]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/ext4/inode.c
ext4: Fix ext4 nomballoc allocator for ENOSPC
[mv-sheeva.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         if (mdb_free) {
1034                 /* Account for allocated meta_blocks */
1035                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037                 /* update fs dirty blocks counter */
1038                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041         }
1042
1043         /* update per-inode reservations */
1044         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045         EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073                         unsigned long max_blocks, struct buffer_head *bh,
1074                         int create, int extend_disksize, int flag)
1075 {
1076         int retval;
1077
1078         clear_buffer_mapped(bh);
1079
1080         /*
1081          * Try to see if we can get  the block without requesting
1082          * for new file system block.
1083          */
1084         down_read((&EXT4_I(inode)->i_data_sem));
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087                                 bh, 0, 0);
1088         } else {
1089                 retval = ext4_get_blocks_handle(handle,
1090                                 inode, block, max_blocks, bh, 0, 0);
1091         }
1092         up_read((&EXT4_I(inode)->i_data_sem));
1093
1094         /* If it is only a block(s) look up */
1095         if (!create)
1096                 return retval;
1097
1098         /*
1099          * Returns if the blocks have already allocated
1100          *
1101          * Note that if blocks have been preallocated
1102          * ext4_ext_get_block() returns th create = 0
1103          * with buffer head unmapped.
1104          */
1105         if (retval > 0 && buffer_mapped(bh))
1106                 return retval;
1107
1108         /*
1109          * New blocks allocate and/or writing to uninitialized extent
1110          * will possibly result in updating i_data, so we take
1111          * the write lock of i_data_sem, and call get_blocks()
1112          * with create == 1 flag.
1113          */
1114         down_write((&EXT4_I(inode)->i_data_sem));
1115
1116         /*
1117          * if the caller is from delayed allocation writeout path
1118          * we have already reserved fs blocks for allocation
1119          * let the underlying get_block() function know to
1120          * avoid double accounting
1121          */
1122         if (flag)
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124         /*
1125          * We need to check for EXT4 here because migrate
1126          * could have changed the inode type in between
1127          */
1128         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130                                 bh, create, extend_disksize);
1131         } else {
1132                 retval = ext4_get_blocks_handle(handle, inode, block,
1133                                 max_blocks, bh, create, extend_disksize);
1134
1135                 if (retval > 0 && buffer_new(bh)) {
1136                         /*
1137                          * We allocated new blocks which will result in
1138                          * i_data's format changing.  Force the migrate
1139                          * to fail by clearing migrate flags
1140                          */
1141                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142                                                         ~EXT4_EXT_MIGRATE;
1143                 }
1144         }
1145
1146         if (flag) {
1147                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148                 /*
1149                  * Update reserved blocks/metadata blocks
1150                  * after successful block allocation
1151                  * which were deferred till now
1152                  */
1153                 if ((retval > 0) && buffer_delay(bh))
1154                         ext4_da_update_reserve_space(inode, retval);
1155         }
1156
1157         up_write((&EXT4_I(inode)->i_data_sem));
1158         return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165                         struct buffer_head *bh_result, int create)
1166 {
1167         handle_t *handle = ext4_journal_current_handle();
1168         int ret = 0, started = 0;
1169         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170         int dio_credits;
1171
1172         if (create && !handle) {
1173                 /* Direct IO write... */
1174                 if (max_blocks > DIO_MAX_BLOCKS)
1175                         max_blocks = DIO_MAX_BLOCKS;
1176                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177                 handle = ext4_journal_start(inode, dio_credits);
1178                 if (IS_ERR(handle)) {
1179                         ret = PTR_ERR(handle);
1180                         goto out;
1181                 }
1182                 started = 1;
1183         }
1184
1185         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186                                         max_blocks, bh_result, create, 0, 0);
1187         if (ret > 0) {
1188                 bh_result->b_size = (ret << inode->i_blkbits);
1189                 ret = 0;
1190         }
1191         if (started)
1192                 ext4_journal_stop(handle);
1193 out:
1194         return ret;
1195 }
1196
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201                                 ext4_lblk_t block, int create, int *errp)
1202 {
1203         struct buffer_head dummy;
1204         int fatal = 0, err;
1205
1206         J_ASSERT(handle != NULL || create == 0);
1207
1208         dummy.b_state = 0;
1209         dummy.b_blocknr = -1000;
1210         buffer_trace_init(&dummy.b_history);
1211         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212                                         &dummy, create, 1, 0);
1213         /*
1214          * ext4_get_blocks_handle() returns number of blocks
1215          * mapped. 0 in case of a HOLE.
1216          */
1217         if (err > 0) {
1218                 if (err > 1)
1219                         WARN_ON(1);
1220                 err = 0;
1221         }
1222         *errp = err;
1223         if (!err && buffer_mapped(&dummy)) {
1224                 struct buffer_head *bh;
1225                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226                 if (!bh) {
1227                         *errp = -EIO;
1228                         goto err;
1229                 }
1230                 if (buffer_new(&dummy)) {
1231                         J_ASSERT(create != 0);
1232                         J_ASSERT(handle != NULL);
1233
1234                         /*
1235                          * Now that we do not always journal data, we should
1236                          * keep in mind whether this should always journal the
1237                          * new buffer as metadata.  For now, regular file
1238                          * writes use ext4_get_block instead, so it's not a
1239                          * problem.
