]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
a67f8374ac3af0fac90bf00c55ff16f3a12bb877
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(
50                                         EXT4_SB(inode->i_sb)->s_journal,
51                                         &EXT4_I(inode)->jinode,
52                                         new_size);
53 }
54
55 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56
57 /*
58  * Test whether an inode is a fast symlink.
59  */
60 static int ext4_inode_is_fast_symlink(struct inode *inode)
61 {
62         int ea_blocks = EXT4_I(inode)->i_file_acl ?
63                 (inode->i_sb->s_blocksize >> 9) : 0;
64
65         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
66 }
67
68 /*
69  * The ext4 forget function must perform a revoke if we are freeing data
70  * which has been journaled.  Metadata (eg. indirect blocks) must be
71  * revoked in all cases.
72  *
73  * "bh" may be NULL: a metadata block may have been freed from memory
74  * but there may still be a record of it in the journal, and that record
75  * still needs to be revoked.
76  */
77 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
78                         struct buffer_head *bh, ext4_fsblk_t blocknr)
79 {
80         int err;
81
82         might_sleep();
83
84         BUFFER_TRACE(bh, "enter");
85
86         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
87                   "data mode %lx\n",
88                   bh, is_metadata, inode->i_mode,
89                   test_opt(inode->i_sb, DATA_FLAGS));
90
91         /* Never use the revoke function if we are doing full data
92          * journaling: there is no need to, and a V1 superblock won't
93          * support it.  Otherwise, only skip the revoke on un-journaled
94          * data blocks. */
95
96         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
97             (!is_metadata && !ext4_should_journal_data(inode))) {
98                 if (bh) {
99                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
100                         return ext4_journal_forget(handle, bh);
101                 }
102                 return 0;
103         }
104
105         /*
106          * data!=journal && (is_metadata || should_journal_data(inode))
107          */
108         BUFFER_TRACE(bh, "call ext4_journal_revoke");
109         err = ext4_journal_revoke(handle, blocknr, bh);
110         if (err)
111                 ext4_abort(inode->i_sb, __func__,
112                            "error %d when attempting revoke", err);
113         BUFFER_TRACE(bh, "exit");
114         return err;
115 }
116
117 /*
118  * Work out how many blocks we need to proceed with the next chunk of a
119  * truncate transaction.
120  */
121 static unsigned long blocks_for_truncate(struct inode *inode)
122 {
123         ext4_lblk_t needed;
124
125         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
126
127         /* Give ourselves just enough room to cope with inodes in which
128          * i_blocks is corrupt: we've seen disk corruptions in the past
129          * which resulted in random data in an inode which looked enough
130          * like a regular file for ext4 to try to delete it.  Things
131          * will go a bit crazy if that happens, but at least we should
132          * try not to panic the whole kernel. */
133         if (needed < 2)
134                 needed = 2;
135
136         /* But we need to bound the transaction so we don't overflow the
137          * journal. */
138         if (needed > EXT4_MAX_TRANS_DATA)
139                 needed = EXT4_MAX_TRANS_DATA;
140
141         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
142 }
143
144 /*
145  * Truncate transactions can be complex and absolutely huge.  So we need to
146  * be able to restart the transaction at a conventient checkpoint to make
147  * sure we don't overflow the journal.
148  *
149  * start_transaction gets us a new handle for a truncate transaction,
150  * and extend_transaction tries to extend the existing one a bit.  If
151  * extend fails, we need to propagate the failure up and restart the
152  * transaction in the top-level truncate loop. --sct
153  */
154 static handle_t *start_transaction(struct inode *inode)
155 {
156         handle_t *result;
157
158         result = ext4_journal_start(inode, blocks_for_truncate(inode));
159         if (!IS_ERR(result))
160                 return result;
161
162         ext4_std_error(inode->i_sb, PTR_ERR(result));
163         return result;
164 }
165
166 /*
167  * Try to extend this transaction for the purposes of truncation.
168  *
169  * Returns 0 if we managed to create more room.  If we can't create more
170  * room, and the transaction must be restarted we return 1.
171  */
172 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
173 {
174         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
175                 return 0;
176         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
177                 return 0;
178         return 1;
179 }
180
181 /*
182  * Restart the transaction associated with *handle.  This does a commit,
183  * so before we call here everything must be consistently dirtied against
184  * this transaction.
185  */
186 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
187 {
188         jbd_debug(2, "restarting handle %p\n", handle);
189         return ext4_journal_restart(handle, blocks_for_truncate(inode));
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198         int err;
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 handle->h_sync = 1;
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb, __func__,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (handle->h_buffer_credits < 3) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb, __func__,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         goto no_delete;
247                 }
248         }
249
250         /*
251          * Kill off the orphan record which ext4_truncate created.
252          * AKPM: I think this can be inside the above `if'.
253          * Note that ext4_orphan_del() has to be able to cope with the
254          * deletion of a non-existent orphan - this is because we don't
255          * know if ext4_truncate() actually created an orphan record.
256          * (Well, we could do this if we need to, but heck - it works)
257          */
258         ext4_orphan_del(handle, inode);
259         EXT4_I(inode)->i_dtime  = get_seconds();
260
261         /*
262          * One subtle ordering requirement: if anything has gone wrong
263          * (transaction abort, IO errors, whatever), then we can still
264          * do these next steps (the fs will already have been marked as
265          * having errors), but we can't free the inode if the mark_dirty
266          * fails.
267          */
268         if (ext4_mark_inode_dirty(handle, inode))
269                 /* If that failed, just do the required in-core inode clear. */
270                 clear_inode(inode);
271         else
272                 ext4_free_inode(handle, inode);
273         ext4_journal_stop(handle);
274         return;
275 no_delete:
276         clear_inode(inode);     /* We must guarantee clearing of inode... */
277 }
278
279 typedef struct {
280         __le32  *p;
281         __le32  key;
282         struct buffer_head *bh;
283 } Indirect;
284
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 {
287         p->key = *(p->p = v);
288         p->bh = bh;
289 }
290
291 /**
292  *      ext4_block_to_path - parse the block number into array of offsets
293  *      @inode: inode in question (we are only interested in its superblock)
294  *      @i_block: block number to be parsed
295  *      @offsets: array to store the offsets in
296  *      @boundary: set this non-zero if the referred-to block is likely to be
297  *             followed (on disk) by an indirect block.
298  *
299  *      To store the locations of file's data ext4 uses a data structure common
300  *      for UNIX filesystems - tree of pointers anchored in the inode, with
301  *      data blocks at leaves and indirect blocks in intermediate nodes.
302  *      This function translates the block number into path in that tree -
303  *      return value is the path length and @offsets[n] is the offset of
304  *      pointer to (n+1)th node in the nth one. If @block is out of range
305  *      (negative or too large) warning is printed and zero returned.
306  *
307  *      Note: function doesn't find node addresses, so no IO is needed. All
308  *      we need to know is the capacity of indirect blocks (taken from the
309  *      inode->i_sb).
310  */
311
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321
322 static int ext4_block_to_path(struct inode *inode,
323                         ext4_lblk_t i_block,
324                         ext4_lblk_t offsets[4], int *boundary)
325 {
326         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328         const long direct_blocks = EXT4_NDIR_BLOCKS,
329                 indirect_blocks = ptrs,
330                 double_blocks = (1 << (ptrs_bits * 2));
331         int n = 0;
332         int final = 0;
333
334         if (i_block < 0) {
335                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
336         } else if (i_block < direct_blocks) {
337                 offsets[n++] = i_block;
338                 final = direct_blocks;
339         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
340                 offsets[n++] = EXT4_IND_BLOCK;
341                 offsets[n++] = i_block;
342                 final = ptrs;
343         } else if ((i_block -= indirect_blocks) < double_blocks) {
344                 offsets[n++] = EXT4_DIND_BLOCK;
345                 offsets[n++] = i_block >> ptrs_bits;
346                 offsets[n++] = i_block & (ptrs - 1);
347                 final = ptrs;
348         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
349                 offsets[n++] = EXT4_TIND_BLOCK;
350                 offsets[n++] = i_block >> (ptrs_bits * 2);
351                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
352                 offsets[n++] = i_block & (ptrs - 1);
353                 final = ptrs;
354         } else {
355                 ext4_warning(inode->i_sb, "ext4_block_to_path",
356                                 "block %lu > max in inode %lu",
357                                 i_block + direct_blocks +
358                                 indirect_blocks + double_blocks, inode->i_ino);
359         }
360         if (boundary)
361                 *boundary = final - 1 - (i_block & (ptrs - 1));
362         return n;
363 }
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_bread(sb, le32_to_cpu(p->key));
410                 if (!bh)
411                         goto failure;
412                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
413                 /* Reader: end */
414                 if (!p->key)
415                         goto no_block;
416         }
417         return NULL;
418
419 failure:
420         *err = -EIO;
421 no_block:
422         return p;
423 }
424
425 /**
426  *      ext4_find_near - find a place for allocation with sufficient locality
427  *      @inode: owner
428  *      @ind: descriptor of indirect block.
429  *
430  *      This function returns the preferred place for block allocation.
431  *      It is used when heuristic for sequential allocation fails.
432  *      Rules are:
433  *        + if there is a block to the left of our position - allocate near it.
434  *        + if pointer will live in indirect block - allocate near that block.
435  *        + if pointer will live in inode - allocate in the same
436  *          cylinder group.
437  *
438  * In the latter case we colour the starting block by the callers PID to
439  * prevent it from clashing with concurrent allocations for a different inode
440  * in the same block group.   The PID is used here so that functionally related
441  * files will be close-by on-disk.
442  *
443  *      Caller must make sure that @ind is valid and will stay that way.
444  */
445 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
446 {
447         struct ext4_inode_info *ei = EXT4_I(inode);
448         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
449         __le32 *p;
450         ext4_fsblk_t bg_start;
451         ext4_fsblk_t last_block;
452         ext4_grpblk_t colour;
453
454         /* Try to find previous block */
455         for (p = ind->p - 1; p >= start; p--) {
456                 if (*p)
457                         return le32_to_cpu(*p);
458         }
459
460         /* No such thing, so let's try location of indirect block */
461         if (ind->bh)
462                 return ind->bh->b_blocknr;
463
464         /*
465          * It is going to be referred to from the inode itself? OK, just put it
466          * into the same cylinder group then.
467          */
468         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
469         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
470
471         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
472                 colour = (current->pid % 16) *
473                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
474         else
475                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
476         return bg_start + colour;
477 }
478
479 /**
480  *      ext4_find_goal - find a preferred place for allocation.
481  *      @inode: owner
482  *      @block:  block we want
483  *      @partial: pointer to the last triple within a chain
484  *
485  *      Normally this function find the preferred place for block allocation,
486  *      returns it.
487  */
488 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
489                 Indirect *partial)
490 {
491         struct ext4_block_alloc_info *block_i;
492
493         block_i =  EXT4_I(inode)->i_block_alloc_info;
494
495         /*
496          * try the heuristic for sequential allocation,
497          * failing that at least try to get decent locality.
498          */
499         if (block_i && (block == block_i->last_alloc_logical_block + 1)
500                 && (block_i->last_alloc_physical_block != 0)) {
501                 return block_i->last_alloc_physical_block + 1;
502         }
503
504         return ext4_find_near(inode, partial);
505 }
506
507 /**
508  *      ext4_blks_to_allocate: Look up the block map and count the number
509  *      of direct blocks need to be allocated for the given branch.
510  *
511  *      @branch: chain of indirect blocks
512  *      @k: number of blocks need for indirect blocks
513  *      @blks: number of data blocks to be mapped.
514  *      @blocks_to_boundary:  the offset in the indirect block
515  *
516  *      return the total number of blocks to be allocate, including the
517  *      direct and indirect blocks.
518  */
519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
520                 int blocks_to_boundary)
521 {
522         unsigned long count = 0;
523
524         /*
525          * Simple case, [t,d]Indirect block(s) has not allocated yet
526          * then it's clear blocks on that path have not allocated
527          */
528         if (k > 0) {
529                 /* right now we don't handle cross boundary allocation */
530                 if (blks < blocks_to_boundary + 1)
531                         count += blks;
532                 else
533                         count += blocks_to_boundary + 1;
534                 return count;
535         }
536
537         count++;
538         while (count < blks && count <= blocks_to_boundary &&
539                 le32_to_cpu(*(branch[0].p + count)) == 0) {
540                 count++;
541         }
542         return count;
543 }
544
545 /**
546  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
547  *      @indirect_blks: the number of blocks need to allocate for indirect
548  *                      blocks
549  *
550  *      @new_blocks: on return it will store the new block numbers for
551  *      the indirect blocks(if needed) and the first direct block,
552  *      @blks:  on return it will store the total number of allocated
553  *              direct blocks
554  */
555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
557                                 int indirect_blks, int blks,
558                                 ext4_fsblk_t new_blocks[4], int *err)
559 {
560         int target, i;
561         unsigned long count = 0, blk_allocated = 0;
562         int index = 0;
563         ext4_fsblk_t current_block = 0;
564         int ret = 0;
565
566         /*
567          * Here we try to allocate the requested multiple blocks at once,
568          * on a best-effort basis.
569          * To build a branch, we should allocate blocks for
570          * the indirect blocks(if not allocated yet), and at least
571          * the first direct block of this branch.  That's the
572          * minimum number of blocks need to allocate(required)
573          */
574         /* first we try to allocate the indirect blocks */
575         target = indirect_blks;
576         while (target > 0) {
577                 count = target;
578                 /* allocating blocks for indirect blocks and direct blocks */
579                 current_block = ext4_new_meta_blocks(handle, inode,
580                                                         goal, &count, err);
581                 if (*err)
582                         goto failed_out;
583
584                 target -= count;
585                 /* allocate blocks for indirect blocks */
586                 while (index < indirect_blks && count) {
587                         new_blocks[index++] = current_block++;
588                         count--;
589                 }
590                 if (count > 0) {
591                         /*
592                          * save the new block number
593                          * for the first direct block
594                          */
595                         new_blocks[index] = current_block;
596                         printk(KERN_INFO "%s returned more blocks than "
597                                                 "requested\n", __func__);
598                         WARN_ON(1);
599                         break;
600                 }
601         }
602
603         target = blks - count ;
604         blk_allocated = count;
605         if (!target)
606                 goto allocated;
607         /* Now allocate data blocks */
608         count = target;
609         /* allocating blocks for data blocks */
610         current_block = ext4_new_blocks(handle, inode, iblock,
611                                                 goal, &count, err);
612         if (*err && (target == blks)) {
613                 /*
614                  * if the allocation failed and we didn't allocate
615                  * any blocks before
616                  */
617                 goto failed_out;
618         }
619         if (!*err) {
620                 if (target == blks) {
621                 /*
622                  * save the new block number
623                  * for the first direct block
624                  */
625                         new_blocks[index] = current_block;
626                 }
627                 blk_allocated += count;
628         }
629 allocated:
630         /* total number of blocks allocated for direct blocks */
631         ret = blk_allocated;
632         *err = 0;
633         return ret;
634 failed_out:
635         for (i = 0; i <index; i++)
636                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
637         return ret;
638 }
639
640 /**
641  *      ext4_alloc_branch - allocate and set up a chain of blocks.
642  *      @inode: owner
643  *      @indirect_blks: number of allocated indirect blocks
644  *      @blks: number of allocated direct blocks
645  *      @offsets: offsets (in the blocks) to store the pointers to next.
646  *      @branch: place to store the chain in.
647  *
648  *      This function allocates blocks, zeroes out all but the last one,
649  *      links them into chain and (if we are synchronous) writes them to disk.
650  *      In other words, it prepares a branch that can be spliced onto the
651  *      inode. It stores the information about that chain in the branch[], in
652  *      the same format as ext4_get_branch() would do. We are calling it after
653  *      we had read the existing part of chain and partial points to the last
654  *      triple of that (one with zero ->key). Upon the exit we have the same
655  *      picture as after the successful ext4_get_block(), except that in one
656  *      place chain is disconnected - *branch->p is still zero (we did not
657  *      set the last link), but branch->key contains the number that should
658  *      be placed into *branch->p to fill that gap.
659  *
660  *      If allocation fails we free all blocks we've allocated (and forget
661  *      their buffer_heads) and return the error value the from failed
662  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
663  *      as described above and return 0.
664  */
665 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
666                                 ext4_lblk_t iblock, int indirect_blks,
667                                 int *blks, ext4_fsblk_t goal,
668                                 ext4_lblk_t *offsets, Indirect *branch)
669 {
670         int blocksize = inode->i_sb->s_blocksize;
671         int i, n = 0;
672         int err = 0;
673         struct buffer_head *bh;
674         int num;
675         ext4_fsblk_t new_blocks[4];
676         ext4_fsblk_t current_block;
677
678         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
679                                 *blks, new_blocks, &err);
680         if (err)
681                 return err;
682
683         branch[0].key = cpu_to_le32(new_blocks[0]);
684         /*
685          * metadata blocks and data blocks are allocated.
686          */
687         for (n = 1; n <= indirect_blks;  n++) {
688                 /*
689                  * Get buffer_head for parent block, zero it out
690                  * and set the pointer to new one, then send
691                  * parent to disk.
692                  */
693                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
694                 branch[n].bh = bh;
695                 lock_buffer(bh);
696                 BUFFER_TRACE(bh, "call get_create_access");
697                 err = ext4_journal_get_create_access(handle, bh);
698                 if (err) {
699                         unlock_buffer(bh);
700                         brelse(bh);
701                         goto failed;
702                 }
703
704                 memset(bh->b_data, 0, blocksize);
705                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
706                 branch[n].key = cpu_to_le32(new_blocks[n]);
707                 *branch[n].p = branch[n].key;
708                 if ( n == indirect_blks) {
709                         current_block = new_blocks[n];
710                         /*
711                          * End of chain, update the last new metablock of
712                          * the chain to point to the new allocated
713                          * data blocks numbers
714                          */
715                         for (i=1; i < num; i++)
716                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
717                 }
718                 BUFFER_TRACE(bh, "marking uptodate");
719                 set_buffer_uptodate(bh);
720                 unlock_buffer(bh);
721
722                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
723                 err = ext4_journal_dirty_metadata(handle, bh);
724                 if (err)
725                         goto failed;
726         }
727         *blks = num;
728         return err;
729 failed:
730         /* Allocation failed, free what we already allocated */
731         for (i = 1; i <= n ; i++) {
732                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
733                 ext4_journal_forget(handle, branch[i].bh);
734         }
735         for (i = 0; i <indirect_blks; i++)
736                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
737
738         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
739
740         return err;
741 }
742
743 /**
744  * ext4_splice_branch - splice the allocated branch onto inode.
745  * @inode: owner
746  * @block: (logical) number of block we are adding
747  * @chain: chain of indirect blocks (with a missing link - see
748  *      ext4_alloc_branch)
749  * @where: location of missing link
750  * @num:   number of indirect blocks we are adding
751  * @blks:  number of direct blocks we are adding
752  *
753  * This function fills the missing link and does all housekeeping needed in
754  * inode (->i_blocks, etc.). In case of success we end up with the full
755  * chain to new block and return 0.
756  */
757 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
758                         ext4_lblk_t block, Indirect *where, int num, int blks)
759 {
760         int i;
761         int err = 0;
762         struct ext4_block_alloc_info *block_i;
763         ext4_fsblk_t current_block;
764
765         block_i = EXT4_I(inode)->i_block_alloc_info;
766         /*
767          * If we're splicing into a [td]indirect block (as opposed to the
768          * inode) then we need to get write access to the [td]indirect block
769          * before the splice.
