]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks) {
265                 err = ext4_truncate(inode);
266                 if (err) {
267                         ext4_error(inode->i_sb,
268                                    "couldn't truncate inode %lu (err %d)",
269                                    inode->i_ino, err);
270                         goto stop_handle;
271                 }
272         }
273
274         /*
275          * ext4_ext_truncate() doesn't reserve any slop when it
276          * restarts journal transactions; therefore there may not be
277          * enough credits left in the handle to remove the inode from
278          * the orphan list and set the dtime field.
279          */
280         if (!ext4_handle_has_enough_credits(handle, 3)) {
281                 err = ext4_journal_extend(handle, 3);
282                 if (err > 0)
283                         err = ext4_journal_restart(handle, 3);
284                 if (err != 0) {
285                         ext4_warning(inode->i_sb,
286                                      "couldn't extend journal (err %d)", err);
287                 stop_handle:
288                         ext4_journal_stop(handle);
289                         ext4_orphan_del(NULL, inode);
290                         sb_end_intwrite(inode->i_sb);
291                         goto no_delete;
292                 }
293         }
294
295         /*
296          * Kill off the orphan record which ext4_truncate created.
297          * AKPM: I think this can be inside the above `if'.
298          * Note that ext4_orphan_del() has to be able to cope with the
299          * deletion of a non-existent orphan - this is because we don't
300          * know if ext4_truncate() actually created an orphan record.
301          * (Well, we could do this if we need to, but heck - it works)
302          */
303         ext4_orphan_del(handle, inode);
304         EXT4_I(inode)->i_dtime  = get_seconds();
305
306         /*
307          * One subtle ordering requirement: if anything has gone wrong
308          * (transaction abort, IO errors, whatever), then we can still
309          * do these next steps (the fs will already have been marked as
310          * having errors), but we can't free the inode if the mark_dirty
311          * fails.
312          */
313         if (ext4_mark_inode_dirty(handle, inode))
314                 /* If that failed, just do the required in-core inode clear. */
315                 ext4_clear_inode(inode);
316         else
317                 ext4_free_inode(handle, inode);
318         ext4_journal_stop(handle);
319         sb_end_intwrite(inode->i_sb);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             (atomic_read(&inode->i_writecount) == 0))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386                                    map->m_len)) {
387                 ext4_error_inode(inode, func, line, map->m_pblk,
388                                  "lblock %lu mapped to illegal pblock "
389                                  "(length %d)", (unsigned long) map->m_lblk,
390                                  map->m_len);
391                 return -EFSCORRUPTED;
392         }
393         return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397                        ext4_lblk_t len)
398 {
399         int ret;
400
401         if (ext4_encrypted_inode(inode))
402                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405         if (ret > 0)
406                 ret = 0;
407
408         return ret;
409 }
410
411 #define check_block_validity(inode, map)        \
412         __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416                                        struct inode *inode,
417                                        struct ext4_map_blocks *es_map,
418                                        struct ext4_map_blocks *map,
419                                        int flags)
420 {
421         int retval;
422
423         map->m_flags = 0;
424         /*
425          * There is a race window that the result is not the same.
426          * e.g. xfstests #223 when dioread_nolock enables.  The reason
427          * is that we lookup a block mapping in extent status tree with
428          * out taking i_data_sem.  So at the time the unwritten extent
429          * could be converted.
430          */
431         down_read(&EXT4_I(inode)->i_data_sem);
432         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434                                              EXT4_GET_BLOCKS_KEEP_SIZE);
435         } else {
436                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         /*
442          * We don't check m_len because extent will be collpased in status
443          * tree.  So the m_len might not equal.
444          */
445         if (es_map->m_lblk != map->m_lblk ||
446             es_map->m_flags != map->m_flags ||
447             es_map->m_pblk != map->m_pblk) {
448                 printk("ES cache assertion failed for inode: %lu "
449                        "es_cached ex [%d/%d/%llu/%x] != "
450                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451                        inode->i_ino, es_map->m_lblk, es_map->m_len,
452                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
453                        map->m_len, map->m_pblk, map->m_flags,
454                        retval, flags);
455         }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482                     struct ext4_map_blocks *map, int flags)
483 {
484         struct extent_status es;
485         int retval;
486         int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488         struct ext4_map_blocks orig_map;
489
490         memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493         map->m_flags = 0;
494         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
496                   (unsigned long) map->m_lblk);
497
498         /*
499          * ext4_map_blocks returns an int, and m_len is an unsigned int
500          */
501         if (unlikely(map->m_len > INT_MAX))
502                 map->m_len = INT_MAX;
503
504         /* We can handle the block number less than EXT_MAX_BLOCKS */
505         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506                 return -EFSCORRUPTED;
507
508         /* Lookup extent status tree firstly */
509         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511                         map->m_pblk = ext4_es_pblock(&es) +
512                                         map->m_lblk - es.es_lblk;
513                         map->m_flags |= ext4_es_is_written(&es) ?
514                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515                         retval = es.es_len - (map->m_lblk - es.es_lblk);
516                         if (retval > map->m_len)
517                                 retval = map->m_len;
518                         map->m_len = retval;
519                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520                         map->m_pblk = 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG_ON(1);
528                 }
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535
536         /*
537          * Try to see if we can get the block without requesting a new
538          * file system block.
539          */
540         down_read(&EXT4_I(inode)->i_data_sem);
541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543                                              EXT4_GET_BLOCKS_KEEP_SIZE);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         }
548         if (retval > 0) {
549                 unsigned int status;
550
551                 if (unlikely(retval != map->m_len)) {
552                         ext4_warning(inode->i_sb,
553                                      "ES len assertion failed for inode "
554                                      "%lu: retval %d != map->m_len %d",
555                                      inode->i_ino, retval, map->m_len);
556                         WARN_ON(1);
557                 }
558
559                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562                     !(status & EXTENT_STATUS_WRITTEN) &&
563                     ext4_find_delalloc_range(inode, map->m_lblk,
564                                              map->m_lblk + map->m_len - 1))
565                         status |= EXTENT_STATUS_DELAYED;
566                 ret = ext4_es_insert_extent(inode, map->m_lblk,
567                                             map->m_len, map->m_pblk, status);
568                 if (ret < 0)
569                         retval = ret;
570         }
571         up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579
580         /* If it is only a block(s) look up */
581         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582                 return retval;
583
584         /*
585          * Returns if the blocks have already allocated
586          *
587          * Note that if blocks have been preallocated
588          * ext4_ext_get_block() returns the create = 0
589          * with buffer head unmapped.
590          */
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592                 /*
593                  * If we need to convert extent to unwritten
594                  * we continue and do the actual work in
595                  * ext4_ext_map_blocks()
596                  */
597                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598                         return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to unwritten extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_block()
610          * with create == 1 flag.
611          */
612         down_write(&EXT4_I(inode)->i_data_sem);
613
614         /*
615          * We need to check for EXT4 here because migrate
616          * could have changed the inode type in between
617          */
618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620         } else {
621                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624                         /*
625                          * We allocated new blocks which will result in
626                          * i_data's format changing.  Force the migrate
627                          * to fail by clearing migrate flags
628                          */
629                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630                 }
631
632                 /*
633                  * Update reserved blocks/metadata blocks after successful
634                  * block allocation which had been deferred till now. We don't
635                  * support fallocate for non extent files. So we can update
636                  * reserve space here.
637                  */
638                 if ((retval > 0) &&
639                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640                         ext4_da_update_reserve_space(inode, retval, 1);
641         }
642
643         if (retval > 0) {
644                 unsigned int status;
645
646                 if (unlikely(retval != map->m_len)) {
647                         ext4_warning(inode->i_sb,
648                                      "ES len assertion failed for inode "
649                                      "%lu: retval %d != map->m_len %d",
650                                      inode->i_ino, retval, map->m_len);
651                         WARN_ON(1);
652                 }
653
654                 /*
655                  * We have to zeroout blocks before inserting them into extent
656                  * status tree. Otherwise someone could look them up there and
657                  * use them before they are really zeroed. We also have to
658                  * unmap metadata before zeroing as otherwise writeback can
659                  * overwrite zeros with stale data from block device.
660                  */
661                 if (flags & EXT4_GET_BLOCKS_ZERO &&
662                     map->m_flags & EXT4_MAP_MAPPED &&
663                     map->m_flags & EXT4_MAP_NEW) {
664                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665                                            map->m_len);
666                         ret = ext4_issue_zeroout(inode, map->m_lblk,
667                                                  map->m_pblk, map->m_len);
668                         if (ret) {
669                                 retval = ret;
670                                 goto out_sem;
671                         }
672                 }
673
674                 /*
675                  * If the extent has been zeroed out, we don't need to update
676                  * extent status tree.
677                  */
678                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680                         if (ext4_es_is_written(&es))
681                                 goto out_sem;
682                 }
683                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686                     !(status & EXTENT_STATUS_WRITTEN) &&
687                     ext4_find_delalloc_range(inode, map->m_lblk,
688                                              map->m_lblk + map->m_len - 1))
689                         status |= EXTENT_STATUS_DELAYED;
690                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691                                             map->m_pblk, status);
692                 if (ret < 0) {
693                         retval = ret;
694                         goto out_sem;
695                 }
696         }
697
698 out_sem:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704
705                 /*
706                  * Inodes with freshly allocated blocks where contents will be
707                  * visible after transaction commit must be on transaction's
708                  * ordered data list.
709                  */
710                 if (map->m_flags & EXT4_MAP_NEW &&
711                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
713                     !IS_NOQUOTA(inode) &&
714                     ext4_should_order_data(inode)) {
715                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
717                         else
718                                 ret = ext4_jbd2_inode_add_write(handle, inode);
719                         if (ret)
720                                 return ret;
721                 }
722         }
723         return retval;
724 }
725
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732         unsigned long old_state;
733         unsigned long new_state;
734
735         flags &= EXT4_MAP_FLAGS;
736
737         /* Dummy buffer_head? Set non-atomically. */
738         if (!bh->b_page) {
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740                 return;
741         }
742         /*
743          * Someone else may be modifying b_state. Be careful! This is ugly but
744          * once we get rid of using bh as a container for mapping information
745          * to pass to / from get_block functions, this can go away.
746          */
747         do {
748                 old_state = READ_ONCE(bh->b_state);
749                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750         } while (unlikely(
751                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755                            struct buffer_head *bh, int flags)
756 {
757         struct ext4_map_blocks map;
758         int ret = 0;
759
760         if (ext4_has_inline_data(inode))
761                 return -ERANGE;
762
763         map.m_lblk = iblock;
764         map.m_len = bh->b_size >> inode->i_blkbits;
765
766         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767                               flags);
768         if (ret > 0) {
769                 map_bh(bh, inode->i_sb, map.m_pblk);
770                 ext4_update_bh_state(bh, map.m_flags);
771                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772                 ret = 0;
773         } else if (ret == 0) {
774                 /* hole case, need to fill in bh->b_size */
775                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776         }
777         return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781                    struct buffer_head *bh, int create)
782 {
783         return _ext4_get_block(inode, iblock, bh,
784                                create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793                              struct buffer_head *bh_result, int create)
794 {
795         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796                    inode->i_ino, create);
797         return _ext4_get_block(inode, iblock, bh_result,
798                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810                                 struct buffer_head *bh_result, int flags)
811 {
812         int dio_credits;
813         handle_t *handle;
814         int retries = 0;
815         int ret;
816
817         /* Trim mapping request to maximum we can map at once for DIO */
818         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820         dio_credits = ext4_chunk_trans_blocks(inode,
821                                       bh_result->b_size >> inode->i_blkbits);
822 retry:
823         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824         if (IS_ERR(handle))
825                 return PTR_ERR(handle);
826
827         ret = _ext4_get_block(inode, iblock, bh_result, flags);
828         ext4_journal_stop(handle);
829
830         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831                 goto retry;
832         return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837                        struct buffer_head *bh, int create)
838 {
839         /* We don't expect handle for direct IO */
840         WARN_ON_ONCE(ext4_journal_current_handle());
841
842         if (!create)
843                 return _ext4_get_block(inode, iblock, bh, 0);
844         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853                 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855         int ret;
856
857         /* We don't expect handle for direct IO */
858         WARN_ON_ONCE(ext4_journal_current_handle());
859
860         ret = ext4_get_block_trans(inode, iblock, bh_result,
861                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863         /*
864          * When doing DIO using unwritten extents, we need io_end to convert
865          * unwritten extents to written on IO completion. We allocate io_end
866          * once we spot unwritten extent and store it in b_private. Generic
867          * DIO code keeps b_private set and furthermore passes the value to
868          * our completion callback in 'private' argument.
869          */
870         if (!ret && buffer_unwritten(bh_result)) {
871                 if (!bh_result->b_private) {
872                         ext4_io_end_t *io_end;
873
874                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
875                         if (!io_end)
876                                 return -ENOMEM;
877                         bh_result->b_private = io_end;
878                         ext4_set_io_unwritten_flag(inode, io_end);
879                 }
880                 set_buffer_defer_completion(bh_result);
881         }
882
883         return ret;
884 }
885
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892                 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894         int ret;
895
896         /* We don't expect handle for direct IO */
897         WARN_ON_ONCE(ext4_journal_current_handle());
898
899         ret = ext4_get_block_trans(inode, iblock, bh_result,
900                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902         /*
903          * Mark inode as having pending DIO writes to unwritten extents.
904          * ext4_ext_direct_IO() checks this flag and converts extents to
905          * written.
906          */
907         if (!ret && buffer_unwritten(bh_result))
908                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910         return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914                    struct buffer_head *bh_result, int create)
915 {
916         int ret;
917
918         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919                    inode->i_ino, create);
920         /* We don't expect handle for direct IO */
921         WARN_ON_ONCE(ext4_journal_current_handle());
922
923         ret = _ext4_get_block(inode, iblock, bh_result, 0);
924         /*
925          * Blocks should have been preallocated! ext4_file_write_iter() checks
926          * that.
927          */
928         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930         return ret;
931 }
932
933
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938                                 ext4_lblk_t block, int map_flags)
939 {
940         struct ext4_map_blocks map;
941         struct buffer_head *bh;
942         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943         int err;
944
945         J_ASSERT(handle != NULL || create == 0);
946
947         map.m_lblk = block;
948         map.m_len = 1;
949         err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951         if (err == 0)
952                 return create ? ERR_PTR(-ENOSPC) : NULL;
953         if (err < 0)
954                 return ERR_PTR(err);
955
956         bh = sb_getblk(inode->i_sb, map.m_pblk);
957         if (unlikely(!bh))
958                 return ERR_PTR(-ENOMEM);
959         if (map.m_flags & EXT4_MAP_NEW) {
960                 J_ASSERT(create != 0);
961                 J_ASSERT(handle != NULL);
962
963                 /*
964                  * Now that we do not always journal data, we should
965                  * keep in mind whether this should always journal the
966                  * new buffer as metadata.  For now, regular file
967                  * writes use ext4_get_block instead, so it's not a
968                  * problem.
969                  */
970                 lock_buffer(bh);
971                 BUFFER_TRACE(bh, "call get_create_access");
972                 err = ext4_journal_get_create_access(handle, bh);
973                 if (unlikely(err)) {
974                         unlock_buffer(bh);
975                         goto errout;
976                 }
977                 if (!buffer_uptodate(bh)) {
978                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979                         set_buffer_uptodate(bh);
980                 }
981                 unlock_buffer(bh);
982                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983                 err = ext4_handle_dirty_metadata(handle, inode, bh);
984                 if (unlikely(err))
985                         goto errout;
986         } else
987                 BUFFER_TRACE(bh, "not a new buffer");
988         return bh;
989 errout:
990         brelse(bh);
991         return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995                                ext4_lblk_t block, int map_flags)
996 {
997         struct buffer_head *bh;
998
999         bh = ext4_getblk(handle, inode, block, map_flags);
1000         if (IS_ERR(bh))
1001                 return bh;
1002         if (!bh || buffer_uptodate(bh))
1003                 return bh;
1004         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005         wait_on_buffer(bh);
1006         if (buffer_uptodate(bh))
1007                 return bh;
1008         put_bh(bh);
1009         return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013                            struct buffer_head *head,
1014                            unsigned from,
1015                            unsigned to,
1016                            int *partial,
1017                            int (*fn)(handle_t *handle,
1018                                      struct buffer_head *bh))
1019 {
1020         struct buffer_head *bh;
1021         unsigned block_start, block_end;
1022         unsigned blocksize = head->b_size;
1023         int err, ret = 0;
1024         struct buffer_head *next;
1025
1026         for (bh = head, block_start = 0;
1027              ret == 0 && (bh != head || !block_start);
1028              block_start = block_end, bh = next) {
1029                 next = bh->b_this_page;
1030                 block_end = block_start + blocksize;
1031                 if (block_end <= from || block_start >= to) {
1032                         if (partial && !buffer_uptodate(bh))
1033                                 *partial = 1;
1034                         continue;
1035                 }
1036                 err = (*fn)(handle, bh);
1037                 if (!ret)
1038                         ret = err;
1039         }
1040         return ret;
1041 }
1042
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068                                 struct buffer_head *bh)
1069 {
1070         int dirty = buffer_dirty(bh);
1071         int ret;
1072
1073         if (!buffer_mapped(bh) || buffer_freed(bh))
1074                 return 0;
1075         /*
1076          * __block_write_begin() could have dirtied some buffers. Clean
1077          * the dirty bit as jbd2_journal_get_write_access() could complain
1078          * otherwise about fs integrity issues. Setting of the dirty bit
1079          * by __block_write_begin() isn't a real problem here as we clear
1080          * the bit before releasing a page lock and thus writeback cannot
1081          * ever write the buffer.
1082          */
1083         if (dirty)
1084                 clear_buffer_dirty(bh);
1085         BUFFER_TRACE(bh, "get write access");
1086         ret = ext4_journal_get_write_access(handle, bh);
1087         if (!ret && dirty)
1088                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094                                   get_block_t *get_block)
1095 {
1096         unsigned from = pos & (PAGE_SIZE - 1);
1097         unsigned to = from + len;
1098         struct inode *inode = page->mapping->host;
1099         unsigned block_start, block_end;
1100         sector_t block;
1101         int err = 0;
1102         unsigned blocksize = inode->i_sb->s_blocksize;
1103         unsigned bbits;
1104         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105         bool decrypt = false;
1106
1107         BUG_ON(!PageLocked(page));
1108         BUG_ON(from > PAGE_SIZE);
1109         BUG_ON(to > PAGE_SIZE);
1110         BUG_ON(from > to);
1111
1112         if (!page_has_buffers(page))
1113                 create_empty_buffers(page, blocksize, 0);
1114         head = page_buffers(page);
1115         bbits = ilog2(blocksize);
1116         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118         for (bh = head, block_start = 0; bh != head || !block_start;
1119             block++, block_start = block_end, bh = bh->b_this_page) {
1120                 block_end = block_start + blocksize;
1121                 if (block_end <= from || block_start >= to) {
1122                         if (PageUptodate(page)) {
1123                                 if (!buffer_uptodate(bh))
1124                                         set_buffer_uptodate(bh);
1125                         }
1126                         continue;
1127                 }
1128                 if (buffer_new(bh))
1129                         clear_buffer_new(bh);
1130                 if (!buffer_mapped(bh)) {
1131                         WARN_ON(bh->b_size != blocksize);
1132                         err = get_block(inode, block, bh, 1);
1133                         if (err)
1134                                 break;
1135                         if (buffer_new(bh)) {
1136                                 clean_bdev_bh_alias(bh);
1137                                 if (PageUptodate(page)) {
1138                                         clear_buffer_new(bh);
1139                                         set_buffer_uptodate(bh);
1140                                         mark_buffer_dirty(bh);
1141                                         continue;
1142                                 }
1143                                 if (block_end > to || block_start < from)
1144                                         zero_user_segments(page, to, block_end,
1145                                                            block_start, from);
1146                                 continue;
1147                         }
1148                 }
1149                 if (PageUptodate(page)) {
1150                         if (!buffer_uptodate(bh))
1151                                 set_buffer_uptodate(bh);
1152                         continue;
1153                 }
1154                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155                     !buffer_unwritten(bh) &&
1156                     (block_start < from || block_end > to)) {
1157                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158                         *wait_bh++ = bh;
1159                         decrypt = ext4_encrypted_inode(inode) &&
1160                                 S_ISREG(inode->i_mode);
1161                 }
1162         }
1163         /*
1164          * If we issued read requests, let them complete.
1165          */
1166         while (wait_bh > wait) {
1167                 wait_on_buffer(*--wait_bh);
1168                 if (!buffer_uptodate(*wait_bh))
1169                         err = -EIO;
1170         }
1171         if (unlikely(err))
1172                 page_zero_new_buffers(page, from, to);
1173         else if (decrypt)
1174                 err = fscrypt_decrypt_page(page->mapping->host, page,
1175                                 PAGE_SIZE, 0, page->index);
1176         return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181                             loff_t pos, unsigned len, unsigned flags,
1182                             struct page **pagep, void **fsdata)
1183 {
1184         struct inode *inode = mapping->host;
1185         int ret, needed_blocks;
1186         handle_t *handle;
1187         int retries = 0;
1188         struct page *page;
1189         pgoff_t index;
1190         unsigned from, to;
1191
1192         trace_ext4_write_begin(inode, pos, len, flags);
1193         /*
1194          * Reserve one block more for addition to orphan list in case
1195          * we allocate blocks but write fails for some reason
1196          */
1197         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198         index = pos >> PAGE_SHIFT;
1199         from = pos & (PAGE_SIZE - 1);
1200         to = from + len;
1201
1202         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204                                                     flags, pagep);
1205                 if (ret < 0)
1206                         return ret;
1207                 if (ret == 1)
1208                         return 0;
1209         }
1210
1211         /*
1212          * grab_cache_page_write_begin() can take a long time if the
1213          * system is thrashing due to memory pressure, or if the page
1214          * is being written back.  So grab it first before we start
1215          * the transaction handle.  This also allows us to allocate
1216          * the page (if needed) without using GFP_NOFS.