1240                          */
1241                         lock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call get_create_access");
1243                         fatal = ext4_journal_get_create_access(handle, bh);
1244                         if (!fatal && !buffer_uptodate(bh)) {
1245                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246                                 set_buffer_uptodate(bh);
1247                         }
1248                         unlock_buffer(bh);
1249                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250                         err = ext4_journal_dirty_metadata(handle, bh);
1251                         if (!fatal)
1252                                 fatal = err;
1253                 } else {
1254                         BUFFER_TRACE(bh, "not a new buffer");
1255                 }
1256                 if (fatal) {
1257                         *errp = fatal;
1258                         brelse(bh);
1259                         bh = NULL;
1260                 }
1261                 return bh;
1262         }
1263 err:
1264         return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268                                ext4_lblk_t block, int create, int *err)
1269 {
1270         struct buffer_head *bh;
1271
1272         bh = ext4_getblk(handle, inode, block, create, err);
1273         if (!bh)
1274                 return bh;
1275         if (buffer_uptodate(bh))
1276                 return bh;
1277         ll_rw_block(READ_META, 1, &bh);
1278         wait_on_buffer(bh);
1279         if (buffer_uptodate(bh))
1280                 return bh;
1281         put_bh(bh);
1282         *err = -EIO;
1283         return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287                              struct buffer_head *head,
1288                              unsigned from,
1289                              unsigned to,
1290                              int *partial,
1291                              int (*fn)(handle_t *handle,
1292                                        struct buffer_head *bh))
1293 {
1294         struct buffer_head *bh;
1295         unsigned block_start, block_end;
1296         unsigned blocksize = head->b_size;
1297         int err, ret = 0;
1298         struct buffer_head *next;
1299
1300         for (bh = head, block_start = 0;
1301              ret == 0 && (bh != head || !block_start);
1302              block_start = block_end, bh = next)
1303         {
1304                 next = bh->b_this_page;
1305                 block_end = block_start + blocksize;
1306                 if (block_end <= from || block_start >= to) {
1307                         if (partial && !buffer_uptodate(bh))
1308                                 *partial = 1;
1309                         continue;
1310                 }
1311                 err = (*fn)(handle, bh);
1312                 if (!ret)
1313                         ret = err;
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344                                         struct buffer_head *bh)
1345 {
1346         if (!buffer_mapped(bh) || buffer_freed(bh))
1347                 return 0;
1348         return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352                                 loff_t pos, unsigned len, unsigned flags,
1353                                 struct page **pagep, void **fsdata)
1354 {
1355         struct inode *inode = mapping->host;
1356         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357         handle_t *handle;
1358         int retries = 0;
1359         struct page *page;
1360         pgoff_t index;
1361         unsigned from, to;
1362
1363         index = pos >> PAGE_CACHE_SHIFT;
1364         from = pos & (PAGE_CACHE_SIZE - 1);
1365         to = from + len;
1366
1367 retry:
1368         handle = ext4_journal_start(inode, needed_blocks);
1369         if (IS_ERR(handle)) {
1370                 ret = PTR_ERR(handle);
1371                 goto out;
1372         }
1373
1374         page = __grab_cache_page(mapping, index);
1375         if (!page) {
1376                 ext4_journal_stop(handle);
1377                 ret = -ENOMEM;
1378                 goto out;
1379         }
1380         *pagep = page;
1381
1382         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383                                                         ext4_get_block);
1384
1385         if (!ret && ext4_should_journal_data(inode)) {
1386                 ret = walk_page_buffers(handle, page_buffers(page),
1387                                 from, to, NULL, do_journal_get_write_access);
1388         }
1389
1390         if (ret) {
1391                 unlock_page(page);
1392                 ext4_journal_stop(handle);
1393                 page_cache_release(page);
1394         }
1395
1396         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397                 goto retry;
1398 out:
1399         return ret;
1400 }
1401
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405         if (!buffer_mapped(bh) || buffer_freed(bh))
1406                 return 0;
1407         set_buffer_uptodate(bh);
1408         return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_ordered_write_end(struct file *file,
1419                                 struct address_space *mapping,
1420                                 loff_t pos, unsigned len, unsigned copied,
1421                                 struct page *page, void *fsdata)
1422 {
1423         handle_t *handle = ext4_journal_current_handle();
1424         struct inode *inode = mapping->host;
1425         int ret = 0, ret2;
1426
1427         ret = ext4_jbd2_file_inode(handle, inode);
1428
1429         if (ret == 0) {
1430                 /*
1431                  * generic_write_end() will run mark_inode_dirty() if i_size
1432                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1433                  * into that.
1434                  */
1435                 loff_t new_i_size;
1436
1437                 new_i_size = pos + copied;
1438                 if (new_i_size > EXT4_I(inode)->i_disksize)
1439                         EXT4_I(inode)->i_disksize = new_i_size;
1440                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441                                                         page, fsdata);
1442                 copied = ret2;
1443                 if (ret2 < 0)
1444                         ret = ret2;
1445         }
1446         ret2 = ext4_journal_stop(handle);
1447         if (!ret)
1448                 ret = ret2;
1449
1450         return ret ? ret : copied;
1451 }
1452
1453 static int ext4_writeback_write_end(struct file *file,
1454                                 struct address_space *mapping,
1455                                 loff_t pos, unsigned len, unsigned copied,
1456                                 struct page *page, void *fsdata)
1457 {
1458         handle_t *handle = ext4_journal_current_handle();
1459         struct inode *inode = mapping->host;
1460         int ret = 0, ret2;
1461         loff_t new_i_size;
1462
1463         new_i_size = pos + copied;
1464         if (new_i_size > EXT4_I(inode)->i_disksize)
1465                 EXT4_I(inode)->i_disksize = new_i_size;
1466
1467         ret2 = generic_write_end(file, mapping, pos, len, copied,
1468                                                         page, fsdata);
1469         copied = ret2;
1470         if (ret2 < 0)
1471                 ret = ret2;
1472
1473         ret2 = ext4_journal_stop(handle);
1474         if (!ret)
1475                 ret = ret2;
1476
1477         return ret ? ret : copied;
1478 }
1479
1480 static int ext4_journalled_write_end(struct file *file,
1481                                 struct address_space *mapping,
1482                                 loff_t pos, unsigned len, unsigned copied,
1483                                 struct page *page, void *fsdata)
1484 {
1485         handle_t *handle = ext4_journal_current_handle();
1486         struct inode *inode = mapping->host;
1487         int ret = 0, ret2;
1488         int partial = 0;
1489         unsigned from, to;
1490
1491         from = pos & (PAGE_CACHE_SIZE - 1);
1492         to = from + len;
1493
1494         if (copied < len) {
1495                 if (!PageUptodate(page))
1496                         copied = 0;
1497                 page_zero_new_buffers(page, from+copied, to);
1498         }
1499
1500         ret = walk_page_buffers(handle, page_buffers(page), from,
1501                                 to, &partial, write_end_fn);
1502         if (!partial)
1503                 SetPageUptodate(page);
1504         if (pos+copied > inode->i_size)
1505                 i_size_write(inode, pos+copied);
1506         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508                 EXT4_I(inode)->i_disksize = inode->i_size;
1509                 ret2 = ext4_mark_inode_dirty(handle, inode);
1510                 if (!ret)
1511                         ret = ret2;
1512         }
1513
1514         unlock_page(page);
1515         ret2 = ext4_journal_stop(handle);
1516         if (!ret)
1517                 ret = ret2;
1518         page_cache_release(page);
1519
1520         return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525         int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534 repeat:
1535         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537         mdblocks = ext4_calc_metadata_amount(inode, total);
1538         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541         total = md_needed + nrblocks;
1542
1543         if (ext4_claim_free_blocks(sbi, total)) {
1544                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546                         yield();
1547                         goto repeat;
1548                 }
1549                 return -ENOSPC;
1550         }
1551         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555         return 0;       /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         int total, mdb, mdb_free, release;
1562
1563         if (!to_free)
1564                 return;         /* Nothing to release, exit */
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569                 /*
1570                  * if there is no reserved blocks, but we try to free some
1571                  * then the counter is messed up somewhere.
1572                  * but since this function is called from invalidate
1573                  * page, it's harmless to return without any action
1574                  */
1575                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576                             "blocks for inode %lu, but there is no reserved "
1577                             "data blocks\n", to_free, inode->i_ino);
1578                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579                 return;
1580         }
1581
1582         /* recalculate the number of metablocks still need to be reserved */
1583         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584         mdb = ext4_calc_metadata_amount(inode, total);
1585
1586         /* figure out how many metablocks to release */
1587         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590         release = to_free + mdb_free;
1591
1592         /* update fs dirty blocks counter for truncate case */
1593         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595         /* update per-inode reservations */
1596         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605                                                 unsigned long offset)
1606 {
1607         int to_release = 0;
1608         struct buffer_head *head, *bh;
1609         unsigned int curr_off = 0;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615
1616                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617                         to_release++;
1618                         clear_buffer_delay(bh);
1619                 }
1620                 curr_off = next_off;
1621         } while ((bh = bh->b_this_page) != head);
1622         ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626  * Delayed allocation stuff
1627  */
1628
1629 struct mpage_da_data {
1630         struct inode *inode;
1631         struct buffer_head lbh;                 /* extent of blocks */
1632         unsigned long first_page, next_page;    /* extent of pages */
1633         get_block_t *get_block;
1634         struct writeback_control *wbc;
1635         int io_done;
1636         long pages_written;
1637 };
1638
1639 /*
1640  * mpage_da_submit_io - walks through extent of pages and try to write
1641  * them with writepage() call back
1642  *
1643  * @mpd->inode: inode
1644  * @mpd->first_page: first page of the extent
1645  * @mpd->next_page: page after the last page of the extent
1646  * @mpd->get_block: the filesystem's block mapper function
1647  *
1648  * By the time mpage_da_submit_io() is called we expect all blocks
1649  * to be allocated. this may be wrong if allocation failed.