770          */
771         if (where->bh) {
772                 BUFFER_TRACE(where->bh, "get_write_access");
773                 err = ext4_journal_get_write_access(handle, where->bh);
774                 if (err)
775                         goto err_out;
776         }
777         /* That's it */
778
779         *where->p = where->key;
780
781         /*
782          * Update the host buffer_head or inode to point to more just allocated
783          * direct blocks blocks
784          */
785         if (num == 0 && blks > 1) {
786                 current_block = le32_to_cpu(where->key) + 1;
787                 for (i = 1; i < blks; i++)
788                         *(where->p + i ) = cpu_to_le32(current_block++);
789         }
790
791         /*
792          * update the most recently allocated logical & physical block
793          * in i_block_alloc_info, to assist find the proper goal block for next
794          * allocation
795          */
796         if (block_i) {
797                 block_i->last_alloc_logical_block = block + blks - 1;
798                 block_i->last_alloc_physical_block =
799                                 le32_to_cpu(where[num].key) + blks - 1;
800         }
801
802         /* We are done with atomic stuff, now do the rest of housekeeping */
803
804         inode->i_ctime = ext4_current_time(inode);
805         ext4_mark_inode_dirty(handle, inode);
806
807         /* had we spliced it onto indirect block? */
808         if (where->bh) {
809                 /*
810                  * If we spliced it onto an indirect block, we haven't
811                  * altered the inode.  Note however that if it is being spliced
812                  * onto an indirect block at the very end of the file (the
813                  * file is growing) then we *will* alter the inode to reflect
814                  * the new i_size.  But that is not done here - it is done in
815                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
816                  */
817                 jbd_debug(5, "splicing indirect only\n");
818                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
819                 err = ext4_journal_dirty_metadata(handle, where->bh);
820                 if (err)
821                         goto err_out;
822         } else {
823                 /*
824                  * OK, we spliced it into the inode itself on a direct block.
825                  * Inode was dirtied above.
826                  */
827                 jbd_debug(5, "splicing direct\n");
828         }
829         return err;
830
831 err_out:
832         for (i = 1; i <= num; i++) {
833                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
834                 ext4_journal_forget(handle, where[i].bh);
835                 ext4_free_blocks(handle, inode,
836                                         le32_to_cpu(where[i-1].key), 1, 0);
837         }
838         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
839
840         return err;
841 }
842
843 /*
844  * Allocation strategy is simple: if we have to allocate something, we will
845  * have to go the whole way to leaf. So let's do it before attaching anything
846  * to tree, set linkage between the newborn blocks, write them if sync is
847  * required, recheck the path, free and repeat if check fails, otherwise
848  * set the last missing link (that will protect us from any truncate-generated
849  * removals - all blocks on the path are immune now) and possibly force the
850  * write on the parent block.
851  * That has a nice additional property: no special recovery from the failed
852  * allocations is needed - we simply release blocks and do not touch anything
853  * reachable from inode.
854  *
855  * `handle' can be NULL if create == 0.
856  *
857  * return > 0, # of blocks mapped or allocated.
858  * return = 0, if plain lookup failed.
859  * return < 0, error case.
860  *
861  *
862  * Need to be called with
863  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
864  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
865  */
866 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
867                 ext4_lblk_t iblock, unsigned long maxblocks,
868                 struct buffer_head *bh_result,
869                 int create, int extend_disksize)
870 {
871         int err = -EIO;
872         ext4_lblk_t offsets[4];
873         Indirect chain[4];
874         Indirect *partial;
875         ext4_fsblk_t goal;
876         int indirect_blks;
877         int blocks_to_boundary = 0;
878         int depth;
879         struct ext4_inode_info *ei = EXT4_I(inode);
880         int count = 0;
881         ext4_fsblk_t first_block = 0;
882         loff_t disksize;
883
884
885         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
886         J_ASSERT(handle != NULL || create == 0);
887         depth = ext4_block_to_path(inode, iblock, offsets,
888                                         &blocks_to_boundary);
889
890         if (depth == 0)
891                 goto out;
892
893         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
894
895         /* Simplest case - block found, no allocation needed */
896         if (!partial) {
897                 first_block = le32_to_cpu(chain[depth - 1].key);
898                 clear_buffer_new(bh_result);
899                 count++;
900                 /*map more blocks*/
901                 while (count < maxblocks && count <= blocks_to_boundary) {
902                         ext4_fsblk_t blk;
903
904                         blk = le32_to_cpu(*(chain[depth-1].p + count));
905
906                         if (blk == first_block + count)
907                                 count++;
908                         else
909                                 break;
910                 }
911                 goto got_it;
912         }
913
914         /* Next simple case - plain lookup or failed read of indirect block */
915         if (!create || err == -EIO)
916                 goto cleanup;
917
918         /*
919          * Okay, we need to do block allocation.  Lazily initialize the block
920          * allocation info here if necessary
921         */
922         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
923                 ext4_init_block_alloc_info(inode);
924
925         goal = ext4_find_goal(inode, iblock, partial);
926
927         /* the number of blocks need to allocate for [d,t]indirect blocks */
928         indirect_blks = (chain + depth) - partial - 1;
929
930         /*
931          * Next look up the indirect map to count the totoal number of
932          * direct blocks to allocate for this branch.
933          */
934         count = ext4_blks_to_allocate(partial, indirect_blks,
935                                         maxblocks, blocks_to_boundary);
936         /*
937          * Block out ext4_truncate while we alter the tree
938          */
939         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
940                                         &count, goal,
941                                         offsets + (partial - chain), partial);
942
943         /*
944          * The ext4_splice_branch call will free and forget any buffers
945          * on the new chain if there is a failure, but that risks using
946          * up transaction credits, especially for bitmaps where the
947          * credits cannot be returned.  Can we handle this somehow?  We
948          * may need to return -EAGAIN upwards in the worst case.  --sct
949          */
950         if (!err)
951                 err = ext4_splice_branch(handle, inode, iblock,
952                                         partial, indirect_blks, count);
953         /*
954          * i_disksize growing is protected by i_data_sem.  Don't forget to
955          * protect it if you're about to implement concurrent
956          * ext4_get_block() -bzzz
957         */
958         if (!err && extend_disksize) {
959                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
960                 if (disksize > i_size_read(inode))
961                         disksize = i_size_read(inode);
962                 if (disksize > ei->i_disksize)
963                         ei->i_disksize = disksize;
964         }
965         if (err)
966                 goto cleanup;
967
968         set_buffer_new(bh_result);
969 got_it:
970         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
971         if (count > blocks_to_boundary)
972                 set_buffer_boundary(bh_result);
973         err = count;
974         /* Clean up and exit */
975         partial = chain + depth - 1;    /* the whole chain */
976 cleanup:
977         while (partial > chain) {
978                 BUFFER_TRACE(partial->bh, "call brelse");
979                 brelse(partial->bh);
980                 partial--;
981         }
982         BUFFER_TRACE(bh_result, "returned");
983 out:
984         return err;
985 }
986
987 /*
988  * Calculate the number of metadata blocks need to reserve
989  * to allocate @blocks for non extent file based file
990  */
991 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
992 {
993         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
994         int ind_blks, dind_blks, tind_blks;
995
996         /* number of new indirect blocks needed */
997         ind_blks = (blocks + icap - 1) / icap;
998
999         dind_blks = (ind_blks + icap - 1) / icap;
1000
1001         tind_blks = 1;
1002
1003         return ind_blks + dind_blks + tind_blks;
1004 }
1005
1006 /*
1007  * Calculate the number of metadata blocks need to reserve
1008  * to allocate given number of blocks
1009  */
1010 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1011 {
1012         if (!blocks)
1013                 return 0;
1014
1015         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1016                 return ext4_ext_calc_metadata_amount(inode, blocks);
1017
1018         return ext4_indirect_calc_metadata_amount(inode, blocks);
1019 }
1020
1021 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1022 {
1023         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1024         int total, mdb, mdb_free;
1025
1026         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1027         /* recalculate the number of metablocks still need to be reserved */
1028         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1029         mdb = ext4_calc_metadata_amount(inode, total);
1030
1031         /* figure out how many metablocks to release */
1032         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1033         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1034
1035         if (mdb_free) {
1036                 /* Account for allocated meta_blocks */
1037                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1038
1039                 /* update fs dirty blocks counter */
1040                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1041                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1042                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043         }
1044
1045         /* update per-inode reservations */
1046         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1047         EXT4_I(inode)->i_reserved_data_blocks -= used;
1048
1049         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1050
1051         /*
1052          * If we have done all the pending block allocations and if
1053          * there aren't any writers on the inode, we can discard the
1054          * inode's preallocations.
1055          */
1056         if (!total && (atomic_read(&inode->i_writecount) == 0))
1057                 ext4_discard_reservation(inode);
1058 }
1059
1060 /*
1061  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1062  * and returns if the blocks are already mapped.
1063  *
1064  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1065  * and store the allocated blocks in the result buffer head and mark it
1066  * mapped.
1067  *
1068  * If file type is extents based, it will call ext4_ext_get_blocks(),
1069  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1070  * based files
1071  *
1072  * On success, it returns the number of blocks being mapped or allocate.
1073  * if create==0 and the blocks are pre-allocated and uninitialized block,
1074  * the result buffer head is unmapped. If the create ==1, it will make sure
1075  * the buffer head is mapped.
1076  *
1077  * It returns 0 if plain look up failed (blocks have not been allocated), in
1078  * that casem, buffer head is unmapped
1079  *
1080  * It returns the error in case of allocation failure.
1081  */
1082 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1083                         unsigned long max_blocks, struct buffer_head *bh,
1084                         int create, int extend_disksize, int flag)
1085 {
1086         int retval;
1087
1088         clear_buffer_mapped(bh);
1089         clear_buffer_unwritten(bh);
1090
1091         /*
1092          * Try to see if we can get  the block without requesting
1093          * for new file system block.
1094          */
1095         down_read((&EXT4_I(inode)->i_data_sem));
1096         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1097                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1098                                 bh, 0, 0);
1099         } else {
1100                 retval = ext4_get_blocks_handle(handle,
1101                                 inode, block, max_blocks, bh, 0, 0);
1102         }
1103         up_read((&EXT4_I(inode)->i_data_sem));
1104
1105         /* If it is only a block(s) look up */
1106         if (!create)
1107                 return retval;
1108
1109         /*
1110          * Returns if the blocks have already allocated
1111          *
1112          * Note that if blocks have been preallocated
1113          * ext4_ext_get_block() returns th create = 0
1114          * with buffer head unmapped.
1115          */
1116         if (retval > 0 && buffer_mapped(bh))
1117                 return retval;
1118
1119         /*
1120          * When we call get_blocks without the create flag, the
1121          * BH_Unwritten flag could have gotten set if the blocks
1122          * requested were part of a uninitialized extent.  We need to
1123          * clear this flag now that we are committed to convert all or
1124          * part of the uninitialized extent to be an initialized
1125          * extent.  This is because we need to avoid the combination
1126          * of BH_Unwritten and BH_Mapped flags being simultaneously
1127          * set on the buffer_head.
1128          */
1129         clear_buffer_unwritten(bh);
1130
1131         /*
1132          * New blocks allocate and/or writing to uninitialized extent
1133          * will possibly result in updating i_data, so we take
1134          * the write lock of i_data_sem, and call get_blocks()
1135          * with create == 1 flag.
1136          */
1137         down_write((&EXT4_I(inode)->i_data_sem));
1138
1139         /*
1140          * if the caller is from delayed allocation writeout path
1141          * we have already reserved fs blocks for allocation
1142          * let the underlying get_block() function know to
1143          * avoid double accounting
1144          */
1145         if (flag)
1146                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1147         /*
1148          * We need to check for EXT4 here because migrate
1149          * could have changed the inode type in between
1150          */
1151         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1152                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1153                                 bh, create, extend_disksize);
1154         } else {
1155                 retval = ext4_get_blocks_handle(handle, inode, block,
1156                                 max_blocks, bh, create, extend_disksize);
1157
1158                 if (retval > 0 && buffer_new(bh)) {
1159                         /*
1160                          * We allocated new blocks which will result in
1161                          * i_data's format changing.  Force the migrate
1162                          * to fail by clearing migrate flags
1163                          */
1164                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1165                                                         ~EXT4_EXT_MIGRATE;
1166                 }
1167         }
1168
1169         if (flag) {
1170                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1171                 /*
1172                  * Update reserved blocks/metadata blocks
1173                  * after successful block allocation
1174                  * which were deferred till now
1175                  */
1176                 if ((retval > 0) && buffer_delay(bh))
1177                         ext4_da_update_reserve_space(inode, retval);
1178         }
1179
1180         up_write((&EXT4_I(inode)->i_data_sem));
1181         return retval;
1182 }
1183
1184 /* Maximum number of blocks we map for direct IO at once. */
1185 #define DIO_MAX_BLOCKS 4096
1186
1187 static int ext4_get_block(struct inode *inode, sector_t iblock,
1188                         struct buffer_head *bh_result, int create)
1189 {
1190         handle_t *handle = ext4_journal_current_handle();
1191         int ret = 0, started = 0;
1192         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1193         int dio_credits;
1194
1195         if (create && !handle) {
1196                 /* Direct IO write... */
1197                 if (max_blocks > DIO_MAX_BLOCKS)
1198                         max_blocks = DIO_MAX_BLOCKS;
1199                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1200                 handle = ext4_journal_start(inode, dio_credits);
1201                 if (IS_ERR(handle)) {
1202                         ret = PTR_ERR(handle);
1203                         goto out;
1204                 }
1205                 started = 1;
1206         }
1207
1208         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1209                                         max_blocks, bh_result, create, 0, 0);
1210         if (ret > 0) {
1211                 bh_result->b_size = (ret << inode->i_blkbits);
1212                 ret = 0;
1213         }
1214         if (started)
1215                 ext4_journal_stop(handle);
1216 out:
1217         return ret;
1218 }
1219
1220 /*
1221  * `handle' can be NULL if create is zero
1222  */
1223 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1224                                 ext4_lblk_t block, int create, int *errp)
1225 {
1226         struct buffer_head dummy;
1227         int fatal = 0, err;
1228
1229         J_ASSERT(handle != NULL || create == 0);
1230
1231         dummy.b_state = 0;
1232         dummy.b_blocknr = -1000;
1233         buffer_trace_init(&dummy.b_history);
1234         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1235                                         &dummy, create, 1, 0);
1236         /*
1237          * ext4_get_blocks_handle() returns number of blocks
1238          * mapped. 0 in case of a HOLE.
1239          */
1240         if (err > 0) {
1241                 if (err > 1)
1242                         WARN_ON(1);
1243                 err = 0;
1244         }
1245         *errp = err;
1246         if (!err && buffer_mapped(&dummy)) {
1247                 struct buffer_head *bh;
1248                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1249                 if (!bh) {
1250                         *errp = -EIO;
1251                         goto err;
1252                 }
1253                 if (buffer_new(&dummy)) {
1254                         J_ASSERT(create != 0);
1255                         J_ASSERT(handle != NULL);
1256
1257                         /*
1258                          * Now that we do not always journal data, we should
1259                          * keep in mind whether this should always journal the
1260                          * new buffer as metadata.  For now, regular file
1261                          * writes use ext4_get_block instead, so it's not a
1262                          * problem.
1263                          */
1264                         lock_buffer(bh);
1265                         BUFFER_TRACE(bh, "call get_create_access");
1266                         fatal = ext4_journal_get_create_access(handle, bh);
1267                         if (!fatal && !buffer_uptodate(bh)) {
1268                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1269                                 set_buffer_uptodate(bh);
1270                         }
1271                         unlock_buffer(bh);
1272                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1273                         err = ext4_journal_dirty_metadata(handle, bh);
1274                         if (!fatal)
1275                                 fatal = err;
1276                 } else {
1277                         BUFFER_TRACE(bh, "not a new buffer");
1278                 }
1279                 if (fatal) {
1280                         *errp = fatal;
1281                         brelse(bh);
1282                         bh = NULL;
1283                 }
1284                 return bh;
1285         }
1286 err:
1287         return NULL;
1288 }
1289
1290 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1291                                ext4_lblk_t block, int create, int *err)
1292 {
1293         struct buffer_head * bh;
1294
1295         bh = ext4_getblk(handle, inode, block, create, err);
1296         if (!bh)
1297                 return bh;
1298         if (buffer_uptodate(bh))
1299                 return bh;
1300         ll_rw_block(READ_META, 1, &bh);
1301         wait_on_buffer(bh);
1302         if (buffer_uptodate(bh))
1303                 return bh;
1304         put_bh(bh);
1305         *err = -EIO;
1306         return NULL;
1307 }
1308
1309 static int walk_page_buffers(   handle_t *handle,
1310                                 struct buffer_head *head,
1311                                 unsigned from,
1312                                 unsigned to,
1313                                 int *partial,
1314                                 int (*fn)(      handle_t *handle,
1315                                                 struct buffer_head *bh))
1316 {
1317         struct buffer_head *bh;
1318         unsigned block_start, block_end;
1319         unsigned blocksize = head->b_size;
1320         int err, ret = 0;
1321         struct buffer_head *next;
1322
1323         for (   bh = head, block_start = 0;
1324                 ret == 0 && (bh != head || !block_start);
1325                 block_start = block_end, bh = next)
1326         {
1327                 next = bh->b_this_page;
1328                 block_end = block_start + blocksize;
1329                 if (block_end <= from || block_start >= to) {
1330                         if (partial && !buffer_uptodate(bh))
1331                                 *partial = 1;
1332                         continue;
1333                 }
1334                 err = (*fn)(handle, bh);
1335                 if (!ret)
1336                         ret = err;
1337         }
1338         return ret;
1339 }
1340
1341 /*
1342  * To preserve ordering, it is essential that the hole instantiation and
1343  * the data write be encapsulated in a single transaction.  We cannot
1344  * close off a transaction and start a new one between the ext4_get_block()
1345  * and the commit_write().  So doing the jbd2_journal_start at the start of
1346  * prepare_write() is the right place.
1347  *
1348  * Also, this function can nest inside ext4_writepage() ->
1349  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1350  * has generated enough buffer credits to do the whole page.  So we won't
1351  * block on the journal in that case, which is good, because the caller may
1352  * be PF_MEMALLOC.
1353  *
1354  * By accident, ext4 can be reentered when a transaction is open via
1355  * quota file writes.  If we were to commit the transaction while thus
1356  * reentered, there can be a deadlock - we would be holding a quota
1357  * lock, and the commit would never complete if another thread had a
1358  * transaction open and was blocking on the quota lock - a ranking
1359  * violation.
1360  *
1361  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1362  * will _not_ run commit under these circumstances because handle->h_ref
1363  * is elevated.  We'll still have enough credits for the tiny quotafile
1364  * write.
1365  */
1366 static int do_journal_get_write_access(handle_t *handle,
1367                                         struct buffer_head *bh)
1368 {
1369         if (!buffer_mapped(bh) || buffer_freed(bh))
1370                 return 0;
1371         return ext4_journal_get_write_access(handle, bh);
1372 }
1373
1374 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1375                                 loff_t pos, unsigned len, unsigned flags,
1376                                 struct page **pagep, void **fsdata)
1377 {
1378         struct inode *inode = mapping->host;
1379         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1380         handle_t *handle;
1381         int retries = 0;
1382         struct page *page;
1383         pgoff_t index;
1384         unsigned from, to;
1385
1386         index = pos >> PAGE_CACHE_SHIFT;
1387         from = pos & (PAGE_CACHE_SIZE - 1);
1388         to = from + len;
1389
1390 retry:
1391         handle = ext4_journal_start(inode, needed_blocks);
1392         if (IS_ERR(handle)) {
1393                 ret = PTR_ERR(handle);
1394                 goto out;
1395         }
1396
1397         /* We cannot recurse into the filesystem as the transaction is already
1398          * started */
1399         flags |= AOP_FLAG_NOFS;
1400
1401         page = grab_cache_page_write_begin(mapping, index, flags);
1402         if (!page) {
1403                 ext4_journal_stop(handle);
1404                 ret = -ENOMEM;
1405                 goto out;
1406         }
1407         *pagep = page;
1408
1409         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1410                                 ext4_get_block);
1411
1412         if (!ret && ext4_should_journal_data(inode)) {
1413                 ret = walk_page_buffers(handle, page_buffers(page),
1414                                 from, to, NULL, do_journal_get_write_access);
1415         }
1416
1417         if (ret) {
1418                 unlock_page(page);
1419                 ext4_journal_stop(handle);
1420                 page_cache_release(page);
1421         }
1422
1423         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1424                 goto retry;
1425 out:
1426         return ret;
1427 }
1428
1429 /* For write_end() in data=journal mode */
1430 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1431 {
1432         if (!buffer_mapped(bh) || buffer_freed(bh))
1433                 return 0;
1434         set_buffer_uptodate(bh);
1435         return ext4_journal_dirty_metadata(handle, bh);
1436 }
1437
1438 /*
1439  * We need to pick up the new inode size which generic_commit_write gave us
1440  * `file' can be NULL - eg, when called from page_symlink().