1217          */
1218 retry_grab:
1219         page = grab_cache_page_write_begin(mapping, index, flags);
1220         if (!page)
1221                 return -ENOMEM;
1222         unlock_page(page);
1223
1224 retry_journal:
1225         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226         if (IS_ERR(handle)) {
1227                 put_page(page);
1228                 return PTR_ERR(handle);
1229         }
1230
1231         lock_page(page);
1232         if (page->mapping != mapping) {
1233                 /* The page got truncated from under us */
1234                 unlock_page(page);
1235                 put_page(page);
1236                 ext4_journal_stop(handle);
1237                 goto retry_grab;
1238         }
1239         /* In case writeback began while the page was unlocked */
1240         wait_for_stable_page(page);
1241
1242 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1243         if (ext4_should_dioread_nolock(inode))
1244                 ret = ext4_block_write_begin(page, pos, len,
1245                                              ext4_get_block_unwritten);
1246         else
1247                 ret = ext4_block_write_begin(page, pos, len,
1248                                              ext4_get_block);
1249 #else
1250         if (ext4_should_dioread_nolock(inode))
1251                 ret = __block_write_begin(page, pos, len,
1252                                           ext4_get_block_unwritten);
1253         else
1254                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1255 #endif
1256         if (!ret && ext4_should_journal_data(inode)) {
1257                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258                                              from, to, NULL,
1259                                              do_journal_get_write_access);
1260         }
1261
1262         if (ret) {
1263                 unlock_page(page);
1264                 /*
1265                  * __block_write_begin may have instantiated a few blocks
1266                  * outside i_size.  Trim these off again. Don't need
1267                  * i_size_read because we hold i_mutex.
1268                  *
1269                  * Add inode to orphan list in case we crash before
1270                  * truncate finishes
1271                  */
1272                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273                         ext4_orphan_add(handle, inode);
1274
1275                 ext4_journal_stop(handle);
1276                 if (pos + len > inode->i_size) {
1277                         ext4_truncate_failed_write(inode);
1278                         /*
1279                          * If truncate failed early the inode might
1280                          * still be on the orphan list; we need to
1281                          * make sure the inode is removed from the
1282                          * orphan list in that case.
1283                          */
1284                         if (inode->i_nlink)
1285                                 ext4_orphan_del(NULL, inode);
1286                 }
1287
1288                 if (ret == -ENOSPC &&
1289                     ext4_should_retry_alloc(inode->i_sb, &retries))
1290                         goto retry_journal;
1291                 put_page(page);
1292                 return ret;
1293         }
1294         *pagep = page;
1295         return ret;
1296 }
1297
1298 /* For write_end() in data=journal mode */
1299 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300 {
1301         int ret;
1302         if (!buffer_mapped(bh) || buffer_freed(bh))
1303                 return 0;
1304         set_buffer_uptodate(bh);
1305         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306         clear_buffer_meta(bh);
1307         clear_buffer_prio(bh);
1308         return ret;
1309 }
1310
1311 /*
1312  * We need to pick up the new inode size which generic_commit_write gave us
1313  * `file' can be NULL - eg, when called from page_symlink().
1314  *
1315  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316  * buffers are managed internally.
1317  */
1318 static int ext4_write_end(struct file *file,
1319                           struct address_space *mapping,
1320                           loff_t pos, unsigned len, unsigned copied,
1321                           struct page *page, void *fsdata)
1322 {
1323         handle_t *handle = ext4_journal_current_handle();
1324         struct inode *inode = mapping->host;
1325         loff_t old_size = inode->i_size;
1326         int ret = 0, ret2;
1327         int i_size_changed = 0;
1328
1329         trace_ext4_write_end(inode, pos, len, copied);
1330         if (ext4_has_inline_data(inode)) {
1331                 ret = ext4_write_inline_data_end(inode, pos, len,
1332                                                  copied, page);
1333                 if (ret < 0)
1334                         goto errout;
1335                 copied = ret;
1336         } else
1337                 copied = block_write_end(file, mapping, pos,
1338                                          len, copied, page, fsdata);
1339         /*
1340          * it's important to update i_size while still holding page lock:
1341          * page writeout could otherwise come in and zero beyond i_size.
1342          */
1343         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344         unlock_page(page);
1345         put_page(page);
1346
1347         if (old_size < pos)
1348                 pagecache_isize_extended(inode, old_size, pos);
1349         /*
1350          * Don't mark the inode dirty under page lock. First, it unnecessarily
1351          * makes the holding time of page lock longer. Second, it forces lock
1352          * ordering of page lock and transaction start for journaling
1353          * filesystems.
1354          */
1355         if (i_size_changed)
1356                 ext4_mark_inode_dirty(handle, inode);
1357
1358         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359                 /* if we have allocated more blocks and copied
1360                  * less. We will have blocks allocated outside
1361                  * inode->i_size. So truncate them
1362                  */
1363                 ext4_orphan_add(handle, inode);
1364 errout:
1365         ret2 = ext4_journal_stop(handle);
1366         if (!ret)
1367                 ret = ret2;
1368
1369         if (pos + len > inode->i_size) {
1370                 ext4_truncate_failed_write(inode);
1371                 /*
1372                  * If truncate failed early the inode might still be
1373                  * on the orphan list; we need to make sure the inode
1374                  * is removed from the orphan list in that case.
1375                  */
1376                 if (inode->i_nlink)
1377                         ext4_orphan_del(NULL, inode);
1378         }
1379
1380         return ret ? ret : copied;
1381 }
1382
1383 /*
1384  * This is a private version of page_zero_new_buffers() which doesn't
1385  * set the buffer to be dirty, since in data=journalled mode we need
1386  * to call ext4_handle_dirty_metadata() instead.
1387  */
1388 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1389 {
1390         unsigned int block_start = 0, block_end;
1391         struct buffer_head *head, *bh;
1392
1393         bh = head = page_buffers(page);
1394         do {
1395                 block_end = block_start + bh->b_size;
1396                 if (buffer_new(bh)) {
1397                         if (block_end > from && block_start < to) {
1398                                 if (!PageUptodate(page)) {
1399                                         unsigned start, size;
1400
1401                                         start = max(from, block_start);
1402                                         size = min(to, block_end) - start;
1403
1404                                         zero_user(page, start, size);
1405                                         set_buffer_uptodate(bh);
1406                                 }
1407                                 clear_buffer_new(bh);
1408                         }
1409                 }
1410                 block_start = block_end;
1411                 bh = bh->b_this_page;
1412         } while (bh != head);
1413 }
1414
1415 static int ext4_journalled_write_end(struct file *file,
1416                                      struct address_space *mapping,
1417                                      loff_t pos, unsigned len, unsigned copied,
1418                                      struct page *page, void *fsdata)
1419 {
1420         handle_t *handle = ext4_journal_current_handle();
1421         struct inode *inode = mapping->host;
1422         loff_t old_size = inode->i_size;
1423         int ret = 0, ret2;
1424         int partial = 0;
1425         unsigned from, to;
1426         int size_changed = 0;
1427
1428         trace_ext4_journalled_write_end(inode, pos, len, copied);
1429         from = pos & (PAGE_SIZE - 1);
1430         to = from + len;
1431
1432         BUG_ON(!ext4_handle_valid(handle));
1433
1434         if (ext4_has_inline_data(inode))
1435                 copied = ext4_write_inline_data_end(inode, pos, len,
1436                                                     copied, page);
1437         else {
1438                 if (copied < len) {
1439                         if (!PageUptodate(page))
1440                                 copied = 0;
1441                         zero_new_buffers(page, from+copied, to);
1442                 }
1443
1444                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1445                                              to, &partial, write_end_fn);
1446                 if (!partial)
1447                         SetPageUptodate(page);
1448         }
1449         size_changed = ext4_update_inode_size(inode, pos + copied);
1450         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1451         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1452         unlock_page(page);
1453         put_page(page);
1454
1455         if (old_size < pos)
1456                 pagecache_isize_extended(inode, old_size, pos);
1457
1458         if (size_changed) {
1459                 ret2 = ext4_mark_inode_dirty(handle, inode);
1460                 if (!ret)
1461                         ret = ret2;
1462         }
1463
1464         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1465                 /* if we have allocated more blocks and copied
1466                  * less. We will have blocks allocated outside
1467                  * inode->i_size. So truncate them
1468                  */
1469                 ext4_orphan_add(handle, inode);
1470
1471         ret2 = ext4_journal_stop(handle);
1472         if (!ret)
1473                 ret = ret2;
1474         if (pos + len > inode->i_size) {
1475                 ext4_truncate_failed_write(inode);
1476                 /*
1477                  * If truncate failed early the inode might still be
1478                  * on the orphan list; we need to make sure the inode
1479                  * is removed from the orphan list in that case.
1480                  */
1481                 if (inode->i_nlink)
1482                         ext4_orphan_del(NULL, inode);
1483         }
1484
1485         return ret ? ret : copied;
1486 }
1487
1488 /*
1489  * Reserve space for a single cluster
1490  */
1491 static int ext4_da_reserve_space(struct inode *inode)
1492 {
1493         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1494         struct ext4_inode_info *ei = EXT4_I(inode);
1495         int ret;
1496
1497         /*
1498          * We will charge metadata quota at writeout time; this saves
1499          * us from metadata over-estimation, though we may go over by
1500          * a small amount in the end.  Here we just reserve for data.
1501          */
1502         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1503         if (ret)
1504                 return ret;
1505
1506         spin_lock(&ei->i_block_reservation_lock);
1507         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1508                 spin_unlock(&ei->i_block_reservation_lock);
1509                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1510                 return -ENOSPC;
1511         }
1512         ei->i_reserved_data_blocks++;
1513         trace_ext4_da_reserve_space(inode);
1514         spin_unlock(&ei->i_block_reservation_lock);
1515
1516         return 0;       /* success */
1517 }
1518
1519 static void ext4_da_release_space(struct inode *inode, int to_free)
1520 {
1521         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1522         struct ext4_inode_info *ei = EXT4_I(inode);
1523
1524         if (!to_free)
1525                 return;         /* Nothing to release, exit */
1526
1527         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528
1529         trace_ext4_da_release_space(inode, to_free);
1530         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1531                 /*
1532                  * if there aren't enough reserved blocks, then the
1533                  * counter is messed up somewhere.  Since this
1534                  * function is called from invalidate page, it's
1535                  * harmless to return without any action.
1536                  */
1537                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1538                          "ino %lu, to_free %d with only %d reserved "
1539                          "data blocks", inode->i_ino, to_free,
1540                          ei->i_reserved_data_blocks);
1541                 WARN_ON(1);
1542                 to_free = ei->i_reserved_data_blocks;
1543         }
1544         ei->i_reserved_data_blocks -= to_free;
1545
1546         /* update fs dirty data blocks counter */
1547         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1548
1549         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1550
1551         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1552 }
1553
1554 static void ext4_da_page_release_reservation(struct page *page,
1555                                              unsigned int offset,
1556                                              unsigned int length)
1557 {
1558         int to_release = 0, contiguous_blks = 0;
1559         struct buffer_head *head, *bh;
1560         unsigned int curr_off = 0;
1561         struct inode *inode = page->mapping->host;
1562         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563         unsigned int stop = offset + length;
1564         int num_clusters;
1565         ext4_fsblk_t lblk;
1566
1567         BUG_ON(stop > PAGE_SIZE || stop < length);
1568
1569         head = page_buffers(page);
1570         bh = head;
1571         do {
1572                 unsigned int next_off = curr_off + bh->b_size;
1573
1574                 if (next_off > stop)
1575                         break;
1576
1577                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1578                         to_release++;
1579                         contiguous_blks++;
1580                         clear_buffer_delay(bh);
1581                 } else if (contiguous_blks) {
1582                         lblk = page->index <<
1583                                (PAGE_SHIFT - inode->i_blkbits);
1584                         lblk += (curr_off >> inode->i_blkbits) -
1585                                 contiguous_blks;
1586                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1587                         contiguous_blks = 0;
1588                 }
1589                 curr_off = next_off;
1590         } while ((bh = bh->b_this_page) != head);
1591
1592         if (contiguous_blks) {
1593                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1594                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1595                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1596         }
1597
1598         /* If we have released all the blocks belonging to a cluster, then we
1599          * need to release the reserved space for that cluster. */
1600         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1601         while (num_clusters > 0) {
1602                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1603                         ((num_clusters - 1) << sbi->s_cluster_bits);
1604                 if (sbi->s_cluster_ratio == 1 ||
1605                     !ext4_find_delalloc_cluster(inode, lblk))
1606                         ext4_da_release_space(inode, 1);
1607
1608                 num_clusters--;
1609         }
1610 }
1611
1612 /*
1613  * Delayed allocation stuff
1614  */
1615
1616 struct mpage_da_data {
1617         struct inode *inode;
1618         struct writeback_control *wbc;
1619
1620         pgoff_t first_page;     /* The first page to write */
1621         pgoff_t next_page;      /* Current page to examine */
1622         pgoff_t last_page;      /* Last page to examine */
1623         /*
1624          * Extent to map - this can be after first_page because that can be
1625          * fully mapped. We somewhat abuse m_flags to store whether the extent
1626          * is delalloc or unwritten.
1627          */
1628         struct ext4_map_blocks map;
1629         struct ext4_io_submit io_submit;        /* IO submission data */
1630 };
1631
1632 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1633                                        bool invalidate)
1634 {
1635         int nr_pages, i;
1636         pgoff_t index, end;
1637         struct pagevec pvec;
1638         struct inode *inode = mpd->inode;
1639         struct address_space *mapping = inode->i_mapping;
1640
1641         /* This is necessary when next_page == 0. */
1642         if (mpd->first_page >= mpd->next_page)
1643                 return;
1644
1645         index = mpd->first_page;
1646         end   = mpd->next_page - 1;
1647         if (invalidate) {
1648                 ext4_lblk_t start, last;
1649                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1650                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1651                 ext4_es_remove_extent(inode, start, last - start + 1);
1652         }
1653
1654         pagevec_init(&pvec, 0);
1655         while (index <= end) {
1656                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1657                 if (nr_pages == 0)
1658                         break;
1659                 for (i = 0; i < nr_pages; i++) {
1660                         struct page *page = pvec.pages[i];
1661                         if (page->index > end)
1662                                 break;
1663                         BUG_ON(!PageLocked(page));
1664                         BUG_ON(PageWriteback(page));
1665                         if (invalidate) {
1666                                 if (page_mapped(page))
1667                                         clear_page_dirty_for_io(page);
1668                                 block_invalidatepage(page, 0, PAGE_SIZE);
1669                                 ClearPageUptodate(page);
1670                         }
1671                         unlock_page(page);
1672                 }
1673                 index = pvec.pages[nr_pages - 1]->index + 1;
1674                 pagevec_release(&pvec);
1675         }
1676 }
1677
1678 static void ext4_print_free_blocks(struct inode *inode)
1679 {
1680         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1681         struct super_block *sb = inode->i_sb;
1682         struct ext4_inode_info *ei = EXT4_I(inode);
1683
1684         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1685                EXT4_C2B(EXT4_SB(inode->i_sb),
1686                         ext4_count_free_clusters(sb)));
1687         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1688         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1689                (long long) EXT4_C2B(EXT4_SB(sb),
1690                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1691         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1692                (long long) EXT4_C2B(EXT4_SB(sb),
1693                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1694         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1695         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1696                  ei->i_reserved_data_blocks);
1697         return;
1698 }
1699
1700 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1701 {
1702         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1703 }
1704
1705 /*
1706  * This function is grabs code from the very beginning of
1707  * ext4_map_blocks, but assumes that the caller is from delayed write
1708  * time. This function looks up the requested blocks and sets the
1709  * buffer delay bit under the protection of i_data_sem.
1710  */
1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712                               struct ext4_map_blocks *map,
1713                               struct buffer_head *bh)
1714 {
1715         struct extent_status es;
1716         int retval;
1717         sector_t invalid_block = ~((sector_t) 0xffff);
1718 #ifdef ES_AGGRESSIVE_TEST
1719         struct ext4_map_blocks orig_map;
1720
1721         memcpy(&orig_map, map, sizeof(*map));
1722 #endif
1723
1724         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725                 invalid_block = ~0;
1726
1727         map->m_flags = 0;
1728         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1729                   "logical block %lu\n", inode->i_ino, map->m_len,
1730                   (unsigned long) map->m_lblk);
1731
1732         /* Lookup extent status tree firstly */
1733         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1734                 if (ext4_es_is_hole(&es)) {
1735                         retval = 0;
1736                         down_read(&EXT4_I(inode)->i_data_sem);
1737                         goto add_delayed;
1738                 }
1739
1740                 /*
1741                  * Delayed extent could be allocated by fallocate.
1742                  * So we need to check it.
1743                  */
1744                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745                         map_bh(bh, inode->i_sb, invalid_block);
1746                         set_buffer_new(bh);
1747                         set_buffer_delay(bh);
1748                         return 0;
1749                 }
1750
1751                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752                 retval = es.es_len - (iblock - es.es_lblk);
1753                 if (retval > map->m_len)
1754                         retval = map->m_len;
1755                 map->m_len = retval;
1756                 if (ext4_es_is_written(&es))
1757                         map->m_flags |= EXT4_MAP_MAPPED;
1758                 else if (ext4_es_is_unwritten(&es))
1759                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1760                 else
1761                         BUG_ON(1);
1762
1763 #ifdef ES_AGGRESSIVE_TEST
1764                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765 #endif
1766                 return retval;
1767         }
1768
1769         /*
1770          * Try to see if we can get the block without requesting a new
1771          * file system block.
1772          */
1773         down_read(&EXT4_I(inode)->i_data_sem);
1774         if (ext4_has_inline_data(inode))
1775                 retval = 0;
1776         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1777                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1778         else
1779                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1780
1781 add_delayed:
1782         if (retval == 0) {
1783                 int ret;
1784                 /*
1785                  * XXX: __block_prepare_write() unmaps passed block,
1786                  * is it OK?
1787                  */
1788                 /*
1789                  * If the block was allocated from previously allocated cluster,
1790                  * then we don't need to reserve it again. However we still need
1791                  * to reserve metadata for every block we're going to write.
1792                  */
1793                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1794                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1795                         ret = ext4_da_reserve_space(inode);
1796                         if (ret) {
1797                                 /* not enough space to reserve */
1798                                 retval = ret;
1799                                 goto out_unlock;
1800                         }
1801                 }
1802
1803                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1804                                             ~0, EXTENT_STATUS_DELAYED);
1805                 if (ret) {
1806                         retval = ret;
1807                         goto out_unlock;
1808                 }
1809
1810                 map_bh(bh, inode->i_sb, invalid_block);
1811                 set_buffer_new(bh);
1812                 set_buffer_delay(bh);
1813         } else if (retval > 0) {
1814                 int ret;
1815                 unsigned int status;
1816
1817                 if (unlikely(retval != map->m_len)) {
1818                         ext4_warning(inode->i_sb,
1819                                      "ES len assertion failed for inode "
1820                                      "%lu: retval %d != map->m_len %d",
1821                                      inode->i_ino, retval, map->m_len);
1822                         WARN_ON(1);
1823                 }
1824
1825                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1826                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1827                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1828                                             map->m_pblk, status);
1829                 if (ret != 0)
1830                         retval = ret;
1831         }
1832
1833 out_unlock:
1834         up_read((&EXT4_I(inode)->i_data_sem));
1835
1836         return retval;
1837 }
1838
1839 /*
1840  * This is a special get_block_t callback which is used by
1841  * ext4_da_write_begin().  It will either return mapped block or
1842  * reserve space for a single block.
1843  *
1844  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1845  * We also have b_blocknr = -1 and b_bdev initialized properly
1846  *
1847  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1848  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1849  * initialized properly.
1850  */
1851 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1852                            struct buffer_head *bh, int create)
1853 {
1854         struct ext4_map_blocks map;
1855         int ret = 0;
1856
1857         BUG_ON(create == 0);
1858         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1859
1860         map.m_lblk = iblock;
1861         map.m_len = 1;
1862
1863         /*
1864          * first, we need to know whether the block is allocated already
1865          * preallocated blocks are unmapped but should treated
1866          * the same as allocated blocks.
1867          */
1868         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1869         if (ret <= 0)
1870                 return ret;
1871
1872         map_bh(bh, inode->i_sb, map.m_pblk);
1873         ext4_update_bh_state(bh, map.m_flags);
1874
1875         if (buffer_unwritten(bh)) {
1876                 /* A delayed write to unwritten bh should be marked
1877                  * new and mapped.  Mapped ensures that we don't do
1878                  * get_block multiple times when we write to the same
1879                  * offset and new ensures that we do proper zero out
1880                  * for partial write.
1881                  */
1882                 set_buffer_new(bh);
1883                 set_buffer_mapped(bh);
1884         }
1885         return 0;
1886 }
1887
1888 static int bget_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890         get_bh(bh);
1891         return 0;
1892 }
1893
1894 static int bput_one(handle_t *handle, struct buffer_head *bh)
1895 {
1896         put_bh(bh);
1897         return 0;
1898 }
1899
1900 static int __ext4_journalled_writepage(struct page *page,
1901                                        unsigned int len)
1902 {
1903         struct address_space *mapping = page->mapping;
1904         struct inode *inode = mapping->host;
1905         struct buffer_head *page_bufs = NULL;
1906         handle_t *handle = NULL;
1907         int ret = 0, err = 0;
1908         int inline_data = ext4_has_inline_data(inode);
1909         struct buffer_head *inode_bh = NULL;
1910
1911         ClearPageChecked(page);
1912
1913         if (inline_data) {
1914                 BUG_ON(page->index != 0);
1915                 BUG_ON(len > ext4_get_max_inline_size(inode));
1916                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1917                 if (inode_bh == NULL)
1918                         goto out;
1919         } else {
1920                 page_bufs = page_buffers(page);
1921                 if (!page_bufs) {
1922                         BUG();
1923                         goto out;
1924                 }
1925                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1926                                        NULL, bget_one);
1927         }
1928         /*
1929          * We need to release the page lock before we start the
1930          * journal, so grab a reference so the page won't disappear
1931          * out from under us.