1650  *
1651  * As pages are already locked by write_cache_pages(), we can't use it
1652  */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655         struct address_space *mapping = mpd->inode->i_mapping;
1656         int ret = 0, err, nr_pages, i;
1657         unsigned long index, end;
1658         struct pagevec pvec;
1659
1660         BUG_ON(mpd->next_page <= mpd->first_page);
1661         pagevec_init(&pvec, 0);
1662         index = mpd->first_page;
1663         end = mpd->next_page - 1;
1664
1665         while (index <= end) {
1666                 /* XXX: optimize tail */
1667                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668                 if (nr_pages == 0)
1669                         break;
1670                 for (i = 0; i < nr_pages; i++) {
1671                         struct page *page = pvec.pages[i];
1672
1673                         index = page->index;
1674                         if (index > end)
1675                                 break;
1676                         index++;
1677
1678                         err = mapping->a_ops->writepage(page, mpd->wbc);
1679                         if (!err)
1680                                 mpd->pages_written++;
1681                         /*
1682                          * In error case, we have to continue because
1683                          * remaining pages are still locked
1684                          * XXX: unlock and re-dirty them?
1685                          */
1686                         if (ret == 0)
1687                                 ret = err;
1688                 }
1689                 pagevec_release(&pvec);
1690         }
1691         return ret;
1692 }
1693
1694 /*
1695  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696  *
1697  * @mpd->inode - inode to walk through
1698  * @exbh->b_blocknr - first block on a disk
1699  * @exbh->b_size - amount of space in bytes
1700  * @logical - first logical block to start assignment with
1701  *
1702  * the function goes through all passed space and put actual disk
1703  * block numbers into buffer heads, dropping BH_Delay
1704  */
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706                                  struct buffer_head *exbh)
1707 {
1708         struct inode *inode = mpd->inode;
1709         struct address_space *mapping = inode->i_mapping;
1710         int blocks = exbh->b_size >> inode->i_blkbits;
1711         sector_t pblock = exbh->b_blocknr, cur_logical;
1712         struct buffer_head *head, *bh;
1713         pgoff_t index, end;
1714         struct pagevec pvec;
1715         int nr_pages, i;
1716
1717         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720
1721         pagevec_init(&pvec, 0);
1722
1723         while (index <= end) {
1724                 /* XXX: optimize tail */
1725                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726                 if (nr_pages == 0)
1727                         break;
1728                 for (i = 0; i < nr_pages; i++) {
1729                         struct page *page = pvec.pages[i];
1730
1731                         index = page->index;
1732                         if (index > end)
1733                                 break;
1734                         index++;
1735
1736                         BUG_ON(!PageLocked(page));
1737                         BUG_ON(PageWriteback(page));
1738                         BUG_ON(!page_has_buffers(page));
1739
1740                         bh = page_buffers(page);
1741                         head = bh;
1742
1743                         /* skip blocks out of the range */
1744                         do {
1745                                 if (cur_logical >= logical)
1746                                         break;
1747                                 cur_logical++;
1748                         } while ((bh = bh->b_this_page) != head);
1749
1750                         do {
1751                                 if (cur_logical >= logical + blocks)
1752                                         break;
1753                                 if (buffer_delay(bh)) {
1754                                         bh->b_blocknr = pblock;
1755                                         clear_buffer_delay(bh);
1756                                         bh->b_bdev = inode->i_sb->s_bdev;
1757                                 } else if (buffer_unwritten(bh)) {
1758                                         bh->b_blocknr = pblock;
1759                                         clear_buffer_unwritten(bh);
1760                                         set_buffer_mapped(bh);
1761                                         set_buffer_new(bh);
1762                                         bh->b_bdev = inode->i_sb->s_bdev;
1763                                 } else if (buffer_mapped(bh))
1764                                         BUG_ON(bh->b_blocknr != pblock);
1765
1766                                 cur_logical++;
1767                                 pblock++;
1768                         } while ((bh = bh->b_this_page) != head);
1769                 }
1770                 pagevec_release(&pvec);
1771         }
1772 }
1773
1774
1775 /*
1776  * __unmap_underlying_blocks - just a helper function to unmap
1777  * set of blocks described by @bh
1778  */
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780                                              struct buffer_head *bh)
1781 {
1782         struct block_device *bdev = inode->i_sb->s_bdev;
1783         int blocks, i;
1784
1785         blocks = bh->b_size >> inode->i_blkbits;
1786         for (i = 0; i < blocks; i++)
1787                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788 }
1789
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791                                         sector_t logical, long blk_cnt)
1792 {
1793         int nr_pages, i;
1794         pgoff_t index, end;
1795         struct pagevec pvec;
1796         struct inode *inode = mpd->inode;
1797         struct address_space *mapping = inode->i_mapping;
1798
1799         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800         end   = (logical + blk_cnt - 1) >>
1801                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1802         while (index <= end) {
1803                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804                 if (nr_pages == 0)
1805                         break;
1806                 for (i = 0; i < nr_pages; i++) {
1807                         struct page *page = pvec.pages[i];
1808                         index = page->index;
1809                         if (index > end)
1810                                 break;
1811                         index++;
1812
1813                         BUG_ON(!PageLocked(page));
1814                         BUG_ON(PageWriteback(page));
1815                         block_invalidatepage(page, 0);
1816                         ClearPageUptodate(page);
1817                         unlock_page(page);
1818                 }
1819         }
1820         return;
1821 }
1822
1823 /*
1824  * mpage_da_map_blocks - go through given space
1825  *
1826  * @mpd->lbh - bh describing space
1827  * @mpd->get_block - the filesystem's block mapper function
1828  *
1829  * The function skips space we know is already mapped to disk blocks.
1830  *
1831  */
1832 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1833 {
1834         int err = 0;
1835         struct buffer_head new;
1836         struct buffer_head *lbh = &mpd->lbh;
1837         sector_t next = lbh->b_blocknr;
1838
1839         /*
1840          * We consider only non-mapped and non-allocated blocks
1841          */
1842         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843                 return 0;
1844         new.b_state = lbh->b_state;
1845         new.b_blocknr = 0;
1846         new.b_size = lbh->b_size;
1847         /*
1848          * If we didn't accumulate anything
1849          * to write simply return
1850          */
1851         if (!new.b_size)
1852                 return 0;
1853         err = mpd->get_block(mpd->inode, next, &new, 1);
1854         if (err) {
1855
1856                 /* If get block returns with error
1857                  * we simply return. Later writepage
1858                  * will redirty the page and writepages
1859                  * will find the dirty page again
1860                  */
1861                 if (err == -EAGAIN)
1862                         return 0;
1863                 /*
1864                  * get block failure will cause us
1865                  * to loop in writepages. Because
1866                  * a_ops->writepage won't be able to
1867                  * make progress. The page will be redirtied
1868                  * by writepage and writepages will again
1869                  * try to write the same.