1441  *
1442  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1443  * buffers are managed internally.
1444  */
1445 static int ext4_ordered_write_end(struct file *file,
1446                                 struct address_space *mapping,
1447                                 loff_t pos, unsigned len, unsigned copied,
1448                                 struct page *page, void *fsdata)
1449 {
1450         handle_t *handle = ext4_journal_current_handle();
1451         struct inode *inode = mapping->host;
1452         int ret = 0, ret2;
1453
1454         ret = ext4_jbd2_file_inode(handle, inode);
1455
1456         if (ret == 0) {
1457                 /*
1458                  * generic_write_end() will run mark_inode_dirty() if i_size
1459                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1460                  * into that.
1461                  */
1462                 loff_t new_i_size;
1463
1464                 new_i_size = pos + copied;
1465                 if (new_i_size > EXT4_I(inode)->i_disksize)
1466                         EXT4_I(inode)->i_disksize = new_i_size;
1467                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1468                                                         page, fsdata);
1469                 copied = ret2;
1470                 if (ret2 < 0)
1471                         ret = ret2;
1472         }
1473         ret2 = ext4_journal_stop(handle);
1474         if (!ret)
1475                 ret = ret2;
1476
1477         return ret ? ret : copied;
1478 }
1479
1480 static int ext4_writeback_write_end(struct file *file,
1481                                 struct address_space *mapping,
1482                                 loff_t pos, unsigned len, unsigned copied,
1483                                 struct page *page, void *fsdata)
1484 {
1485         handle_t *handle = ext4_journal_current_handle();
1486         struct inode *inode = mapping->host;
1487         int ret = 0, ret2;
1488         loff_t new_i_size;
1489
1490         new_i_size = pos + copied;
1491         if (new_i_size > EXT4_I(inode)->i_disksize)
1492                 EXT4_I(inode)->i_disksize = new_i_size;
1493
1494         ret2 = generic_write_end(file, mapping, pos, len, copied,
1495                                                         page, fsdata);
1496         copied = ret2;
1497         if (ret2 < 0)
1498                 ret = ret2;
1499
1500         ret2 = ext4_journal_stop(handle);
1501         if (!ret)
1502                 ret = ret2;
1503
1504         return ret ? ret : copied;
1505 }
1506
1507 static int ext4_journalled_write_end(struct file *file,
1508                                 struct address_space *mapping,
1509                                 loff_t pos, unsigned len, unsigned copied,
1510                                 struct page *page, void *fsdata)
1511 {
1512         handle_t *handle = ext4_journal_current_handle();
1513         struct inode *inode = mapping->host;
1514         int ret = 0, ret2;
1515         int partial = 0;
1516         unsigned from, to;
1517
1518         from = pos & (PAGE_CACHE_SIZE - 1);
1519         to = from + len;
1520
1521         if (copied < len) {
1522                 if (!PageUptodate(page))
1523                         copied = 0;
1524                 page_zero_new_buffers(page, from+copied, to);
1525         }
1526
1527         ret = walk_page_buffers(handle, page_buffers(page), from,
1528                                 to, &partial, write_end_fn);
1529         if (!partial)
1530                 SetPageUptodate(page);
1531         if (pos+copied > inode->i_size)
1532                 i_size_write(inode, pos+copied);
1533         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1534         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1535                 EXT4_I(inode)->i_disksize = inode->i_size;
1536                 ret2 = ext4_mark_inode_dirty(handle, inode);
1537                 if (!ret)
1538                         ret = ret2;
1539         }
1540
1541         unlock_page(page);
1542         ret2 = ext4_journal_stop(handle);
1543         if (!ret)
1544                 ret = ret2;
1545         page_cache_release(page);
1546
1547         return ret ? ret : copied;
1548 }
1549
1550 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1551 {
1552         int retries = 0;
1553        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1554        unsigned long md_needed, mdblocks, total = 0;
1555
1556         /*
1557          * recalculate the amount of metadata blocks to reserve
1558          * in order to allocate nrblocks
1559          * worse case is one extent per block
1560          */
1561 repeat:
1562         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1563         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1564         mdblocks = ext4_calc_metadata_amount(inode, total);
1565         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1566
1567         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1568         total = md_needed + nrblocks;
1569
1570         if (ext4_claim_free_blocks(sbi, total)) {
1571                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1573                         yield();
1574                         goto repeat;
1575                 }
1576                 return -ENOSPC;
1577         }
1578         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1579         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1580
1581         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1582         return 0;       /* success */
1583 }
1584
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588         int total, mdb, mdb_free, release;
1589
1590         if (!to_free)
1591                 return;         /* Nothing to release, exit */
1592
1593         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594
1595         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1596                 /*
1597                  * if there is no reserved blocks, but we try to free some
1598                  * then the counter is messed up somewhere.
1599                  * but since this function is called from invalidate
1600                  * page, it's harmless to return without any action
1601                  */
1602                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1603                             "blocks for inode %lu, but there is no reserved "
1604                             "data blocks\n", to_free, inode->i_ino);
1605                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1606                 return;
1607         }
1608
1609         /* recalculate the number of metablocks still need to be reserved */
1610         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1611         mdb = ext4_calc_metadata_amount(inode, total);
1612
1613         /* figure out how many metablocks to release */
1614         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1615         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1616
1617         release = to_free + mdb_free;
1618
1619         /* update fs dirty blocks counter for truncate case */
1620         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1621
1622         /* update per-inode reservations */
1623         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1624         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1625
1626         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1627         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1628         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629 }
1630
1631 static void ext4_da_page_release_reservation(struct page *page,
1632                                                 unsigned long offset)
1633 {
1634         int to_release = 0;
1635         struct buffer_head *head, *bh;
1636         unsigned int curr_off = 0;
1637
1638         head = page_buffers(page);
1639         bh = head;
1640         do {
1641                 unsigned int next_off = curr_off + bh->b_size;
1642
1643                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644                         to_release++;
1645                         clear_buffer_delay(bh);
1646                 }
1647                 curr_off = next_off;
1648         } while ((bh = bh->b_this_page) != head);
1649         ext4_da_release_space(page->mapping->host, to_release);
1650 }
1651
1652 /*
1653  * Delayed allocation stuff
1654  */
1655
1656 struct mpage_da_data {
1657         struct inode *inode;
1658         struct buffer_head lbh;                 /* extent of blocks */
1659         unsigned long first_page, next_page;    /* extent of pages */
1660         get_block_t *get_block;
1661         struct writeback_control *wbc;
1662         int io_done;
1663         long pages_written;
1664         int retval;
1665 };
1666
1667 /*
1668  * mpage_da_submit_io - walks through extent of pages and try to write
1669  * them with writepage() call back
1670  *
1671  * @mpd->inode: inode
1672  * @mpd->first_page: first page of the extent
1673  * @mpd->next_page: page after the last page of the extent
1674  * @mpd->get_block: the filesystem's block mapper function
1675  *
1676  * By the time mpage_da_submit_io() is called we expect all blocks
1677  * to be allocated. this may be wrong if allocation failed.
1678  *
1679  * As pages are already locked by write_cache_pages(), we can't use it
1680  */
1681 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1682 {
1683         long pages_skipped;
1684         struct pagevec pvec;
1685         unsigned long index, end;
1686         int ret = 0, err, nr_pages, i;
1687         struct inode *inode = mpd->inode;
1688         struct address_space *mapping = inode->i_mapping;
1689
1690         BUG_ON(mpd->next_page <= mpd->first_page);
1691         /*
1692          * We need to start from the first_page to the next_page - 1
1693          * to make sure we also write the mapped dirty buffer_heads.
1694          * If we look at mpd->lbh.b_blocknr we would only be looking
1695          * at the currently mapped buffer_heads.
1696          */
1697         index = mpd->first_page;
1698         end = mpd->next_page - 1;
1699
1700         pagevec_init(&pvec, 0);
1701         while (index <= end) {
1702                 /*
1703                  * We can use PAGECACHE_TAG_DIRTY lookup here because
1704                  * even though we have cleared the dirty flag on the page
1705                  * We still keep the page in the radix tree with tag
1706                  * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1707                  * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1708                  * which is called via the below writepage callback.
1709                  */
1710                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1711                                         PAGECACHE_TAG_DIRTY,
1712                                         min(end - index,
1713                                         (pgoff_t)PAGEVEC_SIZE-1) + 1);
1714                 if (nr_pages == 0)
1715                         break;
1716                 for (i = 0; i < nr_pages; i++) {
1717                         struct page *page = pvec.pages[i];
1718
1719                         BUG_ON(!PageLocked(page));
1720                         BUG_ON(PageWriteback(page));
1721
1722                         pages_skipped = mpd->wbc->pages_skipped;
1723                         err = mapping->a_ops->writepage(page, mpd->wbc);
1724                         if (!err)
1725                                 mpd->pages_written++;
1726                         /*
1727                          * In error case, we have to continue because
1728                          * remaining pages are still locked
1729                          * XXX: unlock and re-dirty them?
1730                          */
1731                         if (ret == 0)
1732                                 ret = err;
1733                 }
1734                 pagevec_release(&pvec);
1735         }
1736         return ret;
1737 }
1738
1739 /*
1740  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1741  *
1742  * @mpd->inode - inode to walk through
1743  * @exbh->b_blocknr - first block on a disk
1744  * @exbh->b_size - amount of space in bytes
1745  * @logical - first logical block to start assignment with
1746  *
1747  * the function goes through all passed space and put actual disk
1748  * block numbers into buffer heads, dropping BH_Delay
1749  */
1750 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1751                                  struct buffer_head *exbh)
1752 {
1753         struct inode *inode = mpd->inode;
1754         struct address_space *mapping = inode->i_mapping;
1755         int blocks = exbh->b_size >> inode->i_blkbits;
1756         sector_t pblock = exbh->b_blocknr, cur_logical;
1757         struct buffer_head *head, *bh;
1758         pgoff_t index, end;
1759         struct pagevec pvec;
1760         int nr_pages, i;
1761
1762         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1763         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1764         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1765
1766         pagevec_init(&pvec, 0);
1767
1768         while (index <= end) {
1769                 /* XXX: optimize tail */
1770                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1771                 if (nr_pages == 0)
1772                         break;
1773                 for (i = 0; i < nr_pages; i++) {
1774                         struct page *page = pvec.pages[i];
1775
1776                         index = page->index;
1777                         if (index > end)
1778                                 break;
1779                         index++;
1780
1781                         BUG_ON(!PageLocked(page));
1782                         BUG_ON(PageWriteback(page));
1783                         BUG_ON(!page_has_buffers(page));
1784
1785                         bh = page_buffers(page);
1786                         head = bh;
1787
1788                         /* skip blocks out of the range */
1789                         do {
1790                                 if (cur_logical >= logical)
1791                                         break;
1792                                 cur_logical++;
1793                         } while ((bh = bh->b_this_page) != head);
1794
1795                         do {
1796                                 if (cur_logical >= logical + blocks)
1797                                         break;
1798                                 if (buffer_delay(bh)) {
1799                                         bh->b_blocknr = pblock;
1800                                         clear_buffer_delay(bh);
1801                                         bh->b_bdev = inode->i_sb->s_bdev;
1802                                 } else if (buffer_unwritten(bh)) {
1803                                         bh->b_blocknr = pblock;
1804                                         clear_buffer_unwritten(bh);
1805                                         set_buffer_mapped(bh);
1806                                         set_buffer_new(bh);
1807                                         bh->b_bdev = inode->i_sb->s_bdev;
1808                                 } else if (buffer_mapped(bh))
1809                                         BUG_ON(bh->b_blocknr != pblock);
1810
1811                                 cur_logical++;
1812                                 pblock++;
1813                         } while ((bh = bh->b_this_page) != head);
1814                 }
1815                 pagevec_release(&pvec);
1816         }
1817 }
1818
1819
1820 /*
1821  * __unmap_underlying_blocks - just a helper function to unmap
1822  * set of blocks described by @bh
1823  */
1824 static inline void __unmap_underlying_blocks(struct inode *inode,
1825                                              struct buffer_head *bh)
1826 {
1827         struct block_device *bdev = inode->i_sb->s_bdev;
1828         int blocks, i;
1829
1830         blocks = bh->b_size >> inode->i_blkbits;
1831         for (i = 0; i < blocks; i++)
1832                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1833 }
1834
1835 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1836                                         sector_t logical, long blk_cnt)
1837 {
1838         int nr_pages, i;
1839         pgoff_t index, end;
1840         struct pagevec pvec;
1841         struct inode *inode = mpd->inode;
1842         struct address_space *mapping = inode->i_mapping;
1843
1844         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1845         end   = (logical + blk_cnt - 1) >>
1846                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1847         while (index <= end) {
1848                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1849                 if (nr_pages == 0)
1850                         break;
1851                 for (i = 0; i < nr_pages; i++) {
1852                         struct page *page = pvec.pages[i];
1853                         index = page->index;
1854                         if (index > end)
1855                                 break;
1856                         index++;
1857
1858                         BUG_ON(!PageLocked(page));
1859                         BUG_ON(PageWriteback(page));
1860                         block_invalidatepage(page, 0);
1861                         ClearPageUptodate(page);
1862                         unlock_page(page);
1863                 }
1864         }
1865         return;
1866 }
1867
1868 static void ext4_print_free_blocks(struct inode *inode)
1869 {
1870         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1871         printk(KERN_EMERG "Total free blocks count %lld\n",
1872                         ext4_count_free_blocks(inode->i_sb));
1873         printk(KERN_EMERG "Free/Dirty block details\n");
1874         printk(KERN_EMERG "free_blocks=%lld\n",
1875                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1876         printk(KERN_EMERG "dirty_blocks=%lld\n",
1877                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1878         printk(KERN_EMERG "Block reservation details\n");
1879         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1880                         EXT4_I(inode)->i_reserved_data_blocks);
1881         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1882                         EXT4_I(inode)->i_reserved_meta_blocks);
1883         return;
1884 }
1885
1886 /*
1887  * mpage_da_map_blocks - go through given space
1888  *
1889  * @mpd->lbh - bh describing space
1890  * @mpd->get_block - the filesystem's block mapper function
1891  *
1892  * The function skips space we know is already mapped to disk blocks.
1893  *
1894  */
1895 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1896 {
1897         int err = 0;
1898         struct buffer_head new;
1899         struct buffer_head *lbh = &mpd->lbh;
1900         sector_t next;
1901
1902         /*
1903          * We consider only non-mapped and non-allocated blocks
1904          */
1905         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1906                 return 0;
1907         new.b_state = lbh->b_state;
1908         new.b_blocknr = 0;
1909         new.b_size = lbh->b_size;
1910         next = lbh->b_blocknr;
1911         /*
1912          * If we didn't accumulate anything
1913          * to write simply return
1914          */
1915         if (!new.b_size)
1916                 return 0;
1917         err = mpd->get_block(mpd->inode, next, &new, 1);
1918         if (err) {
1919
1920                 /* If get block returns with error
1921                  * we simply return. Later writepage
1922                  * will redirty the page and writepages
1923                  * will find the dirty page again
1924                  */
1925                 if (err == -EAGAIN)
1926                         return 0;
1927
1928                 if (err == -ENOSPC &&
1929                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1930                         mpd->retval = err;
1931                         return 0;
1932                 }
1933
1934                 /*
1935                  * get block failure will cause us
1936                  * to loop in writepages. Because
1937                  * a_ops->writepage won't be able to
1938                  * make progress. The page will be redirtied
1939                  * by writepage and writepages will again
1940                  * try to write the same.
1941                  */
1942                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1943                                   "at logical offset %llu with max blocks "
1944                                   "%zd with error %d\n",
1945                                   __func__, mpd->inode->i_ino,
1946                                   (unsigned long long)next,
1947                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1948                 printk(KERN_EMERG "This should not happen.!! "
1949                                         "Data will be lost\n");
1950                 if (err == -ENOSPC) {
1951                         ext4_print_free_blocks(mpd->inode);
1952                 }
1953                 /* invlaidate all the pages */
1954                 ext4_da_block_invalidatepages(mpd, next,
1955                                 lbh->b_size >> mpd->inode->i_blkbits);
1956                 return err;
1957         }
1958         BUG_ON(new.b_size == 0);
1959
1960         if (buffer_new(&new))
1961                 __unmap_underlying_blocks(mpd->inode, &new);
1962
1963         /*
1964          * If blocks are delayed marked, we need to
1965          * put actual blocknr and drop delayed bit
1966          */
1967         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1968                 mpage_put_bnr_to_bhs(mpd, next, &new);
1969
1970         return 0;
1971 }
1972
1973 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1974                 (1 << BH_Delay) | (1 << BH_Unwritten))
1975
1976 /*
1977  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1978  *
1979  * @mpd->lbh - extent of blocks
1980  * @logical - logical number of the block in the file
1981  * @bh - bh of the block (used to access block's state)
1982  *
1983  * the function is used to collect contig. blocks in same state
1984  */
1985 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1986                                    sector_t logical, struct buffer_head *bh)
1987 {
1988         sector_t next;
1989         size_t b_size = bh->b_size;
1990         struct buffer_head *lbh = &mpd->lbh;
1991         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1992
1993         /* check if thereserved journal credits might overflow */
1994         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1995                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1996                         /*
1997                          * With non-extent format we are limited by the journal
1998                          * credit available.  Total credit needed to insert
1999                          * nrblocks contiguous blocks is dependent on the
2000                          * nrblocks.  So limit nrblocks.
2001                          */
2002                         goto flush_it;
2003                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2004                                 EXT4_MAX_TRANS_DATA) {
2005                         /*
2006                          * Adding the new buffer_head would make it cross the
2007                          * allowed limit for which we have journal credit
2008                          * reserved. So limit the new bh->b_size
2009                          */
2010                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2011                                                 mpd->inode->i_blkbits;
2012                         /* we will do mpage_da_submit_io in the next loop */
2013                 }
2014         }
2015         /*
2016          * First block in the extent
2017          */
2018         if (lbh->b_size == 0) {
2019                 lbh->b_blocknr = logical;
2020                 lbh->b_size = b_size;
2021                 lbh->b_state = bh->b_state & BH_FLAGS;
2022                 return;
2023         }
2024
2025         next = lbh->b_blocknr + nrblocks;
2026         /*
2027          * Can we merge the block to our big extent?
2028          */
2029         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2030                 lbh->b_size += b_size;
2031                 return;
2032         }
2033
2034 flush_it:
2035         /*
2036          * We couldn't merge the block to our extent, so we
2037          * need to flush current  extent and start new one
2038          */
2039         if (mpage_da_map_blocks(mpd) == 0)
2040                 mpage_da_submit_io(mpd);
2041         mpd->io_done = 1;
2042         return;
2043 }
2044
2045 /*
2046  * __mpage_da_writepage - finds extent of pages and blocks
2047  *
2048  * @page: page to consider
2049  * @wbc: not used, we just follow rules
2050  * @data: context
2051  *
2052  * The function finds extents of pages and scan them for all blocks.
2053  */
2054 static int __mpage_da_writepage(struct page *page,
2055                                 struct writeback_control *wbc, void *data)
2056 {
2057         struct mpage_da_data *mpd = data;
2058         struct inode *inode = mpd->inode;
2059         struct buffer_head *bh, *head, fake;
2060         sector_t logical;
2061
2062         if (mpd->io_done) {
2063                 /*
2064                  * Rest of the page in the page_vec
2065                  * redirty then and skip then. We will
2066                  * try to to write them again after
2067                  * starting a new transaction
2068                  */
2069                 redirty_page_for_writepage(wbc, page);
2070                 unlock_page(page);
2071                 return MPAGE_DA_EXTENT_TAIL;
2072         }
2073         /*
2074          * Can we merge this page to current extent?
