345  *      This is a helper function used by ext4_truncate().
3346  *
3347  *      When we do truncate() we may have to clean the ends of several
3348  *      indirect blocks but leave the blocks themselves alive. Block is
3349  *      partially truncated if some data below the new i_size is refered
3350  *      from it (and it is on the path to the first completely truncated
3351  *      data block, indeed).  We have to free the top of that path along
3352  *      with everything to the right of the path. Since no allocation
3353  *      past the truncation point is possible until ext4_truncate()
3354  *      finishes, we may safely do the latter, but top of branch may
3355  *      require special attention - pageout below the truncation point
3356  *      might try to populate it.
3357  *
3358  *      We atomically detach the top of branch from the tree, store the
3359  *      block number of its root in *@top, pointers to buffer_heads of
3360  *      partially truncated blocks - in @chain[].bh and pointers to
3361  *      their last elements that should not be removed - in
3362  *      @chain[].p. Return value is the pointer to last filled element
3363  *      of @chain.
3364  *
3365  *      The work left to caller to do the actual freeing of subtrees:
3366  *              a) free the subtree starting from *@top
3367  *              b) free the subtrees whose roots are stored in
3368  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3369  *              c) free the subtrees growing from the inode past the @chain[0].
3370  *                      (no partially truncated stuff there).  */
3371
3372 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3373                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3374 {
3375         Indirect *partial, *p;
3376         int k, err;
3377
3378         *top = 0;
3379         /* Make k index the deepest non-null offest + 1 */
3380         for (k = depth; k > 1 && !offsets[k-1]; k--)
3381                 ;
3382         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3383         /* Writer: pointers */
3384         if (!partial)
3385                 partial = chain + k-1;
3386         /*
3387          * If the branch acquired continuation since we've looked at it -
3388          * fine, it should all survive and (new) top doesn't belong to us.
3389          */
3390         if (!partial->key && *partial->p)
3391                 /* Writer: end */
3392                 goto no_top;
3393         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3394                 ;
3395         /*
3396          * OK, we've found the last block that must survive. The rest of our
3397          * branch should be detached before unlocking. However, if that rest
3398          * of branch is all ours and does not grow immediately from the inode
3399          * it's easier to cheat and just decrement partial->p.
3400          */
3401         if (p == chain + k - 1 && p > chain) {
3402                 p->p--;
3403         } else {
3404                 *top = *p->p;
3405                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3406 #if 0
3407                 *p->p = 0;
3408 #endif
3409         }
3410         /* Writer: end */
3411
3412         while (partial > p) {
3413                 brelse(partial->bh);
3414                 partial--;
3415         }
3416 no_top:
3417         return partial;
3418 }
3419
3420 /*
3421  * Zero a number of block pointers in either an inode or an indirect block.
3422  * If we restart the transaction we must again get write access to the
3423  * indirect block for further modification.
3424  *
3425  * We release `count' blocks on disk, but (last - first) may be greater
3426  * than `count' because there can be holes in there.
3427  */
3428 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3429                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3430                 unsigned long count, __le32 *first, __le32 *last)
3431 {
3432         __le32 *p;
3433         if (try_to_extend_transaction(handle, inode)) {
3434                 if (bh) {
3435                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3436                         ext4_journal_dirty_metadata(handle, bh);
3437                 }
3438                 ext4_mark_inode_dirty(handle, inode);
3439                 ext4_journal_test_restart(handle, inode);
3440                 if (bh) {
3441                         BUFFER_TRACE(bh, "retaking write access");
3442                         ext4_journal_get_write_access(handle, bh);
3443                 }
3444         }
3445
3446         /*
3447          * Any buffers which are on the journal will be in memory. We find
3448          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3449          * on them.  We've already detached each block from the file, so
3450          * bforget() in jbd2_journal_forget() should be safe.
3451          *
3452          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3453          */
3454         for (p = first; p < last; p++) {
3455                 u32 nr = le32_to_cpu(*p);
3456                 if (nr) {
3457                         struct buffer_head *tbh;
3458
3459                         *p = 0;
3460                         tbh = sb_find_get_block(inode->i_sb, nr);
3461                         ext4_forget(handle, 0, inode, tbh, nr);
3462                 }
3463         }
3464
3465         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3466 }
3467
3468 /**
3469  * ext4_free_data - free a list of data blocks
3470  * @handle:     handle for this transaction
3471  * @inode:      inode we are dealing with
3472  * @this_bh:    indirect buffer_head which contains *@first and *@last
3473  * @first:      array of block numbers
3474  * @last:       points immediately past the end of array
3475  *
3476  * We are freeing all blocks refered from that array (numbers are stored as
3477  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3478  *
3479  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3480  * blocks are contiguous then releasing them at one time will only affect one
3481  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3482  * actually use a lot of journal space.
3483  *
3484  * @this_bh will be %NULL if @first and @last point into the inode's direct
3485  * block pointers.
3486  */
3487 static void ext4_free_data(handle_t *handle, struct inode *inode,
3488                            struct buffer_head *this_bh,
3489                            __le32 *first, __le32 *last)
3490 {
3491         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3492         unsigned long count = 0;            /* Number of blocks in the run */
3493         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3494                                                corresponding to
3495                                                block_to_free */
3496         ext4_fsblk_t nr;                    /* Current block # */
3497         __le32 *p;                          /* Pointer into inode/ind
3498                                                for current block */
3499         int err;
3500
3501         if (this_bh) {                          /* For indirect block */
3502                 BUFFER_TRACE(this_bh, "get_write_access");
3503                 err = ext4_journal_get_write_access(handle, this_bh);
3504                 /* Important: if we can't update the indirect pointers
3505                  * to the blocks, we can't free them. */
3506                 if (err)
3507                         return;
3508         }
3509
3510         for (p = first; p < last; p++) {
3511                 nr = le32_to_cpu(*p);
3512                 if (nr) {
3513                         /* accumulate blocks to free if they're contiguous */
3514                         if (count == 0) {
3515                                 block_to_free = nr;
3516                                 block_to_free_p = p;
3517                                 count = 1;
3518                         } else if (nr == block_to_free + count) {
3519                                 count++;
3520                         } else {
3521                                 ext4_clear_blocks(handle, inode, this_bh,
3522                                                   block_to_free,
3523                                                   count, block_to_free_p, p);
3524                                 block_to_free = nr;
3525                                 block_to_free_p = p;
3526                                 count = 1;
3527                         }
3528                 }
3529         }
3530
3531         if (count > 0)
3532                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3533                                   count, block_to_free_p, p);
3534
3535         if (this_bh) {
3536                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3537
3538                 /*
3539                  * The buffer head should have an attached journal head at this
3540                  * point. However, if the data is corrupted and an indirect
3541                  * block pointed to itself, it would have been detached when
3542                  * the block was cleared. Check for this instead of OOPSing.