1870                  */
1871                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872                                   "at logical offset %llu with max blocks "
1873                                   "%zd with error %d\n",
1874                                   __func__, mpd->inode->i_ino,
1875                                   (unsigned long long)next,
1876                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1877                 printk(KERN_EMERG "This should not happen.!! "
1878                                         "Data will be lost\n");
1879                 if (err == -ENOSPC) {
1880                         printk(KERN_CRIT "Total free blocks count %lld\n",
1881                                 ext4_count_free_blocks(mpd->inode->i_sb));
1882                 }
1883                 /* invlaidate all the pages */
1884                 ext4_da_block_invalidatepages(mpd, next,
1885                                 lbh->b_size >> mpd->inode->i_blkbits);
1886                 return err;
1887         }
1888         BUG_ON(new.b_size == 0);
1889
1890         if (buffer_new(&new))
1891                 __unmap_underlying_blocks(mpd->inode, &new);
1892
1893         /*
1894          * If blocks are delayed marked, we need to
1895          * put actual blocknr and drop delayed bit
1896          */
1897         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898                 mpage_put_bnr_to_bhs(mpd, next, &new);
1899
1900         return 0;
1901 }
1902
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904                 (1 << BH_Delay) | (1 << BH_Unwritten))
1905
1906 /*
1907  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908  *
1909  * @mpd->lbh - extent of blocks
1910  * @logical - logical number of the block in the file
1911  * @bh - bh of the block (used to access block's state)
1912  *
1913  * the function is used to collect contig. blocks in same state
1914  */
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916                                    sector_t logical, struct buffer_head *bh)
1917 {
1918         sector_t next;
1919         size_t b_size = bh->b_size;
1920         struct buffer_head *lbh = &mpd->lbh;
1921         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1922
1923         /* check if thereserved journal credits might overflow */
1924         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926                         /*
1927                          * With non-extent format we are limited by the journal
1928                          * credit available.  Total credit needed to insert
1929                          * nrblocks contiguous blocks is dependent on the
1930                          * nrblocks.  So limit nrblocks.
1931                          */
1932                         goto flush_it;
1933                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934                                 EXT4_MAX_TRANS_DATA) {
1935                         /*
1936                          * Adding the new buffer_head would make it cross the
1937                          * allowed limit for which we have journal credit
1938                          * reserved. So limit the new bh->b_size
1939                          */
1940                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941                                                 mpd->inode->i_blkbits;
1942                         /* we will do mpage_da_submit_io in the next loop */
1943                 }
1944         }
1945         /*
1946          * First block in the extent
1947          */
1948         if (lbh->b_size == 0) {
1949                 lbh->b_blocknr = logical;
1950                 lbh->b_size = b_size;
1951                 lbh->b_state = bh->b_state & BH_FLAGS;
1952                 return;
1953         }
1954
1955         next = lbh->b_blocknr + nrblocks;
1956         /*
1957          * Can we merge the block to our big extent?
1958          */
1959         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960                 lbh->b_size += b_size;
1961                 return;
1962         }
1963
1964 flush_it:
1965         /*
1966          * We couldn't merge the block to our extent, so we
1967          * need to flush current  extent and start new one
1968          */
1969         if (mpage_da_map_blocks(mpd) == 0)
1970                 mpage_da_submit_io(mpd);
1971         mpd->io_done = 1;
1972         return;
1973 }
1974
1975 /*
1976  * __mpage_da_writepage - finds extent of pages and blocks
1977  *
1978  * @page: page to consider
1979  * @wbc: not used, we just follow rules
1980  * @data: context
1981  *
1982  * The function finds extents of pages and scan them for all blocks.
1983  */
1984 static int __mpage_da_writepage(struct page *page,
1985                                 struct writeback_control *wbc, void *data)
1986 {
1987         struct mpage_da_data *mpd = data;
1988         struct inode *inode = mpd->inode;
1989         struct buffer_head *bh, *head, fake;
1990         sector_t logical;
1991
1992         if (mpd->io_done) {
1993                 /*
1994                  * Rest of the page in the page_vec
1995                  * redirty then and skip then. We will
1996                  * try to to write them again after
1997                  * starting a new transaction
1998                  */
1999                 redirty_page_for_writepage(wbc, page);
2000                 unlock_page(page);
2001                 return MPAGE_DA_EXTENT_TAIL;
2002         }
2003         /*
2004          * Can we merge this page to current extent?
2005          */
2006         if (mpd->next_page != page->index) {
2007                 /*
2008                  * Nope, we can't. So, we map non-allocated blocks
2009                  * and start IO on them using writepage()
2010                  */
2011                 if (mpd->next_page != mpd->first_page) {
2012                         if (mpage_da_map_blocks(mpd) == 0)
2013                                 mpage_da_submit_io(mpd);
2014                         /*
2015                          * skip rest of the page in the page_vec
2016                          */
2017                         mpd->io_done = 1;
2018                         redirty_page_for_writepage(wbc, page);
2019                         unlock_page(page);
2020                         return MPAGE_DA_EXTENT_TAIL;
2021                 }
2022
2023                 /*
2024                  * Start next extent of pages ...
2025                  */
2026                 mpd->first_page = page->index;
2027
2028                 /*
2029                  * ... and blocks
2030                  */
2031                 mpd->lbh.b_size = 0;
2032                 mpd->lbh.b_state = 0;
2033                 mpd->lbh.b_blocknr = 0;
2034         }
2035
2036         mpd->next_page = page->index + 1;
2037         logical = (sector_t) page->index <<
2038                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039
2040         if (!page_has_buffers(page)) {
2041                 /*
2042                  * There is no attached buffer heads yet (mmap?)
2043                  * we treat the page asfull of dirty blocks
2044                  */
2045                 bh = &fake;
2046                 bh->b_size = PAGE_CACHE_SIZE;
2047                 bh->b_state = 0;
2048                 set_buffer_dirty(bh);
2049                 set_buffer_uptodate(bh);
2050                 mpage_add_bh_to_extent(mpd, logical, bh);
2051                 if (mpd->io_done)
2052                         return MPAGE_DA_EXTENT_TAIL;
2053         } else {
2054                 /*
2055                  * Page with regular buffer heads, just add all dirty ones
2056                  */
2057                 head = page_buffers(page);
2058                 bh = head;
2059                 do {
2060                         BUG_ON(buffer_locked(bh));
2061                         if (buffer_dirty(bh) &&
2062                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2063                                 mpage_add_bh_to_extent(mpd, logical, bh);
2064                                 if (mpd->io_done)
2065                                         return MPAGE_DA_EXTENT_TAIL;
2066                         }
2067                         logical++;
2068                 } while ((bh = bh->b_this_page) != head);
2069         }
2070
2071         return 0;
2072 }
2073
2074 /*
2075  * mpage_da_writepages - walk the list of dirty pages of the given
2076  * address space, allocates non-allocated blocks, maps newly-allocated
2077  * blocks to existing bhs and issue IO them
2078  *
2079  * @mapping: address space structure to write
2080  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081  * @get_block: the filesystem's block mapper function.