2075          */
2076         if (mpd->next_page != page->index) {
2077                 /*
2078                  * Nope, we can't. So, we map non-allocated blocks
2079                  * and start IO on them using writepage()
2080                  */
2081                 if (mpd->next_page != mpd->first_page) {
2082                         if (mpage_da_map_blocks(mpd) == 0)
2083                                 mpage_da_submit_io(mpd);
2084                         /*
2085                          * skip rest of the page in the page_vec
2086                          */
2087                         mpd->io_done = 1;
2088                         redirty_page_for_writepage(wbc, page);
2089                         unlock_page(page);
2090                         return MPAGE_DA_EXTENT_TAIL;
2091                 }
2092
2093                 /*
2094                  * Start next extent of pages ...
2095                  */
2096                 mpd->first_page = page->index;
2097
2098                 /*
2099                  * ... and blocks
2100                  */
2101                 mpd->lbh.b_size = 0;
2102                 mpd->lbh.b_state = 0;
2103                 mpd->lbh.b_blocknr = 0;
2104         }
2105
2106         mpd->next_page = page->index + 1;
2107         logical = (sector_t) page->index <<
2108                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2109
2110         if (!page_has_buffers(page)) {
2111                 /*
2112                  * There is no attached buffer heads yet (mmap?)
2113                  * we treat the page asfull of dirty blocks
2114                  */
2115                 bh = &fake;
2116                 bh->b_size = PAGE_CACHE_SIZE;
2117                 bh->b_state = 0;
2118                 set_buffer_dirty(bh);
2119                 set_buffer_uptodate(bh);
2120                 mpage_add_bh_to_extent(mpd, logical, bh);
2121                 if (mpd->io_done)
2122                         return MPAGE_DA_EXTENT_TAIL;
2123         } else {
2124                 /*
2125                  * Page with regular buffer heads, just add all dirty ones
2126                  */
2127                 head = page_buffers(page);
2128                 bh = head;
2129                 do {
2130                         BUG_ON(buffer_locked(bh));
2131                         /*
2132                          * We need to try to allocate
2133                          * unmapped blocks in the same page.
2134                          * Otherwise we won't make progress
2135                          * with the page in ext4_da_writepage
2136                          */
2137                         if (buffer_dirty(bh) &&
2138                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2139                                 mpage_add_bh_to_extent(mpd, logical, bh);
2140                                 if (mpd->io_done)
2141                                         return MPAGE_DA_EXTENT_TAIL;
2142                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2143                                 /*
2144                                  * mapped dirty buffer. We need to update
2145                                  * the b_state because we look at
2146                                  * b_state in mpage_da_map_blocks. We don't
2147                                  * update b_size because if we find an
2148                                  * unmapped buffer_head later we need to
2149                                  * use the b_state flag of that buffer_head.
2150                                  */
2151                                 if (mpd->lbh.b_size == 0)
2152                                         mpd->lbh.b_state =
2153                                                 bh->b_state & BH_FLAGS;
2154                         }
2155                         logical++;
2156                 } while ((bh = bh->b_this_page) != head);
2157         }
2158
2159         return 0;
2160 }
2161
2162 /*
2163  * mpage_da_writepages - walk the list of dirty pages of the given
2164  * address space, allocates non-allocated blocks, maps newly-allocated
2165  * blocks to existing bhs and issue IO them
2166  *
2167  * @mapping: address space structure to write
2168  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2169  * @get_block: the filesystem's block mapper function.
2170  *
2171  * This is a library function, which implements the writepages()
2172  * address_space_operation.
2173  */
2174 static int mpage_da_writepages(struct address_space *mapping,
2175                                struct writeback_control *wbc,
2176                                struct mpage_da_data *mpd)
2177 {
2178         long to_write;
2179         int ret;
2180
2181         if (!mpd->get_block)
2182                 return generic_writepages(mapping, wbc);
2183
2184         mpd->lbh.b_size = 0;
2185         mpd->lbh.b_state = 0;
2186         mpd->lbh.b_blocknr = 0;
2187         mpd->first_page = 0;
2188         mpd->next_page = 0;
2189         mpd->io_done = 0;
2190         mpd->pages_written = 0;
2191         mpd->retval = 0;
2192
2193         to_write = wbc->nr_to_write;
2194
2195         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2196
2197         /*
2198          * Handle last extent of pages
2199          */
2200         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2201                 if (mpage_da_map_blocks(mpd) == 0)
2202                         mpage_da_submit_io(mpd);
2203         }
2204
2205         wbc->nr_to_write = to_write - mpd->pages_written;
2206         return ret;
2207 }
2208
2209 /*
2210  * this is a special callback for ->write_begin() only
2211  * it's intention is to return mapped block or reserve space
2212  */
2213 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2214                                   struct buffer_head *bh_result, int create)
2215 {
2216         int ret = 0;
2217         sector_t invalid_block = ~((sector_t) 0xffff);
2218
2219         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2220                 invalid_block = ~0;
2221
2222         BUG_ON(create == 0);
2223         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2224
2225         /*
2226          * first, we need to know whether the block is allocated already
2227          * preallocated blocks are unmapped but should treated
2228          * the same as allocated blocks.
2229          */
2230         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2231         if ((ret == 0) && !buffer_delay(bh_result)) {
2232                 /* the block isn't (pre)allocated yet, let's reserve space */
2233                 /*
2234                  * XXX: __block_prepare_write() unmaps passed block,
2235                  * is it OK?
2236                  */
2237                 ret = ext4_da_reserve_space(inode, 1);
2238                 if (ret)
2239                         /* not enough space to reserve */
2240                         return ret;
2241
2242                 map_bh(bh_result, inode->i_sb, invalid_block);
2243                 set_buffer_new(bh_result);
2244                 set_buffer_delay(bh_result);
2245         } else if (ret > 0) {
2246                 bh_result->b_size = (ret << inode->i_blkbits);
2247                 /*
2248                  * With sub-block writes into unwritten extents
2249                  * we also need to mark the buffer as new so that
2250                  * the unwritten parts of the buffer gets correctly zeroed.
2251                  */
2252                 if (buffer_unwritten(bh_result))
2253                         set_buffer_new(bh_result);
2254                 ret = 0;
2255         }
2256
2257         return ret;
2258 }
2259 #define         EXT4_DELALLOC_RSVED     1
2260 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2261                                    struct buffer_head *bh_result, int create)
2262 {
2263         int ret;
2264         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2265         loff_t disksize = EXT4_I(inode)->i_disksize;
2266         handle_t *handle = NULL;
2267
2268         handle = ext4_journal_current_handle();
2269         if (!handle) {
2270                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2271                                    bh_result, 0, 0, 0);
2272                 BUG_ON(!ret);
2273         } else {
2274                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2275                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2276         }
2277
2278         if (ret > 0) {
2279                 bh_result->b_size = (ret << inode->i_blkbits);
2280
2281                 /*
2282                  * Update on-disk size along with block allocation
2283                  * we don't use 'extend_disksize' as size may change
2284                  * within already allocated block -bzzz
2285                  */
2286                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2287                 if (disksize > i_size_read(inode))
2288                         disksize = i_size_read(inode);
2289                 if (disksize > EXT4_I(inode)->i_disksize) {
2290                         /*
2291                          * XXX: replace with spinlock if seen contended -bzzz
2292                          */
2293                         down_write(&EXT4_I(inode)->i_data_sem);
2294                         if (disksize > EXT4_I(inode)->i_disksize)
2295                                 EXT4_I(inode)->i_disksize = disksize;
2296                         up_write(&EXT4_I(inode)->i_data_sem);
2297
2298                         if (EXT4_I(inode)->i_disksize == disksize) {
2299                                 ret = ext4_mark_inode_dirty(handle, inode);
2300                                 return ret;
2301                         }
2302                 }
2303                 ret = 0;
2304         }
2305         return ret;
2306 }
2307
2308 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2309 {
2310         /*
2311          * unmapped buffer is possible for holes.
2312          * delay buffer is possible with delayed allocation
2313          */
2314         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2315 }
2316
2317 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2318                                    struct buffer_head *bh_result, int create)
2319 {
2320         int ret = 0;
2321         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2322
2323         /*
2324          * we don't want to do block allocation in writepage
2325          * so call get_block_wrap with create = 0
2326          */
2327         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2328                                    bh_result, 0, 0, 0);
2329         if (ret > 0) {
2330                 bh_result->b_size = (ret << inode->i_blkbits);
2331                 ret = 0;
2332         }
2333         return ret;
2334 }
2335
2336 /*
2337  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2338  * get called via journal_submit_inode_data_buffers (no journal handle)
2339  * get called via shrink_page_list via pdflush (no journal handle)
2340  * or grab_page_cache when doing write_begin (have journal handle)
2341  */
2342 static int ext4_da_writepage(struct page *page,
2343                                 struct writeback_control *wbc)
2344 {
2345         int ret = 0;
2346         loff_t size;
2347         unsigned long len;
2348         struct buffer_head *page_bufs;
2349         struct inode *inode = page->mapping->host;
2350
2351         size = i_size_read(inode);
2352         if (page->index == size >> PAGE_CACHE_SHIFT)
2353                 len = size & ~PAGE_CACHE_MASK;
2354         else
2355                 len = PAGE_CACHE_SIZE;
2356
2357         if (page_has_buffers(page)) {
2358                 page_bufs = page_buffers(page);
2359                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2360                                         ext4_bh_unmapped_or_delay)) {
2361                         /*
2362                          * We don't want to do  block allocation
2363                          * So redirty the page and return
2364                          * We may reach here when we do a journal commit
2365                          * via journal_submit_inode_data_buffers.
2366                          * If we don't have mapping block we just ignore
2367                          * them. We can also reach here via shrink_page_list
2368                          */
2369                         redirty_page_for_writepage(wbc, page);
2370                         unlock_page(page);
2371                         return 0;
2372                 }
2373         } else {
2374                 /*
2375                  * The test for page_has_buffers() is subtle:
2376                  * We know the page is dirty but it lost buffers. That means
2377                  * that at some moment in time after write_begin()/write_end()
2378                  * has been called all buffers have been clean and thus they
2379                  * must have been written at least once. So they are all
2380                  * mapped and we can happily proceed with mapping them
2381                  * and writing the page.
2382                  *
2383                  * Try to initialize the buffer_heads and check whether
2384                  * all are mapped and non delay. We don't want to
2385                  * do block allocation here.
2386                  */
2387                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2388                                                 ext4_normal_get_block_write);
2389                 if (!ret) {
2390                         page_bufs = page_buffers(page);
2391                         /* check whether all are mapped and non delay */
2392                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2393                                                 ext4_bh_unmapped_or_delay)) {
2394                                 redirty_page_for_writepage(wbc, page);
2395                                 unlock_page(page);
2396                                 return 0;
2397                         }
2398                 } else {
2399                         /*
2400                          * We can't do block allocation here
2401                          * so just redity the page and unlock
2402                          * and return
2403                          */
2404                         redirty_page_for_writepage(wbc, page);
2405                         unlock_page(page);
2406                         return 0;
2407                 }
2408                 /* now mark the buffer_heads as dirty and uptodate */
2409                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2410         }
2411
2412         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2413                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2414         else
2415                 ret = block_write_full_page(page,
2416                                                 ext4_normal_get_block_write,
2417                                                 wbc);
2418
2419         return ret;
2420 }
2421
2422 /*
2423  * This is called via ext4_da_writepages() to
2424  * calulate the total number of credits to reserve to fit
2425  * a single extent allocation into a single transaction,
2426  * ext4_da_writpeages() will loop calling this before
2427  * the block allocation.
2428  */
2429
2430 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2431 {
2432         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2433
2434         /*
2435          * With non-extent format the journal credit needed to
2436          * insert nrblocks contiguous block is dependent on
2437          * number of contiguous block. So we will limit
2438          * number of contiguous block to a sane value
2439          */
2440         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2441             (max_blocks > EXT4_MAX_TRANS_DATA))
2442                 max_blocks = EXT4_MAX_TRANS_DATA;
2443
2444         return ext4_chunk_trans_blocks(inode, max_blocks);
2445 }
2446
2447 static int ext4_da_writepages(struct address_space *mapping,
2448                               struct writeback_control *wbc)
2449 {
2450         handle_t *handle = NULL;
2451         struct mpage_da_data mpd;
2452         struct inode *inode = mapping->host;
2453         int needed_blocks, ret = 0, nr_to_writebump = 0;
2454         long to_write, pages_skipped = 0;
2455         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2456
2457         /*
2458          * No pages to write? This is mainly a kludge to avoid starting
2459          * a transaction for special inodes like journal inode on last iput()
2460          * because that could violate lock ordering on umount
2461          */
2462         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2463                 return 0;
2464
2465         /*
2466          * If the filesystem has aborted, it is read-only, so return
2467          * right away instead of dumping stack traces later on that
2468          * will obscure the real source of the problem.  We test
2469          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2470          * the latter could be true if the filesystem is mounted
2471          * read-only, and in that case, ext4_da_writepages should
2472          * *never* be called, so if that ever happens, we would want
2473          * the stack trace.
2474          */
2475         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2476                 return -EROFS;
2477
2478         /*
2479          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2480          * This make sure small files blocks are allocated in
2481          * single attempt. This ensure that small files
2482          * get less fragmented.
2483          */
2484         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2485                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2486                 wbc->nr_to_write = sbi->s_mb_stream_request;
2487         }
2488
2489
2490         pages_skipped = wbc->pages_skipped;
2491
2492         mpd.wbc = wbc;
2493         mpd.inode = mapping->host;
2494
2495 restart_loop:
2496         to_write = wbc->nr_to_write;
2497         while (!ret && to_write > 0) {
2498
2499                 /*
2500                  * we  insert one extent at a time. So we need
2501                  * credit needed for single extent allocation.
2502                  * journalled mode is currently not supported
2503                  * by delalloc
2504                  */
2505                 BUG_ON(ext4_should_journal_data(inode));
2506                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2507
2508                 /* start a new transaction*/
2509                 handle = ext4_journal_start(inode, needed_blocks);
2510                 if (IS_ERR(handle)) {
2511                         ret = PTR_ERR(handle);
2512                         printk(KERN_CRIT "%s: jbd2_start: "
2513                                "%ld pages, ino %lu; err %d\n", __func__,
2514                                 wbc->nr_to_write, inode->i_ino, ret);
2515                         dump_stack();
2516                         goto out_writepages;
2517                 }
2518                 if (ext4_should_order_data(inode)) {
2519                         /*
2520                          * With ordered mode we need to add
2521                          * the inode to the journal handl
2522                          * when we do block allocation.
2523                          */
2524                         ret = ext4_jbd2_file_inode(handle, inode);
2525                         if (ret) {
2526                                 ext4_journal_stop(handle);
2527                                 goto out_writepages;
2528                         }
2529                 }
2530                 to_write -= wbc->nr_to_write;
2531
2532                 mpd.get_block = ext4_da_get_block_write;
2533                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2534
2535                 ext4_journal_stop(handle);
2536
2537                 if (mpd.retval == -ENOSPC)
2538                         jbd2_journal_force_commit_nested(sbi->s_journal);
2539
2540                 /* reset the retry count */
2541                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2542                         /*
2543                          * got one extent now try with
2544                          * rest of the pages
2545                          */
2546                         to_write += wbc->nr_to_write;
2547                         ret = 0;
2548                 } else if (wbc->nr_to_write) {
2549                         /*
2550                          * There is no more writeout needed
2551                          * or we requested for a noblocking writeout
2552                          * and we found the device congested
2553                          */
2554                         to_write += wbc->nr_to_write;
2555                         break;
2556                 }
2557                 wbc->nr_to_write = to_write;
2558         }
2559
2560         if (!wbc->range_cyclic && (pages_skipped != wbc->pages_skipped)) {
2561                 /* We skipped pages in this loop */
2562                 wbc->nr_to_write = to_write +
2563                                 wbc->pages_skipped - pages_skipped;
2564                 wbc->pages_skipped = pages_skipped;
2565                 goto restart_loop;
2566         }
2567
2568 out_writepages:
2569         wbc->nr_to_write = to_write - nr_to_writebump;
2570         return ret;
2571 }
2572
2573 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2574                                 loff_t pos, unsigned len, unsigned flags,
2575                                 struct page **pagep, void **fsdata)
2576 {
2577         int ret, retries = 0;
2578         struct page *page;
2579         pgoff_t index;
2580         unsigned from, to;
2581         struct inode *inode = mapping->host;
2582         handle_t *handle;
2583
2584         index = pos >> PAGE_CACHE_SHIFT;
2585         from = pos & (PAGE_CACHE_SIZE - 1);
2586         to = from + len;
2587 retry:
2588         /*
2589          * With delayed allocation, we don't log the i_disksize update
2590          * if there is delayed block allocation. But we still need
2591          * to journalling the i_disksize update if writes to the end
2592          * of file which has an already mapped buffer.
2593          */
2594         handle = ext4_journal_start(inode, 1);
2595         if (IS_ERR(handle)) {
2596                 ret = PTR_ERR(handle);
2597                 goto out;
2598         }
2599         /* We cannot recurse into the filesystem as the transaction is already
2600          * started */
2601         flags |= AOP_FLAG_NOFS;
2602
2603         page = grab_cache_page_write_begin(mapping, index, flags);
2604         if (!page) {
2605                 ext4_journal_stop(handle);
2606                 ret = -ENOMEM;
2607                 goto out;
2608         }
2609         *pagep = page;
2610
2611         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2612                                                         ext4_da_get_block_prep);
2613         if (ret < 0) {
2614                 unlock_page(page);
2615                 ext4_journal_stop(handle);
2616                 page_cache_release(page);
2617         }
2618
2619         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2620                 goto retry;
2621 out:
2622         return ret;
2623 }
2624
2625 /*
2626  * Check if we should update i_disksize
2627  * when write to the end of file but not require block allocation
2628  */
2629 static int ext4_da_should_update_i_disksize(struct page *page,
2630                                          unsigned long offset)
2631 {
2632         struct buffer_head *bh;
2633         struct inode *inode = page->mapping->host;
2634         unsigned int idx;
2635         int i;
2636
2637         bh = page_buffers(page);
2638         idx = offset >> inode->i_blkbits;
2639
2640         for (i=0; i < idx; i++)
2641                 bh = bh->b_this_page;
2642
2643         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2644                 return 0;
2645         return 1;
2646 }
2647
2648 static int ext4_da_write_end(struct file *file,
2649                                 struct address_space *mapping,
2650                                 loff_t pos, unsigned len, unsigned copied,
2651                                 struct page *page, void *fsdata)
2652 {
2653         struct inode *inode = mapping->host;
2654         int ret = 0, ret2;
2655         handle_t *handle = ext4_journal_current_handle();
2656         loff_t new_i_size;
2657         unsigned long start, end;
2658
2659         start = pos & (PAGE_CACHE_SIZE - 1);
2660         end = start + copied -1;
2661
2662         /*
2663          * generic_write_end() will run mark_inode_dirty() if i_size
2664          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2665          * into that.
2666          */
2667
2668         new_i_size = pos + copied;
2669         if (new_i_size > EXT4_I(inode)->i_disksize) {
2670                 if (ext4_da_should_update_i_disksize(page, end)) {
2671                         down_write(&EXT4_I(inode)->i_data_sem);
2672                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2673                                 /*
2674                                  * Updating i_disksize when extending file
2675                                  * without needing block allocation
2676                                  */
2677                                 if (ext4_should_order_data(inode))
2678                                         ret = ext4_jbd2_file_inode(handle,
2679                                                                    inode);
2680
2681                                 EXT4_I(inode)->i_disksize = new_i_size;
2682                         }
2683                         up_write(&EXT4_I(inode)->i_data_sem);
2684                 }
2685         }
2686         ret2 = generic_write_end(file, mapping, pos, len, copied,
2687                                                         page, fsdata);
2688         copied = ret2;
2689         if (ret2 < 0)
2690                 ret = ret2;
2691         ret2 = ext4_journal_stop(handle);
2692         if (!ret)
2693                 ret = ret2;
2694
2695         return ret ? ret : copied;
2696 }
2697
2698 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2699 {
2700         /*
2701          * Drop reserved blocks
2702          */
2703         BUG_ON(!PageLocked(page));
2704         if (!page_has_buffers(page))
2705                 goto out;
2706
2707         ext4_da_page_release_reservation(page, offset);
2708
2709 out:
2710         ext4_invalidatepage(page, offset);
2711
2712         return;
2713 }
2714
2715 /*
2716  * Force all delayed allocation blocks to be allocated for a given inode.