3543                  */
3544                 if (bh2jh(this_bh))
3545                         ext4_journal_dirty_metadata(handle, this_bh);
3546                 else
3547                         ext4_error(inode->i_sb, __func__,
3548                                    "circular indirect block detected, "
3549                                    "inode=%lu, block=%llu",
3550                                    inode->i_ino,
3551                                    (unsigned long long) this_bh->b_blocknr);
3552         }
3553 }
3554
3555 /**
3556  *      ext4_free_branches - free an array of branches
3557  *      @handle: JBD handle for this transaction
3558  *      @inode: inode we are dealing with
3559  *      @parent_bh: the buffer_head which contains *@first and *@last
3560  *      @first: array of block numbers
3561  *      @last:  pointer immediately past the end of array
3562  *      @depth: depth of the branches to free
3563  *
3564  *      We are freeing all blocks refered from these branches (numbers are
3565  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3566  *      appropriately.
3567  */
3568 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3569                                struct buffer_head *parent_bh,
3570                                __le32 *first, __le32 *last, int depth)
3571 {
3572         ext4_fsblk_t nr;
3573         __le32 *p;
3574
3575         if (is_handle_aborted(handle))
3576                 return;
3577
3578         if (depth--) {
3579                 struct buffer_head *bh;
3580                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3581                 p = last;
3582                 while (--p >= first) {
3583                         nr = le32_to_cpu(*p);
3584                         if (!nr)
3585                                 continue;               /* A hole */
3586
3587                         /* Go read the buffer for the next level down */
3588                         bh = sb_bread(inode->i_sb, nr);
3589
3590                         /*
3591                          * A read failure? Report error and clear slot
3592                          * (should be rare).
3593                          */
3594                         if (!bh) {
3595                                 ext4_error(inode->i_sb, "ext4_free_branches",
3596                                            "Read failure, inode=%lu, block=%llu",
3597                                            inode->i_ino, nr);
3598                                 continue;
3599                         }
3600
3601                         /* This zaps the entire block.  Bottom up. */
3602                         BUFFER_TRACE(bh, "free child branches");
3603                         ext4_free_branches(handle, inode, bh,
3604                                         (__le32 *) bh->b_data,
3605                                         (__le32 *) bh->b_data + addr_per_block,
3606                                         depth);
3607
3608                         /*
3609                          * We've probably journalled the indirect block several
3610                          * times during the truncate.  But it's no longer
3611                          * needed and we now drop it from the transaction via
3612                          * jbd2_journal_revoke().
3613                          *
3614                          * That's easy if it's exclusively part of this
3615                          * transaction.  But if it's part of the committing
3616                          * transaction then jbd2_journal_forget() will simply
3617                          * brelse() it.  That means that if the underlying
3618                          * block is reallocated in ext4_get_block(),
3619                          * unmap_underlying_metadata() will find this block
3620                          * and will try to get rid of it.  damn, damn.
3621                          *
3622                          * If this block has already been committed to the
3623                          * journal, a revoke record will be written.  And
3624                          * revoke records must be emitted *before* clearing
3625                          * this block's bit in the bitmaps.
3626                          */
3627                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3628
3629                         /*
3630                          * Everything below this this pointer has been
3631                          * released.  Now let this top-of-subtree go.
3632                          *
3633                          * We want the freeing of this indirect block to be
3634                          * atomic in the journal with the updating of the
3635                          * bitmap block which owns it.  So make some room in
3636                          * the journal.
3637                          *
3638                          * We zero the parent pointer *after* freeing its
3639                          * pointee in the bitmaps, so if extend_transaction()
3640                          * for some reason fails to put the bitmap changes and
3641                          * the release into the same transaction, recovery
3642                          * will merely complain about releasing a free block,
3643                          * rather than leaking blocks.
3644                          */
3645                         if (is_handle_aborted(handle))
3646                                 return;
3647                         if (try_to_extend_transaction(handle, inode)) {
3648                                 ext4_mark_inode_dirty(handle, inode);
3649                                 ext4_journal_test_restart(handle, inode);
3650                         }
3651
3652                         ext4_free_blocks(handle, inode, nr, 1, 1);
3653
3654                         if (parent_bh) {
3655                                 /*
3656                                  * The block which we have just freed is
3657                                  * pointed to by an indirect block: journal it
3658                                  */
3659                                 BUFFER_TRACE(parent_bh, "get_write_access");
3660                                 if (!ext4_journal_get_write_access(handle,
3661                                                                    parent_bh)){
3662                                         *p = 0;
3663                                         BUFFER_TRACE(parent_bh,
3664                                         "call ext4_journal_dirty_metadata");
3665                                         ext4_journal_dirty_metadata(handle,
3666                                                                     parent_bh);
3667                                 }
3668                         }
3669                 }
3670         } else {
3671                 /* We have reached the bottom of the tree. */
3672                 BUFFER_TRACE(parent_bh, "free data blocks");
3673                 ext4_free_data(handle, inode, parent_bh, first, last);
3674         }
3675 }
3676
3677 int ext4_can_truncate(struct inode *inode)
3678 {
3679         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3680                 return 0;
3681         if (S_ISREG(inode->i_mode))
3682                 return 1;
3683         if (S_ISDIR(inode->i_mode))
3684                 return 1;
3685         if (S_ISLNK(inode->i_mode))
3686                 return !ext4_inode_is_fast_symlink(inode);
3687         return 0;
3688 }
3689
3690 /*
3691  * ext4_truncate()
3692  *
3693  * We block out ext4_get_block() block instantiations across the entire
3694  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3695  * simultaneously on behalf of the same inode.
3696  *
3697  * As we work through the truncate and commmit bits of it to the journal there
3698  * is one core, guiding principle: the file's tree must always be consistent on
3699  * disk.  We must be able to restart the truncate after a crash.
3700  *
3701  * The file's tree may be transiently inconsistent in memory (although it
3702  * probably isn't), but whenever we close off and commit a journal transaction,
3703  * the contents of (the filesystem + the journal) must be consistent and
3704  * restartable.  It's pretty simple, really: bottom up, right to left (although
3705  * left-to-right works OK too).
3706  *
3707  * Note that at recovery time, journal replay occurs *before* the restart of
3708  * truncate against the orphan inode list.
3709  *
3710  * The committed inode has the new, desired i_size (which is the same as
3711  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3712  * that this inode's truncate did not complete and it will again call
3713  * ext4_truncate() to have another go.  So there will be instantiated blocks
3714  * to the right of the truncation point in a crashed ext4 filesystem.  But
3715  * that's fine - as long as they are linked from the inode, the post-crash
3716  * ext4_truncate() run will find them and release them.