2082  *
2083  * This is a library function, which implements the writepages()
2084  * address_space_operation.
2085  */
2086 static int mpage_da_writepages(struct address_space *mapping,
2087                                struct writeback_control *wbc,
2088                                get_block_t get_block)
2089 {
2090         struct mpage_da_data mpd;
2091         long to_write;
2092         int ret;
2093
2094         if (!get_block)
2095                 return generic_writepages(mapping, wbc);
2096
2097         mpd.wbc = wbc;
2098         mpd.inode = mapping->host;
2099         mpd.lbh.b_size = 0;
2100         mpd.lbh.b_state = 0;
2101         mpd.lbh.b_blocknr = 0;
2102         mpd.first_page = 0;
2103         mpd.next_page = 0;
2104         mpd.get_block = get_block;
2105         mpd.io_done = 0;
2106         mpd.pages_written = 0;
2107
2108         to_write = wbc->nr_to_write;
2109
2110         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111
2112         /*
2113          * Handle last extent of pages
2114          */
2115         if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116                 if (mpage_da_map_blocks(&mpd) == 0)
2117                         mpage_da_submit_io(&mpd);
2118         }
2119
2120         wbc->nr_to_write = to_write - mpd.pages_written;
2121         return ret;
2122 }
2123
2124 /*
2125  * this is a special callback for ->write_begin() only
2126  * it's intention is to return mapped block or reserve space
2127  */
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129                                   struct buffer_head *bh_result, int create)
2130 {
2131         int ret = 0;
2132
2133         BUG_ON(create == 0);
2134         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135
2136         /*
2137          * first, we need to know whether the block is allocated already
2138          * preallocated blocks are unmapped but should treated
2139          * the same as allocated blocks.
2140          */
2141         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2142         if ((ret == 0) && !buffer_delay(bh_result)) {
2143                 /* the block isn't (pre)allocated yet, let's reserve space */
2144                 /*
2145                  * XXX: __block_prepare_write() unmaps passed block,
2146                  * is it OK?
2147                  */
2148                 ret = ext4_da_reserve_space(inode, 1);
2149                 if (ret)
2150                         /* not enough space to reserve */
2151                         return ret;
2152
2153                 map_bh(bh_result, inode->i_sb, 0);
2154                 set_buffer_new(bh_result);
2155                 set_buffer_delay(bh_result);
2156         } else if (ret > 0) {
2157                 bh_result->b_size = (ret << inode->i_blkbits);
2158                 ret = 0;
2159         }
2160
2161         return ret;
2162 }
2163 #define         EXT4_DELALLOC_RSVED     1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165                                    struct buffer_head *bh_result, int create)
2166 {
2167         int ret;
2168         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169         loff_t disksize = EXT4_I(inode)->i_disksize;
2170         handle_t *handle = NULL;
2171
2172         handle = ext4_journal_current_handle();
2173         if (!handle) {
2174                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175                                    bh_result, 0, 0, 0);
2176                 BUG_ON(!ret);
2177         } else {
2178                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2179                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2180         }
2181
2182         if (ret > 0) {
2183                 bh_result->b_size = (ret << inode->i_blkbits);
2184
2185                 /*
2186                  * Update on-disk size along with block allocation
2187                  * we don't use 'extend_disksize' as size may change
2188                  * within already allocated block -bzzz
2189                  */
2190                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2191                 if (disksize > i_size_read(inode))
2192                         disksize = i_size_read(inode);
2193                 if (disksize > EXT4_I(inode)->i_disksize) {
2194                         /*
2195                          * XXX: replace with spinlock if seen contended -bzzz
2196                          */
2197                         down_write(&EXT4_I(inode)->i_data_sem);
2198                         if (disksize > EXT4_I(inode)->i_disksize)
2199                                 EXT4_I(inode)->i_disksize = disksize;
2200                         up_write(&EXT4_I(inode)->i_data_sem);
2201
2202                         if (EXT4_I(inode)->i_disksize == disksize) {
2203                                 ret = ext4_mark_inode_dirty(handle, inode);
2204                                 return ret;
2205                         }
2206                 }
2207                 ret = 0;
2208         }
2209         return ret;
2210 }
2211
2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2213 {
2214         /*
2215          * unmapped buffer is possible for holes.
2216          * delay buffer is possible with delayed allocation
2217          */
2218         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2219 }
2220
2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2222                                    struct buffer_head *bh_result, int create)
2223 {
2224         int ret = 0;
2225         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2226
2227         /*
2228          * we don't want to do block allocation in writepage
2229          * so call get_block_wrap with create = 0
2230          */
2231         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2232                                    bh_result, 0, 0, 0);
2233         if (ret > 0) {
2234                 bh_result->b_size = (ret << inode->i_blkbits);
2235                 ret = 0;
2236         }
2237         return ret;
2238 }
2239
2240 /*
2241  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2242  * get called via journal_submit_inode_data_buffers (no journal handle)
2243  * get called via shrink_page_list via pdflush (no journal handle)
2244  * or grab_page_cache when doing write_begin (have journal handle)
2245  */
2246 static int ext4_da_writepage(struct page *page,
2247                                 struct writeback_control *wbc)
2248 {
2249         int ret = 0;
2250         loff_t size;
2251         unsigned long len;
2252         struct buffer_head *page_bufs;
2253         struct inode *inode = page->mapping->host;
2254
2255         size = i_size_read(inode);
2256         if (page->index == size >> PAGE_CACHE_SHIFT)
2257                 len = size & ~PAGE_CACHE_MASK;
2258         else
2259                 len = PAGE_CACHE_SIZE;
2260
2261         if (page_has_buffers(page)) {
2262                 page_bufs = page_buffers(page);
2263                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2264                                         ext4_bh_unmapped_or_delay)) {
2265                         /*
2266                          * We don't want to do  block allocation
2267                          * So redirty the page and return
2268                          * We may reach here when we do a journal commit
2269                          * via journal_submit_inode_data_buffers.
2270                          * If we don't have mapping block we just ignore
2271                          * them. We can also reach here via shrink_page_list
2272                          */
2273                         redirty_page_for_writepage(wbc, page);
2274                         unlock_page(page);
2275                         return 0;
2276                 }
2277         } else {
2278                 /*
2279                  * The test for page_has_buffers() is subtle:
2280                  * We know the page is dirty but it lost buffers. That means
2281                  * that at some moment in time after write_begin()/write_end()
2282                  * has been called all buffers have been clean and thus they
2283                  * must have been written at least once. So they are all
2284                  * mapped and we can happily proceed with mapping them
2285                  * and writing the page.
2286                  *
2287                  * Try to initialize the buffer_heads and check whether
2288                  * all are mapped and non delay. We don't want to
2289                  * do block allocation here.