2717  */
2718 int ext4_alloc_da_blocks(struct inode *inode)
2719 {
2720         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2721             !EXT4_I(inode)->i_reserved_meta_blocks)
2722                 return 0;
2723
2724         /*
2725          * We do something simple for now.  The filemap_flush() will
2726          * also start triggering a write of the data blocks, which is
2727          * not strictly speaking necessary (and for users of
2728          * laptop_mode, not even desirable).  However, to do otherwise
2729          * would require replicating code paths in:
2730          *
2731          * ext4_da_writepages() ->
2732          *    write_cache_pages() ---> (via passed in callback function)
2733          *        __mpage_da_writepage() -->
2734          *           mpage_add_bh_to_extent()
2735          *           mpage_da_map_blocks()
2736          *
2737          * The problem is that write_cache_pages(), located in
2738          * mm/page-writeback.c, marks pages clean in preparation for
2739          * doing I/O, which is not desirable if we're not planning on
2740          * doing I/O at all.
2741          *
2742          * We could call write_cache_pages(), and then redirty all of
2743          * the pages by calling redirty_page_for_writeback() but that
2744          * would be ugly in the extreme.  So instead we would need to
2745          * replicate parts of the code in the above functions,
2746          * simplifying them becuase we wouldn't actually intend to
2747          * write out the pages, but rather only collect contiguous
2748          * logical block extents, call the multi-block allocator, and
2749          * then update the buffer heads with the block allocations.
2750          *
2751          * For now, though, we'll cheat by calling filemap_flush(),
2752          * which will map the blocks, and start the I/O, but not
2753          * actually wait for the I/O to complete.
2754          */
2755         return filemap_flush(inode->i_mapping);
2756 }
2757
2758 /*
2759  * bmap() is special.  It gets used by applications such as lilo and by
2760  * the swapper to find the on-disk block of a specific piece of data.
2761  *
2762  * Naturally, this is dangerous if the block concerned is still in the
2763  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2764  * filesystem and enables swap, then they may get a nasty shock when the
2765  * data getting swapped to that swapfile suddenly gets overwritten by
2766  * the original zero's written out previously to the journal and
2767  * awaiting writeback in the kernel's buffer cache.
2768  *
2769  * So, if we see any bmap calls here on a modified, data-journaled file,
2770  * take extra steps to flush any blocks which might be in the cache.
2771  */
2772 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2773 {
2774         struct inode *inode = mapping->host;
2775         journal_t *journal;
2776         int err;
2777
2778         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2779                         test_opt(inode->i_sb, DELALLOC)) {
2780                 /*
2781                  * With delalloc we want to sync the file
2782                  * so that we can make sure we allocate
2783                  * blocks for file
2784                  */
2785                 filemap_write_and_wait(mapping);
2786         }
2787
2788         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2789                 /*
2790                  * This is a REALLY heavyweight approach, but the use of
2791                  * bmap on dirty files is expected to be extremely rare:
2792                  * only if we run lilo or swapon on a freshly made file
2793                  * do we expect this to happen.
2794                  *
2795                  * (bmap requires CAP_SYS_RAWIO so this does not
2796                  * represent an unprivileged user DOS attack --- we'd be
2797                  * in trouble if mortal users could trigger this path at
2798                  * will.)
2799                  *
2800                  * NB. EXT4_STATE_JDATA is not set on files other than
2801                  * regular files.  If somebody wants to bmap a directory
2802                  * or symlink and gets confused because the buffer
2803                  * hasn't yet been flushed to disk, they deserve
2804                  * everything they get.
2805                  */
2806
2807                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2808                 journal = EXT4_JOURNAL(inode);
2809                 jbd2_journal_lock_updates(journal);
2810                 err = jbd2_journal_flush(journal);
2811                 jbd2_journal_unlock_updates(journal);
2812
2813                 if (err)
2814                         return 0;
2815         }
2816
2817         return generic_block_bmap(mapping,block,ext4_get_block);
2818 }
2819
2820 static int bget_one(handle_t *handle, struct buffer_head *bh)
2821 {
2822         get_bh(bh);
2823         return 0;
2824 }
2825
2826 static int bput_one(handle_t *handle, struct buffer_head *bh)
2827 {
2828         put_bh(bh);
2829         return 0;
2830 }
2831
2832 /*
2833  * Note that we don't need to start a transaction unless we're journaling data
2834  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2835  * need to file the inode to the transaction's list in ordered mode because if
2836  * we are writing back data added by write(), the inode is already there and if
2837  * we are writing back data modified via mmap(), noone guarantees in which
2838  * transaction the data will hit the disk. In case we are journaling data, we
2839  * cannot start transaction directly because transaction start ranks above page
2840  * lock so we have to do some magic.
2841  *
2842  * In all journaling modes block_write_full_page() will start the I/O.
2843  *
2844  * Problem:
2845  *
2846  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2847  *              ext4_writepage()
2848  *
2849  * Similar for:
2850  *
2851  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2852  *
2853  * Same applies to ext4_get_block().  We will deadlock on various things like
2854  * lock_journal and i_data_sem
2855  *
2856  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2857  * allocations fail.
2858  *
2859  * 16May01: If we're reentered then journal_current_handle() will be
2860  *          non-zero. We simply *return*.
2861  *
2862  * 1 July 2001: @@@ FIXME:
2863  *   In journalled data mode, a data buffer may be metadata against the
2864  *   current transaction.  But the same file is part of a shared mapping
2865  *   and someone does a writepage() on it.
2866  *
2867  *   We will move the buffer onto the async_data list, but *after* it has
2868  *   been dirtied. So there's a small window where we have dirty data on
2869  *   BJ_Metadata.
2870  *
2871  *   Note that this only applies to the last partial page in the file.  The
2872  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2873  *   broken code anyway: it's wrong for msync()).
2874  *
2875  *   It's a rare case: affects the final partial page, for journalled data
2876  *   where the file is subject to bith write() and writepage() in the same
2877  *   transction.  To fix it we'll need a custom block_write_full_page().
2878  *   We'll probably need that anyway for journalling writepage() output.
2879  *
2880  * We don't honour synchronous mounts for writepage().  That would be
2881  * disastrous.  Any write() or metadata operation will sync the fs for
2882  * us.
2883  *
2884  */
2885 static int __ext4_normal_writepage(struct page *page,
2886                                 struct writeback_control *wbc)
2887 {
2888         struct inode *inode = page->mapping->host;
2889
2890         if (test_opt(inode->i_sb, NOBH))
2891                 return nobh_writepage(page,
2892                                         ext4_normal_get_block_write, wbc);
2893         else
2894                 return block_write_full_page(page,
2895                                                 ext4_normal_get_block_write,
2896                                                 wbc);
2897 }
2898
2899 static int ext4_normal_writepage(struct page *page,
2900                                 struct writeback_control *wbc)
2901 {
2902         struct inode *inode = page->mapping->host;
2903         loff_t size = i_size_read(inode);
2904         loff_t len;
2905
2906         J_ASSERT(PageLocked(page));
2907         if (page->index == size >> PAGE_CACHE_SHIFT)
2908                 len = size & ~PAGE_CACHE_MASK;
2909         else
2910                 len = PAGE_CACHE_SIZE;
2911
2912         if (page_has_buffers(page)) {
2913                 /* if page has buffers it should all be mapped
2914                  * and allocated. If there are not buffers attached
2915                  * to the page we know the page is dirty but it lost
2916                  * buffers. That means that at some moment in time
2917                  * after write_begin() / write_end() has been called
2918                  * all buffers have been clean and thus they must have been
2919                  * written at least once. So they are all mapped and we can
2920                  * happily proceed with mapping them and writing the page.
2921                  */
2922                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2923                                         ext4_bh_unmapped_or_delay));
2924         }
2925
2926         if (!ext4_journal_current_handle())
2927                 return __ext4_normal_writepage(page, wbc);
2928
2929         redirty_page_for_writepage(wbc, page);
2930         unlock_page(page);
2931         return 0;
2932 }
2933
2934 static int __ext4_journalled_writepage(struct page *page,
2935                                 struct writeback_control *wbc)
2936 {
2937         struct address_space *mapping = page->mapping;
2938         struct inode *inode = mapping->host;
2939         struct buffer_head *page_bufs;
2940         handle_t *handle = NULL;
2941         int ret = 0;
2942         int err;
2943
2944         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2945                                         ext4_normal_get_block_write);
2946         if (ret != 0)
2947                 goto out_unlock;
2948
2949         page_bufs = page_buffers(page);
2950         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2951                                                                 bget_one);
2952         /* As soon as we unlock the page, it can go away, but we have
2953          * references to buffers so we are safe */
2954         unlock_page(page);
2955
2956         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2957         if (IS_ERR(handle)) {
2958                 ret = PTR_ERR(handle);
2959                 goto out;
2960         }
2961
2962         ret = walk_page_buffers(handle, page_bufs, 0,
2963                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2964
2965         err = walk_page_buffers(handle, page_bufs, 0,
2966                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2967         if (ret == 0)
2968                 ret = err;
2969         err = ext4_journal_stop(handle);
2970         if (!ret)
2971                 ret = err;
2972
2973         walk_page_buffers(handle, page_bufs, 0,
2974                                 PAGE_CACHE_SIZE, NULL, bput_one);
2975         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2976         goto out;
2977
2978 out_unlock:
2979         unlock_page(page);
2980 out:
2981         return ret;
2982 }
2983
2984 static int ext4_journalled_writepage(struct page *page,
2985                                 struct writeback_control *wbc)
2986 {
2987         struct inode *inode = page->mapping->host;
2988         loff_t size = i_size_read(inode);
2989         loff_t len;
2990
2991         J_ASSERT(PageLocked(page));
2992         if (page->index == size >> PAGE_CACHE_SHIFT)
2993                 len = size & ~PAGE_CACHE_MASK;
2994         else
2995                 len = PAGE_CACHE_SIZE;
2996
2997         if (page_has_buffers(page)) {
2998                 /* if page has buffers it should all be mapped
2999                  * and allocated. If there are not buffers attached
3000                  * to the page we know the page is dirty but it lost
3001                  * buffers. That means that at some moment in time
3002                  * after write_begin() / write_end() has been called
3003                  * all buffers have been clean and thus they must have been
3004                  * written at least once. So they are all mapped and we can
3005                  * happily proceed with mapping them and writing the page.
3006                  */
3007                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3008                                         ext4_bh_unmapped_or_delay));
3009         }
3010
3011         if (ext4_journal_current_handle())
3012                 goto no_write;
3013
3014         if (PageChecked(page)) {
3015                 /*
3016                  * It's mmapped pagecache.  Add buffers and journal it.  There
3017                  * doesn't seem much point in redirtying the page here.
3018                  */
3019                 ClearPageChecked(page);
3020                 return __ext4_journalled_writepage(page, wbc);
3021         } else {
3022                 /*
3023                  * It may be a page full of checkpoint-mode buffers.  We don't
3024                  * really know unless we go poke around in the buffer_heads.
3025                  * But block_write_full_page will do the right thing.
3026                  */
3027                 return block_write_full_page(page,
3028                                                 ext4_normal_get_block_write,
3029                                                 wbc);
3030         }
3031 no_write:
3032         redirty_page_for_writepage(wbc, page);
3033         unlock_page(page);
3034         return 0;
3035 }
3036
3037 static int ext4_readpage(struct file *file, struct page *page)
3038 {
3039         return mpage_readpage(page, ext4_get_block);
3040 }
3041
3042 static int
3043 ext4_readpages(struct file *file, struct address_space *mapping,
3044                 struct list_head *pages, unsigned nr_pages)
3045 {
3046         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3047 }
3048
3049 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3050 {
3051         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052
3053         /*
3054          * If it's a full truncate we just forget about the pending dirtying
3055          */
3056         if (offset == 0)
3057                 ClearPageChecked(page);
3058
3059         jbd2_journal_invalidatepage(journal, page, offset);
3060 }
3061
3062 static int ext4_releasepage(struct page *page, gfp_t wait)
3063 {
3064         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3065
3066         WARN_ON(PageChecked(page));
3067         if (!page_has_buffers(page))
3068                 return 0;
3069         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3070 }
3071
3072 /*
3073  * If the O_DIRECT write will extend the file then add this inode to the
3074  * orphan list.  So recovery will truncate it back to the original size
3075  * if the machine crashes during the write.
3076  *
3077  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3078  * crashes then stale disk data _may_ be exposed inside the file. But current
3079  * VFS code falls back into buffered path in that case so we are safe.
3080  */
3081 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3082                         const struct iovec *iov, loff_t offset,
3083                         unsigned long nr_segs)
3084 {
3085         struct file *file = iocb->ki_filp;
3086         struct inode *inode = file->f_mapping->host;
3087         struct ext4_inode_info *ei = EXT4_I(inode);
3088         handle_t *handle;
3089         ssize_t ret;
3090         int orphan = 0;
3091         size_t count = iov_length(iov, nr_segs);
3092
3093         if (rw == WRITE) {
3094                 loff_t final_size = offset + count;
3095
3096                 if (final_size > inode->i_size) {
3097                         /* Credits for sb + inode write */
3098                         handle = ext4_journal_start(inode, 2);
3099                         if (IS_ERR(handle)) {
3100                                 ret = PTR_ERR(handle);
3101                                 goto out;
3102                         }
3103                         ret = ext4_orphan_add(handle, inode);
3104                         if (ret) {
3105                                 ext4_journal_stop(handle);
3106                                 goto out;
3107                         }
3108                         orphan = 1;
3109                         ei->i_disksize = inode->i_size;
3110                         ext4_journal_stop(handle);
3111                 }
3112         }
3113
3114         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3115                                  offset, nr_segs,
3116                                  ext4_get_block, NULL);
3117
3118         if (orphan) {
3119                 int err;
3120
3121                 /* Credits for sb + inode write */
3122                 handle = ext4_journal_start(inode, 2);
3123                 if (IS_ERR(handle)) {
3124                         /* This is really bad luck. We've written the data
3125                          * but cannot extend i_size. Bail out and pretend
3126                          * the write failed... */
3127                         ret = PTR_ERR(handle);
3128                         goto out;
3129                 }
3130                 if (inode->i_nlink)
3131                         ext4_orphan_del(handle, inode);
3132                 if (ret > 0) {
3133                         loff_t end = offset + ret;
3134                         if (end > inode->i_size) {
3135                                 ei->i_disksize = end;
3136                                 i_size_write(inode, end);
3137                                 /*
3138                                  * We're going to return a positive `ret'
3139                                  * here due to non-zero-length I/O, so there's
3140                                  * no way of reporting error returns from
3141                                  * ext4_mark_inode_dirty() to userspace.  So
3142                                  * ignore it.
3143                                  */
3144                                 ext4_mark_inode_dirty(handle, inode);
3145                         }
3146                 }
3147                 err = ext4_journal_stop(handle);
3148                 if (ret == 0)
3149                         ret = err;
3150         }
3151 out:
3152         return ret;
3153 }
3154
3155 /*
3156  * Pages can be marked dirty completely asynchronously from ext4's journalling
3157  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3158  * much here because ->set_page_dirty is called under VFS locks.  The page is
3159  * not necessarily locked.
3160  *
3161  * We cannot just dirty the page and leave attached buffers clean, because the
3162  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3163  * or jbddirty because all the journalling code will explode.
3164  *
3165  * So what we do is to mark the page "pending dirty" and next time writepage
3166  * is called, propagate that into the buffers appropriately.
3167  */
3168 static int ext4_journalled_set_page_dirty(struct page *page)
3169 {
3170         SetPageChecked(page);
3171         return __set_page_dirty_nobuffers(page);
3172 }
3173
3174 static const struct address_space_operations ext4_ordered_aops = {
3175         .readpage               = ext4_readpage,
3176         .readpages              = ext4_readpages,
3177         .writepage              = ext4_normal_writepage,
3178         .sync_page              = block_sync_page,
3179         .write_begin            = ext4_write_begin,
3180         .write_end              = ext4_ordered_write_end,
3181         .bmap                   = ext4_bmap,
3182         .invalidatepage         = ext4_invalidatepage,
3183         .releasepage            = ext4_releasepage,
3184         .direct_IO              = ext4_direct_IO,
3185         .migratepage            = buffer_migrate_page,
3186         .is_partially_uptodate  = block_is_partially_uptodate,
3187 };
3188
3189 static const struct address_space_operations ext4_writeback_aops = {
3190         .readpage               = ext4_readpage,
3191         .readpages              = ext4_readpages,
3192         .writepage              = ext4_normal_writepage,
3193         .sync_page              = block_sync_page,
3194         .write_begin            = ext4_write_begin,
3195         .write_end              = ext4_writeback_write_end,
3196         .bmap                   = ext4_bmap,
3197         .invalidatepage         = ext4_invalidatepage,
3198         .releasepage            = ext4_releasepage,
3199         .direct_IO              = ext4_direct_IO,
3200         .migratepage            = buffer_migrate_page,
3201         .is_partially_uptodate  = block_is_partially_uptodate,
3202 };
3203
3204 static const struct address_space_operations ext4_journalled_aops = {
3205         .readpage               = ext4_readpage,
3206         .readpages              = ext4_readpages,
3207         .writepage              = ext4_journalled_writepage,
3208         .sync_page              = block_sync_page,
3209         .write_begin            = ext4_write_begin,
3210         .write_end              = ext4_journalled_write_end,
3211         .set_page_dirty         = ext4_journalled_set_page_dirty,
3212         .bmap                   = ext4_bmap,
3213         .invalidatepage         = ext4_invalidatepage,
3214         .releasepage            = ext4_releasepage,
3215         .is_partially_uptodate  = block_is_partially_uptodate,
3216 };
3217
3218 static const struct address_space_operations ext4_da_aops = {
3219         .readpage               = ext4_readpage,
3220         .readpages              = ext4_readpages,
3221         .writepage              = ext4_da_writepage,
3222         .writepages             = ext4_da_writepages,
3223         .sync_page              = block_sync_page,
3224         .write_begin            = ext4_da_write_begin,
3225         .write_end              = ext4_da_write_end,
3226         .bmap                   = ext4_bmap,
3227         .invalidatepage         = ext4_da_invalidatepage,
3228         .releasepage            = ext4_releasepage,
3229         .direct_IO              = ext4_direct_IO,
3230         .migratepage            = buffer_migrate_page,
3231         .is_partially_uptodate  = block_is_partially_uptodate,
3232 };
3233
3234 void ext4_set_aops(struct inode *inode)
3235 {
3236         if (ext4_should_order_data(inode) &&
3237                 test_opt(inode->i_sb, DELALLOC))
3238                 inode->i_mapping->a_ops = &ext4_da_aops;
3239         else if (ext4_should_order_data(inode))
3240                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3241         else if (ext4_should_writeback_data(inode) &&
3242                  test_opt(inode->i_sb, DELALLOC))
3243                 inode->i_mapping->a_ops = &ext4_da_aops;
3244         else if (ext4_should_writeback_data(inode))
3245                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3246         else
3247                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3248 }
3249
3250 /*
3251  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3252  * up to the end of the block which corresponds to `from'.
3253  * This required during truncate. We need to physically zero the tail end
3254  * of that block so it doesn't yield old data if the file is later grown.