3717  */
3718 void ext4_truncate(struct inode *inode)
3719 {
3720         handle_t *handle;
3721         struct ext4_inode_info *ei = EXT4_I(inode);
3722         __le32 *i_data = ei->i_data;
3723         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3724         struct address_space *mapping = inode->i_mapping;
3725         ext4_lblk_t offsets[4];
3726         Indirect chain[4];
3727         Indirect *partial;
3728         __le32 nr = 0;
3729         int n;
3730         ext4_lblk_t last_block;
3731         unsigned blocksize = inode->i_sb->s_blocksize;
3732
3733         if (!ext4_can_truncate(inode))
3734                 return;
3735
3736         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3737                 ext4_ext_truncate(inode);
3738                 return;
3739         }
3740
3741         handle = start_transaction(inode);
3742         if (IS_ERR(handle))
3743                 return;         /* AKPM: return what? */
3744
3745         last_block = (inode->i_size + blocksize-1)
3746                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3747
3748         if (inode->i_size & (blocksize - 1))
3749                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3750                         goto out_stop;
3751
3752         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3753         if (n == 0)
3754                 goto out_stop;  /* error */
3755
3756         /*
3757          * OK.  This truncate is going to happen.  We add the inode to the
3758          * orphan list, so that if this truncate spans multiple transactions,
3759          * and we crash, we will resume the truncate when the filesystem
3760          * recovers.  It also marks the inode dirty, to catch the new size.
3761          *
3762          * Implication: the file must always be in a sane, consistent
3763          * truncatable state while each transaction commits.
3764          */
3765         if (ext4_orphan_add(handle, inode))
3766                 goto out_stop;
3767
3768         /*
3769          * From here we block out all ext4_get_block() callers who want to
3770          * modify the block allocation tree.
3771          */
3772         down_write(&ei->i_data_sem);
3773
3774         ext4_discard_preallocations(inode);
3775
3776         /*
3777          * The orphan list entry will now protect us from any crash which
3778          * occurs before the truncate completes, so it is now safe to propagate
3779          * the new, shorter inode size (held for now in i_size) into the
3780          * on-disk inode. We do this via i_disksize, which is the value which
3781          * ext4 *really* writes onto the disk inode.
3782          */
3783         ei->i_disksize = inode->i_size;
3784
3785         if (n == 1) {           /* direct blocks */
3786                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3787                                i_data + EXT4_NDIR_BLOCKS);
3788                 goto do_indirects;
3789         }
3790
3791         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3792         /* Kill the top of shared branch (not detached) */
3793         if (nr) {
3794                 if (partial == chain) {
3795                         /* Shared branch grows from the inode */
3796                         ext4_free_branches(handle, inode, NULL,
3797                                            &nr, &nr+1, (chain+n-1) - partial);
3798                         *partial->p = 0;
3799                         /*
3800                          * We mark the inode dirty prior to restart,
3801                          * and prior to stop.  No need for it here.
3802                          */
3803                 } else {
3804                         /* Shared branch grows from an indirect block */
3805                         BUFFER_TRACE(partial->bh, "get_write_access");
3806                         ext4_free_branches(handle, inode, partial->bh,
3807                                         partial->p,
3808                                         partial->p+1, (chain+n-1) - partial);
3809                 }
3810         }
3811         /* Clear the ends of indirect blocks on the shared branch */
3812         while (partial > chain) {
3813                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3814                                    (__le32*)partial->bh->b_data+addr_per_block,
3815                                    (chain+n-1) - partial);
3816                 BUFFER_TRACE(partial->bh, "call brelse");
3817                 brelse (partial->bh);
3818                 partial--;
3819         }
3820 do_indirects:
3821         /* Kill the remaining (whole) subtrees */
3822         switch (offsets[0]) {
3823         default:
3824                 nr = i_data[EXT4_IND_BLOCK];
3825                 if (nr) {
3826                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3827                         i_data[EXT4_IND_BLOCK] = 0;
3828                 }
3829         case EXT4_IND_BLOCK:
3830                 nr = i_data[EXT4_DIND_BLOCK];
3831                 if (nr) {
3832                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3833                         i_data[EXT4_DIND_BLOCK] = 0;
3834                 }
3835         case EXT4_DIND_BLOCK:
3836                 nr = i_data[EXT4_TIND_BLOCK];
3837                 if (nr) {
3838                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3839                         i_data[EXT4_TIND_BLOCK] = 0;
3840                 }
3841         case EXT4_TIND_BLOCK:
3842                 ;
3843         }
3844
3845         up_write(&ei->i_data_sem);
3846         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3847         ext4_mark_inode_dirty(handle, inode);
3848
3849         /*
3850          * In a multi-transaction truncate, we only make the final transaction
3851          * synchronous
3852          */
3853         if (IS_SYNC(inode))
3854                 handle->h_sync = 1;
3855 out_stop:
3856         /*
3857          * If this was a simple ftruncate(), and the file will remain alive
3858          * then we need to clear up the orphan record which we created above.
3859          * However, if this was a real unlink then we were called by
3860          * ext4_delete_inode(), and we allow that function to clean up the
3861          * orphan info for us.
3862          */
3863         if (inode->i_nlink)
3864                 ext4_orphan_del(handle, inode);
3865
3866         ext4_journal_stop(handle);
3867 }
3868
3869 /*
3870  * ext4_get_inode_loc returns with an extra refcount against the inode's
3871  * underlying buffer_head on success. If 'in_mem' is true, we have all
3872  * data in memory that is needed to recreate the on-disk version of this
3873  * inode.
3874  */
3875 static int __ext4_get_inode_loc(struct inode *inode,
3876                                 struct ext4_iloc *iloc, int in_mem)
3877 {
3878         struct ext4_group_desc  *gdp;
3879         struct buffer_head      *bh;
3880         struct super_block      *sb = inode->i_sb;
3881         ext4_fsblk_t            block;
3882         int                     inodes_per_block, inode_offset;
3883
3884         iloc->bh = 0;
3885         if (!ext4_valid_inum(sb, inode->i_ino))
3886                 return -EIO;
3887
3888         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3889         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3890         if (!gdp)
3891                 return -EIO;
3892
3893         /*
3894          * Figure out the offset within the block group inode table
3895          */
3896         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3897         inode_offset = ((inode->i_ino - 1) %
3898                         EXT4_INODES_PER_GROUP(sb));
3899         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3900         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3901
3902         bh = sb_getblk(sb, block);
3903         if (!bh) {
3904                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3905                            "inode block - inode=%lu, block=%llu",
3906                            inode->i_ino, block);
3907                 return -EIO;
3908         }
3909         if (!buffer_uptodate(bh)) {
3910                 lock_buffer(bh);
3911
3912                 /*
3913                  * If the buffer has the write error flag, we have failed
3914                  * to write out another inode in the same block.  In this
3915                  * case, we don't have to read the block because we may
3916                  * read the old inode data successfully.
3917                  */
3918                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3919                         set_buffer_uptodate(bh);
3920
3921                 if (buffer_uptodate(bh)) {
3922                         /* someone brought it uptodate while we waited */
3923                         unlock_buffer(bh);
3924                         goto has_buffer;
3925                 }
3926
3927                 /*
3928                  * If we have all information of the inode in memory and this
3929                  * is the only valid inode in the block, we need not read the
3930                  * block.
3931                  */
3932                 if (in_mem) {
3933                         struct buffer_head *bitmap_bh;
3934                         int i, start;
3935
3936                         start = inode_offset & ~(inodes_per_block - 1);
3937
3938                         /* Is the inode bitmap in cache? */
3939                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3940                         if (!bitmap_bh)
3941                                 goto make_io;
3942
3943                         /*
3944                          * If the inode bitmap isn't in cache then the
3945                          * optimisation may end up performing two reads instead
3946                          * of one, so skip it.