2290                  */
2291                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2292                                                 ext4_normal_get_block_write);
2293                 if (!ret) {
2294                         page_bufs = page_buffers(page);
2295                         /* check whether all are mapped and non delay */
2296                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2297                                                 ext4_bh_unmapped_or_delay)) {
2298                                 redirty_page_for_writepage(wbc, page);
2299                                 unlock_page(page);
2300                                 return 0;
2301                         }
2302                 } else {
2303                         /*
2304                          * We can't do block allocation here
2305                          * so just redity the page and unlock
2306                          * and return
2307                          */
2308                         redirty_page_for_writepage(wbc, page);
2309                         unlock_page(page);
2310                         return 0;
2311                 }
2312         }
2313
2314         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2315                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2316         else
2317                 ret = block_write_full_page(page,
2318                                                 ext4_normal_get_block_write,
2319                                                 wbc);
2320
2321         return ret;
2322 }
2323
2324 /*
2325  * This is called via ext4_da_writepages() to
2326  * calulate the total number of credits to reserve to fit
2327  * a single extent allocation into a single transaction,
2328  * ext4_da_writpeages() will loop calling this before
2329  * the block allocation.
2330  */
2331
2332 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2333 {
2334         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2335
2336         /*
2337          * With non-extent format the journal credit needed to
2338          * insert nrblocks contiguous block is dependent on
2339          * number of contiguous block. So we will limit
2340          * number of contiguous block to a sane value
2341          */
2342         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2343             (max_blocks > EXT4_MAX_TRANS_DATA))
2344                 max_blocks = EXT4_MAX_TRANS_DATA;
2345
2346         return ext4_chunk_trans_blocks(inode, max_blocks);
2347 }
2348
2349 static int ext4_da_writepages(struct address_space *mapping,
2350                               struct writeback_control *wbc)
2351 {
2352         handle_t *handle = NULL;
2353         loff_t range_start = 0;
2354         struct inode *inode = mapping->host;
2355         int needed_blocks, ret = 0, nr_to_writebump = 0;
2356         long to_write, pages_skipped = 0;
2357         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2358
2359         /*
2360          * No pages to write? This is mainly a kludge to avoid starting
2361          * a transaction for special inodes like journal inode on last iput()
2362          * because that could violate lock ordering on umount
2363          */
2364         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2365                 return 0;
2366         /*
2367          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2368          * This make sure small files blocks are allocated in
2369          * single attempt. This ensure that small files
2370          * get less fragmented.
2371          */
2372         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2373                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2374                 wbc->nr_to_write = sbi->s_mb_stream_request;
2375         }
2376
2377         if (!wbc->range_cyclic)
2378                 /*
2379                  * If range_cyclic is not set force range_cont
2380                  * and save the old writeback_index
2381                  */
2382                 wbc->range_cont = 1;
2383
2384         range_start =  wbc->range_start;
2385         pages_skipped = wbc->pages_skipped;
2386
2387 restart_loop:
2388         to_write = wbc->nr_to_write;
2389         while (!ret && to_write > 0) {
2390
2391                 /*
2392                  * we  insert one extent at a time. So we need
2393                  * credit needed for single extent allocation.
2394                  * journalled mode is currently not supported
2395                  * by delalloc
2396                  */
2397                 BUG_ON(ext4_should_journal_data(inode));
2398                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2399
2400                 /* start a new transaction*/
2401                 handle = ext4_journal_start(inode, needed_blocks);
2402                 if (IS_ERR(handle)) {
2403                         ret = PTR_ERR(handle);
2404                         printk(KERN_EMERG "%s: jbd2_start: "
2405                                "%ld pages, ino %lu; err %d\n", __func__,
2406                                 wbc->nr_to_write, inode->i_ino, ret);
2407                         dump_stack();
2408                         goto out_writepages;
2409                 }
2410                 if (ext4_should_order_data(inode)) {
2411                         /*
2412                          * With ordered mode we need to add
2413                          * the inode to the journal handl
2414                          * when we do block allocation.
2415                          */
2416                         ret = ext4_jbd2_file_inode(handle, inode);
2417                         if (ret) {
2418                                 ext4_journal_stop(handle);
2419                                 goto out_writepages;
2420                         }
2421                 }
2422
2423                 to_write -= wbc->nr_to_write;
2424                 ret = mpage_da_writepages(mapping, wbc,
2425                                           ext4_da_get_block_write);
2426                 ext4_journal_stop(handle);
2427                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2428                         /*
2429                          * got one extent now try with
2430                          * rest of the pages
2431                          */
2432                         to_write += wbc->nr_to_write;
2433                         ret = 0;
2434                 } else if (wbc->nr_to_write) {
2435                         /*
2436                          * There is no more writeout needed
2437                          * or we requested for a noblocking writeout
2438                          * and we found the device congested
2439                          */
2440                         to_write += wbc->nr_to_write;
2441                         break;
2442                 }
2443                 wbc->nr_to_write = to_write;
2444         }
2445
2446         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2447                 /* We skipped pages in this loop */
2448                 wbc->range_start = range_start;
2449                 wbc->nr_to_write = to_write +
2450                                 wbc->pages_skipped - pages_skipped;
2451                 wbc->pages_skipped = pages_skipped;
2452                 goto restart_loop;
2453         }
2454
2455 out_writepages:
2456         wbc->nr_to_write = to_write - nr_to_writebump;
2457         wbc->range_start = range_start;
2458         return ret;
2459 }
2460
2461 #define FALL_BACK_TO_NONDELALLOC 1
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464         s64 free_blocks, dirty_blocks;
2465         struct ext4_sb_info *sbi = EXT4_SB(sb);
2466
2467         /*
2468          * switch to non delalloc mode if we are running low
2469          * on free block. The free block accounting via percpu
2470          * counters can get slightly wrong with FBC_BATCH getting
2471          * accumulated on each CPU without updating global counters
2472          * Delalloc need an accurate free block accounting. So switch
2473          * to non delalloc when we are near to error range.
2474          */
2475         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2476         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2477         if (2 * free_blocks < 3 * dirty_blocks ||
2478                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2479                 /*
2480                  * free block count is less that 150% of dirty blocks
2481                  * or free blocks is less that watermark
2482                  */
2483                 return 1;
2484         }
2485         return 0;
2486 }
2487
2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2489                                 loff_t pos, unsigned len, unsigned flags,
2490                                 struct page **pagep, void **fsdata)
2491 {
2492         int ret, retries = 0;
2493         struct page *page;
2494         pgoff_t index;
2495         unsigned from, to;
2496         struct inode *inode = mapping->host;
2497         handle_t *handle;
2498
2499         index = pos >> PAGE_CACHE_SHIFT;
2500         from = pos & (PAGE_CACHE_SIZE - 1);
2501         to = from + len;
2502
2503         if (ext4_nonda_switch(inode->i_sb)) {
2504                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2505                 return ext4_write_begin(file, mapping, pos,
2506                                         len, flags, pagep, fsdata);
2507         }
2508         *fsdata = (void *)0;
2509 retry:
2510         /*
2511          * With delayed allocation, we don't log the i_disksize update
2512          * if there is delayed block allocation. But we still need
2513          * to journalling the i_disksize update if writes to the end
2514          * of file which has an already mapped buffer.