3255  */
3256 int ext4_block_truncate_page(handle_t *handle,
3257                 struct address_space *mapping, loff_t from)
3258 {
3259         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3260         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3261         unsigned blocksize, length, pos;
3262         ext4_lblk_t iblock;
3263         struct inode *inode = mapping->host;
3264         struct buffer_head *bh;
3265         struct page *page;
3266         int err = 0;
3267
3268         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3269         if (!page)
3270                 return -EINVAL;
3271
3272         blocksize = inode->i_sb->s_blocksize;
3273         length = blocksize - (offset & (blocksize - 1));
3274         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3275
3276         /*
3277          * For "nobh" option,  we can only work if we don't need to
3278          * read-in the page - otherwise we create buffers to do the IO.
3279          */
3280         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3281              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3282                 zero_user(page, offset, length);
3283                 set_page_dirty(page);
3284                 goto unlock;
3285         }
3286
3287         if (!page_has_buffers(page))
3288                 create_empty_buffers(page, blocksize, 0);
3289
3290         /* Find the buffer that contains "offset" */
3291         bh = page_buffers(page);
3292         pos = blocksize;
3293         while (offset >= pos) {
3294                 bh = bh->b_this_page;
3295                 iblock++;
3296                 pos += blocksize;
3297         }
3298
3299         err = 0;
3300         if (buffer_freed(bh)) {
3301                 BUFFER_TRACE(bh, "freed: skip");
3302                 goto unlock;
3303         }
3304
3305         if (!buffer_mapped(bh)) {
3306                 BUFFER_TRACE(bh, "unmapped");
3307                 ext4_get_block(inode, iblock, bh, 0);
3308                 /* unmapped? It's a hole - nothing to do */
3309                 if (!buffer_mapped(bh)) {
3310                         BUFFER_TRACE(bh, "still unmapped");
3311                         goto unlock;
3312                 }
3313         }
3314
3315         /* Ok, it's mapped. Make sure it's up-to-date */
3316         if (PageUptodate(page))
3317                 set_buffer_uptodate(bh);
3318
3319         if (!buffer_uptodate(bh)) {
3320                 err = -EIO;
3321                 ll_rw_block(READ, 1, &bh);
3322                 wait_on_buffer(bh);
3323                 /* Uhhuh. Read error. Complain and punt. */
3324                 if (!buffer_uptodate(bh))
3325                         goto unlock;
3326         }
3327
3328         if (ext4_should_journal_data(inode)) {
3329                 BUFFER_TRACE(bh, "get write access");
3330                 err = ext4_journal_get_write_access(handle, bh);
3331                 if (err)
3332                         goto unlock;
3333         }
3334
3335         zero_user(page, offset, length);
3336
3337         BUFFER_TRACE(bh, "zeroed end of block");
3338
3339         err = 0;
3340         if (ext4_should_journal_data(inode)) {
3341                 err = ext4_journal_dirty_metadata(handle, bh);
3342         } else {
3343                 if (ext4_should_order_data(inode))
3344                         err = ext4_jbd2_file_inode(handle, inode);
3345                 mark_buffer_dirty(bh);
3346         }
3347
3348 unlock:
3349         unlock_page(page);
3350         page_cache_release(page);
3351         return err;
3352 }
3353
3354 /*
3355  * Probably it should be a library function... search for first non-zero word
3356  * or memcmp with zero_page, whatever is better for particular architecture.
3357  * Linus?
3358  */
3359 static inline int all_zeroes(__le32 *p, __le32 *q)
3360 {
3361         while (p < q)
3362                 if (*p++)
3363                         return 0;
3364         return 1;
3365 }
3366
3367 /**
3368  *      ext4_find_shared - find the indirect blocks for partial truncation.
3369  *      @inode:   inode in question
3370  *      @depth:   depth of the affected branch
3371  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3372  *      @chain:   place to store the pointers to partial indirect blocks
3373  *      @top:     place to the (detached) top of branch
3374  *
3375  *      This is a helper function used by ext4_truncate().
3376  *
3377  *      When we do truncate() we may have to clean the ends of several
3378  *      indirect blocks but leave the blocks themselves alive. Block is
3379  *      partially truncated if some data below the new i_size is refered
3380  *      from it (and it is on the path to the first completely truncated
3381  *      data block, indeed).  We have to free the top of that path along
3382  *      with everything to the right of the path. Since no allocation
3383  *      past the truncation point is possible until ext4_truncate()
3384  *      finishes, we may safely do the latter, but top of branch may
3385  *      require special attention - pageout below the truncation point
3386  *      might try to populate it.
3387  *
3388  *      We atomically detach the top of branch from the tree, store the
3389  *      block number of its root in *@top, pointers to buffer_heads of
3390  *      partially truncated blocks - in @chain[].bh and pointers to
3391  *      their last elements that should not be removed - in
3392  *      @chain[].p. Return value is the pointer to last filled element
3393  *      of @chain.
3394  *
3395  *      The work left to caller to do the actual freeing of subtrees:
3396  *              a) free the subtree starting from *@top
3397  *              b) free the subtrees whose roots are stored in
3398  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3399  *              c) free the subtrees growing from the inode past the @chain[0].
3400  *                      (no partially truncated stuff there).  */
3401
3402 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3403                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3404 {
3405         Indirect *partial, *p;
3406         int k, err;
3407
3408         *top = 0;
3409         /* Make k index the deepest non-null offest + 1 */
3410         for (k = depth; k > 1 && !offsets[k-1]; k--)
3411                 ;
3412         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3413         /* Writer: pointers */
3414         if (!partial)
3415                 partial = chain + k-1;
3416         /*
3417          * If the branch acquired continuation since we've looked at it -
3418          * fine, it should all survive and (new) top doesn't belong to us.
3419          */
3420         if (!partial->key && *partial->p)
3421                 /* Writer: end */
3422                 goto no_top;
3423         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3424                 ;
3425         /*
3426          * OK, we've found the last block that must survive. The rest of our
3427          * branch should be detached before unlocking. However, if that rest
3428          * of branch is all ours and does not grow immediately from the inode
3429          * it's easier to cheat and just decrement partial->p.
3430          */
3431         if (p == chain + k - 1 && p > chain) {
3432                 p->p--;
3433         } else {
3434                 *top = *p->p;
3435                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3436 #if 0
3437                 *p->p = 0;
3438 #endif
3439         }
3440         /* Writer: end */
3441
3442         while(partial > p) {
3443                 brelse(partial->bh);
3444                 partial--;
3445         }
3446 no_top:
3447         return partial;
3448 }
3449
3450 /*
3451  * Zero a number of block pointers in either an inode or an indirect block.
3452  * If we restart the transaction we must again get write access to the
3453  * indirect block for further modification.
3454  *
3455  * We release `count' blocks on disk, but (last - first) may be greater
3456  * than `count' because there can be holes in there.
3457  */
3458 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3459                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3460                 unsigned long count, __le32 *first, __le32 *last)
3461 {
3462         __le32 *p;
3463         if (try_to_extend_transaction(handle, inode)) {
3464                 if (bh) {
3465                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3466                         ext4_journal_dirty_metadata(handle, bh);
3467                 }
3468                 ext4_mark_inode_dirty(handle, inode);
3469                 ext4_journal_test_restart(handle, inode);
3470                 if (bh) {
3471                         BUFFER_TRACE(bh, "retaking write access");
3472                         ext4_journal_get_write_access(handle, bh);
3473                 }
3474         }
3475
3476         /*
3477          * Any buffers which are on the journal will be in memory. We find
3478          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3479          * on them.  We've already detached each block from the file, so
3480          * bforget() in jbd2_journal_forget() should be safe.
3481          *
3482          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3483          */
3484         for (p = first; p < last; p++) {
3485                 u32 nr = le32_to_cpu(*p);
3486                 if (nr) {
3487                         struct buffer_head *tbh;
3488
3489                         *p = 0;
3490                         tbh = sb_find_get_block(inode->i_sb, nr);
3491                         ext4_forget(handle, 0, inode, tbh, nr);
3492                 }
3493         }
3494
3495         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3496 }
3497
3498 /**
3499  * ext4_free_data - free a list of data blocks
3500  * @handle:     handle for this transaction
3501  * @inode:      inode we are dealing with
3502  * @this_bh:    indirect buffer_head which contains *@first and *@last
3503  * @first:      array of block numbers
3504  * @last:       points immediately past the end of array
3505  *
3506  * We are freeing all blocks refered from that array (numbers are stored as
3507  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3508  *
3509  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3510  * blocks are contiguous then releasing them at one time will only affect one
3511  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3512  * actually use a lot of journal space.
3513  *
3514  * @this_bh will be %NULL if @first and @last point into the inode's direct
3515  * block pointers.
3516  */
3517 static void ext4_free_data(handle_t *handle, struct inode *inode,
3518                            struct buffer_head *this_bh,
3519                            __le32 *first, __le32 *last)
3520 {
3521         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3522         unsigned long count = 0;            /* Number of blocks in the run */
3523         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3524                                                corresponding to
3525                                                block_to_free */
3526         ext4_fsblk_t nr;                    /* Current block # */
3527         __le32 *p;                          /* Pointer into inode/ind
3528                                                for current block */
3529         int err;
3530
3531         if (this_bh) {                          /* For indirect block */
3532                 BUFFER_TRACE(this_bh, "get_write_access");
3533                 err = ext4_journal_get_write_access(handle, this_bh);
3534                 /* Important: if we can't update the indirect pointers
3535                  * to the blocks, we can't free them. */
3536                 if (err)
3537                         return;
3538         }
3539
3540         for (p = first; p < last; p++) {
3541                 nr = le32_to_cpu(*p);
3542                 if (nr) {
3543                         /* accumulate blocks to free if they're contiguous */
3544                         if (count == 0) {
3545                                 block_to_free = nr;
3546                                 block_to_free_p = p;
3547                                 count = 1;
3548                         } else if (nr == block_to_free + count) {
3549                                 count++;
3550                         } else {
3551                                 ext4_clear_blocks(handle, inode, this_bh,
3552                                                   block_to_free,
3553                                                   count, block_to_free_p, p);
3554                                 block_to_free = nr;
3555                                 block_to_free_p = p;
3556                                 count = 1;
3557                         }
3558                 }
3559         }
3560
3561         if (count > 0)
3562                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3563                                   count, block_to_free_p, p);
3564
3565         if (this_bh) {
3566                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3567
3568                 /*
3569                  * The buffer head should have an attached journal head at this
3570                  * point. However, if the data is corrupted and an indirect
3571                  * block pointed to itself, it would have been detached when
3572                  * the block was cleared. Check for this instead of OOPSing.
3573                  */
3574                 if (bh2jh(this_bh))
3575                         ext4_journal_dirty_metadata(handle, this_bh);
3576                 else
3577                         ext4_error(inode->i_sb, __func__,
3578                                    "circular indirect block detected, "
3579                                    "inode=%lu, block=%llu",
3580                                    inode->i_ino,
3581                                    (unsigned long long) this_bh->b_blocknr);
3582         }
3583 }
3584
3585 /**
3586  *      ext4_free_branches - free an array of branches
3587  *      @handle: JBD handle for this transaction
3588  *      @inode: inode we are dealing with
3589  *      @parent_bh: the buffer_head which contains *@first and *@last
3590  *      @first: array of block numbers
3591  *      @last:  pointer immediately past the end of array
3592  *      @depth: depth of the branches to free
3593  *
3594  *      We are freeing all blocks refered from these branches (numbers are
3595  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3596  *      appropriately.
3597  */
3598 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3599                                struct buffer_head *parent_bh,
3600                                __le32 *first, __le32 *last, int depth)
3601 {
3602         ext4_fsblk_t nr;
3603         __le32 *p;
3604
3605         if (is_handle_aborted(handle))
3606                 return;
3607
3608         if (depth--) {
3609                 struct buffer_head *bh;
3610                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3611                 p = last;
3612                 while (--p >= first) {
3613                         nr = le32_to_cpu(*p);
3614                         if (!nr)
3615                                 continue;               /* A hole */
3616
3617                         /* Go read the buffer for the next level down */
3618                         bh = sb_bread(inode->i_sb, nr);
3619
3620                         /*
3621                          * A read failure? Report error and clear slot
3622                          * (should be rare).
3623                          */
3624                         if (!bh) {
3625                                 ext4_error(inode->i_sb, "ext4_free_branches",
3626                                            "Read failure, inode=%lu, block=%llu",
3627                                            inode->i_ino, nr);
3628                                 continue;
3629                         }
3630
3631                         /* This zaps the entire block.  Bottom up. */
3632                         BUFFER_TRACE(bh, "free child branches");
3633                         ext4_free_branches(handle, inode, bh,
3634                                            (__le32*)bh->b_data,
3635                                            (__le32*)bh->b_data + addr_per_block,
3636                                            depth);
3637
3638                         /*
3639                          * We've probably journalled the indirect block several
3640                          * times during the truncate.  But it's no longer
3641                          * needed and we now drop it from the transaction via
3642                          * jbd2_journal_revoke().
3643                          *
3644                          * That's easy if it's exclusively part of this
3645                          * transaction.  But if it's part of the committing
3646                          * transaction then jbd2_journal_forget() will simply
3647                          * brelse() it.  That means that if the underlying
3648                          * block is reallocated in ext4_get_block(),
3649                          * unmap_underlying_metadata() will find this block
3650                          * and will try to get rid of it.  damn, damn.
3651                          *
3652                          * If this block has already been committed to the
3653                          * journal, a revoke record will be written.  And
3654                          * revoke records must be emitted *before* clearing
3655                          * this block's bit in the bitmaps.
3656                          */
3657                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3658
3659                         /*
3660                          * Everything below this this pointer has been
3661                          * released.  Now let this top-of-subtree go.
3662                          *
3663                          * We want the freeing of this indirect block to be
3664                          * atomic in the journal with the updating of the
3665                          * bitmap block which owns it.  So make some room in
3666                          * the journal.
3667                          *
3668                          * We zero the parent pointer *after* freeing its
3669                          * pointee in the bitmaps, so if extend_transaction()
3670                          * for some reason fails to put the bitmap changes and
3671                          * the release into the same transaction, recovery
3672                          * will merely complain about releasing a free block,
3673                          * rather than leaking blocks.
3674                          */
3675                         if (is_handle_aborted(handle))
3676                                 return;
3677                         if (try_to_extend_transaction(handle, inode)) {
3678                                 ext4_mark_inode_dirty(handle, inode);
3679                                 ext4_journal_test_restart(handle, inode);
3680                         }
3681
3682                         ext4_free_blocks(handle, inode, nr, 1, 1);
3683
3684                         if (parent_bh) {
3685                                 /*
3686                                  * The block which we have just freed is
3687                                  * pointed to by an indirect block: journal it
3688                                  */
3689                                 BUFFER_TRACE(parent_bh, "get_write_access");
3690                                 if (!ext4_journal_get_write_access(handle,
3691                                                                    parent_bh)){
3692                                         *p = 0;
3693                                         BUFFER_TRACE(parent_bh,
3694                                         "call ext4_journal_dirty_metadata");
3695                                         ext4_journal_dirty_metadata(handle,
3696                                                                     parent_bh);
3697                                 }
3698                         }
3699                 }
3700         } else {
3701                 /* We have reached the bottom of the tree. */
3702                 BUFFER_TRACE(parent_bh, "free data blocks");
3703                 ext4_free_data(handle, inode, parent_bh, first, last);
3704         }
3705 }
3706
3707 int ext4_can_truncate(struct inode *inode)
3708 {
3709         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3710                 return 0;
3711         if (S_ISREG(inode->i_mode))
3712                 return 1;
3713         if (S_ISDIR(inode->i_mode))
3714                 return 1;
3715         if (S_ISLNK(inode->i_mode))
3716                 return !ext4_inode_is_fast_symlink(inode);
3717         return 0;
3718 }
3719
3720 /*
3721  * ext4_truncate()
3722  *
3723  * We block out ext4_get_block() block instantiations across the entire
3724  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3725  * simultaneously on behalf of the same inode.
3726  *
3727  * As we work through the truncate and commmit bits of it to the journal there
3728  * is one core, guiding principle: the file's tree must always be consistent on
3729  * disk.  We must be able to restart the truncate after a crash.
3730  *
3731  * The file's tree may be transiently inconsistent in memory (although it
3732  * probably isn't), but whenever we close off and commit a journal transaction,
3733  * the contents of (the filesystem + the journal) must be consistent and
3734  * restartable.  It's pretty simple, really: bottom up, right to left (although
3735  * left-to-right works OK too).
3736  *
3737  * Note that at recovery time, journal replay occurs *before* the restart of
3738  * truncate against the orphan inode list.
3739  *
3740  * The committed inode has the new, desired i_size (which is the same as
3741  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3742  * that this inode's truncate did not complete and it will again call
3743  * ext4_truncate() to have another go.  So there will be instantiated blocks
3744  * to the right of the truncation point in a crashed ext4 filesystem.  But
3745  * that's fine - as long as they are linked from the inode, the post-crash
3746  * ext4_truncate() run will find them and release them.
3747  */
3748 void ext4_truncate(struct inode *inode)
3749 {
3750         handle_t *handle;
3751         struct ext4_inode_info *ei = EXT4_I(inode);
3752         __le32 *i_data = ei->i_data;
3753         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3754         struct address_space *mapping = inode->i_mapping;
3755         ext4_lblk_t offsets[4];
3756         Indirect chain[4];
3757         Indirect *partial;
3758         __le32 nr = 0;
3759         int n;
3760         ext4_lblk_t last_block;
3761         unsigned blocksize = inode->i_sb->s_blocksize;
3762
3763         if (!ext4_can_truncate(inode))
3764                 return;
3765
3766         if (inode->i_size == 0)
3767                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3768
3769         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3770                 ext4_ext_truncate(inode);
3771                 return;
3772         }
3773
3774         handle = start_transaction(inode);
3775         if (IS_ERR(handle))
3776                 return;         /* AKPM: return what? */
3777
3778         last_block = (inode->i_size + blocksize-1)
3779                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3780
3781         if (inode->i_size & (blocksize - 1))
3782                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3783                         goto out_stop;
3784
3785         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3786         if (n == 0)
3787                 goto out_stop;  /* error */
3788
3789         /*
3790          * OK.  This truncate is going to happen.  We add the inode to the
3791          * orphan list, so that if this truncate spans multiple transactions,
3792          * and we crash, we will resume the truncate when the filesystem
3793          * recovers.  It also marks the inode dirty, to catch the new size.
3794          *
3795          * Implication: the file must always be in a sane, consistent
3796          * truncatable state while each transaction commits.
3797          */
3798         if (ext4_orphan_add(handle, inode))
3799                 goto out_stop;
3800
3801         /*
3802          * From here we block out all ext4_get_block() callers who want to
3803          * modify the block allocation tree.
3804          */
3805         down_write(&ei->i_data_sem);
3806
3807         ext4_discard_reservation(inode);
3808
3809         /*
3810          * The orphan list entry will now protect us from any crash which
3811          * occurs before the truncate completes, so it is now safe to propagate
3812          * the new, shorter inode size (held for now in i_size) into the
3813          * on-disk inode. We do this via i_disksize, which is the value which
3814          * ext4 *really* writes onto the disk inode.
3815          */
3816         ei->i_disksize = inode->i_size;
3817
3818         if (n == 1) {           /* direct blocks */
3819                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3820                                i_data + EXT4_NDIR_BLOCKS);
3821                 goto do_indirects;
3822         }
3823
3824         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3825         /* Kill the top of shared branch (not detached) */
3826         if (nr) {
3827                 if (partial == chain) {
3828                         /* Shared branch grows from the inode */
3829                         ext4_free_branches(handle, inode, NULL,
3830                                            &nr, &nr+1, (chain+n-1) - partial);
3831                         *partial->p = 0;
3832                         /*
3833                          * We mark the inode dirty prior to restart,
3834                          * and prior to stop.  No need for it here.