3947                          */
3948                         if (!buffer_uptodate(bitmap_bh)) {
3949                                 brelse(bitmap_bh);
3950                                 goto make_io;
3951                         }
3952                         for (i = start; i < start + inodes_per_block; i++) {
3953                                 if (i == inode_offset)
3954                                         continue;
3955                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3956                                         break;
3957                         }
3958                         brelse(bitmap_bh);
3959                         if (i == start + inodes_per_block) {
3960                                 /* all other inodes are free, so skip I/O */
3961                                 memset(bh->b_data, 0, bh->b_size);
3962                                 set_buffer_uptodate(bh);
3963                                 unlock_buffer(bh);
3964                                 goto has_buffer;
3965                         }
3966                 }
3967
3968 make_io:
3969                 /*
3970                  * If we need to do any I/O, try to pre-readahead extra
3971                  * blocks from the inode table.
3972                  */
3973                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3974                         ext4_fsblk_t b, end, table;
3975                         unsigned num;
3976
3977                         table = ext4_inode_table(sb, gdp);
3978                         /* Make sure s_inode_readahead_blks is a power of 2 */
3979                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3980                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3981                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3982                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3983                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3984                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3985                         if (table > b)
3986                                 b = table;
3987                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3988                         num = EXT4_INODES_PER_GROUP(sb);
3989                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3990                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3991                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3992                         table += num / inodes_per_block;
3993                         if (end > table)
3994                                 end = table;
3995                         while (b <= end)
3996                                 sb_breadahead(sb, b++);
3997                 }
3998
3999                 /*
4000                  * There are other valid inodes in the buffer, this inode
4001                  * has in-inode xattrs, or we don't have this inode in memory.
4002                  * Read the block from disk.
4003                  */
4004                 get_bh(bh);
4005                 bh->b_end_io = end_buffer_read_sync;
4006                 submit_bh(READ_META, bh);
4007                 wait_on_buffer(bh);
4008                 if (!buffer_uptodate(bh)) {
4009                         ext4_error(sb, __func__,
4010                                    "unable to read inode block - inode=%lu, "
4011                                    "block=%llu", inode->i_ino, block);
4012                         brelse(bh);
4013                         return -EIO;
4014                 }
4015         }
4016 has_buffer:
4017         iloc->bh = bh;
4018         return 0;
4019 }
4020
4021 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4022 {
4023         /* We have all inode data except xattrs in memory here. */
4024         return __ext4_get_inode_loc(inode, iloc,
4025                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4026 }
4027
4028 void ext4_set_inode_flags(struct inode *inode)
4029 {
4030         unsigned int flags = EXT4_I(inode)->i_flags;
4031
4032         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4033         if (flags & EXT4_SYNC_FL)
4034                 inode->i_flags |= S_SYNC;
4035         if (flags & EXT4_APPEND_FL)
4036                 inode->i_flags |= S_APPEND;
4037         if (flags & EXT4_IMMUTABLE_FL)
4038                 inode->i_flags |= S_IMMUTABLE;
4039         if (flags & EXT4_NOATIME_FL)
4040                 inode->i_flags |= S_NOATIME;
4041         if (flags & EXT4_DIRSYNC_FL)
4042                 inode->i_flags |= S_DIRSYNC;
4043 }
4044
4045 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4046 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4047 {
4048         unsigned int flags = ei->vfs_inode.i_flags;
4049
4050         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4051                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4052         if (flags & S_SYNC)
4053                 ei->i_flags |= EXT4_SYNC_FL;
4054         if (flags & S_APPEND)
4055                 ei->i_flags |= EXT4_APPEND_FL;
4056         if (flags & S_IMMUTABLE)
4057                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4058         if (flags & S_NOATIME)
4059                 ei->i_flags |= EXT4_NOATIME_FL;
4060         if (flags & S_DIRSYNC)
4061                 ei->i_flags |= EXT4_DIRSYNC_FL;
4062 }
4063 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4064                                         struct ext4_inode_info *ei)
4065 {
4066         blkcnt_t i_blocks ;
4067         struct inode *inode = &(ei->vfs_inode);
4068         struct super_block *sb = inode->i_sb;
4069
4070         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4071                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4072                 /* we are using combined 48 bit field */
4073                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4074                                         le32_to_cpu(raw_inode->i_blocks_lo);
4075                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4076                         /* i_blocks represent file system block size */
4077                         return i_blocks  << (inode->i_blkbits - 9);
4078                 } else {
4079                         return i_blocks;
4080                 }
4081         } else {
4082                 return le32_to_cpu(raw_inode->i_blocks_lo);
4083         }
4084 }
4085
4086 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4087 {
4088         struct ext4_iloc iloc;
4089         struct ext4_inode *raw_inode;
4090         struct ext4_inode_info *ei;
4091         struct buffer_head *bh;
4092         struct inode *inode;
4093         long ret;
4094         int block;
4095
4096         inode = iget_locked(sb, ino);
4097         if (!inode)
4098                 return ERR_PTR(-ENOMEM);
4099         if (!(inode->i_state & I_NEW))
4100                 return inode;
4101
4102         ei = EXT4_I(inode);
4103 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4104         ei->i_acl = EXT4_ACL_NOT_CACHED;
4105         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4106 #endif
4107
4108         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4109         if (ret < 0)
4110                 goto bad_inode;
4111         bh = iloc.bh;
4112         raw_inode = ext4_raw_inode(&iloc);
4113         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4114         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4115         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4116         if (!(test_opt(inode->i_sb, NO_UID32))) {
4117                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4118                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4119         }
4120         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4121
4122         ei->i_state = 0;
4123         ei->i_dir_start_lookup = 0;
4124         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4125         /* We now have enough fields to check if the inode was active or not.
4126          * This is needed because nfsd might try to access dead inodes
4127          * the test is that same one that e2fsck uses
4128          * NeilBrown 1999oct15
4129          */
4130         if (inode->i_nlink == 0) {
4131                 if (inode->i_mode == 0 ||
4132                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4133                         /* this inode is deleted */
4134                         brelse(bh);
4135                         ret = -ESTALE;
4136                         goto bad_inode;
4137                 }
4138                 /* The only unlinked inodes we let through here have
4139                  * valid i_mode and are being read by the orphan
4140                  * recovery code: that's fine, we're about to complete
4141                  * the process of deleting those. */
4142         }
4143         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4144         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4145         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4146         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4147             cpu_to_le32(EXT4_OS_HURD)) {
4148                 ei->i_file_acl |=
4149                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4150         }
4151         inode->i_size = ext4_isize(raw_inode);
4152         ei->i_disksize = inode->i_size;
4153         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4154         ei->i_block_group = iloc.block_group;
4155         /*
4156          * NOTE! The in-memory inode i_data array is in little-endian order
4157          * even on big-endian machines: we do NOT byteswap the block numbers!