1932          */
1933         get_page(page);
1934         unlock_page(page);
1935
1936         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1937                                     ext4_writepage_trans_blocks(inode));
1938         if (IS_ERR(handle)) {
1939                 ret = PTR_ERR(handle);
1940                 put_page(page);
1941                 goto out_no_pagelock;
1942         }
1943         BUG_ON(!ext4_handle_valid(handle));
1944
1945         lock_page(page);
1946         put_page(page);
1947         if (page->mapping != mapping) {
1948                 /* The page got truncated from under us */
1949                 ext4_journal_stop(handle);
1950                 ret = 0;
1951                 goto out;
1952         }
1953
1954         if (inline_data) {
1955                 BUFFER_TRACE(inode_bh, "get write access");
1956                 ret = ext4_journal_get_write_access(handle, inode_bh);
1957
1958                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959
1960         } else {
1961                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962                                              do_journal_get_write_access);
1963
1964                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965                                              write_end_fn);
1966         }
1967         if (ret == 0)
1968                 ret = err;
1969         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1970         err = ext4_journal_stop(handle);
1971         if (!ret)
1972                 ret = err;
1973
1974         if (!ext4_has_inline_data(inode))
1975                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1976                                        NULL, bput_one);
1977         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1978 out:
1979         unlock_page(page);
1980 out_no_pagelock:
1981         brelse(inode_bh);
1982         return ret;
1983 }
1984
1985 /*
1986  * Note that we don't need to start a transaction unless we're journaling data
1987  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1988  * need to file the inode to the transaction's list in ordered mode because if
1989  * we are writing back data added by write(), the inode is already there and if
1990  * we are writing back data modified via mmap(), no one guarantees in which
1991  * transaction the data will hit the disk. In case we are journaling data, we
1992  * cannot start transaction directly because transaction start ranks above page
1993  * lock so we have to do some magic.
1994  *
1995  * This function can get called via...
1996  *   - ext4_writepages after taking page lock (have journal handle)
1997  *   - journal_submit_inode_data_buffers (no journal handle)
1998  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1999  *   - grab_page_cache when doing write_begin (have journal handle)
2000  *
2001  * We don't do any block allocation in this function. If we have page with
2002  * multiple blocks we need to write those buffer_heads that are mapped. This
2003  * is important for mmaped based write. So if we do with blocksize 1K
2004  * truncate(f, 1024);
2005  * a = mmap(f, 0, 4096);
2006  * a[0] = 'a';
2007  * truncate(f, 4096);
2008  * we have in the page first buffer_head mapped via page_mkwrite call back
2009  * but other buffer_heads would be unmapped but dirty (dirty done via the
2010  * do_wp_page). So writepage should write the first block. If we modify
2011  * the mmap area beyond 1024 we will again get a page_fault and the
2012  * page_mkwrite callback will do the block allocation and mark the
2013  * buffer_heads mapped.
2014  *
2015  * We redirty the page if we have any buffer_heads that is either delay or
2016  * unwritten in the page.
2017  *
2018  * We can get recursively called as show below.
2019  *
2020  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2021  *              ext4_writepage()
2022  *
2023  * But since we don't do any block allocation we should not deadlock.
2024  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2025  */
2026 static int ext4_writepage(struct page *page,
2027                           struct writeback_control *wbc)
2028 {
2029         int ret = 0;
2030         loff_t size;
2031         unsigned int len;
2032         struct buffer_head *page_bufs = NULL;
2033         struct inode *inode = page->mapping->host;
2034         struct ext4_io_submit io_submit;
2035         bool keep_towrite = false;
2036
2037         trace_ext4_writepage(page);
2038         size = i_size_read(inode);
2039         if (page->index == size >> PAGE_SHIFT)
2040                 len = size & ~PAGE_MASK;
2041         else
2042                 len = PAGE_SIZE;
2043
2044         page_bufs = page_buffers(page);
2045         /*
2046          * We cannot do block allocation or other extent handling in this
2047          * function. If there are buffers needing that, we have to redirty
2048          * the page. But we may reach here when we do a journal commit via
2049          * journal_submit_inode_data_buffers() and in that case we must write
2050          * allocated buffers to achieve data=ordered mode guarantees.
2051          *
2052          * Also, if there is only one buffer per page (the fs block
2053          * size == the page size), if one buffer needs block
2054          * allocation or needs to modify the extent tree to clear the
2055          * unwritten flag, we know that the page can't be written at
2056          * all, so we might as well refuse the write immediately.
2057          * Unfortunately if the block size != page size, we can't as
2058          * easily detect this case using ext4_walk_page_buffers(), but
2059          * for the extremely common case, this is an optimization that
2060          * skips a useless round trip through ext4_bio_write_page().
2061          */
2062         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2063                                    ext4_bh_delay_or_unwritten)) {
2064                 redirty_page_for_writepage(wbc, page);
2065                 if ((current->flags & PF_MEMALLOC) ||
2066                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067                         /*
2068                          * For memory cleaning there's no point in writing only
2069                          * some buffers. So just bail out. Warn if we came here
2070                          * from direct reclaim.
2071                          */
2072                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073                                                         == PF_MEMALLOC);
2074                         unlock_page(page);
2075                         return 0;
2076                 }
2077                 keep_towrite = true;
2078         }
2079
2080         if (PageChecked(page) && ext4_should_journal_data(inode))
2081                 /*
2082                  * It's mmapped pagecache.  Add buffers and journal it.  There
2083                  * doesn't seem much point in redirtying the page here.
2084                  */
2085                 return __ext4_journalled_writepage(page, len);
2086
2087         ext4_io_submit_init(&io_submit, wbc);
2088         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089         if (!io_submit.io_end) {
2090                 redirty_page_for_writepage(wbc, page);
2091                 unlock_page(page);
2092                 return -ENOMEM;
2093         }
2094         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2095         ext4_io_submit(&io_submit);
2096         /* Drop io_end reference we got from init */
2097         ext4_put_io_end_defer(io_submit.io_end);
2098         return ret;
2099 }
2100
2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102 {
2103         int len;
2104         loff_t size = i_size_read(mpd->inode);
2105         int err;
2106
2107         BUG_ON(page->index != mpd->first_page);
2108         if (page->index == size >> PAGE_SHIFT)
2109                 len = size & ~PAGE_MASK;
2110         else
2111                 len = PAGE_SIZE;
2112         clear_page_dirty_for_io(page);
2113         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2114         if (!err)
2115                 mpd->wbc->nr_to_write--;
2116         mpd->first_page++;
2117
2118         return err;
2119 }
2120
2121 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2122
2123 /*
2124  * mballoc gives us at most this number of blocks...
2125  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2126  * The rest of mballoc seems to handle chunks up to full group size.
2127  */
2128 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2129
2130 /*
2131  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2132  *
2133  * @mpd - extent of blocks
2134  * @lblk - logical number of the block in the file
2135  * @bh - buffer head we want to add to the extent
2136  *
2137  * The function is used to collect contig. blocks in the same state. If the
2138  * buffer doesn't require mapping for writeback and we haven't started the
2139  * extent of buffers to map yet, the function returns 'true' immediately - the
2140  * caller can write the buffer right away. Otherwise the function returns true
2141  * if the block has been added to the extent, false if the block couldn't be
2142  * added.
2143  */
2144 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2145                                    struct buffer_head *bh)
2146 {
2147         struct ext4_map_blocks *map = &mpd->map;
2148
2149         /* Buffer that doesn't need mapping for writeback? */
2150         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2151             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2152                 /* So far no extent to map => we write the buffer right away */
2153                 if (map->m_len == 0)
2154                         return true;
2155                 return false;
2156         }
2157
2158         /* First block in the extent? */
2159         if (map->m_len == 0) {
2160                 map->m_lblk = lblk;
2161                 map->m_len = 1;
2162                 map->m_flags = bh->b_state & BH_FLAGS;
2163                 return true;
2164         }
2165
2166         /* Don't go larger than mballoc is willing to allocate */
2167         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168                 return false;
2169
2170         /* Can we merge the block to our big extent? */
2171         if (lblk == map->m_lblk + map->m_len &&
2172             (bh->b_state & BH_FLAGS) == map->m_flags) {
2173                 map->m_len++;
2174                 return true;
2175         }
2176         return false;
2177 }
2178
2179 /*
2180  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181  *
2182  * @mpd - extent of blocks for mapping
2183  * @head - the first buffer in the page
2184  * @bh - buffer we should start processing from
2185  * @lblk - logical number of the block in the file corresponding to @bh
2186  *
2187  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188  * the page for IO if all buffers in this page were mapped and there's no
2189  * accumulated extent of buffers to map or add buffers in the page to the
2190  * extent of buffers to map. The function returns 1 if the caller can continue
2191  * by processing the next page, 0 if it should stop adding buffers to the
2192  * extent to map because we cannot extend it anymore. It can also return value
2193  * < 0 in case of error during IO submission.
2194  */
2195 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196                                    struct buffer_head *head,
2197                                    struct buffer_head *bh,
2198                                    ext4_lblk_t lblk)
2199 {
2200         struct inode *inode = mpd->inode;
2201         int err;
2202         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2203                                                         >> inode->i_blkbits;
2204
2205         do {
2206                 BUG_ON(buffer_locked(bh));
2207
2208                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2209                         /* Found extent to map? */
2210                         if (mpd->map.m_len)
2211                                 return 0;
2212                         /* Everything mapped so far and we hit EOF */
2213                         break;
2214                 }
2215         } while (lblk++, (bh = bh->b_this_page) != head);
2216         /* So far everything mapped? Submit the page for IO. */
2217         if (mpd->map.m_len == 0) {
2218                 err = mpage_submit_page(mpd, head->b_page);
2219                 if (err < 0)
2220                         return err;
2221         }
2222         return lblk < blocks;
2223 }
2224
2225 /*
2226  * mpage_map_buffers - update buffers corresponding to changed extent and
2227  *                     submit fully mapped pages for IO
2228  *
2229  * @mpd - description of extent to map, on return next extent to map
2230  *
2231  * Scan buffers corresponding to changed extent (we expect corresponding pages
2232  * to be already locked) and update buffer state according to new extent state.
2233  * We map delalloc buffers to their physical location, clear unwritten bits,
2234  * and mark buffers as uninit when we perform writes to unwritten extents
2235  * and do extent conversion after IO is finished. If the last page is not fully
2236  * mapped, we update @map to the next extent in the last page that needs
2237  * mapping. Otherwise we submit the page for IO.
2238  */
2239 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2240 {
2241         struct pagevec pvec;
2242         int nr_pages, i;
2243         struct inode *inode = mpd->inode;
2244         struct buffer_head *head, *bh;
2245         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2246         pgoff_t start, end;
2247         ext4_lblk_t lblk;
2248         sector_t pblock;
2249         int err;
2250
2251         start = mpd->map.m_lblk >> bpp_bits;
2252         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2253         lblk = start << bpp_bits;
2254         pblock = mpd->map.m_pblk;
2255
2256         pagevec_init(&pvec, 0);
2257         while (start <= end) {
2258                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2259                                           PAGEVEC_SIZE);
2260                 if (nr_pages == 0)
2261                         break;
2262                 for (i = 0; i < nr_pages; i++) {
2263                         struct page *page = pvec.pages[i];
2264
2265                         if (page->index > end)
2266                                 break;
2267                         /* Up to 'end' pages must be contiguous */
2268                         BUG_ON(page->index != start);
2269                         bh = head = page_buffers(page);
2270                         do {
2271                                 if (lblk < mpd->map.m_lblk)
2272                                         continue;
2273                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2274                                         /*
2275                                          * Buffer after end of mapped extent.
2276                                          * Find next buffer in the page to map.
2277                                          */
2278                                         mpd->map.m_len = 0;
2279                                         mpd->map.m_flags = 0;
2280                                         /*
2281                                          * FIXME: If dioread_nolock supports
2282                                          * blocksize < pagesize, we need to make
2283                                          * sure we add size mapped so far to
2284                                          * io_end->size as the following call
2285                                          * can submit the page for IO.
2286                                          */
2287                                         err = mpage_process_page_bufs(mpd, head,
2288                                                                       bh, lblk);
2289                                         pagevec_release(&pvec);
2290                                         if (err > 0)
2291                                                 err = 0;
2292                                         return err;
2293                                 }
2294                                 if (buffer_delay(bh)) {
2295                                         clear_buffer_delay(bh);
2296                                         bh->b_blocknr = pblock++;
2297                                 }
2298                                 clear_buffer_unwritten(bh);
2299                         } while (lblk++, (bh = bh->b_this_page) != head);
2300
2301                         /*
2302                          * FIXME: This is going to break if dioread_nolock
2303                          * supports blocksize < pagesize as we will try to
2304                          * convert potentially unmapped parts of inode.
2305                          */
2306                         mpd->io_submit.io_end->size += PAGE_SIZE;
2307                         /* Page fully mapped - let IO run! */
2308                         err = mpage_submit_page(mpd, page);
2309                         if (err < 0) {
2310                                 pagevec_release(&pvec);
2311                                 return err;
2312                         }
2313                         start++;
2314                 }
2315                 pagevec_release(&pvec);
2316         }
2317         /* Extent fully mapped and matches with page boundary. We are done. */
2318         mpd->map.m_len = 0;
2319         mpd->map.m_flags = 0;
2320         return 0;
2321 }
2322
2323 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2324 {
2325         struct inode *inode = mpd->inode;
2326         struct ext4_map_blocks *map = &mpd->map;
2327         int get_blocks_flags;
2328         int err, dioread_nolock;
2329
2330         trace_ext4_da_write_pages_extent(inode, map);
2331         /*
2332          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2333          * to convert an unwritten extent to be initialized (in the case
2334          * where we have written into one or more preallocated blocks).  It is
2335          * possible that we're going to need more metadata blocks than
2336          * previously reserved. However we must not fail because we're in
2337          * writeback and there is nothing we can do about it so it might result
2338          * in data loss.  So use reserved blocks to allocate metadata if
2339          * possible.
2340          *
2341          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2342          * the blocks in question are delalloc blocks.  This indicates
2343          * that the blocks and quotas has already been checked when
2344          * the data was copied into the page cache.
2345          */
2346         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2347                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2348                            EXT4_GET_BLOCKS_IO_SUBMIT;
2349         dioread_nolock = ext4_should_dioread_nolock(inode);
2350         if (dioread_nolock)
2351                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2352         if (map->m_flags & (1 << BH_Delay))
2353                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2354
2355         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2356         if (err < 0)
2357                 return err;
2358         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2359                 if (!mpd->io_submit.io_end->handle &&
2360                     ext4_handle_valid(handle)) {
2361                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2362                         handle->h_rsv_handle = NULL;
2363                 }
2364                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2365         }
2366
2367         BUG_ON(map->m_len == 0);
2368         if (map->m_flags & EXT4_MAP_NEW) {
2369                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2370                                    map->m_len);
2371         }
2372         return 0;
2373 }
2374
2375 /*
2376  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377  *                               mpd->len and submit pages underlying it for IO
2378  *
2379  * @handle - handle for journal operations
2380  * @mpd - extent to map
2381  * @give_up_on_write - we set this to true iff there is a fatal error and there
2382  *                     is no hope of writing the data. The caller should discard
2383  *                     dirty pages to avoid infinite loops.
2384  *
2385  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387  * them to initialized or split the described range from larger unwritten
2388  * extent. Note that we need not map all the described range since allocation
2389  * can return less blocks or the range is covered by more unwritten extents. We
2390  * cannot map more because we are limited by reserved transaction credits. On
2391  * the other hand we always make sure that the last touched page is fully
2392  * mapped so that it can be written out (and thus forward progress is
2393  * guaranteed). After mapping we submit all mapped pages for IO.
2394  */
2395 static int mpage_map_and_submit_extent(handle_t *handle,
2396                                        struct mpage_da_data *mpd,
2397                                        bool *give_up_on_write)
2398 {
2399         struct inode *inode = mpd->inode;
2400         struct ext4_map_blocks *map = &mpd->map;
2401         int err;
2402         loff_t disksize;
2403         int progress = 0;
2404
2405         mpd->io_submit.io_end->offset =
2406                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2407         do {
2408                 err = mpage_map_one_extent(handle, mpd);
2409                 if (err < 0) {
2410                         struct super_block *sb = inode->i_sb;
2411
2412                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413                                 goto invalidate_dirty_pages;
2414                         /*
2415                          * Let the uper layers retry transient errors.
2416                          * In the case of ENOSPC, if ext4_count_free_blocks()
2417                          * is non-zero, a commit should free up blocks.
2418                          */
2419                         if ((err == -ENOMEM) ||
2420                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421                                 if (progress)
2422                                         goto update_disksize;
2423                                 return err;
2424                         }
2425                         ext4_msg(sb, KERN_CRIT,
2426                                  "Delayed block allocation failed for "
2427                                  "inode %lu at logical offset %llu with"
2428                                  " max blocks %u with error %d",
2429                                  inode->i_ino,
2430                                  (unsigned long long)map->m_lblk,
2431                                  (unsigned)map->m_len, -err);
2432                         ext4_msg(sb, KERN_CRIT,
2433                                  "This should not happen!! Data will "
2434                                  "be lost\n");
2435                         if (err == -ENOSPC)
2436                                 ext4_print_free_blocks(inode);
2437                 invalidate_dirty_pages:
2438                         *give_up_on_write = true;
2439                         return err;
2440                 }
2441                 progress = 1;
2442                 /*
2443                  * Update buffer state, submit mapped pages, and get us new
2444                  * extent to map
2445                  */
2446                 err = mpage_map_and_submit_buffers(mpd);
2447                 if (err < 0)
2448                         goto update_disksize;
2449         } while (map->m_len);
2450
2451 update_disksize:
2452         /*
2453          * Update on-disk size after IO is submitted.  Races with
2454          * truncate are avoided by checking i_size under i_data_sem.
2455          */
2456         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2457         if (disksize > EXT4_I(inode)->i_disksize) {
2458                 int err2;
2459                 loff_t i_size;
2460
2461                 down_write(&EXT4_I(inode)->i_data_sem);
2462                 i_size = i_size_read(inode);
2463                 if (disksize > i_size)
2464                         disksize = i_size;
2465                 if (disksize > EXT4_I(inode)->i_disksize)
2466                         EXT4_I(inode)->i_disksize = disksize;
2467                 err2 = ext4_mark_inode_dirty(handle, inode);
2468                 up_write(&EXT4_I(inode)->i_data_sem);
2469                 if (err2)
2470                         ext4_error(inode->i_sb,
2471                                    "Failed to mark inode %lu dirty",
2472                                    inode->i_ino);
2473                 if (!err)
2474                         err = err2;
2475         }
2476         return err;
2477 }
2478
2479 /*
2480  * Calculate the total number of credits to reserve for one writepages
2481  * iteration. This is called from ext4_writepages(). We map an extent of
2482  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2483  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484  * bpp - 1 blocks in bpp different extents.
2485  */
2486 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487 {
2488         int bpp = ext4_journal_blocks_per_page(inode);
2489
2490         return ext4_meta_trans_blocks(inode,
2491                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2492 }
2493
2494 /*
2495  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496  *                               and underlying extent to map
2497  *
2498  * @mpd - where to look for pages
2499  *
2500  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501  * IO immediately. When we find a page which isn't mapped we start accumulating
2502  * extent of buffers underlying these pages that needs mapping (formed by
2503  * either delayed or unwritten buffers). We also lock the pages containing
2504  * these buffers. The extent found is returned in @mpd structure (starting at
2505  * mpd->lblk with length mpd->len blocks).
2506  *
2507  * Note that this function can attach bios to one io_end structure which are
2508  * neither logically nor physically contiguous. Although it may seem as an
2509  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510  * case as we need to track IO to all buffers underlying a page in one io_end.
2511  */
2512 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2513 {
2514         struct address_space *mapping = mpd->inode->i_mapping;
2515         struct pagevec pvec;
2516         unsigned int nr_pages;
2517         long left = mpd->wbc->nr_to_write;
2518         pgoff_t index = mpd->first_page;
2519         pgoff_t end = mpd->last_page;
2520         int tag;
2521         int i, err = 0;
2522         int blkbits = mpd->inode->i_blkbits;
2523         ext4_lblk_t lblk;
2524         struct buffer_head *head;
2525
2526         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2527                 tag = PAGECACHE_TAG_TOWRITE;
2528         else
2529                 tag = PAGECACHE_TAG_DIRTY;
2530
2531         pagevec_init(&pvec, 0);
2532         mpd->map.m_len = 0;
2533         mpd->next_page = index;
2534         while (index <= end) {
2535                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2536                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537                 if (nr_pages == 0)
2538                         goto out;
2539
2540                 for (i = 0; i < nr_pages; i++) {
2541                         struct page *page = pvec.pages[i];
2542
2543                         /*
2544                          * At this point, the page may be truncated or
2545                          * invalidated (changing page->mapping to NULL), or
2546                          * even swizzled back from swapper_space to tmpfs file
2547                          * mapping. However, page->index will not change
2548                          * because we have a reference on the page.
2549                          */
2550                         if (page->index > end)
2551                                 goto out;
2552
2553                         /*
2554                          * Accumulated enough dirty pages? This doesn't apply
2555                          * to WB_SYNC_ALL mode. For integrity sync we have to
2556                          * keep going because someone may be concurrently
2557                          * dirtying pages, and we might have synced a lot of
2558                          * newly appeared dirty pages, but have not synced all
2559                          * of the old dirty pages.