3835                          */
3836                 } else {
3837                         /* Shared branch grows from an indirect block */
3838                         BUFFER_TRACE(partial->bh, "get_write_access");
3839                         ext4_free_branches(handle, inode, partial->bh,
3840                                         partial->p,
3841                                         partial->p+1, (chain+n-1) - partial);
3842                 }
3843         }
3844         /* Clear the ends of indirect blocks on the shared branch */
3845         while (partial > chain) {
3846                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3847                                    (__le32*)partial->bh->b_data+addr_per_block,
3848                                    (chain+n-1) - partial);
3849                 BUFFER_TRACE(partial->bh, "call brelse");
3850                 brelse (partial->bh);
3851                 partial--;
3852         }
3853 do_indirects:
3854         /* Kill the remaining (whole) subtrees */
3855         switch (offsets[0]) {
3856         default:
3857                 nr = i_data[EXT4_IND_BLOCK];
3858                 if (nr) {
3859                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3860                         i_data[EXT4_IND_BLOCK] = 0;
3861                 }
3862         case EXT4_IND_BLOCK:
3863                 nr = i_data[EXT4_DIND_BLOCK];
3864                 if (nr) {
3865                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3866                         i_data[EXT4_DIND_BLOCK] = 0;
3867                 }
3868         case EXT4_DIND_BLOCK:
3869                 nr = i_data[EXT4_TIND_BLOCK];
3870                 if (nr) {
3871                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3872                         i_data[EXT4_TIND_BLOCK] = 0;
3873                 }
3874         case EXT4_TIND_BLOCK:
3875                 ;
3876         }
3877
3878         up_write(&ei->i_data_sem);
3879         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3880         ext4_mark_inode_dirty(handle, inode);
3881
3882         /*
3883          * In a multi-transaction truncate, we only make the final transaction
3884          * synchronous
3885          */
3886         if (IS_SYNC(inode))
3887                 handle->h_sync = 1;
3888 out_stop:
3889         /*
3890          * If this was a simple ftruncate(), and the file will remain alive
3891          * then we need to clear up the orphan record which we created above.
3892          * However, if this was a real unlink then we were called by
3893          * ext4_delete_inode(), and we allow that function to clean up the
3894          * orphan info for us.
3895          */
3896         if (inode->i_nlink)
3897                 ext4_orphan_del(handle, inode);
3898
3899         ext4_journal_stop(handle);
3900 }
3901
3902 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3903                 unsigned long ino, struct ext4_iloc *iloc)
3904 {
3905         ext4_group_t block_group;
3906         unsigned long offset;
3907         ext4_fsblk_t block;
3908         struct ext4_group_desc *gdp;
3909
3910         if (!ext4_valid_inum(sb, ino)) {
3911                 /*
3912                  * This error is already checked for in namei.c unless we are
3913                  * looking at an NFS filehandle, in which case no error
3914                  * report is needed
3915                  */
3916                 return 0;
3917         }
3918
3919         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3920         gdp = ext4_get_group_desc(sb, block_group, NULL);
3921         if (!gdp)
3922                 return 0;
3923
3924         /*
3925          * Figure out the offset within the block group inode table
3926          */
3927         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3928                 EXT4_INODE_SIZE(sb);
3929         block = ext4_inode_table(sb, gdp) +
3930                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3931
3932         iloc->block_group = block_group;
3933         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3934         return block;
3935 }
3936
3937 /*
3938  * ext4_get_inode_loc returns with an extra refcount against the inode's
3939  * underlying buffer_head on success. If 'in_mem' is true, we have all
3940  * data in memory that is needed to recreate the on-disk version of this
3941  * inode.
3942  */
3943 static int __ext4_get_inode_loc(struct inode *inode,
3944                                 struct ext4_iloc *iloc, int in_mem)
3945 {
3946         ext4_fsblk_t block;
3947         struct buffer_head *bh;
3948
3949         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3950         if (!block)
3951                 return -EIO;
3952
3953         bh = sb_getblk(inode->i_sb, block);
3954         if (!bh) {
3955                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3956                                 "unable to read inode block - "
3957                                 "inode=%lu, block=%llu",
3958                                  inode->i_ino, block);
3959                 return -EIO;
3960         }
3961         if (!buffer_uptodate(bh)) {
3962                 lock_buffer(bh);
3963
3964                 /*
3965                  * If the buffer has the write error flag, we have failed
3966                  * to write out another inode in the same block.  In this
3967                  * case, we don't have to read the block because we may
3968                  * read the old inode data successfully.
3969                  */
3970                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3971                         set_buffer_uptodate(bh);
3972
3973                 if (buffer_uptodate(bh)) {
3974                         /* someone brought it uptodate while we waited */
3975                         unlock_buffer(bh);
3976                         goto has_buffer;
3977                 }
3978
3979                 /*
3980                  * If we have all information of the inode in memory and this
3981                  * is the only valid inode in the block, we need not read the
3982                  * block.
3983                  */
3984                 if (in_mem) {
3985                         struct buffer_head *bitmap_bh;
3986                         struct ext4_group_desc *desc;
3987                         int inodes_per_buffer;
3988                         int inode_offset, i;
3989                         ext4_group_t block_group;
3990                         int start;
3991
3992                         block_group = (inode->i_ino - 1) /
3993                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3994                         inodes_per_buffer = bh->b_size /
3995                                 EXT4_INODE_SIZE(inode->i_sb);
3996                         inode_offset = ((inode->i_ino - 1) %
3997                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3998                         start = inode_offset & ~(inodes_per_buffer - 1);
3999
4000                         /* Is the inode bitmap in cache? */
4001                         desc = ext4_get_group_desc(inode->i_sb,
4002                                                 block_group, NULL);
4003                         if (!desc)
4004                                 goto make_io;
4005
4006                         bitmap_bh = sb_getblk(inode->i_sb,
4007                                 ext4_inode_bitmap(inode->i_sb, desc));
4008                         if (!bitmap_bh)
4009                                 goto make_io;
4010
4011                         /*
4012                          * If the inode bitmap isn't in cache then the
4013                          * optimisation may end up performing two reads instead
4014                          * of one, so skip it.
4015                          */
4016                         if (!buffer_uptodate(bitmap_bh)) {
4017                                 brelse(bitmap_bh);
4018                                 goto make_io;
4019                         }
4020                         for (i = start; i < start + inodes_per_buffer; i++) {
4021                                 if (i == inode_offset)
4022                                         continue;
4023                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4024                                         break;
4025                         }
4026                         brelse(bitmap_bh);
4027                         if (i == start + inodes_per_buffer) {
4028                                 /* all other inodes are free, so skip I/O */
4029                                 memset(bh->b_data, 0, bh->b_size);
4030                                 set_buffer_uptodate(bh);
4031                                 unlock_buffer(bh);
4032                                 goto has_buffer;
4033                         }
4034                 }
4035
4036 make_io:
4037                 /*
4038                  * There are other valid inodes in the buffer, this inode
4039                  * has in-inode xattrs, or we don't have this inode in memory.
4040                  * Read the block from disk.
4041                  */
4042                 get_bh(bh);
4043                 bh->b_end_io = end_buffer_read_sync;
4044                 submit_bh(READ_META, bh);
4045                 wait_on_buffer(bh);
4046                 if (!buffer_uptodate(bh)) {
4047                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
4048                                         "unable to read inode block - "
4049                                         "inode=%lu, block=%llu",
4050                                         inode->i_ino, block);
4051                         brelse(bh);
4052                         return -EIO;
4053                 }
4054         }
4055 has_buffer:
4056         iloc->bh = bh;
4057         return 0;
4058 }
4059
4060 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4061 {
4062         /* We have all inode data except xattrs in memory here. */
4063         return __ext4_get_inode_loc(inode, iloc,
4064                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4065 }
4066
4067 void ext4_set_inode_flags(struct inode *inode)
4068 {
4069         unsigned int flags = EXT4_I(inode)->i_flags;
4070
4071         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4072         if (flags & EXT4_SYNC_FL)
4073                 inode->i_flags |= S_SYNC;
4074         if (flags & EXT4_APPEND_FL)
4075                 inode->i_flags |= S_APPEND;
4076         if (flags & EXT4_IMMUTABLE_FL)
4077                 inode->i_flags |= S_IMMUTABLE;
4078         if (flags & EXT4_NOATIME_FL)
4079                 inode->i_flags |= S_NOATIME;
4080         if (flags & EXT4_DIRSYNC_FL)
4081                 inode->i_flags |= S_DIRSYNC;
4082 }
4083
4084 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4085 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4086 {
4087         unsigned int flags = ei->vfs_inode.i_flags;
4088
4089         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4090                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4091         if (flags & S_SYNC)
4092                 ei->i_flags |= EXT4_SYNC_FL;
4093         if (flags & S_APPEND)
4094                 ei->i_flags |= EXT4_APPEND_FL;
4095         if (flags & S_IMMUTABLE)
4096                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4097         if (flags & S_NOATIME)
4098                 ei->i_flags |= EXT4_NOATIME_FL;
4099         if (flags & S_DIRSYNC)
4100                 ei->i_flags |= EXT4_DIRSYNC_FL;
4101 }
4102 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4103                                         struct ext4_inode_info *ei)
4104 {
4105         blkcnt_t i_blocks ;
4106         struct inode *inode = &(ei->vfs_inode);
4107         struct super_block *sb = inode->i_sb;
4108
4109         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4110                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4111                 /* we are using combined 48 bit field */
4112                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4113                                         le32_to_cpu(raw_inode->i_blocks_lo);
4114                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4115                         /* i_blocks represent file system block size */
4116                         return i_blocks  << (inode->i_blkbits - 9);
4117                 } else {
4118                         return i_blocks;
4119                 }
4120         } else {
4121                 return le32_to_cpu(raw_inode->i_blocks_lo);
4122         }
4123 }
4124
4125 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4126 {
4127         struct ext4_iloc iloc;
4128         struct ext4_inode *raw_inode;
4129         struct ext4_inode_info *ei;
4130         struct buffer_head *bh;
4131         struct inode *inode;
4132         long ret;
4133         int block;
4134
4135         inode = iget_locked(sb, ino);
4136         if (!inode)
4137                 return ERR_PTR(-ENOMEM);
4138         if (!(inode->i_state & I_NEW))
4139                 return inode;
4140
4141         ei = EXT4_I(inode);
4142 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4143         ei->i_acl = EXT4_ACL_NOT_CACHED;
4144         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4145 #endif
4146         ei->i_block_alloc_info = NULL;
4147
4148         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4149         if (ret < 0)
4150                 goto bad_inode;
4151         bh = iloc.bh;
4152         raw_inode = ext4_raw_inode(&iloc);
4153         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4154         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4155         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4156         if(!(test_opt (inode->i_sb, NO_UID32))) {
4157                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4158                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4159         }
4160         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4161
4162         ei->i_state = 0;
4163         ei->i_dir_start_lookup = 0;
4164         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4165         /* We now have enough fields to check if the inode was active or not.
4166          * This is needed because nfsd might try to access dead inodes
4167          * the test is that same one that e2fsck uses
4168          * NeilBrown 1999oct15
4169          */
4170         if (inode->i_nlink == 0) {
4171                 if (inode->i_mode == 0 ||
4172                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4173                         /* this inode is deleted */
4174                         brelse (bh);
4175                         ret = -ESTALE;
4176                         goto bad_inode;
4177                 }
4178                 /* The only unlinked inodes we let through here have
4179                  * valid i_mode and are being read by the orphan
4180                  * recovery code: that's fine, we're about to complete
4181                  * the process of deleting those. */
4182         }
4183         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4184         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4185         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4186         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4187                 ei->i_file_acl |=
4188                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4189         inode->i_size = ext4_isize(raw_inode);
4190         ei->i_disksize = inode->i_size;
4191         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4192         ei->i_block_group = iloc.block_group;
4193         /*
4194          * NOTE! The in-memory inode i_data array is in little-endian order
4195          * even on big-endian machines: we do NOT byteswap the block numbers!
4196          */
4197         for (block = 0; block < EXT4_N_BLOCKS; block++)
4198                 ei->i_data[block] = raw_inode->i_block[block];
4199         INIT_LIST_HEAD(&ei->i_orphan);
4200
4201         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4202                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4203                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4204                     EXT4_INODE_SIZE(inode->i_sb)) {
4205                         brelse (bh);
4206                         ret = -EIO;
4207                         goto bad_inode;
4208                 }
4209                 if (ei->i_extra_isize == 0) {
4210                         /* The extra space is currently unused. Use it. */
4211                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4212                                             EXT4_GOOD_OLD_INODE_SIZE;
4213                 } else {
4214                         __le32 *magic = (void *)raw_inode +
4215                                         EXT4_GOOD_OLD_INODE_SIZE +
4216                                         ei->i_extra_isize;
4217                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4218                                  ei->i_state |= EXT4_STATE_XATTR;
4219                 }
4220         } else
4221                 ei->i_extra_isize = 0;
4222
4223         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4224         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4225         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4226         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4227
4228         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4229         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4230                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4231                         inode->i_version |=
4232                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4233         }
4234
4235         if (ei->i_file_acl &&
4236             ((ei->i_file_acl <
4237               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4238                EXT4_SB(sb)->s_gdb_count)) ||
4239              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4240                 ext4_error(sb, __func__,
4241                            "bad extended attribute block %llu in inode #%lu",
4242                            ei->i_file_acl, inode->i_ino);
4243                 ret = -EIO;
4244                 goto bad_inode;
4245         }
4246
4247         if (S_ISREG(inode->i_mode)) {
4248                 inode->i_op = &ext4_file_inode_operations;
4249                 inode->i_fop = &ext4_file_operations;
4250                 ext4_set_aops(inode);
4251         } else if (S_ISDIR(inode->i_mode)) {
4252                 inode->i_op = &ext4_dir_inode_operations;
4253                 inode->i_fop = &ext4_dir_operations;
4254         } else if (S_ISLNK(inode->i_mode)) {
4255                 if (ext4_inode_is_fast_symlink(inode))
4256                         inode->i_op = &ext4_fast_symlink_inode_operations;
4257                 else {
4258                         inode->i_op = &ext4_symlink_inode_operations;
4259                         ext4_set_aops(inode);
4260                 }
4261         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4262               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4263                 inode->i_op = &ext4_special_inode_operations;
4264                 if (raw_inode->i_block[0])
4265                         init_special_inode(inode, inode->i_mode,
4266                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4267                 else
4268                         init_special_inode(inode, inode->i_mode,
4269                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4270         } else {
4271                 brelse(bh);
4272                 ret = -EIO;
4273                 ext4_error(inode->i_sb, __func__,
4274                            "bogus i_mode (%o) for inode=%lu",
4275                            inode->i_mode, inode->i_ino);
4276                 goto bad_inode;
4277         }
4278         brelse (iloc.bh);
4279         ext4_set_inode_flags(inode);
4280         unlock_new_inode(inode);
4281         return inode;
4282
4283 bad_inode:
4284         iget_failed(inode);
4285         return ERR_PTR(ret);
4286 }
4287
4288 static int ext4_inode_blocks_set(handle_t *handle,
4289                                 struct ext4_inode *raw_inode,
4290                                 struct ext4_inode_info *ei)
4291 {
4292         struct inode *inode = &(ei->vfs_inode);
4293         u64 i_blocks = inode->i_blocks;
4294         struct super_block *sb = inode->i_sb;
4295         int err = 0;
4296
4297         if (i_blocks <= ~0U) {
4298                 /*
4299                  * i_blocks can be represnted in a 32 bit variable
4300                  * as multiple of 512 bytes
4301                  */
4302                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4303                 raw_inode->i_blocks_high = 0;
4304                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4305         } else if (i_blocks <= 0xffffffffffffULL) {
4306                 /*
4307                  * i_blocks can be represented in a 48 bit variable
4308                  * as multiple of 512 bytes
4309                  */
4310                 err = ext4_update_rocompat_feature(handle, sb,
4311                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4312                 if (err)
4313                         goto  err_out;
4314                 /* i_block is stored in the split  48 bit fields */
4315                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4316                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4317                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4318         } else {
4319                 /*
4320                  * i_blocks should be represented in a 48 bit variable
4321                  * as multiple of  file system block size
4322                  */
4323                 err = ext4_update_rocompat_feature(handle, sb,
4324                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4325                 if (err)
4326                         goto  err_out;
4327                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4328                 /* i_block is stored in file system block size */
4329                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4330                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4331                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4332         }
4333 err_out:
4334         return err;
4335 }
4336
4337 /*
4338  * Post the struct inode info into an on-disk inode location in the
4339  * buffer-cache.  This gobbles the caller's reference to the
4340  * buffer_head in the inode location struct.
4341  *
4342  * The caller must have write access to iloc->bh.
4343  */
4344 static int ext4_do_update_inode(handle_t *handle,
4345                                 struct inode *inode,
4346                                 struct ext4_iloc *iloc)
4347 {
4348         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4349         struct ext4_inode_info *ei = EXT4_I(inode);
4350         struct buffer_head *bh = iloc->bh;
4351         int err = 0, rc, block;
4352
4353         /* For fields not not tracking in the in-memory inode,
4354          * initialise them to zero for new inodes. */
4355         if (ei->i_state & EXT4_STATE_NEW)
4356                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4357
4358         ext4_get_inode_flags(ei);
4359         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4360         if(!(test_opt(inode->i_sb, NO_UID32))) {
4361                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4362                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4363 /*
4364  * Fix up interoperability with old kernels. Otherwise, old inodes get
4365  * re-used with the upper 16 bits of the uid/gid intact
4366  */
4367                 if(!ei->i_dtime) {
4368                         raw_inode->i_uid_high =
4369                                 cpu_to_le16(high_16_bits(inode->i_uid));
4370                         raw_inode->i_gid_high =
4371                                 cpu_to_le16(high_16_bits(inode->i_gid));
4372                 } else {
4373                         raw_inode->i_uid_high = 0;
4374                         raw_inode->i_gid_high = 0;
4375                 }
4376         } else {
4377                 raw_inode->i_uid_low =
4378                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4379                 raw_inode->i_gid_low =
4380                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4381                 raw_inode->i_uid_high = 0;
4382                 raw_inode->i_gid_high = 0;
4383         }
4384         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4385
4386         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4387         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4388         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4389         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4390
4391         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4392                 goto out_brelse;
4393         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4394         /* clear the migrate flag in the raw_inode */
4395         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4396         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4397             cpu_to_le32(EXT4_OS_HURD))
4398                 raw_inode->i_file_acl_high =
4399                         cpu_to_le16(ei->i_file_acl >> 32);
4400         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4401         ext4_isize_set(raw_inode, ei->i_disksize);
4402         if (ei->i_disksize > 0x7fffffffULL) {
4403                 struct super_block *sb = inode->i_sb;
4404                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4405                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4406                                 EXT4_SB(sb)->s_es->s_rev_level ==
4407                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4408                         /* If this is the first large file
4409                          * created, add a flag to the superblock.
4410                          */
4411                         err = ext4_journal_get_write_access(handle,
4412                                         EXT4_SB(sb)->s_sbh);
4413                         if (err)
4414                                 goto out_brelse;
4415                         ext4_update_dynamic_rev(sb);
4416                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4417                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4418                         sb->s_dirt = 1;
4419                         handle->h_sync = 1;
4420                         err = ext4_journal_dirty_metadata(handle,
4421                                         EXT4_SB(sb)->s_sbh);
4422                 }
4423         }
4424         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4425         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4426                 if (old_valid_dev(inode->i_rdev)) {
4427                         raw_inode->i_block[0] =
4428                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4429                         raw_inode->i_block[1] = 0;
4430                 } else {
4431                         raw_inode->i_block[0] = 0;
4432                         raw_inode->i_block[1] =
4433                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4434                         raw_inode->i_block[2] = 0;
4435                 }
4436         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4437                 raw_inode->i_block[block] = ei->i_data[block];
4438
4439         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4440         if (ei->i_extra_isize) {
4441                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4442                         raw_inode->i_version_hi =
4443                         cpu_to_le32(inode->i_version >> 32);
4444                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4445         }
4446
4447
4448         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4449         rc = ext4_journal_dirty_metadata(handle, bh);
4450         if (!err)
4451                 err = rc;
4452         ei->i_state &= ~EXT4_STATE_NEW;
4453
4454 out_brelse:
4455         brelse (bh);
4456         ext4_std_error(inode->i_sb, err);
4457         return err;
4458 }
4459
4460 /*
4461  * ext4_write_inode()
4462  *
4463  * We are called from a few places:
4464  *
4465  * - Within generic_file_write() for O_SYNC files.