4158          */
4159         for (block = 0; block < EXT4_N_BLOCKS; block++)
4160                 ei->i_data[block] = raw_inode->i_block[block];
4161         INIT_LIST_HEAD(&ei->i_orphan);
4162
4163         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4165                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4166                     EXT4_INODE_SIZE(inode->i_sb)) {
4167                         brelse(bh);
4168                         ret = -EIO;
4169                         goto bad_inode;
4170                 }
4171                 if (ei->i_extra_isize == 0) {
4172                         /* The extra space is currently unused. Use it. */
4173                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4174                                             EXT4_GOOD_OLD_INODE_SIZE;
4175                 } else {
4176                         __le32 *magic = (void *)raw_inode +
4177                                         EXT4_GOOD_OLD_INODE_SIZE +
4178                                         ei->i_extra_isize;
4179                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4180                                  ei->i_state |= EXT4_STATE_XATTR;
4181                 }
4182         } else
4183                 ei->i_extra_isize = 0;
4184
4185         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4186         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4187         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4188         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4189
4190         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4191         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4192                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4193                         inode->i_version |=
4194                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4195         }
4196
4197         if (S_ISREG(inode->i_mode)) {
4198                 inode->i_op = &ext4_file_inode_operations;
4199                 inode->i_fop = &ext4_file_operations;
4200                 ext4_set_aops(inode);
4201         } else if (S_ISDIR(inode->i_mode)) {
4202                 inode->i_op = &ext4_dir_inode_operations;
4203                 inode->i_fop = &ext4_dir_operations;
4204         } else if (S_ISLNK(inode->i_mode)) {
4205                 if (ext4_inode_is_fast_symlink(inode))
4206                         inode->i_op = &ext4_fast_symlink_inode_operations;
4207                 else {
4208                         inode->i_op = &ext4_symlink_inode_operations;
4209                         ext4_set_aops(inode);
4210                 }
4211         } else {
4212                 inode->i_op = &ext4_special_inode_operations;
4213                 if (raw_inode->i_block[0])
4214                         init_special_inode(inode, inode->i_mode,
4215                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4216                 else
4217                         init_special_inode(inode, inode->i_mode,
4218                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4219         }
4220         brelse(iloc.bh);
4221         ext4_set_inode_flags(inode);
4222         unlock_new_inode(inode);
4223         return inode;
4224
4225 bad_inode:
4226         iget_failed(inode);
4227         return ERR_PTR(ret);
4228 }
4229
4230 static int ext4_inode_blocks_set(handle_t *handle,
4231                                 struct ext4_inode *raw_inode,
4232                                 struct ext4_inode_info *ei)
4233 {
4234         struct inode *inode = &(ei->vfs_inode);
4235         u64 i_blocks = inode->i_blocks;
4236         struct super_block *sb = inode->i_sb;
4237
4238         if (i_blocks <= ~0U) {
4239                 /*
4240                  * i_blocks can be represnted in a 32 bit variable
4241                  * as multiple of 512 bytes
4242                  */
4243                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4244                 raw_inode->i_blocks_high = 0;
4245                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4246                 return 0;
4247         }
4248         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4249                 return -EFBIG;
4250
4251         if (i_blocks <= 0xffffffffffffULL) {
4252                 /*
4253                  * i_blocks can be represented in a 48 bit variable
4254                  * as multiple of 512 bytes
4255                  */
4256                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4257                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4258                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4259         } else {
4260                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4261                 /* i_block is stored in file system block size */
4262                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4263                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4264                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4265         }
4266         return 0;
4267 }
4268
4269 /*
4270  * Post the struct inode info into an on-disk inode location in the
4271  * buffer-cache.  This gobbles the caller's reference to the
4272  * buffer_head in the inode location struct.
4273  *
4274  * The caller must have write access to iloc->bh.
4275  */
4276 static int ext4_do_update_inode(handle_t *handle,
4277                                 struct inode *inode,
4278                                 struct ext4_iloc *iloc)
4279 {
4280         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4281         struct ext4_inode_info *ei = EXT4_I(inode);
4282         struct buffer_head *bh = iloc->bh;
4283         int err = 0, rc, block;
4284
4285         /* For fields not not tracking in the in-memory inode,
4286          * initialise them to zero for new inodes. */
4287         if (ei->i_state & EXT4_STATE_NEW)
4288                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4289
4290         ext4_get_inode_flags(ei);
4291         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4292         if (!(test_opt(inode->i_sb, NO_UID32))) {
4293                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4294                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4295 /*
4296  * Fix up interoperability with old kernels. Otherwise, old inodes get
4297  * re-used with the upper 16 bits of the uid/gid intact
4298  */
4299                 if (!ei->i_dtime) {
4300                         raw_inode->i_uid_high =
4301                                 cpu_to_le16(high_16_bits(inode->i_uid));
4302                         raw_inode->i_gid_high =
4303                                 cpu_to_le16(high_16_bits(inode->i_gid));
4304                 } else {
4305                         raw_inode->i_uid_high = 0;
4306                         raw_inode->i_gid_high = 0;
4307                 }
4308         } else {
4309                 raw_inode->i_uid_low =
4310                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4311                 raw_inode->i_gid_low =
4312                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4313                 raw_inode->i_uid_high = 0;
4314                 raw_inode->i_gid_high = 0;
4315         }
4316         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4317
4318         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4319         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4320         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4321         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4322
4323         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4324                 goto out_brelse;
4325         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4326         /* clear the migrate flag in the raw_inode */
4327         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4328         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4329             cpu_to_le32(EXT4_OS_HURD))
4330                 raw_inode->i_file_acl_high =
4331                         cpu_to_le16(ei->i_file_acl >> 32);
4332         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4333         ext4_isize_set(raw_inode, ei->i_disksize);
4334         if (ei->i_disksize > 0x7fffffffULL) {
4335                 struct super_block *sb = inode->i_sb;
4336                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4337                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4338                                 EXT4_SB(sb)->s_es->s_rev_level ==
4339                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4340                         /* If this is the first large file
4341                          * created, add a flag to the superblock.
4342                          */
4343                         err = ext4_journal_get_write_access(handle,
4344                                         EXT4_SB(sb)->s_sbh);
4345                         if (err)
4346                                 goto out_brelse;
4347                         ext4_update_dynamic_rev(sb);
4348                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4349                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4350                         sb->s_dirt = 1;
4351                         handle->h_sync = 1;
4352                         err = ext4_journal_dirty_metadata(handle,
4353                                         EXT4_SB(sb)->s_sbh);
4354                 }
4355         }
4356         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4357         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4358                 if (old_valid_dev(inode->i_rdev)) {
4359                         raw_inode->i_block[0] =
4360                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4361                         raw_inode->i_block[1] = 0;
4362                 } else {
4363                         raw_inode->i_block[0] = 0;
4364                         raw_inode->i_block[1] =
4365                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4366                         raw_inode->i_block[2] = 0;
4367                 }
4368         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4369                 raw_inode->i_block[block] = ei->i_data[block];
4370
4371         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4372         if (ei->i_extra_isize) {
4373                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4374                         raw_inode->i_version_hi =
4375                         cpu_to_le32(inode->i_version >> 32);
4376                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4377         }
4378
4379
4380         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4381         rc = ext4_journal_dirty_metadata(handle, bh);
4382         if (!err)
4383                 err = rc;
4384         ei->i_state &= ~EXT4_STATE_NEW;
4385
4386 out_brelse:
4387         brelse(bh);
4388         ext4_std_error(inode->i_sb, err);
4389         return err;
4390 }
4391
4392 /*
4393  * ext4_write_inode()
4394  *
4395  * We are called from a few places:
4396  *
4397  * - Within generic_file_write() for O_SYNC files.