2560                          */
2561                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562                                 goto out;
2563
2564                         /* If we can't merge this page, we are done. */
2565                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566                                 goto out;
2567
2568                         lock_page(page);
2569                         /*
2570                          * If the page is no longer dirty, or its mapping no
2571                          * longer corresponds to inode we are writing (which
2572                          * means it has been truncated or invalidated), or the
2573                          * page is already under writeback and we are not doing
2574                          * a data integrity writeback, skip the page
2575                          */
2576                         if (!PageDirty(page) ||
2577                             (PageWriteback(page) &&
2578                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2579                             unlikely(page->mapping != mapping)) {
2580                                 unlock_page(page);
2581                                 continue;
2582                         }
2583
2584                         wait_on_page_writeback(page);
2585                         BUG_ON(PageWriteback(page));
2586
2587                         if (mpd->map.m_len == 0)
2588                                 mpd->first_page = page->index;
2589                         mpd->next_page = page->index + 1;
2590                         /* Add all dirty buffers to mpd */
2591                         lblk = ((ext4_lblk_t)page->index) <<
2592                                 (PAGE_SHIFT - blkbits);
2593                         head = page_buffers(page);
2594                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2595                         if (err <= 0)
2596                                 goto out;
2597                         err = 0;
2598                         left--;
2599                 }
2600                 pagevec_release(&pvec);
2601                 cond_resched();
2602         }
2603         return 0;
2604 out:
2605         pagevec_release(&pvec);
2606         return err;
2607 }
2608
2609 static int __writepage(struct page *page, struct writeback_control *wbc,
2610                        void *data)
2611 {
2612         struct address_space *mapping = data;
2613         int ret = ext4_writepage(page, wbc);
2614         mapping_set_error(mapping, ret);
2615         return ret;
2616 }
2617
2618 static int ext4_writepages(struct address_space *mapping,
2619                            struct writeback_control *wbc)
2620 {
2621         pgoff_t writeback_index = 0;
2622         long nr_to_write = wbc->nr_to_write;
2623         int range_whole = 0;
2624         int cycled = 1;
2625         handle_t *handle = NULL;
2626         struct mpage_da_data mpd;
2627         struct inode *inode = mapping->host;
2628         int needed_blocks, rsv_blocks = 0, ret = 0;
2629         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2630         bool done;
2631         struct blk_plug plug;
2632         bool give_up_on_write = false;
2633
2634         percpu_down_read(&sbi->s_journal_flag_rwsem);
2635         trace_ext4_writepages(inode, wbc);
2636
2637         if (dax_mapping(mapping)) {
2638                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639                                                   wbc);
2640                 goto out_writepages;
2641         }
2642
2643         /*
2644          * No pages to write? This is mainly a kludge to avoid starting
2645          * a transaction for special inodes like journal inode on last iput()
2646          * because that could violate lock ordering on umount
2647          */
2648         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2649                 goto out_writepages;
2650
2651         if (ext4_should_journal_data(inode)) {
2652                 struct blk_plug plug;
2653
2654                 blk_start_plug(&plug);
2655                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656                 blk_finish_plug(&plug);
2657                 goto out_writepages;
2658         }
2659
2660         /*
2661          * If the filesystem has aborted, it is read-only, so return
2662          * right away instead of dumping stack traces later on that
2663          * will obscure the real source of the problem.  We test
2664          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2665          * the latter could be true if the filesystem is mounted
2666          * read-only, and in that case, ext4_writepages should
2667          * *never* be called, so if that ever happens, we would want
2668          * the stack trace.
2669          */
2670         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671                 ret = -EROFS;
2672                 goto out_writepages;
2673         }
2674
2675         if (ext4_should_dioread_nolock(inode)) {
2676                 /*
2677                  * We may need to convert up to one extent per block in
2678                  * the page and we may dirty the inode.
2679                  */
2680                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2681         }
2682
2683         /*
2684          * If we have inline data and arrive here, it means that
2685          * we will soon create the block for the 1st page, so
2686          * we'd better clear the inline data here.
2687          */
2688         if (ext4_has_inline_data(inode)) {
2689                 /* Just inode will be modified... */
2690                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691                 if (IS_ERR(handle)) {
2692                         ret = PTR_ERR(handle);
2693                         goto out_writepages;
2694                 }
2695                 BUG_ON(ext4_test_inode_state(inode,
2696                                 EXT4_STATE_MAY_INLINE_DATA));
2697                 ext4_destroy_inline_data(handle, inode);
2698                 ext4_journal_stop(handle);
2699         }
2700
2701         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702                 range_whole = 1;
2703
2704         if (wbc->range_cyclic) {
2705                 writeback_index = mapping->writeback_index;
2706                 if (writeback_index)
2707                         cycled = 0;
2708                 mpd.first_page = writeback_index;
2709                 mpd.last_page = -1;
2710         } else {
2711                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713         }
2714
2715         mpd.inode = inode;
2716         mpd.wbc = wbc;
2717         ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721         done = false;
2722         blk_start_plug(&plug);
2723         while (!done && mpd.first_page <= mpd.last_page) {
2724                 /* For each extent of pages we use new io_end */
2725                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726                 if (!mpd.io_submit.io_end) {
2727                         ret = -ENOMEM;
2728                         break;
2729                 }
2730
2731                 /*
2732                  * We have two constraints: We find one extent to map and we
2733                  * must always write out whole page (makes a difference when
2734                  * blocksize < pagesize) so that we don't block on IO when we
2735                  * try to write out the rest of the page. Journalled mode is
2736                  * not supported by delalloc.
2737                  */
2738                 BUG_ON(ext4_should_journal_data(inode));
2739                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2740
2741                 /* start a new transaction */
2742                 handle = ext4_journal_start_with_reserve(inode,
2743                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2744                 if (IS_ERR(handle)) {
2745                         ret = PTR_ERR(handle);
2746                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2747                                "%ld pages, ino %lu; err %d", __func__,
2748                                 wbc->nr_to_write, inode->i_ino, ret);
2749                         /* Release allocated io_end */
2750                         ext4_put_io_end(mpd.io_submit.io_end);
2751                         break;
2752                 }
2753
2754                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755                 ret = mpage_prepare_extent_to_map(&mpd);
2756                 if (!ret) {
2757                         if (mpd.map.m_len)
2758                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2759                                         &give_up_on_write);
2760                         else {
2761                                 /*
2762                                  * We scanned the whole range (or exhausted
2763                                  * nr_to_write), submitted what was mapped and
2764                                  * didn't find anything needing mapping. We are
2765                                  * done.
2766                                  */
2767                                 done = true;
2768                         }
2769                 }
2770                 /*
2771                  * Caution: If the handle is synchronous,
2772                  * ext4_journal_stop() can wait for transaction commit
2773                  * to finish which may depend on writeback of pages to
2774                  * complete or on page lock to be released.  In that
2775                  * case, we have to wait until after after we have
2776                  * submitted all the IO, released page locks we hold,
2777                  * and dropped io_end reference (for extent conversion
2778                  * to be able to complete) before stopping the handle.
2779                  */
2780                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781                         ext4_journal_stop(handle);
2782                         handle = NULL;
2783                 }
2784                 /* Submit prepared bio */
2785                 ext4_io_submit(&mpd.io_submit);
2786                 /* Unlock pages we didn't use */
2787                 mpage_release_unused_pages(&mpd, give_up_on_write);
2788                 /*
2789                  * Drop our io_end reference we got from init. We have
2790                  * to be careful and use deferred io_end finishing if
2791                  * we are still holding the transaction as we can
2792                  * release the last reference to io_end which may end
2793                  * up doing unwritten extent conversion.
2794                  */
2795                 if (handle) {
2796                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2797                         ext4_journal_stop(handle);
2798                 } else
2799                         ext4_put_io_end(mpd.io_submit.io_end);
2800
2801                 if (ret == -ENOSPC && sbi->s_journal) {
2802                         /*
2803                          * Commit the transaction which would
2804                          * free blocks released in the transaction
2805                          * and try again
2806                          */
2807                         jbd2_journal_force_commit_nested(sbi->s_journal);
2808                         ret = 0;
2809                         continue;
2810                 }
2811                 /* Fatal error - ENOMEM, EIO... */
2812                 if (ret)
2813                         break;
2814         }
2815         blk_finish_plug(&plug);
2816         if (!ret && !cycled && wbc->nr_to_write > 0) {
2817                 cycled = 1;
2818                 mpd.last_page = writeback_index - 1;
2819                 mpd.first_page = 0;
2820                 goto retry;
2821         }
2822
2823         /* Update index */
2824         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825                 /*
2826                  * Set the writeback_index so that range_cyclic
2827                  * mode will write it back later
2828                  */
2829                 mapping->writeback_index = mpd.first_page;
2830
2831 out_writepages:
2832         trace_ext4_writepages_result(inode, wbc, ret,
2833                                      nr_to_write - wbc->nr_to_write);
2834         percpu_up_read(&sbi->s_journal_flag_rwsem);
2835         return ret;
2836 }
2837
2838 static int ext4_nonda_switch(struct super_block *sb)
2839 {
2840         s64 free_clusters, dirty_clusters;
2841         struct ext4_sb_info *sbi = EXT4_SB(sb);
2842
2843         /*
2844          * switch to non delalloc mode if we are running low
2845          * on free block. The free block accounting via percpu
2846          * counters can get slightly wrong with percpu_counter_batch getting
2847          * accumulated on each CPU without updating global counters
2848          * Delalloc need an accurate free block accounting. So switch
2849          * to non delalloc when we are near to error range.
2850          */
2851         free_clusters =
2852                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853         dirty_clusters =
2854                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2855         /*
2856          * Start pushing delalloc when 1/2 of free blocks are dirty.
2857          */
2858         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2859                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2860
2861         if (2 * free_clusters < 3 * dirty_clusters ||
2862             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2863                 /*
2864                  * free block count is less than 150% of dirty blocks
2865                  * or free blocks is less than watermark
2866                  */
2867                 return 1;
2868         }
2869         return 0;
2870 }
2871
2872 /* We always reserve for an inode update; the superblock could be there too */
2873 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874 {
2875         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2876                 return 1;
2877
2878         if (pos + len <= 0x7fffffffULL)
2879                 return 1;
2880
2881         /* We might need to update the superblock to set LARGE_FILE */
2882         return 2;
2883 }
2884
2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886                                loff_t pos, unsigned len, unsigned flags,
2887                                struct page **pagep, void **fsdata)
2888 {
2889         int ret, retries = 0;
2890         struct page *page;
2891         pgoff_t index;
2892         struct inode *inode = mapping->host;
2893         handle_t *handle;
2894
2895         index = pos >> PAGE_SHIFT;
2896
2897         if (ext4_nonda_switch(inode->i_sb) ||
2898             S_ISLNK(inode->i_mode)) {
2899                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2900                 return ext4_write_begin(file, mapping, pos,
2901                                         len, flags, pagep, fsdata);
2902         }
2903         *fsdata = (void *)0;
2904         trace_ext4_da_write_begin(inode, pos, len, flags);
2905
2906         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2907                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2908                                                       pos, len, flags,
2909                                                       pagep, fsdata);
2910                 if (ret < 0)
2911                         return ret;
2912                 if (ret == 1)
2913                         return 0;
2914         }
2915
2916         /*
2917          * grab_cache_page_write_begin() can take a long time if the
2918          * system is thrashing due to memory pressure, or if the page
2919          * is being written back.  So grab it first before we start
2920          * the transaction handle.  This also allows us to allocate
2921          * the page (if needed) without using GFP_NOFS.
2922          */
2923 retry_grab:
2924         page = grab_cache_page_write_begin(mapping, index, flags);
2925         if (!page)
2926                 return -ENOMEM;
2927         unlock_page(page);
2928
2929         /*
2930          * With delayed allocation, we don't log the i_disksize update
2931          * if there is delayed block allocation. But we still need
2932          * to journalling the i_disksize update if writes to the end
2933          * of file which has an already mapped buffer.
2934          */
2935 retry_journal:
2936         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2937                                 ext4_da_write_credits(inode, pos, len));
2938         if (IS_ERR(handle)) {
2939                 put_page(page);
2940                 return PTR_ERR(handle);
2941         }
2942
2943         lock_page(page);
2944         if (page->mapping != mapping) {
2945                 /* The page got truncated from under us */
2946                 unlock_page(page);
2947                 put_page(page);
2948                 ext4_journal_stop(handle);
2949                 goto retry_grab;
2950         }
2951         /* In case writeback began while the page was unlocked */
2952         wait_for_stable_page(page);
2953
2954 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2955         ret = ext4_block_write_begin(page, pos, len,
2956                                      ext4_da_get_block_prep);
2957 #else
2958         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2959 #endif
2960         if (ret < 0) {
2961                 unlock_page(page);
2962                 ext4_journal_stop(handle);
2963                 /*
2964                  * block_write_begin may have instantiated a few blocks
2965                  * outside i_size.  Trim these off again. Don't need
2966                  * i_size_read because we hold i_mutex.
2967                  */
2968                 if (pos + len > inode->i_size)
2969                         ext4_truncate_failed_write(inode);
2970
2971                 if (ret == -ENOSPC &&
2972                     ext4_should_retry_alloc(inode->i_sb, &retries))
2973                         goto retry_journal;
2974
2975                 put_page(page);
2976                 return ret;
2977         }
2978
2979         *pagep = page;
2980         return ret;
2981 }
2982
2983 /*
2984  * Check if we should update i_disksize
2985  * when write to the end of file but not require block allocation
2986  */
2987 static int ext4_da_should_update_i_disksize(struct page *page,
2988                                             unsigned long offset)
2989 {
2990         struct buffer_head *bh;
2991         struct inode *inode = page->mapping->host;
2992         unsigned int idx;
2993         int i;
2994
2995         bh = page_buffers(page);
2996         idx = offset >> inode->i_blkbits;
2997
2998         for (i = 0; i < idx; i++)
2999                 bh = bh->b_this_page;
3000
3001         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3002                 return 0;
3003         return 1;
3004 }
3005
3006 static int ext4_da_write_end(struct file *file,
3007                              struct address_space *mapping,
3008                              loff_t pos, unsigned len, unsigned copied,
3009                              struct page *page, void *fsdata)
3010 {
3011         struct inode *inode = mapping->host;
3012         int ret = 0, ret2;
3013         handle_t *handle = ext4_journal_current_handle();
3014         loff_t new_i_size;
3015         unsigned long start, end;
3016         int write_mode = (int)(unsigned long)fsdata;
3017
3018         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019                 return ext4_write_end(file, mapping, pos,
3020                                       len, copied, page, fsdata);
3021
3022         trace_ext4_da_write_end(inode, pos, len, copied);
3023         start = pos & (PAGE_SIZE - 1);
3024         end = start + copied - 1;
3025
3026         /*
3027          * generic_write_end() will run mark_inode_dirty() if i_size
3028          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3029          * into that.
3030          */
3031         new_i_size = pos + copied;
3032         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3033                 if (ext4_has_inline_data(inode) ||
3034                     ext4_da_should_update_i_disksize(page, end)) {
3035                         ext4_update_i_disksize(inode, new_i_size);
3036                         /* We need to mark inode dirty even if
3037                          * new_i_size is less that inode->i_size
3038                          * bu greater than i_disksize.(hint delalloc)
3039                          */
3040                         ext4_mark_inode_dirty(handle, inode);
3041                 }
3042         }
3043
3044         if (write_mode != CONVERT_INLINE_DATA &&
3045             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3046             ext4_has_inline_data(inode))
3047                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3048                                                      page);
3049         else
3050                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3051                                                         page, fsdata);
3052
3053         copied = ret2;
3054         if (ret2 < 0)
3055                 ret = ret2;
3056         ret2 = ext4_journal_stop(handle);
3057         if (!ret)
3058                 ret = ret2;
3059
3060         return ret ? ret : copied;
3061 }
3062
3063 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3064                                    unsigned int length)
3065 {
3066         /*
3067          * Drop reserved blocks
3068          */
3069         BUG_ON(!PageLocked(page));
3070         if (!page_has_buffers(page))
3071                 goto out;
3072
3073         ext4_da_page_release_reservation(page, offset, length);
3074
3075 out:
3076         ext4_invalidatepage(page, offset, length);
3077
3078         return;
3079 }
3080
3081 /*
3082  * Force all delayed allocation blocks to be allocated for a given inode.
3083  */
3084 int ext4_alloc_da_blocks(struct inode *inode)
3085 {
3086         trace_ext4_alloc_da_blocks(inode);
3087
3088         if (!EXT4_I(inode)->i_reserved_data_blocks)
3089                 return 0;
3090
3091         /*
3092          * We do something simple for now.  The filemap_flush() will
3093          * also start triggering a write of the data blocks, which is
3094          * not strictly speaking necessary (and for users of
3095          * laptop_mode, not even desirable).  However, to do otherwise
3096          * would require replicating code paths in:
3097          *
3098          * ext4_writepages() ->
3099          *    write_cache_pages() ---> (via passed in callback function)
3100          *        __mpage_da_writepage() -->
3101          *           mpage_add_bh_to_extent()
3102          *           mpage_da_map_blocks()
3103          *
3104          * The problem is that write_cache_pages(), located in
3105          * mm/page-writeback.c, marks pages clean in preparation for
3106          * doing I/O, which is not desirable if we're not planning on
3107          * doing I/O at all.
3108          *
3109          * We could call write_cache_pages(), and then redirty all of
3110          * the pages by calling redirty_page_for_writepage() but that
3111          * would be ugly in the extreme.  So instead we would need to
3112          * replicate parts of the code in the above functions,
3113          * simplifying them because we wouldn't actually intend to
3114          * write out the pages, but rather only collect contiguous
3115          * logical block extents, call the multi-block allocator, and
3116          * then update the buffer heads with the block allocations.
3117          *
3118          * For now, though, we'll cheat by calling filemap_flush(),
3119          * which will map the blocks, and start the I/O, but not
3120          * actually wait for the I/O to complete.
3121          */
3122         return filemap_flush(inode->i_mapping);
3123 }
3124
3125 /*
3126  * bmap() is special.  It gets used by applications such as lilo and by
3127  * the swapper to find the on-disk block of a specific piece of data.
3128  *
3129  * Naturally, this is dangerous if the block concerned is still in the
3130  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3131  * filesystem and enables swap, then they may get a nasty shock when the
3132  * data getting swapped to that swapfile suddenly gets overwritten by
3133  * the original zero's written out previously to the journal and
3134  * awaiting writeback in the kernel's buffer cache.
3135  *
3136  * So, if we see any bmap calls here on a modified, data-journaled file,
3137  * take extra steps to flush any blocks which might be in the cache.
3138  */
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140 {
3141         struct inode *inode = mapping->host;
3142         journal_t *journal;
3143         int err;
3144
3145         /*
3146          * We can get here for an inline file via the FIBMAP ioctl
3147          */
3148         if (ext4_has_inline_data(inode))
3149                 return 0;
3150
3151         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152                         test_opt(inode->i_sb, DELALLOC)) {
3153                 /*
3154                  * With delalloc we want to sync the file
3155                  * so that we can make sure we allocate
3156                  * blocks for file
3157                  */
3158                 filemap_write_and_wait(mapping);
3159         }
3160
3161         if (EXT4_JOURNAL(inode) &&
3162             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163                 /*
3164                  * This is a REALLY heavyweight approach, but the use of
3165                  * bmap on dirty files is expected to be extremely rare:
3166                  * only if we run lilo or swapon on a freshly made file
3167                  * do we expect this to happen.
3168                  *
3169                  * (bmap requires CAP_SYS_RAWIO so this does not
3170                  * represent an unprivileged user DOS attack --- we'd be
3171                  * in trouble if mortal users could trigger this path at
3172                  * will.)
3173                  *
3174                  * NB. EXT4_STATE_JDATA is not set on files other than
3175                  * regular files.  If somebody wants to bmap a directory
3176                  * or symlink and gets confused because the buffer
3177                  * hasn't yet been flushed to disk, they deserve
3178                  * everything they get.
3179                  */
3180
3181                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182                 journal = EXT4_JOURNAL(inode);
3183                 jbd2_journal_lock_updates(journal);
3184                 err = jbd2_journal_flush(journal);
3185                 jbd2_journal_unlock_updates(journal);
3186
3187                 if (err)
3188                         return 0;
3189         }
3190
3191         return generic_block_bmap(mapping, block, ext4_get_block);
3192 }
3193
3194 static int ext4_readpage(struct file *file, struct page *page)
3195 {
3196         int ret = -EAGAIN;
3197         struct inode *inode = page->mapping->host;
3198
3199         trace_ext4_readpage(page);
3200
3201         if (ext4_has_inline_data(inode))
3202                 ret = ext4_readpage_inline(inode, page);
3203
3204         if (ret == -EAGAIN)
3205                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3206
3207         return ret;
3208 }
3209
3210 static int
3211 ext4_readpages(struct file *file, struct address_space *mapping,
3212                 struct list_head *pages, unsigned nr_pages)
3213 {
3214         struct inode *inode = mapping->host;
3215
3216         /* If the file has inline data, no need to do readpages. */
3217         if (ext4_has_inline_data(inode))
3218                 return 0;
3219
3220         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3221 }
3222
3223 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224                                 unsigned int length)
3225 {
3226         trace_ext4_invalidatepage(page, offset, length);
3227
3228         /* No journalling happens on data buffers when this function is used */
3229         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230
3231         block_invalidatepage(page, offset, length);
3232 }
3233
3234 static int __ext4_journalled_invalidatepage(struct page *page,
3235                                             unsigned int offset,
3236                                             unsigned int length)
3237 {
3238         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239
3240         trace_ext4_journalled_invalidatepage(page, offset, length);
3241
3242         /*
3243          * If it's a full truncate we just forget about the pending dirtying
3244          */
3245         if (offset == 0 && length == PAGE_SIZE)
3246                 ClearPageChecked(page);
3247
3248         return jbd2_journal_invalidatepage(journal, page, offset, length);
3249 }
3250
3251 /* Wrapper for aops... */
3252 static void ext4_journalled_invalidatepage(struct page *page,
3253                                            unsigned int offset,
3254                                            unsigned int length)
3255 {
3256         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3257 }
3258
3259 static int ext4_releasepage(struct page *page, gfp_t wait)
3260 {
3261         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263         trace_ext4_releasepage(page);
3264
3265         /* Page has dirty journalled data -> cannot release */
3266         if (PageChecked(page))
3267                 return 0;
3268         if (journal)
3269                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3270         else
3271                 return try_to_free_buffers(page);
3272 }
3273
3274 #ifdef CONFIG_FS_DAX
3275 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3276                             unsigned flags, struct iomap *iomap)
3277 {
3278         unsigned int blkbits = inode->i_blkbits;
3279         unsigned long first_block = offset >> blkbits;
3280         unsigned long last_block = (offset + length - 1) >> blkbits;
3281         struct ext4_map_blocks map;
3282         int ret;
3283
3284         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3285                 return -ERANGE;
3286
3287         map.m_lblk = first_block;
3288         map.m_len = last_block - first_block + 1;
3289
3290         if (!(flags & IOMAP_WRITE)) {
3291                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3292         } else {
3293                 int dio_credits;
3294                 handle_t *handle;
3295                 int retries = 0;
3296
3297                 /* Trim mapping request to maximum we can map at once for DIO */
3298                 if (map.m_len > DIO_MAX_BLOCKS)
3299                         map.m_len = DIO_MAX_BLOCKS;
3300                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3301 retry:
3302                 /*
3303                  * Either we allocate blocks and then we don't get unwritten
3304                  * extent so we have reserved enough credits, or the blocks
3305                  * are already allocated and unwritten and in that case
3306                  * extent conversion fits in the credits as well.