2515          */
2516         handle = ext4_journal_start(inode, 1);
2517         if (IS_ERR(handle)) {
2518                 ret = PTR_ERR(handle);
2519                 goto out;
2520         }
2521
2522         page = __grab_cache_page(mapping, index);
2523         if (!page) {
2524                 ext4_journal_stop(handle);
2525                 ret = -ENOMEM;
2526                 goto out;
2527         }
2528         *pagep = page;
2529
2530         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2531                                                         ext4_da_get_block_prep);
2532         if (ret < 0) {
2533                 unlock_page(page);
2534                 ext4_journal_stop(handle);
2535                 page_cache_release(page);
2536         }
2537
2538         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2539                 goto retry;
2540 out:
2541         return ret;
2542 }
2543
2544 /*
2545  * Check if we should update i_disksize
2546  * when write to the end of file but not require block allocation
2547  */
2548 static int ext4_da_should_update_i_disksize(struct page *page,
2549                                          unsigned long offset)
2550 {
2551         struct buffer_head *bh;
2552         struct inode *inode = page->mapping->host;
2553         unsigned int idx;
2554         int i;
2555
2556         bh = page_buffers(page);
2557         idx = offset >> inode->i_blkbits;
2558
2559         for (i = 0; i < idx; i++)
2560                 bh = bh->b_this_page;
2561
2562         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2563                 return 0;
2564         return 1;
2565 }
2566
2567 static int ext4_da_write_end(struct file *file,
2568                                 struct address_space *mapping,
2569                                 loff_t pos, unsigned len, unsigned copied,
2570                                 struct page *page, void *fsdata)
2571 {
2572         struct inode *inode = mapping->host;
2573         int ret = 0, ret2;
2574         handle_t *handle = ext4_journal_current_handle();
2575         loff_t new_i_size;
2576         unsigned long start, end;
2577         int write_mode = (int)(unsigned long)fsdata;
2578
2579         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2580                 if (ext4_should_order_data(inode)) {
2581                         return ext4_ordered_write_end(file, mapping, pos,
2582                                         len, copied, page, fsdata);
2583                 } else if (ext4_should_writeback_data(inode)) {
2584                         return ext4_writeback_write_end(file, mapping, pos,
2585                                         len, copied, page, fsdata);
2586                 } else {
2587                         BUG();
2588                 }
2589         }
2590
2591         start = pos & (PAGE_CACHE_SIZE - 1);
2592         end = start + copied - 1;
2593
2594         /*
2595          * generic_write_end() will run mark_inode_dirty() if i_size
2596          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2597          * into that.
2598          */
2599
2600         new_i_size = pos + copied;
2601         if (new_i_size > EXT4_I(inode)->i_disksize) {
2602                 if (ext4_da_should_update_i_disksize(page, end)) {
2603                         down_write(&EXT4_I(inode)->i_data_sem);
2604                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2605                                 /*
2606                                  * Updating i_disksize when extending file
2607                                  * without needing block allocation
2608                                  */
2609                                 if (ext4_should_order_data(inode))
2610                                         ret = ext4_jbd2_file_inode(handle,
2611                                                                    inode);
2612
2613                                 EXT4_I(inode)->i_disksize = new_i_size;
2614                         }
2615                         up_write(&EXT4_I(inode)->i_data_sem);
2616                 }
2617         }
2618         ret2 = generic_write_end(file, mapping, pos, len, copied,
2619                                                         page, fsdata);
2620         copied = ret2;
2621         if (ret2 < 0)
2622                 ret = ret2;
2623         ret2 = ext4_journal_stop(handle);
2624         if (!ret)
2625                 ret = ret2;
2626
2627         return ret ? ret : copied;
2628 }
2629
2630 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2631 {
2632         /*
2633          * Drop reserved blocks
2634          */
2635         BUG_ON(!PageLocked(page));
2636         if (!page_has_buffers(page))
2637                 goto out;
2638
2639         ext4_da_page_release_reservation(page, offset);
2640
2641 out:
2642         ext4_invalidatepage(page, offset);
2643
2644         return;
2645 }
2646
2647
2648 /*
2649  * bmap() is special.  It gets used by applications such as lilo and by
2650  * the swapper to find the on-disk block of a specific piece of data.
2651  *
2652  * Naturally, this is dangerous if the block concerned is still in the
2653  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2654  * filesystem and enables swap, then they may get a nasty shock when the
2655  * data getting swapped to that swapfile suddenly gets overwritten by
2656  * the original zero's written out previously to the journal and
2657  * awaiting writeback in the kernel's buffer cache.
2658  *
2659  * So, if we see any bmap calls here on a modified, data-journaled file,
2660  * take extra steps to flush any blocks which might be in the cache.
2661  */
2662 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2663 {
2664         struct inode *inode = mapping->host;
2665         journal_t *journal;
2666         int err;
2667
2668         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2669                         test_opt(inode->i_sb, DELALLOC)) {
2670                 /*
2671                  * With delalloc we want to sync the file
2672                  * so that we can make sure we allocate
2673                  * blocks for file
2674                  */
2675                 filemap_write_and_wait(mapping);
2676         }
2677
2678         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2679                 /*
2680                  * This is a REALLY heavyweight approach, but the use of
2681                  * bmap on dirty files is expected to be extremely rare:
2682                  * only if we run lilo or swapon on a freshly made file
2683                  * do we expect this to happen.
2684                  *
2685                  * (bmap requires CAP_SYS_RAWIO so this does not
2686                  * represent an unprivileged user DOS attack --- we'd be
2687                  * in trouble if mortal users could trigger this path at
2688                  * will.)
2689                  *
2690                  * NB. EXT4_STATE_JDATA is not set on files other than
2691                  * regular files.  If somebody wants to bmap a directory
2692                  * or symlink and gets confused because the buffer
2693                  * hasn't yet been flushed to disk, they deserve
2694                  * everything they get.
2695                  */
2696
2697                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2698                 journal = EXT4_JOURNAL(inode);
2699                 jbd2_journal_lock_updates(journal);
2700                 err = jbd2_journal_flush(journal);
2701                 jbd2_journal_unlock_updates(journal);
2702
2703                 if (err)
2704                         return 0;
2705         }
2706
2707         return generic_block_bmap(mapping, block, ext4_get_block);
2708 }
2709
2710 static int bget_one(handle_t *handle, struct buffer_head *bh)
2711 {
2712         get_bh(bh);
2713         return 0;
2714 }
2715
2716 static int bput_one(handle_t *handle, struct buffer_head *bh)
2717 {
2718         put_bh(bh);
2719         return 0;
2720 }
2721
2722 /*
2723  * Note that we don't need to start a transaction unless we're journaling data
2724  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2725  * need to file the inode to the transaction's list in ordered mode because if
2726  * we are writing back data added by write(), the inode is already there and if
2727  * we are writing back data modified via mmap(), noone guarantees in which
2728  * transaction the data will hit the disk. In case we are journaling data, we
2729  * cannot start transaction directly because transaction start ranks above page
2730  * lock so we have to do some magic.
2731  *
2732  * In all journaling modes block_write_full_page() will start the I/O.
2733  *
2734  * Problem:
2735  *
2736  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2737  *              ext4_writepage()
2738  *
2739  * Similar for:
2740  *
2741  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2742  *
2743  * Same applies to ext4_get_block().  We will deadlock on various things like
2744  * lock_journal and i_data_sem
2745  *
2746  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2747  * allocations fail.
2748  *
2749  * 16May01: If we're reentered then journal_current_handle() will be
2750  *          non-zero. We simply *return*.
2751  *
2752  * 1 July 2001: @@@ FIXME:
2753  *   In journalled data mode, a data buffer may be metadata against the
2754  *   current transaction.  But the same file is part of a shared mapping
2755  *   and someone does a writepage() on it.