4398  *   Here, there will be no transaction running. We wait for any running
4399  *   trasnaction to commit.
4400  *
4401  * - Within sys_sync(), kupdate and such.
4402  *   We wait on commit, if tol to.
4403  *
4404  * - Within prune_icache() (PF_MEMALLOC == true)
4405  *   Here we simply return.  We can't afford to block kswapd on the
4406  *   journal commit.
4407  *
4408  * In all cases it is actually safe for us to return without doing anything,
4409  * because the inode has been copied into a raw inode buffer in
4410  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4411  * knfsd.
4412  *
4413  * Note that we are absolutely dependent upon all inode dirtiers doing the
4414  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4415  * which we are interested.
4416  *
4417  * It would be a bug for them to not do this.  The code:
4418  *
4419  *      mark_inode_dirty(inode)
4420  *      stuff();
4421  *      inode->i_size = expr;
4422  *
4423  * is in error because a kswapd-driven write_inode() could occur while
4424  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4425  * will no longer be on the superblock's dirty inode list.
4426  */
4427 int ext4_write_inode(struct inode *inode, int wait)
4428 {
4429         if (current->flags & PF_MEMALLOC)
4430                 return 0;
4431
4432         if (ext4_journal_current_handle()) {
4433                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4434                 dump_stack();
4435                 return -EIO;
4436         }
4437
4438         if (!wait)
4439                 return 0;
4440
4441         return ext4_force_commit(inode->i_sb);
4442 }
4443
4444 /*
4445  * ext4_setattr()
4446  *
4447  * Called from notify_change.
4448  *
4449  * We want to trap VFS attempts to truncate the file as soon as
4450  * possible.  In particular, we want to make sure that when the VFS
4451  * shrinks i_size, we put the inode on the orphan list and modify
4452  * i_disksize immediately, so that during the subsequent flushing of
4453  * dirty pages and freeing of disk blocks, we can guarantee that any
4454  * commit will leave the blocks being flushed in an unused state on
4455  * disk.  (On recovery, the inode will get truncated and the blocks will
4456  * be freed, so we have a strong guarantee that no future commit will
4457  * leave these blocks visible to the user.)
4458  *
4459  * Another thing we have to assure is that if we are in ordered mode
4460  * and inode is still attached to the committing transaction, we must
4461  * we start writeout of all the dirty pages which are being truncated.
4462  * This way we are sure that all the data written in the previous
4463  * transaction are already on disk (truncate waits for pages under
4464  * writeback).
4465  *
4466  * Called with inode->i_mutex down.
4467  */
4468 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4469 {
4470         struct inode *inode = dentry->d_inode;
4471         int error, rc = 0;
4472         const unsigned int ia_valid = attr->ia_valid;
4473
4474         error = inode_change_ok(inode, attr);
4475         if (error)
4476                 return error;
4477
4478         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4479                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4480                 handle_t *handle;
4481
4482                 /* (user+group)*(old+new) structure, inode write (sb,
4483                  * inode block, ? - but truncate inode update has it) */
4484                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4485                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4486                 if (IS_ERR(handle)) {
4487                         error = PTR_ERR(handle);
4488                         goto err_out;
4489                 }
4490                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4491                 if (error) {
4492                         ext4_journal_stop(handle);
4493                         return error;
4494                 }
4495                 /* Update corresponding info in inode so that everything is in
4496                  * one transaction */
4497                 if (attr->ia_valid & ATTR_UID)
4498                         inode->i_uid = attr->ia_uid;
4499                 if (attr->ia_valid & ATTR_GID)
4500                         inode->i_gid = attr->ia_gid;
4501                 error = ext4_mark_inode_dirty(handle, inode);
4502                 ext4_journal_stop(handle);
4503         }
4504
4505         if (attr->ia_valid & ATTR_SIZE) {
4506                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4507                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4508
4509                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4510                                 error = -EFBIG;
4511                                 goto err_out;
4512                         }
4513                 }
4514         }
4515
4516         if (S_ISREG(inode->i_mode) &&
4517             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4518                 handle_t *handle;
4519
4520                 handle = ext4_journal_start(inode, 3);
4521                 if (IS_ERR(handle)) {
4522                         error = PTR_ERR(handle);
4523                         goto err_out;
4524                 }
4525
4526                 error = ext4_orphan_add(handle, inode);
4527                 EXT4_I(inode)->i_disksize = attr->ia_size;
4528                 rc = ext4_mark_inode_dirty(handle, inode);
4529                 if (!error)
4530                         error = rc;
4531                 ext4_journal_stop(handle);
4532
4533                 if (ext4_should_order_data(inode)) {
4534                         error = ext4_begin_ordered_truncate(inode,
4535                                                             attr->ia_size);
4536                         if (error) {
4537                                 /* Do as much error cleanup as possible */
4538                                 handle = ext4_journal_start(inode, 3);
4539                                 if (IS_ERR(handle)) {
4540                                         ext4_orphan_del(NULL, inode);
4541                                         goto err_out;
4542                                 }
4543                                 ext4_orphan_del(handle, inode);
4544                                 ext4_journal_stop(handle);
4545                                 goto err_out;
4546                         }
4547                 }
4548         }
4549
4550         rc = inode_setattr(inode, attr);
4551
4552         /* If inode_setattr's call to ext4_truncate failed to get a
4553          * transaction handle at all, we need to clean up the in-core
4554          * orphan list manually. */
4555         if (inode->i_nlink)
4556                 ext4_orphan_del(NULL, inode);
4557
4558         if (!rc && (ia_valid & ATTR_MODE))
4559                 rc = ext4_acl_chmod(inode);
4560
4561 err_out:
4562         ext4_std_error(inode->i_sb, error);
4563         if (!error)
4564                 error = rc;
4565         return error;
4566 }
4567
4568 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4569                  struct kstat *stat)
4570 {
4571         struct inode *inode;
4572         unsigned long delalloc_blocks;
4573
4574         inode = dentry->d_inode;
4575         generic_fillattr(inode, stat);
4576
4577         /*
4578          * We can't update i_blocks if the block allocation is delayed
4579          * otherwise in the case of system crash before the real block
4580          * allocation is done, we will have i_blocks inconsistent with
4581          * on-disk file blocks.