3307                  */
3308                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3309                                             dio_credits);
3310                 if (IS_ERR(handle))
3311                         return PTR_ERR(handle);
3312
3313                 ret = ext4_map_blocks(handle, inode, &map,
3314                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3315                 if (ret < 0) {
3316                         ext4_journal_stop(handle);
3317                         if (ret == -ENOSPC &&
3318                             ext4_should_retry_alloc(inode->i_sb, &retries))
3319                                 goto retry;
3320                         return ret;
3321                 }
3322
3323                 /*
3324                  * If we added blocks beyond i_size, we need to make sure they
3325                  * will get truncated if we crash before updating i_size in
3326                  * ext4_iomap_end(). For faults we don't need to do that (and
3327                  * even cannot because for orphan list operations inode_lock is
3328                  * required) - if we happen to instantiate block beyond i_size,
3329                  * it is because we race with truncate which has already added
3330                  * the inode to the orphan list.
3331                  */
3332                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3333                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3334                         int err;
3335
3336                         err = ext4_orphan_add(handle, inode);
3337                         if (err < 0) {
3338                                 ext4_journal_stop(handle);
3339                                 return err;
3340                         }
3341                 }
3342                 ext4_journal_stop(handle);
3343         }
3344
3345         iomap->flags = 0;
3346         iomap->bdev = inode->i_sb->s_bdev;
3347         iomap->offset = first_block << blkbits;
3348
3349         if (ret == 0) {
3350                 iomap->type = IOMAP_HOLE;
3351                 iomap->blkno = IOMAP_NULL_BLOCK;
3352                 iomap->length = (u64)map.m_len << blkbits;
3353         } else {
3354                 if (map.m_flags & EXT4_MAP_MAPPED) {
3355                         iomap->type = IOMAP_MAPPED;
3356                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357                         iomap->type = IOMAP_UNWRITTEN;
3358                 } else {
3359                         WARN_ON_ONCE(1);
3360                         return -EIO;
3361                 }
3362                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363                 iomap->length = (u64)map.m_len << blkbits;
3364         }
3365
3366         if (map.m_flags & EXT4_MAP_NEW)
3367                 iomap->flags |= IOMAP_F_NEW;
3368         return 0;
3369 }
3370
3371 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3372                           ssize_t written, unsigned flags, struct iomap *iomap)
3373 {
3374         int ret = 0;
3375         handle_t *handle;
3376         int blkbits = inode->i_blkbits;
3377         bool truncate = false;
3378
3379         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3380                 return 0;
3381
3382         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3383         if (IS_ERR(handle)) {
3384                 ret = PTR_ERR(handle);
3385                 goto orphan_del;
3386         }
3387         if (ext4_update_inode_size(inode, offset + written))
3388                 ext4_mark_inode_dirty(handle, inode);
3389         /*
3390          * We may need to truncate allocated but not written blocks beyond EOF.
3391          */
3392         if (iomap->offset + iomap->length > 
3393             ALIGN(inode->i_size, 1 << blkbits)) {
3394                 ext4_lblk_t written_blk, end_blk;
3395
3396                 written_blk = (offset + written) >> blkbits;
3397                 end_blk = (offset + length) >> blkbits;
3398                 if (written_blk < end_blk && ext4_can_truncate(inode))
3399                         truncate = true;
3400         }
3401         /*
3402          * Remove inode from orphan list if we were extending a inode and
3403          * everything went fine.
3404          */
3405         if (!truncate && inode->i_nlink &&
3406             !list_empty(&EXT4_I(inode)->i_orphan))
3407                 ext4_orphan_del(handle, inode);
3408         ext4_journal_stop(handle);
3409         if (truncate) {
3410                 ext4_truncate_failed_write(inode);
3411 orphan_del:
3412                 /*
3413                  * If truncate failed early the inode might still be on the
3414                  * orphan list; we need to make sure the inode is removed from
3415                  * the orphan list in that case.
3416                  */
3417                 if (inode->i_nlink)
3418                         ext4_orphan_del(NULL, inode);
3419         }
3420         return ret;
3421 }
3422
3423 struct iomap_ops ext4_iomap_ops = {
3424         .iomap_begin            = ext4_iomap_begin,
3425         .iomap_end              = ext4_iomap_end,
3426 };
3427
3428 #endif
3429
3430 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3431                             ssize_t size, void *private)
3432 {
3433         ext4_io_end_t *io_end = private;
3434
3435         /* if not async direct IO just return */
3436         if (!io_end)
3437                 return 0;
3438
3439         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3440                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3441                   io_end, io_end->inode->i_ino, iocb, offset, size);
3442
3443         /*
3444          * Error during AIO DIO. We cannot convert unwritten extents as the
3445          * data was not written. Just clear the unwritten flag and drop io_end.
3446          */
3447         if (size <= 0) {
3448                 ext4_clear_io_unwritten_flag(io_end);
3449                 size = 0;
3450         }
3451         io_end->offset = offset;
3452         io_end->size = size;
3453         ext4_put_io_end(io_end);
3454
3455         return 0;
3456 }
3457
3458 /*
3459  * Handling of direct IO writes.
3460  *
3461  * For ext4 extent files, ext4 will do direct-io write even to holes,
3462  * preallocated extents, and those write extend the file, no need to
3463  * fall back to buffered IO.
3464  *
3465  * For holes, we fallocate those blocks, mark them as unwritten
3466  * If those blocks were preallocated, we mark sure they are split, but
3467  * still keep the range to write as unwritten.
3468  *
3469  * The unwritten extents will be converted to written when DIO is completed.
3470  * For async direct IO, since the IO may still pending when return, we
3471  * set up an end_io call back function, which will do the conversion
3472  * when async direct IO completed.
3473  *
3474  * If the O_DIRECT write will extend the file then add this inode to the
3475  * orphan list.  So recovery will truncate it back to the original size
3476  * if the machine crashes during the write.
3477  *
3478  */
3479 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3480 {
3481         struct file *file = iocb->ki_filp;
3482         struct inode *inode = file->f_mapping->host;
3483         struct ext4_inode_info *ei = EXT4_I(inode);
3484         ssize_t ret;
3485         loff_t offset = iocb->ki_pos;
3486         size_t count = iov_iter_count(iter);
3487         int overwrite = 0;
3488         get_block_t *get_block_func = NULL;
3489         int dio_flags = 0;
3490         loff_t final_size = offset + count;
3491         int orphan = 0;
3492         handle_t *handle;
3493
3494         if (final_size > inode->i_size) {
3495                 /* Credits for sb + inode write */
3496                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3497                 if (IS_ERR(handle)) {
3498                         ret = PTR_ERR(handle);
3499                         goto out;
3500                 }
3501                 ret = ext4_orphan_add(handle, inode);
3502                 if (ret) {
3503                         ext4_journal_stop(handle);
3504                         goto out;
3505                 }
3506                 orphan = 1;
3507                 ei->i_disksize = inode->i_size;
3508                 ext4_journal_stop(handle);
3509         }
3510
3511         BUG_ON(iocb->private == NULL);
3512
3513         /*
3514          * Make all waiters for direct IO properly wait also for extent
3515          * conversion. This also disallows race between truncate() and
3516          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3517          */
3518         inode_dio_begin(inode);
3519
3520         /* If we do a overwrite dio, i_mutex locking can be released */
3521         overwrite = *((int *)iocb->private);
3522
3523         if (overwrite)
3524                 inode_unlock(inode);
3525
3526         /*
3527          * For extent mapped files we could direct write to holes and fallocate.
3528          *
3529          * Allocated blocks to fill the hole are marked as unwritten to prevent
3530          * parallel buffered read to expose the stale data before DIO complete
3531          * the data IO.
3532          *
3533          * As to previously fallocated extents, ext4 get_block will just simply
3534          * mark the buffer mapped but still keep the extents unwritten.
3535          *
3536          * For non AIO case, we will convert those unwritten extents to written
3537          * after return back from blockdev_direct_IO. That way we save us from
3538          * allocating io_end structure and also the overhead of offloading
3539          * the extent convertion to a workqueue.
3540          *
3541          * For async DIO, the conversion needs to be deferred when the
3542          * IO is completed. The ext4 end_io callback function will be
3543          * called to take care of the conversion work.  Here for async
3544          * case, we allocate an io_end structure to hook to the iocb.
3545          */
3546         iocb->private = NULL;
3547         if (overwrite)
3548                 get_block_func = ext4_dio_get_block_overwrite;
3549         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3550                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3551                 get_block_func = ext4_dio_get_block;
3552                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3553         } else if (is_sync_kiocb(iocb)) {
3554                 get_block_func = ext4_dio_get_block_unwritten_sync;
3555                 dio_flags = DIO_LOCKING;
3556         } else {
3557                 get_block_func = ext4_dio_get_block_unwritten_async;
3558                 dio_flags = DIO_LOCKING;
3559         }
3560 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3561         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3562 #endif
3563         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3564                                    get_block_func, ext4_end_io_dio, NULL,
3565                                    dio_flags);
3566
3567         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3568                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3569                 int err;
3570                 /*
3571                  * for non AIO case, since the IO is already
3572                  * completed, we could do the conversion right here
3573                  */
3574                 err = ext4_convert_unwritten_extents(NULL, inode,
3575                                                      offset, ret);
3576                 if (err < 0)
3577                         ret = err;
3578                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3579         }
3580
3581         inode_dio_end(inode);
3582         /* take i_mutex locking again if we do a ovewrite dio */
3583         if (overwrite)
3584                 inode_lock(inode);
3585
3586         if (ret < 0 && final_size > inode->i_size)
3587                 ext4_truncate_failed_write(inode);
3588
3589         /* Handle extending of i_size after direct IO write */
3590         if (orphan) {
3591                 int err;
3592
3593                 /* Credits for sb + inode write */
3594                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3595                 if (IS_ERR(handle)) {
3596                         /* This is really bad luck. We've written the data
3597                          * but cannot extend i_size. Bail out and pretend
3598                          * the write failed... */
3599                         ret = PTR_ERR(handle);
3600                         if (inode->i_nlink)
3601                                 ext4_orphan_del(NULL, inode);
3602
3603                         goto out;
3604                 }
3605                 if (inode->i_nlink)
3606                         ext4_orphan_del(handle, inode);
3607                 if (ret > 0) {
3608                         loff_t end = offset + ret;
3609                         if (end > inode->i_size) {
3610                                 ei->i_disksize = end;
3611                                 i_size_write(inode, end);
3612                                 /*
3613                                  * We're going to return a positive `ret'
3614                                  * here due to non-zero-length I/O, so there's
3615                                  * no way of reporting error returns from
3616                                  * ext4_mark_inode_dirty() to userspace.  So
3617                                  * ignore it.
3618                                  */
3619                                 ext4_mark_inode_dirty(handle, inode);
3620                         }
3621                 }
3622                 err = ext4_journal_stop(handle);
3623                 if (ret == 0)
3624                         ret = err;
3625         }
3626 out:
3627         return ret;
3628 }
3629
3630 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3631 {
3632         struct address_space *mapping = iocb->ki_filp->f_mapping;
3633         struct inode *inode = mapping->host;
3634         size_t count = iov_iter_count(iter);
3635         ssize_t ret;
3636
3637         /*
3638          * Shared inode_lock is enough for us - it protects against concurrent
3639          * writes & truncates and since we take care of writing back page cache,
3640          * we are protected against page writeback as well.
3641          */
3642         inode_lock_shared(inode);
3643         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3644                                            iocb->ki_pos + count);
3645         if (ret)
3646                 goto out_unlock;
3647         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3648                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3649 out_unlock:
3650         inode_unlock_shared(inode);
3651         return ret;
3652 }
3653
3654 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3655 {
3656         struct file *file = iocb->ki_filp;
3657         struct inode *inode = file->f_mapping->host;
3658         size_t count = iov_iter_count(iter);
3659         loff_t offset = iocb->ki_pos;
3660         ssize_t ret;
3661
3662 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3663         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3664                 return 0;
3665 #endif
3666
3667         /*
3668          * If we are doing data journalling we don't support O_DIRECT
3669          */
3670         if (ext4_should_journal_data(inode))
3671                 return 0;
3672
3673         /* Let buffer I/O handle the inline data case. */
3674         if (ext4_has_inline_data(inode))
3675                 return 0;
3676
3677         /* DAX uses iomap path now */
3678         if (WARN_ON_ONCE(IS_DAX(inode)))
3679                 return 0;
3680
3681         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3682         if (iov_iter_rw(iter) == READ)
3683                 ret = ext4_direct_IO_read(iocb, iter);
3684         else
3685                 ret = ext4_direct_IO_write(iocb, iter);
3686         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3687         return ret;
3688 }
3689
3690 /*
3691  * Pages can be marked dirty completely asynchronously from ext4's journalling
3692  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3693  * much here because ->set_page_dirty is called under VFS locks.  The page is
3694  * not necessarily locked.
3695  *
3696  * We cannot just dirty the page and leave attached buffers clean, because the
3697  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3698  * or jbddirty because all the journalling code will explode.
3699  *
3700  * So what we do is to mark the page "pending dirty" and next time writepage
3701  * is called, propagate that into the buffers appropriately.
3702  */
3703 static int ext4_journalled_set_page_dirty(struct page *page)
3704 {
3705         SetPageChecked(page);
3706         return __set_page_dirty_nobuffers(page);
3707 }
3708
3709 static int ext4_set_page_dirty(struct page *page)
3710 {
3711         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3712         WARN_ON_ONCE(!page_has_buffers(page));
3713         return __set_page_dirty_buffers(page);
3714 }
3715
3716 static const struct address_space_operations ext4_aops = {
3717         .readpage               = ext4_readpage,
3718         .readpages              = ext4_readpages,
3719         .writepage              = ext4_writepage,
3720         .writepages             = ext4_writepages,
3721         .write_begin            = ext4_write_begin,
3722         .write_end              = ext4_write_end,
3723         .set_page_dirty         = ext4_set_page_dirty,
3724         .bmap                   = ext4_bmap,
3725         .invalidatepage         = ext4_invalidatepage,
3726         .releasepage            = ext4_releasepage,
3727         .direct_IO              = ext4_direct_IO,
3728         .migratepage            = buffer_migrate_page,
3729         .is_partially_uptodate  = block_is_partially_uptodate,
3730         .error_remove_page      = generic_error_remove_page,
3731 };
3732
3733 static const struct address_space_operations ext4_journalled_aops = {
3734         .readpage               = ext4_readpage,
3735         .readpages              = ext4_readpages,
3736         .writepage              = ext4_writepage,
3737         .writepages             = ext4_writepages,
3738         .write_begin            = ext4_write_begin,
3739         .write_end              = ext4_journalled_write_end,
3740         .set_page_dirty         = ext4_journalled_set_page_dirty,
3741         .bmap                   = ext4_bmap,
3742         .invalidatepage         = ext4_journalled_invalidatepage,
3743         .releasepage            = ext4_releasepage,
3744         .direct_IO              = ext4_direct_IO,
3745         .is_partially_uptodate  = block_is_partially_uptodate,
3746         .error_remove_page      = generic_error_remove_page,
3747 };
3748
3749 static const struct address_space_operations ext4_da_aops = {
3750         .readpage               = ext4_readpage,
3751         .readpages              = ext4_readpages,
3752         .writepage              = ext4_writepage,
3753         .writepages             = ext4_writepages,
3754         .write_begin            = ext4_da_write_begin,
3755         .write_end              = ext4_da_write_end,
3756         .set_page_dirty         = ext4_set_page_dirty,
3757         .bmap                   = ext4_bmap,
3758         .invalidatepage         = ext4_da_invalidatepage,
3759         .releasepage            = ext4_releasepage,
3760         .direct_IO              = ext4_direct_IO,
3761         .migratepage            = buffer_migrate_page,
3762         .is_partially_uptodate  = block_is_partially_uptodate,
3763         .error_remove_page      = generic_error_remove_page,
3764 };
3765
3766 void ext4_set_aops(struct inode *inode)
3767 {
3768         switch (ext4_inode_journal_mode(inode)) {
3769         case EXT4_INODE_ORDERED_DATA_MODE:
3770         case EXT4_INODE_WRITEBACK_DATA_MODE:
3771                 break;
3772         case EXT4_INODE_JOURNAL_DATA_MODE:
3773                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3774                 return;
3775         default:
3776                 BUG();
3777         }
3778         if (test_opt(inode->i_sb, DELALLOC))
3779                 inode->i_mapping->a_ops = &ext4_da_aops;
3780         else
3781                 inode->i_mapping->a_ops = &ext4_aops;
3782 }
3783
3784 static int __ext4_block_zero_page_range(handle_t *handle,
3785                 struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787         ext4_fsblk_t index = from >> PAGE_SHIFT;
3788         unsigned offset = from & (PAGE_SIZE-1);
3789         unsigned blocksize, pos;
3790         ext4_lblk_t iblock;
3791         struct inode *inode = mapping->host;
3792         struct buffer_head *bh;
3793         struct page *page;
3794         int err = 0;
3795
3796         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3797                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3798         if (!page)
3799                 return -ENOMEM;
3800
3801         blocksize = inode->i_sb->s_blocksize;
3802
3803         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3804
3805         if (!page_has_buffers(page))
3806                 create_empty_buffers(page, blocksize, 0);
3807
3808         /* Find the buffer that contains "offset" */
3809         bh = page_buffers(page);
3810         pos = blocksize;
3811         while (offset >= pos) {
3812                 bh = bh->b_this_page;
3813                 iblock++;
3814                 pos += blocksize;
3815         }
3816         if (buffer_freed(bh)) {
3817                 BUFFER_TRACE(bh, "freed: skip");
3818                 goto unlock;
3819         }
3820         if (!buffer_mapped(bh)) {
3821                 BUFFER_TRACE(bh, "unmapped");
3822                 ext4_get_block(inode, iblock, bh, 0);
3823                 /* unmapped? It's a hole - nothing to do */
3824                 if (!buffer_mapped(bh)) {
3825                         BUFFER_TRACE(bh, "still unmapped");
3826                         goto unlock;
3827                 }
3828         }
3829
3830         /* Ok, it's mapped. Make sure it's up-to-date */
3831         if (PageUptodate(page))
3832                 set_buffer_uptodate(bh);
3833
3834         if (!buffer_uptodate(bh)) {
3835                 err = -EIO;
3836                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3837                 wait_on_buffer(bh);
3838                 /* Uhhuh. Read error. Complain and punt. */
3839                 if (!buffer_uptodate(bh))
3840                         goto unlock;
3841                 if (S_ISREG(inode->i_mode) &&
3842                     ext4_encrypted_inode(inode)) {
3843                         /* We expect the key to be set. */
3844                         BUG_ON(!fscrypt_has_encryption_key(inode));
3845                         BUG_ON(blocksize != PAGE_SIZE);
3846                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3847                                                 page, PAGE_SIZE, 0, page->index));
3848                 }
3849         }
3850         if (ext4_should_journal_data(inode)) {
3851                 BUFFER_TRACE(bh, "get write access");
3852                 err = ext4_journal_get_write_access(handle, bh);
3853                 if (err)
3854                         goto unlock;
3855         }
3856         zero_user(page, offset, length);
3857         BUFFER_TRACE(bh, "zeroed end of block");
3858
3859         if (ext4_should_journal_data(inode)) {
3860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3861         } else {
3862                 err = 0;
3863                 mark_buffer_dirty(bh);
3864                 if (ext4_should_order_data(inode))
3865                         err = ext4_jbd2_inode_add_write(handle, inode);
3866         }
3867
3868 unlock:
3869         unlock_page(page);
3870         put_page(page);
3871         return err;
3872 }
3873
3874 /*
3875  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3876  * starting from file offset 'from'.  The range to be zero'd must
3877  * be contained with in one block.  If the specified range exceeds
3878  * the end of the block it will be shortened to end of the block
3879  * that cooresponds to 'from'
3880  */
3881 static int ext4_block_zero_page_range(handle_t *handle,
3882                 struct address_space *mapping, loff_t from, loff_t length)
3883 {
3884         struct inode *inode = mapping->host;
3885         unsigned offset = from & (PAGE_SIZE-1);
3886         unsigned blocksize = inode->i_sb->s_blocksize;
3887         unsigned max = blocksize - (offset & (blocksize - 1));
3888
3889         /*
3890          * correct length if it does not fall between
3891          * 'from' and the end of the block
3892          */
3893         if (length > max || length < 0)
3894                 length = max;
3895
3896         if (IS_DAX(inode)) {
3897                 return iomap_zero_range(inode, from, length, NULL,
3898                                         &ext4_iomap_ops);
3899         }
3900         return __ext4_block_zero_page_range(handle, mapping, from, length);
3901 }
3902
3903 /*
3904  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3905  * up to the end of the block which corresponds to `from'.