4466  *   Here, there will be no transaction running. We wait for any running
4467  *   trasnaction to commit.
4468  *
4469  * - Within sys_sync(), kupdate and such.
4470  *   We wait on commit, if tol to.
4471  *
4472  * - Within prune_icache() (PF_MEMALLOC == true)
4473  *   Here we simply return.  We can't afford to block kswapd on the
4474  *   journal commit.
4475  *
4476  * In all cases it is actually safe for us to return without doing anything,
4477  * because the inode has been copied into a raw inode buffer in
4478  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4479  * knfsd.
4480  *
4481  * Note that we are absolutely dependent upon all inode dirtiers doing the
4482  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4483  * which we are interested.
4484  *
4485  * It would be a bug for them to not do this.  The code:
4486  *
4487  *      mark_inode_dirty(inode)
4488  *      stuff();
4489  *      inode->i_size = expr;
4490  *
4491  * is in error because a kswapd-driven write_inode() could occur while
4492  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4493  * will no longer be on the superblock's dirty inode list.
4494  */
4495 int ext4_write_inode(struct inode *inode, int wait)
4496 {
4497         if (current->flags & PF_MEMALLOC)
4498                 return 0;
4499
4500         if (ext4_journal_current_handle()) {
4501                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4502                 dump_stack();
4503                 return -EIO;
4504         }
4505
4506         if (!wait)
4507                 return 0;
4508
4509         return ext4_force_commit(inode->i_sb);
4510 }
4511
4512 /*
4513  * ext4_setattr()
4514  *
4515  * Called from notify_change.
4516  *
4517  * We want to trap VFS attempts to truncate the file as soon as
4518  * possible.  In particular, we want to make sure that when the VFS
4519  * shrinks i_size, we put the inode on the orphan list and modify
4520  * i_disksize immediately, so that during the subsequent flushing of
4521  * dirty pages and freeing of disk blocks, we can guarantee that any
4522  * commit will leave the blocks being flushed in an unused state on
4523  * disk.  (On recovery, the inode will get truncated and the blocks will
4524  * be freed, so we have a strong guarantee that no future commit will
4525  * leave these blocks visible to the user.)
4526  *
4527  * Another thing we have to assure is that if we are in ordered mode
4528  * and inode is still attached to the committing transaction, we must
4529  * we start writeout of all the dirty pages which are being truncated.
4530  * This way we are sure that all the data written in the previous
4531  * transaction are already on disk (truncate waits for pages under
4532  * writeback).
4533  *
4534  * Called with inode->i_mutex down.
4535  */
4536 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4537 {
4538         struct inode *inode = dentry->d_inode;
4539         int error, rc = 0;
4540         const unsigned int ia_valid = attr->ia_valid;
4541
4542         error = inode_change_ok(inode, attr);
4543         if (error)
4544                 return error;
4545
4546         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4547                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4548                 handle_t *handle;
4549
4550                 /* (user+group)*(old+new) structure, inode write (sb,
4551                  * inode block, ? - but truncate inode update has it) */
4552                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4553                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4554                 if (IS_ERR(handle)) {
4555                         error = PTR_ERR(handle);
4556                         goto err_out;
4557                 }
4558                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4559                 if (error) {
4560                         ext4_journal_stop(handle);
4561                         return error;
4562                 }
4563                 /* Update corresponding info in inode so that everything is in
4564                  * one transaction */
4565                 if (attr->ia_valid & ATTR_UID)
4566                         inode->i_uid = attr->ia_uid;
4567                 if (attr->ia_valid & ATTR_GID)
4568                         inode->i_gid = attr->ia_gid;
4569                 error = ext4_mark_inode_dirty(handle, inode);
4570                 ext4_journal_stop(handle);
4571         }
4572
4573         if (attr->ia_valid & ATTR_SIZE) {
4574                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4575                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4576
4577                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4578                                 error = -EFBIG;
4579                                 goto err_out;
4580                         }
4581                 }
4582         }
4583
4584         if (S_ISREG(inode->i_mode) &&
4585             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4586                 handle_t *handle;
4587
4588                 handle = ext4_journal_start(inode, 3);
4589                 if (IS_ERR(handle)) {
4590                         error = PTR_ERR(handle);
4591                         goto err_out;
4592                 }
4593
4594                 error = ext4_orphan_add(handle, inode);
4595                 EXT4_I(inode)->i_disksize = attr->ia_size;
4596                 rc = ext4_mark_inode_dirty(handle, inode);
4597                 if (!error)
4598                         error = rc;
4599                 ext4_journal_stop(handle);
4600
4601                 if (ext4_should_order_data(inode)) {
4602                         error = ext4_begin_ordered_truncate(inode,
4603                                                             attr->ia_size);
4604                         if (error) {
4605                                 /* Do as much error cleanup as possible */
4606                                 handle = ext4_journal_start(inode, 3);
4607                                 if (IS_ERR(handle)) {
4608                                         ext4_orphan_del(NULL, inode);
4609                                         goto err_out;
4610                                 }
4611                                 ext4_orphan_del(handle, inode);
4612                                 ext4_journal_stop(handle);
4613                                 goto err_out;
4614                         }
4615                 }
4616         }
4617
4618         rc = inode_setattr(inode, attr);
4619
4620         /* If inode_setattr's call to ext4_truncate failed to get a
4621          * transaction handle at all, we need to clean up the in-core
4622          * orphan list manually. */
4623         if (inode->i_nlink)
4624                 ext4_orphan_del(NULL, inode);
4625
4626         if (!rc && (ia_valid & ATTR_MODE))
4627                 rc = ext4_acl_chmod(inode);
4628
4629 err_out:
4630         ext4_std_error(inode->i_sb, error);
4631         if (!error)
4632                 error = rc;
4633         return error;
4634 }
4635
4636 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4637                  struct kstat *stat)
4638 {
4639         struct inode *inode;
4640         unsigned long delalloc_blocks;
4641
4642         inode = dentry->d_inode;
4643         generic_fillattr(inode, stat);
4644
4645         /*
4646          * We can't update i_blocks if the block allocation is delayed
4647          * otherwise in the case of system crash before the real block
4648          * allocation is done, we will have i_blocks inconsistent with
4649          * on-disk file blocks.
4650          * We always keep i_blocks updated together with real
4651          * allocation. But to not confuse with user, stat
4652          * will return the blocks that include the delayed allocation
4653          * blocks for this file.
4654          */
4655         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4656         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4657         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4658
4659         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4660         return 0;
4661 }
4662
4663 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4664                                       int chunk)
4665 {
4666         int indirects;
4667
4668         /* if nrblocks are contiguous */
4669         if (chunk) {
4670                 /*
4671                  * With N contiguous data blocks, it need at most
4672                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4673                  * 2 dindirect blocks
4674                  * 1 tindirect block
4675                  */
4676                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4677                 return indirects + 3;
4678         }
4679         /*
4680          * if nrblocks are not contiguous, worse case, each block touch
4681          * a indirect block, and each indirect block touch a double indirect
4682          * block, plus a triple indirect block
4683          */
4684         indirects = nrblocks * 2 + 1;
4685         return indirects;
4686 }
4687
4688 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4689 {
4690         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4691                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4692         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4693 }
4694
4695 /*
4696  * Account for index blocks, block groups bitmaps and block group
4697  * descriptor blocks if modify datablocks and index blocks
4698  * worse case, the indexs blocks spread over different block groups
4699  *
4700  * If datablocks are discontiguous, they are possible to spread over
4701  * different block groups too. If they are contiugous, with flexbg,
4702  * they could still across block group boundary.
4703  *
4704  * Also account for superblock, inode, quota and xattr blocks
4705  */
4706 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4707 {
4708         int groups, gdpblocks;
4709         int idxblocks;
4710         int ret = 0;
4711
4712         /*
4713          * How many index blocks need to touch to modify nrblocks?
4714          * The "Chunk" flag indicating whether the nrblocks is
4715          * physically contiguous on disk
4716          *
4717          * For Direct IO and fallocate, they calls get_block to allocate
4718          * one single extent at a time, so they could set the "Chunk" flag
4719          */
4720         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4721
4722         ret = idxblocks;
4723
4724         /*
4725          * Now let's see how many group bitmaps and group descriptors need
4726          * to account
4727          */
4728         groups = idxblocks;
4729         if (chunk)
4730                 groups += 1;
4731         else
4732                 groups += nrblocks;
4733
4734         gdpblocks = groups;
4735         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4736                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4737         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4738                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4739
4740         /* bitmaps and block group descriptor blocks */
4741         ret += groups + gdpblocks;
4742
4743         /* Blocks for super block, inode, quota and xattr blocks */
4744         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4745
4746         return ret;
4747 }
4748
4749 /*
4750  * Calulate the total number of credits to reserve to fit
4751  * the modification of a single pages into a single transaction,
4752  * which may include multiple chunks of block allocations.
4753  *
4754  * This could be called via ext4_write_begin()
4755  *
4756  * We need to consider the worse case, when
4757  * one new block per extent.
4758  */
4759 int ext4_writepage_trans_blocks(struct inode *inode)
4760 {
4761         int bpp = ext4_journal_blocks_per_page(inode);
4762         int ret;
4763
4764         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4765
4766         /* Account for data blocks for journalled mode */
4767         if (ext4_should_journal_data(inode))
4768                 ret += bpp;
4769         return ret;
4770 }
4771
4772 /*
4773  * Calculate the journal credits for a chunk of data modification.
4774  *
4775  * This is called from DIO, fallocate or whoever calling
4776  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4777  *
4778  * journal buffers for data blocks are not included here, as DIO
4779  * and fallocate do no need to journal data buffers.
4780  */
4781 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4782 {
4783         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4784 }
4785
4786 /*
4787  * The caller must have previously called ext4_reserve_inode_write().
4788  * Give this, we know that the caller already has write access to iloc->bh.
4789  */
4790 int ext4_mark_iloc_dirty(handle_t *handle,
4791                 struct inode *inode, struct ext4_iloc *iloc)
4792 {
4793         int err = 0;
4794
4795         if (test_opt(inode->i_sb, I_VERSION))
4796                 inode_inc_iversion(inode);
4797
4798         /* the do_update_inode consumes one bh->b_count */
4799         get_bh(iloc->bh);
4800
4801         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4802         err = ext4_do_update_inode(handle, inode, iloc);
4803         put_bh(iloc->bh);
4804         return err;
4805 }
4806
4807 /*
4808  * On success, We end up with an outstanding reference count against
4809  * iloc->bh.  This _must_ be cleaned up later.
4810  */
4811
4812 int
4813 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4814                          struct ext4_iloc *iloc)
4815 {
4816         int err = 0;
4817         if (handle) {
4818                 err = ext4_get_inode_loc(inode, iloc);
4819                 if (!err) {
4820                         BUFFER_TRACE(iloc->bh, "get_write_access");
4821                         err = ext4_journal_get_write_access(handle, iloc->bh);
4822                         if (err) {
4823                                 brelse(iloc->bh);
4824                                 iloc->bh = NULL;
4825                         }
4826                 }
4827         }
4828         ext4_std_error(inode->i_sb, err);
4829         return err;
4830 }
4831
4832 /*
4833  * Expand an inode by new_extra_isize bytes.
4834  * Returns 0 on success or negative error number on failure.
4835  */
4836 static int ext4_expand_extra_isize(struct inode *inode,
4837                                    unsigned int new_extra_isize,
4838                                    struct ext4_iloc iloc,
4839                                    handle_t *handle)
4840 {
4841         struct ext4_inode *raw_inode;
4842         struct ext4_xattr_ibody_header *header;
4843         struct ext4_xattr_entry *entry;
4844
4845         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4846                 return 0;
4847
4848         raw_inode = ext4_raw_inode(&iloc);
4849
4850         header = IHDR(inode, raw_inode);
4851         entry = IFIRST(header);
4852
4853         /* No extended attributes present */
4854         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4855                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4856                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4857                         new_extra_isize);
4858                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4859                 return 0;
4860         }
4861
4862         /* try to expand with EAs present */
4863         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4864                                           raw_inode, handle);
4865 }
4866
4867 /*
4868  * What we do here is to mark the in-core inode as clean with respect to inode
4869  * dirtiness (it may still be data-dirty).
4870  * This means that the in-core inode may be reaped by prune_icache
4871  * without having to perform any I/O.  This is a very good thing,
4872  * because *any* task may call prune_icache - even ones which
4873  * have a transaction open against a different journal.
4874  *
4875  * Is this cheating?  Not really.  Sure, we haven't written the
4876  * inode out, but prune_icache isn't a user-visible syncing function.
4877  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4878  * we start and wait on commits.
4879  *
4880  * Is this efficient/effective?  Well, we're being nice to the system
4881  * by cleaning up our inodes proactively so they can be reaped
4882  * without I/O.  But we are potentially leaving up to five seconds'
4883  * worth of inodes floating about which prune_icache wants us to
4884  * write out.  One way to fix that would be to get prune_icache()
4885  * to do a write_super() to free up some memory.  It has the desired
4886  * effect.
4887  */
4888 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4889 {
4890         struct ext4_iloc iloc;
4891         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4892         static unsigned int mnt_count;
4893         int err, ret;
4894
4895         might_sleep();
4896         err = ext4_reserve_inode_write(handle, inode, &iloc);
4897         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4898             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4899                 /*
4900                  * We need extra buffer credits since we may write into EA block
4901                  * with this same handle. If journal_extend fails, then it will
4902                  * only result in a minor loss of functionality for that inode.
4903                  * If this is felt to be critical, then e2fsck should be run to
4904                  * force a large enough s_min_extra_isize.
4905                  */
4906                 if ((jbd2_journal_extend(handle,
4907                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4908                         ret = ext4_expand_extra_isize(inode,
4909                                                       sbi->s_want_extra_isize,
4910                                                       iloc, handle);
4911                         if (ret) {
4912                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4913                                 if (mnt_count !=
4914                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4915                                         ext4_warning(inode->i_sb, __func__,
4916                                         "Unable to expand inode %lu. Delete"
4917                                         " some EAs or run e2fsck.",
4918                                         inode->i_ino);
4919                                         mnt_count =
4920                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4921                                 }
4922                         }
4923                 }
4924         }
4925         if (!err)
4926                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4927         return err;
4928 }
4929
4930 /*
4931  * ext4_dirty_inode() is called from __mark_inode_dirty()
4932  *
4933  * We're really interested in the case where a file is being extended.
4934  * i_size has been changed by generic_commit_write() and we thus need
4935  * to include the updated inode in the current transaction.
4936  *
4937  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4938  * are allocated to the file.
4939  *
4940  * If the inode is marked synchronous, we don't honour that here - doing
4941  * so would cause a commit on atime updates, which we don't bother doing.
4942  * We handle synchronous inodes at the highest possible level.
4943  */
4944 void ext4_dirty_inode(struct inode *inode)
4945 {
4946         handle_t *current_handle = ext4_journal_current_handle();
4947         handle_t *handle;
4948
4949         handle = ext4_journal_start(inode, 2);
4950         if (IS_ERR(handle))
4951                 goto out;
4952         if (current_handle &&
4953                 current_handle->h_transaction != handle->h_transaction) {
4954                 /* This task has a transaction open against a different fs */
4955                 printk(KERN_EMERG "%s: transactions do not match!\n",
4956                        __func__);
4957         } else {
4958                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4959                                 current_handle);
4960                 ext4_mark_inode_dirty(handle, inode);
4961         }
4962         ext4_journal_stop(handle);
4963 out:
4964         return;
4965 }
4966
4967 #if 0
4968 /*
4969  * Bind an inode's backing buffer_head into this transaction, to prevent
4970  * it from being flushed to disk early.  Unlike
4971  * ext4_reserve_inode_write, this leaves behind no bh reference and
4972  * returns no iloc structure, so the caller needs to repeat the iloc
4973  * lookup to mark the inode dirty later.
4974  */
4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 {
4977         struct ext4_iloc iloc;
4978
4979         int err = 0;
4980         if (handle) {
4981                 err = ext4_get_inode_loc(inode, &iloc);
4982                 if (!err) {
4983                         BUFFER_TRACE(iloc.bh, "get_write_access");
4984                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4985                         if (!err)
4986                                 err = ext4_journal_dirty_metadata(handle,
4987                                                                   iloc.bh);
4988                         brelse(iloc.bh);
4989                 }
4990         }
4991         ext4_std_error(inode->i_sb, err);
4992         return err;
4993 }
4994 #endif
4995
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4997 {
4998         journal_t *journal;
4999         handle_t *handle;
5000         int err;
5001
5002         /*
5003          * We have to be very careful here: changing a data block's
5004          * journaling status dynamically is dangerous.  If we write a
5005          * data block to the journal, change the status and then delete
5006          * that block, we risk forgetting to revoke the old log record
5007          * from the journal and so a subsequent replay can corrupt data.
5008          * So, first we make sure that the journal is empty and that
5009          * nobody is changing anything.
5010          */
5011
5012         journal = EXT4_JOURNAL(inode);
5013         if (is_journal_aborted(journal))
5014                 return -EROFS;
5015
5016         jbd2_journal_lock_updates(journal);
5017         jbd2_journal_flush(journal);
5018
5019         /*
5020          * OK, there are no updates running now, and all cached data is
5021          * synced to disk.  We are now in a completely consistent state
5022          * which doesn't have anything in the journal, and we know that
5023          * no filesystem updates are running, so it is safe to modify
5024          * the inode's in-core data-journaling state flag now.
5025          */
5026
5027         if (val)
5028                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5029         else
5030                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5031         ext4_set_aops(inode);
5032
5033         jbd2_journal_unlock_updates(journal);
5034
5035         /* Finally we can mark the inode as dirty. */
5036
5037         handle = ext4_journal_start(inode, 1);
5038         if (IS_ERR(handle))
5039                 return PTR_ERR(handle);
5040
5041         err = ext4_mark_inode_dirty(handle, inode);
5042         handle->h_sync = 1;
5043         ext4_journal_stop(handle);
5044         ext4_std_error(inode->i_sb, err);
5045
5046         return err;
5047 }
5048
5049 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5050 {
5051         return !buffer_mapped(bh);
5052 }
5053
5054 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5055 {
5056         struct page *page = vmf->page;
5057         loff_t size;
5058         unsigned long len;
5059         int ret = -EINVAL;
5060         struct file *file = vma->vm_file;
5061         struct inode *inode = file->f_path.dentry->d_inode;
5062         struct address_space *mapping = inode->i_mapping;
5063
5064         /*
5065          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5066          * get i_mutex because we are already holding mmap_sem.
5067          */
5068         down_read(&inode->i_alloc_sem);
5069         size = i_size_read(inode);
5070         if (page->mapping != mapping || size <= page_offset(page)
5071             || !PageUptodate(page)) {
5072                 /* page got truncated from under us? */
5073                 goto out_unlock;
5074         }
5075         ret = 0;
5076         if (PageMappedToDisk(page))
5077                 goto out_unlock;
5078
5079         if (page->index == size >> PAGE_CACHE_SHIFT)
5080                 len = size & ~PAGE_CACHE_MASK;
5081         else
5082                 len = PAGE_CACHE_SIZE;
5083
5084         if (page_has_buffers(page)) {
5085                 /* return if we have all the buffers mapped */
5086                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5087                                        ext4_bh_unmapped))
5088                         goto out_unlock;
5089         }
5090         /*
5091          * OK, we need to fill the hole... Do write_begin write_end
5092          * to do block allocation/reservation.We are not holding
5093          * inode.i__mutex here. That allow * parallel write_begin,
5094          * write_end call. lock_page prevent this from happening
5095          * on the same page though
5096          */
5097         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5098                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
5099         if (ret < 0)
5100                 goto out_unlock;
5101         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5102                         len, len, page, NULL);
5103         if (ret < 0)
5104                 goto out_unlock;
5105         ret = 0;
5106 out_unlock:
5107         if (ret)
5108                 ret = VM_FAULT_SIGBUS;
5109         up_read(&inode->i_alloc_sem);
5110         return ret;
5111 }