4582          * We always keep i_blocks updated together with real
4583          * allocation. But to not confuse with user, stat
4584          * will return the blocks that include the delayed allocation
4585          * blocks for this file.
4586          */
4587         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4588         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4589         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4590
4591         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4592         return 0;
4593 }
4594
4595 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4596                                       int chunk)
4597 {
4598         int indirects;
4599
4600         /* if nrblocks are contiguous */
4601         if (chunk) {
4602                 /*
4603                  * With N contiguous data blocks, it need at most
4604                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4605                  * 2 dindirect blocks
4606                  * 1 tindirect block
4607                  */
4608                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4609                 return indirects + 3;
4610         }
4611         /*
4612          * if nrblocks are not contiguous, worse case, each block touch
4613          * a indirect block, and each indirect block touch a double indirect
4614          * block, plus a triple indirect block
4615          */
4616         indirects = nrblocks * 2 + 1;
4617         return indirects;
4618 }
4619
4620 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4621 {
4622         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4623                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4624         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4625 }
4626
4627 /*
4628  * Account for index blocks, block groups bitmaps and block group
4629  * descriptor blocks if modify datablocks and index blocks
4630  * worse case, the indexs blocks spread over different block groups
4631  *
4632  * If datablocks are discontiguous, they are possible to spread over
4633  * different block groups too. If they are contiugous, with flexbg,
4634  * they could still across block group boundary.
4635  *
4636  * Also account for superblock, inode, quota and xattr blocks
4637  */
4638 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4639 {
4640         int groups, gdpblocks;
4641         int idxblocks;
4642         int ret = 0;
4643
4644         /*
4645          * How many index blocks need to touch to modify nrblocks?
4646          * The "Chunk" flag indicating whether the nrblocks is
4647          * physically contiguous on disk
4648          *
4649          * For Direct IO and fallocate, they calls get_block to allocate
4650          * one single extent at a time, so they could set the "Chunk" flag
4651          */
4652         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4653
4654         ret = idxblocks;
4655
4656         /*
4657          * Now let's see how many group bitmaps and group descriptors need
4658          * to account
4659          */
4660         groups = idxblocks;
4661         if (chunk)
4662                 groups += 1;
4663         else
4664                 groups += nrblocks;
4665
4666         gdpblocks = groups;
4667         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4668                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4669         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4670                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4671
4672         /* bitmaps and block group descriptor blocks */
4673         ret += groups + gdpblocks;
4674
4675         /* Blocks for super block, inode, quota and xattr blocks */
4676         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4677
4678         return ret;
4679 }
4680
4681 /*
4682  * Calulate the total number of credits to reserve to fit
4683  * the modification of a single pages into a single transaction,
4684  * which may include multiple chunks of block allocations.
4685  *
4686  * This could be called via ext4_write_begin()
4687  *
4688  * We need to consider the worse case, when
4689  * one new block per extent.
4690  */
4691 int ext4_writepage_trans_blocks(struct inode *inode)
4692 {
4693         int bpp = ext4_journal_blocks_per_page(inode);
4694         int ret;
4695
4696         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4697
4698         /* Account for data blocks for journalled mode */
4699         if (ext4_should_journal_data(inode))
4700                 ret += bpp;
4701         return ret;
4702 }
4703
4704 /*
4705  * Calculate the journal credits for a chunk of data modification.
4706  *
4707  * This is called from DIO, fallocate or whoever calling
4708  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4709  *
4710  * journal buffers for data blocks are not included here, as DIO
4711  * and fallocate do no need to journal data buffers.
4712  */
4713 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4714 {
4715         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4716 }
4717
4718 /*
4719  * The caller must have previously called ext4_reserve_inode_write().
4720  * Give this, we know that the caller already has write access to iloc->bh.
4721  */
4722 int ext4_mark_iloc_dirty(handle_t *handle,
4723                 struct inode *inode, struct ext4_iloc *iloc)
4724 {
4725         int err = 0;
4726
4727         if (test_opt(inode->i_sb, I_VERSION))
4728                 inode_inc_iversion(inode);
4729
4730         /* the do_update_inode consumes one bh->b_count */
4731         get_bh(iloc->bh);
4732
4733         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4734         err = ext4_do_update_inode(handle, inode, iloc);
4735         put_bh(iloc->bh);
4736         return err;
4737 }
4738
4739 /*
4740  * On success, We end up with an outstanding reference count against
4741  * iloc->bh.  This _must_ be cleaned up later.
4742  */
4743
4744 int
4745 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4746                          struct ext4_iloc *iloc)
4747 {
4748         int err = 0;
4749         if (handle) {
4750                 err = ext4_get_inode_loc(inode, iloc);
4751                 if (!err) {
4752                         BUFFER_TRACE(iloc->bh, "get_write_access");
4753                         err = ext4_journal_get_write_access(handle, iloc->bh);
4754                         if (err) {
4755                                 brelse(iloc->bh);
4756                                 iloc->bh = NULL;
4757                         }
4758                 }
4759         }
4760         ext4_std_error(inode->i_sb, err);
4761         return err;
4762 }
4763
4764 /*
4765  * Expand an inode by new_extra_isize bytes.
4766  * Returns 0 on success or negative error number on failure.
4767  */
4768 static int ext4_expand_extra_isize(struct inode *inode,
4769                                    unsigned int new_extra_isize,
4770                                    struct ext4_iloc iloc,
4771                                    handle_t *handle)
4772 {
4773         struct ext4_inode *raw_inode;
4774         struct ext4_xattr_ibody_header *header;
4775         struct ext4_xattr_entry *entry;
4776
4777         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4778                 return 0;
4779
4780         raw_inode = ext4_raw_inode(&iloc);
4781
4782         header = IHDR(inode, raw_inode);
4783         entry = IFIRST(header);
4784
4785         /* No extended attributes present */
4786         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4787                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4788                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4789                         new_extra_isize);
4790                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4791                 return 0;
4792         }
4793
4794         /* try to expand with EAs present */
4795         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4796                                           raw_inode, handle);
4797 }
4798
4799 /*
4800  * What we do here is to mark the in-core inode as clean with respect to inode
4801  * dirtiness (it may still be data-dirty).
4802  * This means that the in-core inode may be reaped by prune_icache
4803  * without having to perform any I/O.  This is a very good thing,
4804  * because *any* task may call prune_icache - even ones which
4805  * have a transaction open against a different journal.
4806  *
4807  * Is this cheating?  Not really.  Sure, we haven't written the
4808  * inode out, but prune_icache isn't a user-visible syncing function.
4809  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4810  * we start and wait on commits.
4811  *
4812  * Is this efficient/effective?  Well, we're being nice to the system
4813  * by cleaning up our inodes proactively so they can be reaped
4814  * without I/O.  But we are potentially leaving up to five seconds'
4815  * worth of inodes floating about which prune_icache wants us to
4816  * write out.  One way to fix that would be to get prune_icache()
4817  * to do a write_super() to free up some memory.  It has the desired
4818  * effect.