3906  * This required during truncate. We need to physically zero the tail end
3907  * of that block so it doesn't yield old data if the file is later grown.
3908  */
3909 static int ext4_block_truncate_page(handle_t *handle,
3910                 struct address_space *mapping, loff_t from)
3911 {
3912         unsigned offset = from & (PAGE_SIZE-1);
3913         unsigned length;
3914         unsigned blocksize;
3915         struct inode *inode = mapping->host;
3916
3917         blocksize = inode->i_sb->s_blocksize;
3918         length = blocksize - (offset & (blocksize - 1));
3919
3920         return ext4_block_zero_page_range(handle, mapping, from, length);
3921 }
3922
3923 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3924                              loff_t lstart, loff_t length)
3925 {
3926         struct super_block *sb = inode->i_sb;
3927         struct address_space *mapping = inode->i_mapping;
3928         unsigned partial_start, partial_end;
3929         ext4_fsblk_t start, end;
3930         loff_t byte_end = (lstart + length - 1);
3931         int err = 0;
3932
3933         partial_start = lstart & (sb->s_blocksize - 1);
3934         partial_end = byte_end & (sb->s_blocksize - 1);
3935
3936         start = lstart >> sb->s_blocksize_bits;
3937         end = byte_end >> sb->s_blocksize_bits;
3938
3939         /* Handle partial zero within the single block */
3940         if (start == end &&
3941             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3942                 err = ext4_block_zero_page_range(handle, mapping,
3943                                                  lstart, length);
3944                 return err;
3945         }
3946         /* Handle partial zero out on the start of the range */
3947         if (partial_start) {
3948                 err = ext4_block_zero_page_range(handle, mapping,
3949                                                  lstart, sb->s_blocksize);
3950                 if (err)
3951                         return err;
3952         }
3953         /* Handle partial zero out on the end of the range */
3954         if (partial_end != sb->s_blocksize - 1)
3955                 err = ext4_block_zero_page_range(handle, mapping,
3956                                                  byte_end - partial_end,
3957                                                  partial_end + 1);
3958         return err;
3959 }
3960
3961 int ext4_can_truncate(struct inode *inode)
3962 {
3963         if (S_ISREG(inode->i_mode))
3964                 return 1;
3965         if (S_ISDIR(inode->i_mode))
3966                 return 1;
3967         if (S_ISLNK(inode->i_mode))
3968                 return !ext4_inode_is_fast_symlink(inode);
3969         return 0;
3970 }
3971
3972 /*
3973  * We have to make sure i_disksize gets properly updated before we truncate
3974  * page cache due to hole punching or zero range. Otherwise i_disksize update
3975  * can get lost as it may have been postponed to submission of writeback but
3976  * that will never happen after we truncate page cache.
3977  */
3978 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3979                                       loff_t len)
3980 {
3981         handle_t *handle;
3982         loff_t size = i_size_read(inode);
3983
3984         WARN_ON(!inode_is_locked(inode));
3985         if (offset > size || offset + len < size)
3986                 return 0;
3987
3988         if (EXT4_I(inode)->i_disksize >= size)
3989                 return 0;
3990
3991         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3992         if (IS_ERR(handle))
3993                 return PTR_ERR(handle);
3994         ext4_update_i_disksize(inode, size);
3995         ext4_mark_inode_dirty(handle, inode);
3996         ext4_journal_stop(handle);
3997
3998         return 0;
3999 }
4000
4001 /*
4002  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4003  * associated with the given offset and length
4004  *
4005  * @inode:  File inode
4006  * @offset: The offset where the hole will begin
4007  * @len:    The length of the hole
4008  *
4009  * Returns: 0 on success or negative on failure
4010  */
4011
4012 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4013 {
4014         struct super_block *sb = inode->i_sb;
4015         ext4_lblk_t first_block, stop_block;
4016         struct address_space *mapping = inode->i_mapping;
4017         loff_t first_block_offset, last_block_offset;
4018         handle_t *handle;
4019         unsigned int credits;
4020         int ret = 0;
4021
4022         if (!S_ISREG(inode->i_mode))
4023                 return -EOPNOTSUPP;
4024
4025         trace_ext4_punch_hole(inode, offset, length, 0);
4026
4027         /*
4028          * Write out all dirty pages to avoid race conditions
4029          * Then release them.
4030          */
4031         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4032                 ret = filemap_write_and_wait_range(mapping, offset,
4033                                                    offset + length - 1);
4034                 if (ret)
4035                         return ret;
4036         }
4037
4038         inode_lock(inode);
4039
4040         /* No need to punch hole beyond i_size */
4041         if (offset >= inode->i_size)
4042                 goto out_mutex;
4043
4044         /*
4045          * If the hole extends beyond i_size, set the hole
4046          * to end after the page that contains i_size
4047          */
4048         if (offset + length > inode->i_size) {
4049                 length = inode->i_size +
4050                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4051                    offset;
4052         }
4053
4054         if (offset & (sb->s_blocksize - 1) ||
4055             (offset + length) & (sb->s_blocksize - 1)) {
4056                 /*
4057                  * Attach jinode to inode for jbd2 if we do any zeroing of
4058                  * partial block
4059                  */
4060                 ret = ext4_inode_attach_jinode(inode);
4061                 if (ret < 0)
4062                         goto out_mutex;
4063
4064         }
4065
4066         /* Wait all existing dio workers, newcomers will block on i_mutex */
4067         ext4_inode_block_unlocked_dio(inode);
4068         inode_dio_wait(inode);
4069
4070         /*
4071          * Prevent page faults from reinstantiating pages we have released from
4072          * page cache.
4073          */
4074         down_write(&EXT4_I(inode)->i_mmap_sem);
4075         first_block_offset = round_up(offset, sb->s_blocksize);
4076         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4077
4078         /* Now release the pages and zero block aligned part of pages*/
4079         if (last_block_offset > first_block_offset) {
4080                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081                 if (ret)
4082                         goto out_dio;
4083                 truncate_pagecache_range(inode, first_block_offset,
4084                                          last_block_offset);
4085         }
4086
4087         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088                 credits = ext4_writepage_trans_blocks(inode);
4089         else
4090                 credits = ext4_blocks_for_truncate(inode);
4091         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092         if (IS_ERR(handle)) {
4093                 ret = PTR_ERR(handle);
4094                 ext4_std_error(sb, ret);
4095                 goto out_dio;
4096         }
4097
4098         ret = ext4_zero_partial_blocks(handle, inode, offset,
4099                                        length);
4100         if (ret)
4101                 goto out_stop;
4102
4103         first_block = (offset + sb->s_blocksize - 1) >>
4104                 EXT4_BLOCK_SIZE_BITS(sb);
4105         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
4107         /* If there are no blocks to remove, return now */
4108         if (first_block >= stop_block)
4109                 goto out_stop;
4110
4111         down_write(&EXT4_I(inode)->i_data_sem);
4112         ext4_discard_preallocations(inode);
4113
4114         ret = ext4_es_remove_extent(inode, first_block,
4115                                     stop_block - first_block);
4116         if (ret) {
4117                 up_write(&EXT4_I(inode)->i_data_sem);
4118                 goto out_stop;
4119         }
4120
4121         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122                 ret = ext4_ext_remove_space(inode, first_block,
4123                                             stop_block - 1);
4124         else
4125                 ret = ext4_ind_remove_space(handle, inode, first_block,
4126                                             stop_block);
4127
4128         up_write(&EXT4_I(inode)->i_data_sem);
4129         if (IS_SYNC(inode))
4130                 ext4_handle_sync(handle);
4131
4132         inode->i_mtime = inode->i_ctime = current_time(inode);
4133         ext4_mark_inode_dirty(handle, inode);
4134 out_stop:
4135         ext4_journal_stop(handle);
4136 out_dio:
4137         up_write(&EXT4_I(inode)->i_mmap_sem);
4138         ext4_inode_resume_unlocked_dio(inode);
4139 out_mutex:
4140         inode_unlock(inode);
4141         return ret;
4142 }
4143
4144 int ext4_inode_attach_jinode(struct inode *inode)
4145 {
4146         struct ext4_inode_info *ei = EXT4_I(inode);
4147         struct jbd2_inode *jinode;
4148
4149         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150                 return 0;
4151
4152         jinode = jbd2_alloc_inode(GFP_KERNEL);
4153         spin_lock(&inode->i_lock);
4154         if (!ei->jinode) {
4155                 if (!jinode) {
4156                         spin_unlock(&inode->i_lock);
4157                         return -ENOMEM;
4158                 }
4159                 ei->jinode = jinode;
4160                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161                 jinode = NULL;
4162         }
4163         spin_unlock(&inode->i_lock);
4164         if (unlikely(jinode != NULL))
4165                 jbd2_free_inode(jinode);
4166         return 0;
4167 }
4168
4169 /*
4170  * ext4_truncate()
4171  *
4172  * We block out ext4_get_block() block instantiations across the entire
4173  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4174  * simultaneously on behalf of the same inode.
4175  *
4176  * As we work through the truncate and commit bits of it to the journal there
4177  * is one core, guiding principle: the file's tree must always be consistent on
4178  * disk.  We must be able to restart the truncate after a crash.
4179  *
4180  * The file's tree may be transiently inconsistent in memory (although it
4181  * probably isn't), but whenever we close off and commit a journal transaction,
4182  * the contents of (the filesystem + the journal) must be consistent and
4183  * restartable.  It's pretty simple, really: bottom up, right to left (although
4184  * left-to-right works OK too).
4185  *
4186  * Note that at recovery time, journal replay occurs *before* the restart of
4187  * truncate against the orphan inode list.
4188  *
4189  * The committed inode has the new, desired i_size (which is the same as
4190  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4191  * that this inode's truncate did not complete and it will again call
4192  * ext4_truncate() to have another go.  So there will be instantiated blocks
4193  * to the right of the truncation point in a crashed ext4 filesystem.  But
4194  * that's fine - as long as they are linked from the inode, the post-crash
4195  * ext4_truncate() run will find them and release them.
4196  */
4197 int ext4_truncate(struct inode *inode)
4198 {
4199         struct ext4_inode_info *ei = EXT4_I(inode);
4200         unsigned int credits;
4201         int err = 0;
4202         handle_t *handle;
4203         struct address_space *mapping = inode->i_mapping;
4204
4205         /*
4206          * There is a possibility that we're either freeing the inode
4207          * or it's a completely new inode. In those cases we might not
4208          * have i_mutex locked because it's not necessary.
4209          */
4210         if (!(inode->i_state & (I_NEW|I_FREEING)))
4211                 WARN_ON(!inode_is_locked(inode));
4212         trace_ext4_truncate_enter(inode);
4213
4214         if (!ext4_can_truncate(inode))
4215                 return 0;
4216
4217         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4218
4219         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4221
4222         if (ext4_has_inline_data(inode)) {
4223                 int has_inline = 1;
4224
4225                 ext4_inline_data_truncate(inode, &has_inline);
4226                 if (has_inline)
4227                         return 0;
4228         }
4229
4230         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232                 if (ext4_inode_attach_jinode(inode) < 0)
4233                         return 0;
4234         }
4235
4236         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237                 credits = ext4_writepage_trans_blocks(inode);
4238         else
4239                 credits = ext4_blocks_for_truncate(inode);
4240
4241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4242         if (IS_ERR(handle))
4243                 return PTR_ERR(handle);
4244
4245         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4246                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4247
4248         /*
4249          * We add the inode to the orphan list, so that if this
4250          * truncate spans multiple transactions, and we crash, we will
4251          * resume the truncate when the filesystem recovers.  It also
4252          * marks the inode dirty, to catch the new size.
4253          *
4254          * Implication: the file must always be in a sane, consistent
4255          * truncatable state while each transaction commits.
4256          */
4257         err = ext4_orphan_add(handle, inode);
4258         if (err)
4259                 goto out_stop;
4260
4261         down_write(&EXT4_I(inode)->i_data_sem);
4262
4263         ext4_discard_preallocations(inode);
4264
4265         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266                 err = ext4_ext_truncate(handle, inode);
4267         else
4268                 ext4_ind_truncate(handle, inode);
4269
4270         up_write(&ei->i_data_sem);
4271         if (err)
4272                 goto out_stop;
4273
4274         if (IS_SYNC(inode))
4275                 ext4_handle_sync(handle);
4276
4277 out_stop:
4278         /*
4279          * If this was a simple ftruncate() and the file will remain alive,
4280          * then we need to clear up the orphan record which we created above.
4281          * However, if this was a real unlink then we were called by
4282          * ext4_evict_inode(), and we allow that function to clean up the
4283          * orphan info for us.
4284          */
4285         if (inode->i_nlink)
4286                 ext4_orphan_del(handle, inode);
4287
4288         inode->i_mtime = inode->i_ctime = current_time(inode);
4289         ext4_mark_inode_dirty(handle, inode);
4290         ext4_journal_stop(handle);
4291
4292         trace_ext4_truncate_exit(inode);
4293         return err;
4294 }
4295
4296 /*
4297  * ext4_get_inode_loc returns with an extra refcount against the inode's
4298  * underlying buffer_head on success. If 'in_mem' is true, we have all
4299  * data in memory that is needed to recreate the on-disk version of this
4300  * inode.
4301  */
4302 static int __ext4_get_inode_loc(struct inode *inode,
4303                                 struct ext4_iloc *iloc, int in_mem)
4304 {
4305         struct ext4_group_desc  *gdp;
4306         struct buffer_head      *bh;
4307         struct super_block      *sb = inode->i_sb;
4308         ext4_fsblk_t            block;
4309         int                     inodes_per_block, inode_offset;
4310
4311         iloc->bh = NULL;
4312         if (!ext4_valid_inum(sb, inode->i_ino))
4313                 return -EFSCORRUPTED;
4314
4315         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317         if (!gdp)
4318                 return -EIO;
4319
4320         /*
4321          * Figure out the offset within the block group inode table
4322          */
4323         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4324         inode_offset = ((inode->i_ino - 1) %
4325                         EXT4_INODES_PER_GROUP(sb));
4326         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328
4329         bh = sb_getblk(sb, block);
4330         if (unlikely(!bh))
4331                 return -ENOMEM;
4332         if (!buffer_uptodate(bh)) {
4333                 lock_buffer(bh);
4334
4335                 /*
4336                  * If the buffer has the write error flag, we have failed
4337                  * to write out another inode in the same block.  In this
4338                  * case, we don't have to read the block because we may
4339                  * read the old inode data successfully.
4340                  */
4341                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4342                         set_buffer_uptodate(bh);
4343
4344                 if (buffer_uptodate(bh)) {
4345                         /* someone brought it uptodate while we waited */
4346                         unlock_buffer(bh);
4347                         goto has_buffer;
4348                 }
4349
4350                 /*
4351                  * If we have all information of the inode in memory and this
4352                  * is the only valid inode in the block, we need not read the
4353                  * block.
4354                  */
4355                 if (in_mem) {
4356                         struct buffer_head *bitmap_bh;
4357                         int i, start;
4358
4359                         start = inode_offset & ~(inodes_per_block - 1);
4360
4361                         /* Is the inode bitmap in cache? */
4362                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4363                         if (unlikely(!bitmap_bh))
4364                                 goto make_io;
4365
4366                         /*
4367                          * If the inode bitmap isn't in cache then the
4368                          * optimisation may end up performing two reads instead
4369                          * of one, so skip it.
4370                          */
4371                         if (!buffer_uptodate(bitmap_bh)) {
4372                                 brelse(bitmap_bh);
4373                                 goto make_io;
4374                         }
4375                         for (i = start; i < start + inodes_per_block; i++) {
4376                                 if (i == inode_offset)
4377                                         continue;
4378                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4379                                         break;
4380                         }
4381                         brelse(bitmap_bh);
4382                         if (i == start + inodes_per_block) {
4383                                 /* all other inodes are free, so skip I/O */
4384                                 memset(bh->b_data, 0, bh->b_size);
4385                                 set_buffer_uptodate(bh);
4386                                 unlock_buffer(bh);
4387                                 goto has_buffer;
4388                         }
4389                 }
4390
4391 make_io:
4392                 /*
4393                  * If we need to do any I/O, try to pre-readahead extra
4394                  * blocks from the inode table.
4395                  */
4396                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397                         ext4_fsblk_t b, end, table;
4398                         unsigned num;
4399                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4400
4401                         table = ext4_inode_table(sb, gdp);
4402                         /* s_inode_readahead_blks is always a power of 2 */
4403                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4404                         if (table > b)
4405                                 b = table;
4406                         end = b + ra_blks;
4407                         num = EXT4_INODES_PER_GROUP(sb);
4408                         if (ext4_has_group_desc_csum(sb))
4409                                 num -= ext4_itable_unused_count(sb, gdp);
4410                         table += num / inodes_per_block;
4411                         if (end > table)
4412                                 end = table;
4413                         while (b <= end)
4414                                 sb_breadahead(sb, b++);
4415                 }
4416
4417                 /*
4418                  * There are other valid inodes in the buffer, this inode
4419                  * has in-inode xattrs, or we don't have this inode in memory.
4420                  * Read the block from disk.
4421                  */
4422                 trace_ext4_load_inode(inode);
4423                 get_bh(bh);
4424                 bh->b_end_io = end_buffer_read_sync;
4425                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4426                 wait_on_buffer(bh);
4427                 if (!buffer_uptodate(bh)) {
4428                         EXT4_ERROR_INODE_BLOCK(inode, block,
4429                                                "unable to read itable block");
4430                         brelse(bh);
4431                         return -EIO;
4432                 }
4433         }
4434 has_buffer:
4435         iloc->bh = bh;
4436         return 0;
4437 }
4438
4439 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441         /* We have all inode data except xattrs in memory here. */
4442         return __ext4_get_inode_loc(inode, iloc,
4443                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4444 }
4445
4446 void ext4_set_inode_flags(struct inode *inode)
4447 {
4448         unsigned int flags = EXT4_I(inode)->i_flags;
4449         unsigned int new_fl = 0;
4450
4451         if (flags & EXT4_SYNC_FL)
4452                 new_fl |= S_SYNC;
4453         if (flags & EXT4_APPEND_FL)
4454                 new_fl |= S_APPEND;
4455         if (flags & EXT4_IMMUTABLE_FL)
4456                 new_fl |= S_IMMUTABLE;
4457         if (flags & EXT4_NOATIME_FL)
4458                 new_fl |= S_NOATIME;
4459         if (flags & EXT4_DIRSYNC_FL)
4460                 new_fl |= S_DIRSYNC;
4461         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4462             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4463             !ext4_encrypted_inode(inode))
4464                 new_fl |= S_DAX;
4465         inode_set_flags(inode, new_fl,
4466                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4467 }
4468
4469 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4470 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4471 {
4472         unsigned int vfs_fl;
4473         unsigned long old_fl, new_fl;
4474
4475         do {
4476                 vfs_fl = ei->vfs_inode.i_flags;
4477                 old_fl = ei->i_flags;
4478                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4479                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4480                                 EXT4_DIRSYNC_FL);
4481                 if (vfs_fl & S_SYNC)
4482                         new_fl |= EXT4_SYNC_FL;
4483                 if (vfs_fl & S_APPEND)
4484                         new_fl |= EXT4_APPEND_FL;
4485                 if (vfs_fl & S_IMMUTABLE)
4486                         new_fl |= EXT4_IMMUTABLE_FL;
4487                 if (vfs_fl & S_NOATIME)
4488                         new_fl |= EXT4_NOATIME_FL;
4489                 if (vfs_fl & S_DIRSYNC)
4490                         new_fl |= EXT4_DIRSYNC_FL;
4491         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4492 }
4493
4494 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4495                                   struct ext4_inode_info *ei)
4496 {
4497         blkcnt_t i_blocks ;
4498         struct inode *inode = &(ei->vfs_inode);
4499         struct super_block *sb = inode->i_sb;
4500
4501         if (ext4_has_feature_huge_file(sb)) {
4502                 /* we are using combined 48 bit field */
4503                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4504                                         le32_to_cpu(raw_inode->i_blocks_lo);
4505                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4506                         /* i_blocks represent file system block size */
4507                         return i_blocks  << (inode->i_blkbits - 9);
4508                 } else {
4509                         return i_blocks;
4510                 }
4511         } else {
4512                 return le32_to_cpu(raw_inode->i_blocks_lo);
4513         }
4514 }
4515
4516 static inline void ext4_iget_extra_inode(struct inode *inode,
4517                                          struct ext4_inode *raw_inode,
4518                                          struct ext4_inode_info *ei)
4519 {
4520         __le32 *magic = (void *)raw_inode +
4521                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4522         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4523             EXT4_INODE_SIZE(inode->i_sb) &&
4524             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4525                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4526                 ext4_find_inline_data_nolock(inode);
4527         } else
4528                 EXT4_I(inode)->i_inline_off = 0;
4529 }
4530
4531 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4532 {
4533         if (!ext4_has_feature_project(inode->i_sb))
4534                 return -EOPNOTSUPP;
4535         *projid = EXT4_I(inode)->i_projid;
4536         return 0;
4537 }
4538
4539 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4540 {
4541         struct ext4_iloc iloc;
4542         struct ext4_inode *raw_inode;
4543         struct ext4_inode_info *ei;
4544         struct inode *inode;
4545         journal_t *journal = EXT4_SB(sb)->s_journal;
4546         long ret;
4547         loff_t size;
4548         int block;
4549         uid_t i_uid;
4550         gid_t i_gid;
4551         projid_t i_projid;
4552
4553         inode = iget_locked(sb, ino);
4554         if (!inode)
4555                 return ERR_PTR(-ENOMEM);
4556         if (!(inode->i_state & I_NEW))
4557                 return inode;
4558
4559         ei = EXT4_I(inode);
4560         iloc.bh = NULL;
4561
4562         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4563         if (ret < 0)
4564                 goto bad_inode;
4565         raw_inode = ext4_raw_inode(&iloc);
4566
4567         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4568                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4569                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4570                         EXT4_INODE_SIZE(inode->i_sb) ||
4571                     (ei->i_extra_isize & 3)) {
4572                         EXT4_ERROR_INODE(inode,
4573                                          "bad extra_isize %u (inode size %u)",
4574                                          ei->i_extra_isize,
4575                                          EXT4_INODE_SIZE(inode->i_sb));
4576                         ret = -EFSCORRUPTED;
4577                         goto bad_inode;
4578                 }
4579         } else
4580                 ei->i_extra_isize = 0;
4581
4582         /* Precompute checksum seed for inode metadata */
4583         if (ext4_has_metadata_csum(sb)) {
4584                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585                 __u32 csum;
4586                 __le32 inum = cpu_to_le32(inode->i_ino);
4587                 __le32 gen = raw_inode->i_generation;
4588                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4589                                    sizeof(inum));
4590                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4591                                               sizeof(gen));
4592         }
4593
4594         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4595                 EXT4_ERROR_INODE(inode, "checksum invalid");
4596                 ret = -EFSBADCRC;
4597                 goto bad_inode;
4598         }
4599
4600         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4601         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4603         if (ext4_has_feature_project(sb) &&
4604             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607         else
4608                 i_projid = EXT4_DEF_PROJID;
4609
4610         if (!(test_opt(inode->i_sb, NO_UID32))) {
4611                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4613         }
4614         i_uid_write(inode, i_uid);
4615         i_gid_write(inode, i_gid);
4616         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4617         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4618
4619         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4620         ei->i_inline_off = 0;
4621         ei->i_dir_start_lookup = 0;
4622         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623         /* We now have enough fields to check if the inode was active or not.
4624          * This is needed because nfsd might try to access dead inodes
4625          * the test is that same one that e2fsck uses
4626          * NeilBrown 1999oct15
4627          */
4628         if (inode->i_nlink == 0) {
4629                 if ((inode->i_mode == 0 ||
4630                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631                     ino != EXT4_BOOT_LOADER_INO) {
4632                         /* this inode is deleted */
4633                         ret = -ESTALE;
4634                         goto bad_inode;
4635                 }
4636                 /* The only unlinked inodes we let through here have
4637                  * valid i_mode and are being read by the orphan
4638                  * recovery code: that's fine, we're about to complete
4639                  * the process of deleting those.
4640                  * OR it is the EXT4_BOOT_LOADER_INO which is
4641                  * not initialized on a new filesystem. */
4642         }
4643         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4644         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4645         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4646         if (ext4_has_feature_64bit(sb))
4647                 ei->i_file_acl |=
4648                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4649         inode->i_size = ext4_isize(raw_inode);
4650         if ((size = i_size_read(inode)) < 0) {
4651                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4652                 ret = -EFSCORRUPTED;
4653                 goto bad_inode;
4654         }
4655         ei->i_disksize = inode->i_size;
4656 #ifdef CONFIG_QUOTA
4657         ei->i_reserved_quota = 0;
4658 #endif
4659         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4660         ei->i_block_group = iloc.block_group;
4661         ei->i_last_alloc_group = ~0;
4662         /*
4663          * NOTE! The in-memory inode i_data array is in little-endian order
4664          * even on big-endian machines: we do NOT byteswap the block numbers!
4665          */
4666         for (block = 0; block < EXT4_N_BLOCKS; block++)
4667                 ei->i_data[block] = raw_inode->i_block[block];
4668         INIT_LIST_HEAD(&ei->i_orphan);
4669
4670         /*
4671          * Set transaction id's of transactions that have to be committed
4672          * to finish f[data]sync. We set them to currently running transaction
4673          * as we cannot be sure that the inode or some of its metadata isn't
4674          * part of the transaction - the inode could have been reclaimed and
4675          * now it is reread from disk.
4676          */
4677         if (journal) {
4678                 transaction_t *transaction;
4679                 tid_t tid;
4680
4681                 read_lock(&journal->j_state_lock);
4682                 if (journal->j_running_transaction)
4683                         transaction = journal->j_running_transaction;
4684                 else
4685                         transaction = journal->j_committing_transaction;
4686                 if (transaction)
4687                         tid = transaction->t_tid;
4688                 else
4689                         tid = journal->j_commit_sequence;
4690                 read_unlock(&journal->j_state_lock);
4691                 ei->i_sync_tid = tid;
4692                 ei->i_datasync_tid = tid;
4693         }
4694
4695         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4696                 if (ei->i_extra_isize == 0) {
4697                         /* The extra space is currently unused. Use it. */
4698                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4699                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4700                                             EXT4_GOOD_OLD_INODE_SIZE;
4701                 } else {
4702                         ext4_iget_extra_inode(inode, raw_inode, ei);
4703                 }
4704         }
4705
4706         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4707         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4708         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4709         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4710
4711         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4712                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4713                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4715                                 inode->i_version |=
4716                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4717                 }
4718         }
4719
4720         ret = 0;
4721         if (ei->i_file_acl &&
4722             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4723                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4724                                  ei->i_file_acl);
4725                 ret = -EFSCORRUPTED;
4726                 goto bad_inode;
4727         } else if (!ext4_has_inline_data(inode)) {
4728                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4729                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4730                             (S_ISLNK(inode->i_mode) &&
4731                              !ext4_inode_is_fast_symlink(inode))))
4732                                 /* Validate extent which is part of inode */
4733                                 ret = ext4_ext_check_inode(inode);
4734                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4735                            (S_ISLNK(inode->i_mode) &&
4736                             !ext4_inode_is_fast_symlink(inode))) {
4737                         /* Validate block references which are part of inode */
4738                         ret = ext4_ind_check_inode(inode);
4739                 }
4740         }
4741         if (ret)
4742                 goto bad_inode;
4743
4744         if (S_ISREG(inode->i_mode)) {
4745                 inode->i_op = &ext4_file_inode_operations;
4746                 inode->i_fop = &ext4_file_operations;
4747                 ext4_set_aops(inode);
4748         } else if (S_ISDIR(inode->i_mode)) {
4749                 inode->i_op = &ext4_dir_inode_operations;
4750                 inode->i_fop = &ext4_dir_operations;
4751         } else if (S_ISLNK(inode->i_mode)) {
4752                 if (ext4_encrypted_inode(inode)) {
4753                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4754                         ext4_set_aops(inode);
4755                 } else if (ext4_inode_is_fast_symlink(inode)) {
4756                         inode->i_link = (char *)ei->i_data;
4757                         inode->i_op = &ext4_fast_symlink_inode_operations;
4758                         nd_terminate_link(ei->i_data, inode->i_size,
4759                                 sizeof(ei->i_data) - 1);
4760                 } else {
4761                         inode->i_op = &ext4_symlink_inode_operations;
4762                         ext4_set_aops(inode);
4763                 }
4764                 inode_nohighmem(inode);
4765         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4766               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4767                 inode->i_op = &ext4_special_inode_operations;
4768                 if (raw_inode->i_block[0])
4769                         init_special_inode(inode, inode->i_mode,
4770                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4771                 else
4772                         init_special_inode(inode, inode->i_mode,
4773                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4774         } else if (ino == EXT4_BOOT_LOADER_INO) {
4775                 make_bad_inode(inode);
4776         } else {
4777                 ret = -EFSCORRUPTED;
4778                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4779                 goto bad_inode;
4780         }
4781         brelse(iloc.bh);
4782         ext4_set_inode_flags(inode);
4783         unlock_new_inode(inode);
4784         return inode;
4785
4786 bad_inode:
4787         brelse(iloc.bh);
4788         iget_failed(inode);
4789         return ERR_PTR(ret);
4790 }
4791
4792 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4793 {
4794         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4795                 return ERR_PTR(-EFSCORRUPTED);
4796         return ext4_iget(sb, ino);
4797 }
4798
4799 static int ext4_inode_blocks_set(handle_t *handle,
4800                                 struct ext4_inode *raw_inode,
4801                                 struct ext4_inode_info *ei)
4802 {
4803         struct inode *inode = &(ei->vfs_inode);
4804         u64 i_blocks = inode->i_blocks;
4805         struct super_block *sb = inode->i_sb;
4806
4807         if (i_blocks <= ~0U) {
4808                 /*
4809                  * i_blocks can be represented in a 32 bit variable
4810                  * as multiple of 512 bytes
4811                  */
4812                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4813                 raw_inode->i_blocks_high = 0;
4814                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4815                 return 0;
4816         }
4817         if (!ext4_has_feature_huge_file(sb))
4818                 return -EFBIG;
4819
4820         if (i_blocks <= 0xffffffffffffULL) {
4821                 /*
4822                  * i_blocks can be represented in a 48 bit variable
4823                  * as multiple of 512 bytes
4824                  */
4825                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4826                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4827                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828         } else {
4829                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4830                 /* i_block is stored in file system block size */
4831                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4833                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4834         }
4835         return 0;
4836 }
4837
4838 struct other_inode {
4839         unsigned long           orig_ino;
4840         struct ext4_inode       *raw_inode;
4841 };
4842
4843 static int other_inode_match(struct inode * inode, unsigned long ino,
4844                              void *data)
4845 {
4846         struct other_inode *oi = (struct other_inode *) data;
4847
4848         if ((inode->i_ino != ino) ||
4849             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4851             ((inode->i_state & I_DIRTY_TIME) == 0))
4852                 return 0;
4853         spin_lock(&inode->i_lock);
4854         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4856             (inode->i_state & I_DIRTY_TIME)) {
4857                 struct ext4_inode_info  *ei = EXT4_I(inode);
4858
4859                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860                 spin_unlock(&inode->i_lock);
4861
4862                 spin_lock(&ei->i_raw_lock);
4863                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867                 spin_unlock(&ei->i_raw_lock);
4868                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869                 return -1;
4870         }
4871         spin_unlock(&inode->i_lock);
4872         return -1;
4873 }
4874
4875 /*
4876  * Opportunistically update the other time fields for other inodes in
4877  * the same inode table block.
4878  */
4879 static void ext4_update_other_inodes_time(struct super_block *sb,
4880                                           unsigned long orig_ino, char *buf)
4881 {
4882         struct other_inode oi;
4883         unsigned long ino;
4884         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885         int inode_size = EXT4_INODE_SIZE(sb);
4886
4887         oi.orig_ino = orig_ino;
4888         /*
4889          * Calculate the first inode in the inode table block.  Inode
4890          * numbers are one-based.  That is, the first inode in a block
4891          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4892          */
4893         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4894         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895                 if (ino == orig_ino)
4896                         continue;
4897                 oi.raw_inode = (struct ext4_inode *) buf;
4898                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4899         }
4900 }
4901
4902 /*
4903  * Post the struct inode info into an on-disk inode location in the
4904  * buffer-cache.  This gobbles the caller's reference to the
4905  * buffer_head in the inode location struct.
4906  *
4907  * The caller must have write access to iloc->bh.
4908  */
4909 static int ext4_do_update_inode(handle_t *handle,
4910                                 struct inode *inode,
4911                                 struct ext4_iloc *iloc)
4912 {
4913         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914         struct ext4_inode_info *ei = EXT4_I(inode);
4915         struct buffer_head *bh = iloc->bh;
4916         struct super_block *sb = inode->i_sb;
4917         int err = 0, rc, block;
4918         int need_datasync = 0, set_large_file = 0;
4919         uid_t i_uid;
4920         gid_t i_gid;
4921         projid_t i_projid;
4922
4923         spin_lock(&ei->i_raw_lock);
4924
4925         /* For fields not tracked in the in-memory inode,
4926          * initialise them to zero for new inodes. */
4927         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4928                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4929
4930         ext4_get_inode_flags(ei);
4931         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4932         i_uid = i_uid_read(inode);
4933         i_gid = i_gid_read(inode);
4934         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4935         if (!(test_opt(inode->i_sb, NO_UID32))) {
4936                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4937                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4938 /*
4939  * Fix up interoperability with old kernels. Otherwise, old inodes get
4940  * re-used with the upper 16 bits of the uid/gid intact
4941  */
4942                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4943                         raw_inode->i_uid_high = 0;
4944                         raw_inode->i_gid_high = 0;
4945                 } else {
4946                         raw_inode->i_uid_high =
4947                                 cpu_to_le16(high_16_bits(i_uid));
4948                         raw_inode->i_gid_high =
4949                                 cpu_to_le16(high_16_bits(i_gid));
4950                 }
4951         } else {
4952                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4953                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4954                 raw_inode->i_uid_high = 0;
4955                 raw_inode->i_gid_high = 0;
4956         }
4957         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4958
4959         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4960         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4961         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4962         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963
4964         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4965         if (err) {
4966                 spin_unlock(&ei->i_raw_lock);
4967                 goto out_brelse;
4968         }
4969         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4970         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4971         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4972                 raw_inode->i_file_acl_high =
4973                         cpu_to_le16(ei->i_file_acl >> 32);
4974         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4975         if (ei->i_disksize != ext4_isize(raw_inode)) {
4976                 ext4_isize_set(raw_inode, ei->i_disksize);
4977                 need_datasync = 1;
4978         }
4979         if (ei->i_disksize > 0x7fffffffULL) {
4980                 if (!ext4_has_feature_large_file(sb) ||
4981                                 EXT4_SB(sb)->s_es->s_rev_level ==
4982                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4983                         set_large_file = 1;
4984         }
4985         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4986         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4987                 if (old_valid_dev(inode->i_rdev)) {
4988                         raw_inode->i_block[0] =
4989                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4990                         raw_inode->i_block[1] = 0;
4991                 } else {
4992                         raw_inode->i_block[0] = 0;
4993                         raw_inode->i_block[1] =
4994                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4995                         raw_inode->i_block[2] = 0;
4996                 }
4997         } else if (!ext4_has_inline_data(inode)) {
4998                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4999                         raw_inode->i_block[block] = ei->i_data[block];
5000         }
5001
5002         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5003                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5004                 if (ei->i_extra_isize) {
5005                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006                                 raw_inode->i_version_hi =
5007                                         cpu_to_le32(inode->i_version >> 32);
5008                         raw_inode->i_extra_isize =
5009                                 cpu_to_le16(ei->i_extra_isize);
5010                 }
5011         }
5012
5013         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014                i_projid != EXT4_DEF_PROJID);
5015
5016         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018                 raw_inode->i_projid = cpu_to_le32(i_projid);
5019
5020         ext4_inode_csum_set(inode, raw_inode, ei);
5021         spin_unlock(&ei->i_raw_lock);
5022         if (inode->i_sb->s_flags & MS_LAZYTIME)
5023                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024                                               bh->b_data);
5025
5026         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028         if (!err)
5029                 err = rc;
5030         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031         if (set_large_file) {
5032                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034                 if (err)
5035                         goto out_brelse;
5036                 ext4_update_dynamic_rev(sb);
5037                 ext4_set_feature_large_file(sb);
5038                 ext4_handle_sync(handle);
5039                 err = ext4_handle_dirty_super(handle, sb);
5040         }
5041         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5042 out_brelse:
5043         brelse(bh);
5044         ext4_std_error(inode->i_sb, err);
5045         return err;
5046 }
5047
5048 /*
5049  * ext4_write_inode()
5050  *
5051  * We are called from a few places:
5052  *
5053  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054  *   Here, there will be no transaction running. We wait for any running
5055  *   transaction to commit.
5056  *
5057  * - Within flush work (sys_sync(), kupdate and such).
5058  *   We wait on commit, if told to.
5059  *
5060  * - Within iput_final() -> write_inode_now()
5061  *   We wait on commit, if told to.
5062  *
5063  * In all cases it is actually safe for us to return without doing anything,
5064  * because the inode has been copied into a raw inode buffer in
5065  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5066  * writeback.
5067  *
5068  * Note that we are absolutely dependent upon all inode dirtiers doing the
5069  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070  * which we are interested.
5071  *
5072  * It would be a bug for them to not do this.  The code:
5073  *
5074  *      mark_inode_dirty(inode)
5075  *      stuff();
5076  *      inode->i_size = expr;
5077  *
5078  * is in error because write_inode() could occur while `stuff()' is running,
5079  * and the new i_size will be lost.  Plus the inode will no longer be on the
5080  * superblock's dirty inode list.
5081  */
5082 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5083 {
5084         int err;
5085
5086         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5087                 return 0;
5088
5089         if (EXT4_SB(inode->i_sb)->s_journal) {
5090                 if (ext4_journal_current_handle()) {
5091                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5092                         dump_stack();
5093                         return -EIO;
5094                 }
5095
5096                 /*
5097                  * No need to force transaction in WB_SYNC_NONE mode. Also
5098                  * ext4_sync_fs() will force the commit after everything is
5099                  * written.
5100                  */
5101                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5102                         return 0;
5103
5104                 err = ext4_force_commit(inode->i_sb);
5105         } else {
5106                 struct ext4_iloc iloc;
5107
5108                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5109                 if (err)
5110                         return err;
5111                 /*
5112                  * sync(2) will flush the whole buffer cache. No need to do
5113                  * it here separately for each inode.
5114                  */
5115                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5116                         sync_dirty_buffer(iloc.bh);
5117                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5119                                          "IO error syncing inode");
5120                         err = -EIO;
5121                 }
5122                 brelse(iloc.bh);
5123         }
5124         return err;
5125 }
5126
5127 /*
5128  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5129  * buffers that are attached to a page stradding i_size and are undergoing
5130  * commit. In that case we have to wait for commit to finish and try again.
5131  */
5132 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5133 {
5134         struct page *page;
5135         unsigned offset;
5136         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5137         tid_t commit_tid = 0;
5138         int ret;
5139
5140         offset = inode->i_size & (PAGE_SIZE - 1);
5141         /*
5142          * All buffers in the last page remain valid? Then there's nothing to
5143          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5144          * blocksize case
5145          */
5146         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5147                 return;
5148         while (1) {
5149                 page = find_lock_page(inode->i_mapping,
5150                                       inode->i_size >> PAGE_SHIFT);
5151                 if (!page)
5152                         return;
5153                 ret = __ext4_journalled_invalidatepage(page, offset,
5154                                                 PAGE_SIZE - offset);
5155                 unlock_page(page);
5156                 put_page(page);
5157                 if (ret != -EBUSY)
5158                         return;
5159                 commit_tid = 0;
5160                 read_lock(&journal->j_state_lock);
5161                 if (journal->j_committing_transaction)
5162                         commit_tid = journal->j_committing_transaction->t_tid;
5163                 read_unlock(&journal->j_state_lock);
5164                 if (commit_tid)
5165                         jbd2_log_wait_commit(journal, commit_tid);
5166         }
5167 }
5168
5169 /*
5170  * ext4_setattr()
5171  *
5172  * Called from notify_change.
5173  *
5174  * We want to trap VFS attempts to truncate the file as soon as
5175  * possible.  In particular, we want to make sure that when the VFS
5176  * shrinks i_size, we put the inode on the orphan list and modify
5177  * i_disksize immediately, so that during the subsequent flushing of
5178  * dirty pages and freeing of disk blocks, we can guarantee that any
5179  * commit will leave the blocks being flushed in an unused state on
5180  * disk.  (On recovery, the inode will get truncated and the blocks will
5181  * be freed, so we have a strong guarantee that no future commit will
5182  * leave these blocks visible to the user.)
5183  *
5184  * Another thing we have to assure is that if we are in ordered mode
5185  * and inode is still attached to the committing transaction, we must
5186  * we start writeout of all the dirty pages which are being truncated.
5187  * This way we are sure that all the data written in the previous
5188  * transaction are already on disk (truncate waits for pages under
5189  * writeback).
5190  *
5191  * Called with inode->i_mutex down.
5192  */
5193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5194 {
5195         struct inode *inode = d_inode(dentry);
5196         int error, rc = 0;
5197         int orphan = 0;
5198         const unsigned int ia_valid = attr->ia_valid;
5199
5200         error = setattr_prepare(dentry, attr);
5201         if (error)
5202                 return error;
5203
5204         if (is_quota_modification(inode, attr)) {
5205                 error = dquot_initialize(inode);
5206                 if (error)
5207                         return error;
5208         }
5209         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5210             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5211                 handle_t *handle;
5212
5213                 /* (user+group)*(old+new) structure, inode write (sb,
5214                  * inode block, ? - but truncate inode update has it) */
5215                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5216                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5217                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5218                 if (IS_ERR(handle)) {
5219                         error = PTR_ERR(handle);
5220                         goto err_out;
5221                 }
5222                 error = dquot_transfer(inode, attr);
5223                 if (error) {
5224                         ext4_journal_stop(handle);
5225                         return error;
5226                 }
5227                 /* Update corresponding info in inode so that everything is in
5228                  * one transaction */
5229                 if (attr->ia_valid & ATTR_UID)
5230                         inode->i_uid = attr->ia_uid;
5231                 if (attr->ia_valid & ATTR_GID)
5232                         inode->i_gid = attr->ia_gid;
5233                 error = ext4_mark_inode_dirty(handle, inode);
5234                 ext4_journal_stop(handle);
5235         }
5236
5237         if (attr->ia_valid & ATTR_SIZE) {
5238                 handle_t *handle;
5239                 loff_t oldsize = inode->i_size;
5240                 int shrink = (attr->ia_size <= inode->i_size);
5241
5242                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5243                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5244
5245                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5246                                 return -EFBIG;
5247                 }
5248                 if (!S_ISREG(inode->i_mode))
5249                         return -EINVAL;
5250
5251                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5252                         inode_inc_iversion(inode);
5253
5254                 if (ext4_should_order_data(inode) &&
5255                     (attr->ia_size < inode->i_size)) {
5256                         error = ext4_begin_ordered_truncate(inode,
5257                                                             attr->ia_size);
5258                         if (error)
5259                                 goto err_out;
5260                 }
5261                 if (attr->ia_size != inode->i_size) {
5262                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5263                         if (IS_ERR(handle)) {
5264                                 error = PTR_ERR(handle);
5265                                 goto err_out;
5266                         }
5267                         if (ext4_handle_valid(handle) && shrink) {
5268                                 error = ext4_orphan_add(handle, inode);
5269                                 orphan = 1;
5270                         }
5271                         /*
5272                          * Update c/mtime on truncate up, ext4_truncate() will
5273                          * update c/mtime in shrink case below
5274                          */
5275                         if (!shrink) {
5276                                 inode->i_mtime = current_time(inode);
5277                                 inode->i_ctime = inode->i_mtime;
5278                         }
5279                         down_write(&EXT4_I(inode)->i_data_sem);
5280                         EXT4_I(inode)->i_disksize = attr->ia_size;
5281                         rc = ext4_mark_inode_dirty(handle, inode);
5282                         if (!error)
5283                                 error = rc;
5284                         /*
5285                          * We have to update i_size under i_data_sem together
5286                          * with i_disksize to avoid races with writeback code
5287                          * running ext4_wb_update_i_disksize().