4819  */
4820 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4821 {
4822         struct ext4_iloc iloc;
4823         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4824         static unsigned int mnt_count;
4825         int err, ret;
4826
4827         might_sleep();
4828         err = ext4_reserve_inode_write(handle, inode, &iloc);
4829         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4830             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4831                 /*
4832                  * We need extra buffer credits since we may write into EA block
4833                  * with this same handle. If journal_extend fails, then it will
4834                  * only result in a minor loss of functionality for that inode.
4835                  * If this is felt to be critical, then e2fsck should be run to
4836                  * force a large enough s_min_extra_isize.
4837                  */
4838                 if ((jbd2_journal_extend(handle,
4839                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4840                         ret = ext4_expand_extra_isize(inode,
4841                                                       sbi->s_want_extra_isize,
4842                                                       iloc, handle);
4843                         if (ret) {
4844                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4845                                 if (mnt_count !=
4846                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4847                                         ext4_warning(inode->i_sb, __func__,
4848                                         "Unable to expand inode %lu. Delete"
4849                                         " some EAs or run e2fsck.",
4850                                         inode->i_ino);
4851                                         mnt_count =
4852                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4853                                 }
4854                         }
4855                 }
4856         }
4857         if (!err)
4858                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4859         return err;
4860 }
4861
4862 /*
4863  * ext4_dirty_inode() is called from __mark_inode_dirty()
4864  *
4865  * We're really interested in the case where a file is being extended.
4866  * i_size has been changed by generic_commit_write() and we thus need
4867  * to include the updated inode in the current transaction.
4868  *
4869  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4870  * are allocated to the file.
4871  *
4872  * If the inode is marked synchronous, we don't honour that here - doing
4873  * so would cause a commit on atime updates, which we don't bother doing.
4874  * We handle synchronous inodes at the highest possible level.
4875  */
4876 void ext4_dirty_inode(struct inode *inode)
4877 {
4878         handle_t *current_handle = ext4_journal_current_handle();
4879         handle_t *handle;
4880
4881         handle = ext4_journal_start(inode, 2);
4882         if (IS_ERR(handle))
4883                 goto out;
4884         if (current_handle &&
4885                 current_handle->h_transaction != handle->h_transaction) {
4886                 /* This task has a transaction open against a different fs */
4887                 printk(KERN_EMERG "%s: transactions do not match!\n",
4888                        __func__);
4889         } else {
4890                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4891                                 current_handle);
4892                 ext4_mark_inode_dirty(handle, inode);
4893         }
4894         ext4_journal_stop(handle);
4895 out:
4896         return;
4897 }
4898
4899 #if 0
4900 /*
4901  * Bind an inode's backing buffer_head into this transaction, to prevent
4902  * it from being flushed to disk early.  Unlike
4903  * ext4_reserve_inode_write, this leaves behind no bh reference and
4904  * returns no iloc structure, so the caller needs to repeat the iloc
4905  * lookup to mark the inode dirty later.
4906  */
4907 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4908 {
4909         struct ext4_iloc iloc;
4910
4911         int err = 0;
4912         if (handle) {
4913                 err = ext4_get_inode_loc(inode, &iloc);
4914                 if (!err) {
4915                         BUFFER_TRACE(iloc.bh, "get_write_access");
4916                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4917                         if (!err)
4918                                 err = ext4_journal_dirty_metadata(handle,
4919                                                                   iloc.bh);
4920                         brelse(iloc.bh);
4921                 }
4922         }
4923         ext4_std_error(inode->i_sb, err);
4924         return err;
4925 }
4926 #endif
4927
4928 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4929 {
4930         journal_t *journal;
4931         handle_t *handle;
4932         int err;
4933
4934         /*
4935          * We have to be very careful here: changing a data block's
4936          * journaling status dynamically is dangerous.  If we write a
4937          * data block to the journal, change the status and then delete
4938          * that block, we risk forgetting to revoke the old log record
4939          * from the journal and so a subsequent replay can corrupt data.
4940          * So, first we make sure that the journal is empty and that
4941          * nobody is changing anything.
4942          */
4943
4944         journal = EXT4_JOURNAL(inode);
4945         if (is_journal_aborted(journal))
4946                 return -EROFS;
4947
4948         jbd2_journal_lock_updates(journal);
4949         jbd2_journal_flush(journal);
4950
4951         /*
4952          * OK, there are no updates running now, and all cached data is
4953          * synced to disk.  We are now in a completely consistent state
4954          * which doesn't have anything in the journal, and we know that
4955          * no filesystem updates are running, so it is safe to modify
4956          * the inode's in-core data-journaling state flag now.
4957          */
4958
4959         if (val)
4960                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4961         else
4962                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4963         ext4_set_aops(inode);
4964
4965         jbd2_journal_unlock_updates(journal);
4966
4967         /* Finally we can mark the inode as dirty. */
4968
4969         handle = ext4_journal_start(inode, 1);
4970         if (IS_ERR(handle))
4971                 return PTR_ERR(handle);
4972
4973         err = ext4_mark_inode_dirty(handle, inode);
4974         handle->h_sync = 1;
4975         ext4_journal_stop(handle);
4976         ext4_std_error(inode->i_sb, err);
4977
4978         return err;
4979 }
4980
4981 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4982 {
4983         return !buffer_mapped(bh);
4984 }
4985
4986 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4987 {
4988         loff_t size;
4989         unsigned long len;
4990         int ret = -EINVAL;
4991         void *fsdata;
4992         struct file *file = vma->vm_file;
4993         struct inode *inode = file->f_path.dentry->d_inode;
4994         struct address_space *mapping = inode->i_mapping;
4995
4996         /*
4997          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4998          * get i_mutex because we are already holding mmap_sem.
4999          */
5000         down_read(&inode->i_alloc_sem);
5001         size = i_size_read(inode);
5002         if (page->mapping != mapping || size <= page_offset(page)
5003             || !PageUptodate(page)) {
5004                 /* page got truncated from under us? */
5005                 goto out_unlock;
5006         }
5007         ret = 0;
5008         if (PageMappedToDisk(page))
5009                 goto out_unlock;
5010
5011         if (page->index == size >> PAGE_CACHE_SHIFT)
5012                 len = size & ~PAGE_CACHE_MASK;
5013         else
5014                 len = PAGE_CACHE_SIZE;
5015
5016         if (page_has_buffers(page)) {
5017                 /* return if we have all the buffers mapped */
5018                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5019                                        ext4_bh_unmapped))
5020                         goto out_unlock;
5021         }
5022         /*
5023          * OK, we need to fill the hole... Do write_begin write_end
5024          * to do block allocation/reservation.We are not holding
5025          * inode.i__mutex here. That allow * parallel write_begin,
5026          * write_end call. lock_page prevent this from happening
5027          * on the same page though
5028          */
5029         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5030                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5031         if (ret < 0)
5032                 goto out_unlock;
5033         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5034                         len, len, page, fsdata);
5035         if (ret < 0)
5036                 goto out_unlock;
5037         ret = 0;
5038 out_unlock:
5039         up_read(&inode->i_alloc_sem);
5040         return ret;
5041 }