5288                          */
5289                         if (!error)
5290                                 i_size_write(inode, attr->ia_size);
5291                         up_write(&EXT4_I(inode)->i_data_sem);
5292                         ext4_journal_stop(handle);
5293                         if (error) {
5294                                 if (orphan)
5295                                         ext4_orphan_del(NULL, inode);
5296                                 goto err_out;
5297                         }
5298                 }
5299                 if (!shrink)
5300                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5301
5302                 /*
5303                  * Blocks are going to be removed from the inode. Wait
5304                  * for dio in flight.  Temporarily disable
5305                  * dioread_nolock to prevent livelock.
5306                  */
5307                 if (orphan) {
5308                         if (!ext4_should_journal_data(inode)) {
5309                                 ext4_inode_block_unlocked_dio(inode);
5310                                 inode_dio_wait(inode);
5311                                 ext4_inode_resume_unlocked_dio(inode);
5312                         } else
5313                                 ext4_wait_for_tail_page_commit(inode);
5314                 }
5315                 down_write(&EXT4_I(inode)->i_mmap_sem);
5316                 /*
5317                  * Truncate pagecache after we've waited for commit
5318                  * in data=journal mode to make pages freeable.
5319                  */
5320                 truncate_pagecache(inode, inode->i_size);
5321                 if (shrink) {
5322                         rc = ext4_truncate(inode);
5323                         if (rc)
5324                                 error = rc;
5325                 }
5326                 up_write(&EXT4_I(inode)->i_mmap_sem);
5327         }
5328
5329         if (!error) {
5330                 setattr_copy(inode, attr);
5331                 mark_inode_dirty(inode);
5332         }
5333
5334         /*
5335          * If the call to ext4_truncate failed to get a transaction handle at
5336          * all, we need to clean up the in-core orphan list manually.
5337          */
5338         if (orphan && inode->i_nlink)
5339                 ext4_orphan_del(NULL, inode);
5340
5341         if (!error && (ia_valid & ATTR_MODE))
5342                 rc = posix_acl_chmod(inode, inode->i_mode);
5343
5344 err_out:
5345         ext4_std_error(inode->i_sb, error);
5346         if (!error)
5347                 error = rc;
5348         return error;
5349 }
5350
5351 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5352                  struct kstat *stat)
5353 {
5354         struct inode *inode;
5355         unsigned long long delalloc_blocks;
5356
5357         inode = d_inode(dentry);
5358         generic_fillattr(inode, stat);
5359
5360         /*
5361          * If there is inline data in the inode, the inode will normally not
5362          * have data blocks allocated (it may have an external xattr block).
5363          * Report at least one sector for such files, so tools like tar, rsync,
5364          * others doen't incorrectly think the file is completely sparse.
5365          */
5366         if (unlikely(ext4_has_inline_data(inode)))
5367                 stat->blocks += (stat->size + 511) >> 9;
5368
5369         /*
5370          * We can't update i_blocks if the block allocation is delayed
5371          * otherwise in the case of system crash before the real block
5372          * allocation is done, we will have i_blocks inconsistent with
5373          * on-disk file blocks.
5374          * We always keep i_blocks updated together with real
5375          * allocation. But to not confuse with user, stat
5376          * will return the blocks that include the delayed allocation
5377          * blocks for this file.
5378          */
5379         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5380                                    EXT4_I(inode)->i_reserved_data_blocks);
5381         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5382         return 0;
5383 }
5384
5385 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5386                                    int pextents)
5387 {
5388         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5389                 return ext4_ind_trans_blocks(inode, lblocks);
5390         return ext4_ext_index_trans_blocks(inode, pextents);
5391 }
5392
5393 /*
5394  * Account for index blocks, block groups bitmaps and block group
5395  * descriptor blocks if modify datablocks and index blocks
5396  * worse case, the indexs blocks spread over different block groups
5397  *
5398  * If datablocks are discontiguous, they are possible to spread over
5399  * different block groups too. If they are contiguous, with flexbg,
5400  * they could still across block group boundary.
5401  *
5402  * Also account for superblock, inode, quota and xattr blocks
5403  */
5404 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5405                                   int pextents)
5406 {
5407         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5408         int gdpblocks;
5409         int idxblocks;
5410         int ret = 0;
5411
5412         /*
5413          * How many index blocks need to touch to map @lblocks logical blocks
5414          * to @pextents physical extents?
5415          */
5416         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5417
5418         ret = idxblocks;
5419
5420         /*
5421          * Now let's see how many group bitmaps and group descriptors need
5422          * to account
5423          */
5424         groups = idxblocks + pextents;
5425         gdpblocks = groups;
5426         if (groups > ngroups)
5427                 groups = ngroups;
5428         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5429                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5430
5431         /* bitmaps and block group descriptor blocks */
5432         ret += groups + gdpblocks;
5433
5434         /* Blocks for super block, inode, quota and xattr blocks */
5435         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5436
5437         return ret;
5438 }
5439
5440 /*
5441  * Calculate the total number of credits to reserve to fit
5442  * the modification of a single pages into a single transaction,
5443  * which may include multiple chunks of block allocations.
5444  *
5445  * This could be called via ext4_write_begin()
5446  *
5447  * We need to consider the worse case, when
5448  * one new block per extent.
5449  */
5450 int ext4_writepage_trans_blocks(struct inode *inode)
5451 {
5452         int bpp = ext4_journal_blocks_per_page(inode);
5453         int ret;
5454
5455         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5456
5457         /* Account for data blocks for journalled mode */
5458         if (ext4_should_journal_data(inode))
5459                 ret += bpp;
5460         return ret;
5461 }
5462
5463 /*
5464  * Calculate the journal credits for a chunk of data modification.
5465  *
5466  * This is called from DIO, fallocate or whoever calling
5467  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5468  *
5469  * journal buffers for data blocks are not included here, as DIO
5470  * and fallocate do no need to journal data buffers.
5471  */
5472 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5473 {
5474         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5475 }
5476
5477 /*
5478  * The caller must have previously called ext4_reserve_inode_write().
5479  * Give this, we know that the caller already has write access to iloc->bh.
5480  */
5481 int ext4_mark_iloc_dirty(handle_t *handle,
5482                          struct inode *inode, struct ext4_iloc *iloc)
5483 {
5484         int err = 0;
5485
5486         if (IS_I_VERSION(inode))
5487                 inode_inc_iversion(inode);
5488
5489         /* the do_update_inode consumes one bh->b_count */
5490         get_bh(iloc->bh);
5491
5492         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5493         err = ext4_do_update_inode(handle, inode, iloc);
5494         put_bh(iloc->bh);
5495         return err;
5496 }
5497
5498 /*
5499  * On success, We end up with an outstanding reference count against
5500  * iloc->bh.  This _must_ be cleaned up later.
5501  */
5502
5503 int
5504 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5505                          struct ext4_iloc *iloc)
5506 {
5507         int err;
5508
5509         err = ext4_get_inode_loc(inode, iloc);
5510         if (!err) {
5511                 BUFFER_TRACE(iloc->bh, "get_write_access");
5512                 err = ext4_journal_get_write_access(handle, iloc->bh);
5513                 if (err) {
5514                         brelse(iloc->bh);
5515                         iloc->bh = NULL;
5516                 }
5517         }
5518         ext4_std_error(inode->i_sb, err);
5519         return err;
5520 }
5521
5522 /*
5523  * Expand an inode by new_extra_isize bytes.
5524  * Returns 0 on success or negative error number on failure.
5525  */
5526 static int ext4_expand_extra_isize(struct inode *inode,
5527                                    unsigned int new_extra_isize,
5528                                    struct ext4_iloc iloc,
5529                                    handle_t *handle)
5530 {
5531         struct ext4_inode *raw_inode;
5532         struct ext4_xattr_ibody_header *header;
5533
5534         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5535                 return 0;
5536
5537         raw_inode = ext4_raw_inode(&iloc);
5538
5539         header = IHDR(inode, raw_inode);
5540
5541         /* No extended attributes present */
5542         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5543             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5544                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5545                         new_extra_isize);
5546                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5547                 return 0;
5548         }
5549
5550         /* try to expand with EAs present */
5551         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5552                                           raw_inode, handle);
5553 }
5554
5555 /*
5556  * What we do here is to mark the in-core inode as clean with respect to inode
5557  * dirtiness (it may still be data-dirty).
5558  * This means that the in-core inode may be reaped by prune_icache
5559  * without having to perform any I/O.  This is a very good thing,
5560  * because *any* task may call prune_icache - even ones which
5561  * have a transaction open against a different journal.
5562  *
5563  * Is this cheating?  Not really.  Sure, we haven't written the
5564  * inode out, but prune_icache isn't a user-visible syncing function.
5565  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5566  * we start and wait on commits.
5567  */
5568 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5569 {
5570         struct ext4_iloc iloc;
5571         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572         static unsigned int mnt_count;
5573         int err, ret;
5574
5575         might_sleep();
5576         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5577         err = ext4_reserve_inode_write(handle, inode, &iloc);
5578         if (err)
5579                 return err;
5580         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5581             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5582                 /*
5583                  * In nojournal mode, we can immediately attempt to expand
5584                  * the inode.  When journaled, we first need to obtain extra
5585                  * buffer credits since we may write into the EA block
5586                  * with this same handle. If journal_extend fails, then it will
5587                  * only result in a minor loss of functionality for that inode.
5588                  * If this is felt to be critical, then e2fsck should be run to
5589                  * force a large enough s_min_extra_isize.
5590                  */
5591                 if (!ext4_handle_valid(handle) ||
5592                     jbd2_journal_extend(handle,
5593                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5594                         ret = ext4_expand_extra_isize(inode,
5595                                                       sbi->s_want_extra_isize,
5596                                                       iloc, handle);
5597                         if (ret) {
5598                                 if (mnt_count !=
5599                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600                                         ext4_warning(inode->i_sb,
5601                                         "Unable to expand inode %lu. Delete"
5602                                         " some EAs or run e2fsck.",
5603                                         inode->i_ino);
5604                                         mnt_count =
5605                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5606                                 }
5607                         }
5608                 }
5609         }
5610         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5611 }
5612
5613 /*
5614  * ext4_dirty_inode() is called from __mark_inode_dirty()
5615  *
5616  * We're really interested in the case where a file is being extended.
5617  * i_size has been changed by generic_commit_write() and we thus need
5618  * to include the updated inode in the current transaction.
5619  *
5620  * Also, dquot_alloc_block() will always dirty the inode when blocks
5621  * are allocated to the file.
5622  *
5623  * If the inode is marked synchronous, we don't honour that here - doing
5624  * so would cause a commit on atime updates, which we don't bother doing.
5625  * We handle synchronous inodes at the highest possible level.
5626  *
5627  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5628  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5629  * to copy into the on-disk inode structure are the timestamp files.
5630  */
5631 void ext4_dirty_inode(struct inode *inode, int flags)
5632 {
5633         handle_t *handle;
5634
5635         if (flags == I_DIRTY_TIME)
5636                 return;
5637         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5638         if (IS_ERR(handle))
5639                 goto out;
5640
5641         ext4_mark_inode_dirty(handle, inode);
5642
5643         ext4_journal_stop(handle);
5644 out:
5645         return;
5646 }
5647
5648 #if 0
5649 /*
5650  * Bind an inode's backing buffer_head into this transaction, to prevent
5651  * it from being flushed to disk early.  Unlike
5652  * ext4_reserve_inode_write, this leaves behind no bh reference and
5653  * returns no iloc structure, so the caller needs to repeat the iloc
5654  * lookup to mark the inode dirty later.
5655  */
5656 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5657 {
5658         struct ext4_iloc iloc;
5659
5660         int err = 0;
5661         if (handle) {
5662                 err = ext4_get_inode_loc(inode, &iloc);
5663                 if (!err) {
5664                         BUFFER_TRACE(iloc.bh, "get_write_access");
5665                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5666                         if (!err)
5667                                 err = ext4_handle_dirty_metadata(handle,
5668                                                                  NULL,
5669                                                                  iloc.bh);
5670                         brelse(iloc.bh);
5671                 }
5672         }
5673         ext4_std_error(inode->i_sb, err);
5674         return err;
5675 }
5676 #endif
5677
5678 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5679 {
5680         journal_t *journal;
5681         handle_t *handle;
5682         int err;
5683         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5684
5685         /*
5686          * We have to be very careful here: changing a data block's
5687          * journaling status dynamically is dangerous.  If we write a
5688          * data block to the journal, change the status and then delete
5689          * that block, we risk forgetting to revoke the old log record
5690          * from the journal and so a subsequent replay can corrupt data.
5691          * So, first we make sure that the journal is empty and that
5692          * nobody is changing anything.
5693          */
5694
5695         journal = EXT4_JOURNAL(inode);
5696         if (!journal)
5697                 return 0;
5698         if (is_journal_aborted(journal))
5699                 return -EROFS;
5700
5701         /* Wait for all existing dio workers */
5702         ext4_inode_block_unlocked_dio(inode);
5703         inode_dio_wait(inode);
5704
5705         /*
5706          * Before flushing the journal and switching inode's aops, we have
5707          * to flush all dirty data the inode has. There can be outstanding
5708          * delayed allocations, there can be unwritten extents created by
5709          * fallocate or buffered writes in dioread_nolock mode covered by
5710          * dirty data which can be converted only after flushing the dirty
5711          * data (and journalled aops don't know how to handle these cases).
5712          */
5713         if (val) {
5714                 down_write(&EXT4_I(inode)->i_mmap_sem);
5715                 err = filemap_write_and_wait(inode->i_mapping);
5716                 if (err < 0) {
5717                         up_write(&EXT4_I(inode)->i_mmap_sem);
5718                         ext4_inode_resume_unlocked_dio(inode);
5719                         return err;
5720                 }
5721         }
5722
5723         percpu_down_write(&sbi->s_journal_flag_rwsem);
5724         jbd2_journal_lock_updates(journal);
5725
5726         /*
5727          * OK, there are no updates running now, and all cached data is
5728          * synced to disk.  We are now in a completely consistent state
5729          * which doesn't have anything in the journal, and we know that
5730          * no filesystem updates are running, so it is safe to modify
5731          * the inode's in-core data-journaling state flag now.
5732          */
5733
5734         if (val)
5735                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5736         else {
5737                 err = jbd2_journal_flush(journal);
5738                 if (err < 0) {
5739                         jbd2_journal_unlock_updates(journal);
5740                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5741                         ext4_inode_resume_unlocked_dio(inode);
5742                         return err;
5743                 }
5744                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5745         }
5746         ext4_set_aops(inode);
5747         /*
5748          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5749          * E.g. S_DAX may get cleared / set.
5750          */
5751         ext4_set_inode_flags(inode);
5752
5753         jbd2_journal_unlock_updates(journal);
5754         percpu_up_write(&sbi->s_journal_flag_rwsem);
5755
5756         if (val)
5757                 up_write(&EXT4_I(inode)->i_mmap_sem);
5758         ext4_inode_resume_unlocked_dio(inode);
5759
5760         /* Finally we can mark the inode as dirty. */
5761
5762         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5763         if (IS_ERR(handle))
5764                 return PTR_ERR(handle);
5765
5766         err = ext4_mark_inode_dirty(handle, inode);
5767         ext4_handle_sync(handle);
5768         ext4_journal_stop(handle);
5769         ext4_std_error(inode->i_sb, err);
5770
5771         return err;
5772 }
5773
5774 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5775 {
5776         return !buffer_mapped(bh);
5777 }
5778
5779 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5780 {
5781         struct page *page = vmf->page;
5782         loff_t size;
5783         unsigned long len;
5784         int ret;
5785         struct file *file = vma->vm_file;
5786         struct inode *inode = file_inode(file);
5787         struct address_space *mapping = inode->i_mapping;
5788         handle_t *handle;
5789         get_block_t *get_block;
5790         int retries = 0;
5791
5792         sb_start_pagefault(inode->i_sb);
5793         file_update_time(vma->vm_file);
5794
5795         down_read(&EXT4_I(inode)->i_mmap_sem);
5796         /* Delalloc case is easy... */
5797         if (test_opt(inode->i_sb, DELALLOC) &&
5798             !ext4_should_journal_data(inode) &&
5799             !ext4_nonda_switch(inode->i_sb)) {
5800                 do {
5801                         ret = block_page_mkwrite(vma, vmf,
5802                                                    ext4_da_get_block_prep);
5803                 } while (ret == -ENOSPC &&
5804                        ext4_should_retry_alloc(inode->i_sb, &retries));
5805                 goto out_ret;
5806         }
5807
5808         lock_page(page);
5809         size = i_size_read(inode);
5810         /* Page got truncated from under us? */
5811         if (page->mapping != mapping || page_offset(page) > size) {
5812                 unlock_page(page);
5813                 ret = VM_FAULT_NOPAGE;
5814                 goto out;
5815         }
5816
5817         if (page->index == size >> PAGE_SHIFT)
5818                 len = size & ~PAGE_MASK;
5819         else
5820                 len = PAGE_SIZE;
5821         /*
5822          * Return if we have all the buffers mapped. This avoids the need to do
5823          * journal_start/journal_stop which can block and take a long time
5824          */
5825         if (page_has_buffers(page)) {
5826                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5827                                             0, len, NULL,
5828                                             ext4_bh_unmapped)) {
5829                         /* Wait so that we don't change page under IO */
5830                         wait_for_stable_page(page);
5831                         ret = VM_FAULT_LOCKED;
5832                         goto out;
5833                 }
5834         }
5835         unlock_page(page);
5836         /* OK, we need to fill the hole... */
5837         if (ext4_should_dioread_nolock(inode))
5838                 get_block = ext4_get_block_unwritten;
5839         else
5840                 get_block = ext4_get_block;
5841 retry_alloc:
5842         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5843                                     ext4_writepage_trans_blocks(inode));
5844         if (IS_ERR(handle)) {
5845                 ret = VM_FAULT_SIGBUS;
5846                 goto out;
5847         }
5848         ret = block_page_mkwrite(vma, vmf, get_block);
5849         if (!ret && ext4_should_journal_data(inode)) {
5850                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5851                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5852                         unlock_page(page);
5853                         ret = VM_FAULT_SIGBUS;
5854                         ext4_journal_stop(handle);
5855                         goto out;
5856                 }
5857                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5858         }
5859         ext4_journal_stop(handle);
5860         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5861                 goto retry_alloc;
5862 out_ret:
5863         ret = block_page_mkwrite_return(ret);
5864 out:
5865         up_read(&EXT4_I(inode)->i_mmap_sem);
5866         sb_end_pagefault(inode->i_sb);
5867         return ret;
5868 }
5869
5870 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5871 {
5872         struct inode *inode = file_inode(vma->vm_file);
5873         int err;
5874
5875         down_read(&EXT4_I(inode)->i_mmap_sem);
5876         err = filemap_fault(vma, vmf);
5877         up_read(&EXT4_I(inode)->i_mmap_sem);
5878
5879         return err;
5880 }
5881
5882 /*
5883  * Find the first extent at or after @lblk in an inode that is not a hole.
5884  * Search for @map_len blocks at most. The extent is returned in @result.
5885  *
5886  * The function returns 1 if we found an extent. The function returns 0 in
5887  * case there is no extent at or after @lblk and in that case also sets
5888  * @result->es_len to 0. In case of error, the error code is returned.
5889  */
5890 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5891                          unsigned int map_len, struct extent_status *result)
5892 {
5893         struct ext4_map_blocks map;
5894         struct extent_status es = {};
5895         int ret;
5896
5897         map.m_lblk = lblk;
5898         map.m_len = map_len;
5899
5900         /*
5901          * For non-extent based files this loop may iterate several times since
5902          * we do not determine full hole size.
5903          */
5904         while (map.m_len > 0) {
5905                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5906                 if (ret < 0)
5907                         return ret;
5908                 /* There's extent covering m_lblk? Just return it. */
5909                 if (ret > 0) {
5910                         int status;
5911
5912                         ext4_es_store_pblock(result, map.m_pblk);
5913                         result->es_lblk = map.m_lblk;
5914                         result->es_len = map.m_len;
5915                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5916                                 status = EXTENT_STATUS_UNWRITTEN;
5917                         else
5918                                 status = EXTENT_STATUS_WRITTEN;
5919                         ext4_es_store_status(result, status);
5920                         return 1;
5921                 }
5922                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5923                                                   map.m_lblk + map.m_len - 1,
5924                                                   &es);
5925                 /* Is delalloc data before next block in extent tree? */
5926                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5927                         ext4_lblk_t offset = 0;
5928
5929                         if (es.es_lblk < lblk)
5930                                 offset = lblk - es.es_lblk;
5931                         result->es_lblk = es.es_lblk + offset;
5932                         ext4_es_store_pblock(result,
5933                                              ext4_es_pblock(&es) + offset);
5934                         result->es_len = es.es_len - offset;
5935                         ext4_es_store_status(result, ext4_es_status(&es));
5936
5937                         return 1;
5938                 }
5939                 /* There's a hole at m_lblk, advance us after it */
5940                 map.m_lblk += map.m_len;
5941                 map_len -= map.m_len;
5942                 map.m_len = map_len;
5943                 cond_resched();
5944         }
5945         result->es_len = 0;
5946         return 0;
5947 }