2756  *
2757  *   We will move the buffer onto the async_data list, but *after* it has
2758  *   been dirtied. So there's a small window where we have dirty data on
2759  *   BJ_Metadata.
2760  *
2761  *   Note that this only applies to the last partial page in the file.  The
2762  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2763  *   broken code anyway: it's wrong for msync()).
2764  *
2765  *   It's a rare case: affects the final partial page, for journalled data
2766  *   where the file is subject to bith write() and writepage() in the same
2767  *   transction.  To fix it we'll need a custom block_write_full_page().
2768  *   We'll probably need that anyway for journalling writepage() output.
2769  *
2770  * We don't honour synchronous mounts for writepage().  That would be
2771  * disastrous.  Any write() or metadata operation will sync the fs for
2772  * us.
2773  *
2774  */
2775 static int __ext4_normal_writepage(struct page *page,
2776                                 struct writeback_control *wbc)
2777 {
2778         struct inode *inode = page->mapping->host;
2779
2780         if (test_opt(inode->i_sb, NOBH))
2781                 return nobh_writepage(page,
2782                                         ext4_normal_get_block_write, wbc);
2783         else
2784                 return block_write_full_page(page,
2785                                                 ext4_normal_get_block_write,
2786                                                 wbc);
2787 }
2788
2789 static int ext4_normal_writepage(struct page *page,
2790                                 struct writeback_control *wbc)
2791 {
2792         struct inode *inode = page->mapping->host;
2793         loff_t size = i_size_read(inode);
2794         loff_t len;
2795
2796         J_ASSERT(PageLocked(page));
2797         if (page->index == size >> PAGE_CACHE_SHIFT)
2798                 len = size & ~PAGE_CACHE_MASK;
2799         else
2800                 len = PAGE_CACHE_SIZE;
2801
2802         if (page_has_buffers(page)) {
2803                 /* if page has buffers it should all be mapped
2804                  * and allocated. If there are not buffers attached
2805                  * to the page we know the page is dirty but it lost
2806                  * buffers. That means that at some moment in time
2807                  * after write_begin() / write_end() has been called
2808                  * all buffers have been clean and thus they must have been
2809                  * written at least once. So they are all mapped and we can
2810                  * happily proceed with mapping them and writing the page.
2811                  */
2812                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2813                                         ext4_bh_unmapped_or_delay));
2814         }
2815
2816         if (!ext4_journal_current_handle())
2817                 return __ext4_normal_writepage(page, wbc);
2818
2819         redirty_page_for_writepage(wbc, page);
2820         unlock_page(page);
2821         return 0;
2822 }
2823
2824 static int __ext4_journalled_writepage(struct page *page,
2825                                 struct writeback_control *wbc)
2826 {
2827         struct address_space *mapping = page->mapping;
2828         struct inode *inode = mapping->host;
2829         struct buffer_head *page_bufs;
2830         handle_t *handle = NULL;
2831         int ret = 0;
2832         int err;
2833
2834         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2835                                         ext4_normal_get_block_write);
2836         if (ret != 0)
2837                 goto out_unlock;
2838
2839         page_bufs = page_buffers(page);
2840         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2841                                                                 bget_one);
2842         /* As soon as we unlock the page, it can go away, but we have
2843          * references to buffers so we are safe */
2844         unlock_page(page);
2845
2846         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2847         if (IS_ERR(handle)) {
2848                 ret = PTR_ERR(handle);
2849                 goto out;
2850         }
2851
2852         ret = walk_page_buffers(handle, page_bufs, 0,
2853                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2854
2855         err = walk_page_buffers(handle, page_bufs, 0,
2856                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2857         if (ret == 0)
2858                 ret = err;
2859         err = ext4_journal_stop(handle);
2860         if (!ret)
2861                 ret = err;
2862
2863         walk_page_buffers(handle, page_bufs, 0,
2864                                 PAGE_CACHE_SIZE, NULL, bput_one);
2865         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2866         goto out;
2867
2868 out_unlock:
2869         unlock_page(page);
2870 out:
2871         return ret;
2872 }
2873
2874 static int ext4_journalled_writepage(struct page *page,
2875                                 struct writeback_control *wbc)
2876 {
2877         struct inode *inode = page->mapping->host;
2878         loff_t size = i_size_read(inode);
2879         loff_t len;
2880
2881         J_ASSERT(PageLocked(page));
2882         if (page->index == size >> PAGE_CACHE_SHIFT)
2883                 len = size & ~PAGE_CACHE_MASK;
2884         else
2885                 len = PAGE_CACHE_SIZE;
2886
2887         if (page_has_buffers(page)) {
2888                 /* if page has buffers it should all be mapped
2889                  * and allocated. If there are not buffers attached
2890                  * to the page we know the page is dirty but it lost
2891                  * buffers. That means that at some moment in time
2892                  * after write_begin() / write_end() has been called
2893                  * all buffers have been clean and thus they must have been
2894                  * written at least once. So they are all mapped and we can
2895                  * happily proceed with mapping them and writing the page.
2896                  */
2897                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2898                                         ext4_bh_unmapped_or_delay));
2899         }
2900
2901         if (ext4_journal_current_handle())
2902                 goto no_write;
2903
2904         if (PageChecked(page)) {
2905                 /*
2906                  * It's mmapped pagecache.  Add buffers and journal it.  There
2907                  * doesn't seem much point in redirtying the page here.
2908                  */
2909                 ClearPageChecked(page);
2910                 return __ext4_journalled_writepage(page, wbc);
2911         } else {
2912                 /*
2913                  * It may be a page full of checkpoint-mode buffers.  We don't
2914                  * really know unless we go poke around in the buffer_heads.
2915                  * But block_write_full_page will do the right thing.
2916                  */
2917                 return block_write_full_page(page,
2918                                                 ext4_normal_get_block_write,
2919                                                 wbc);
2920         }
2921 no_write:
2922         redirty_page_for_writepage(wbc, page);
2923         unlock_page(page);
2924         return 0;
2925 }
2926
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929         return mpage_readpage(page, ext4_get_block);
2930 }
2931
2932 static int
2933 ext4_readpages(struct file *file, struct address_space *mapping,
2934                 struct list_head *pages, unsigned nr_pages)
2935 {
2936         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2937 }
2938
2939 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2940 {
2941         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2942
2943         /*
2944          * If it's a full truncate we just forget about the pending dirtying
2945          */
2946         if (offset == 0)
2947                 ClearPageChecked(page);
2948
2949         jbd2_journal_invalidatepage(journal, page, offset);
2950 }
2951
2952 static int ext4_releasepage(struct page *page, gfp_t wait)
2953 {
2954         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2955
2956         WARN_ON(PageChecked(page));
2957         if (!page_has_buffers(page))
2958                 return 0;
2959         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2960 }
2961
2962 /*
2963  * If the O_DIRECT write will extend the file then add this inode to the
2964  * orphan list.  So recovery will truncate it back to the original size
2965  * if the machine crashes during the write.
2966  *
2967  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2968  * crashes then stale disk data _may_ be exposed inside the file. But current
2969  * VFS code falls back into buffered path in that case so we are safe.
2970  */
2971 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2972                         const struct iovec *iov, loff_t offset,
2973                         unsigned long nr_segs)
2974 {
2975         struct file *file = iocb->ki_filp;
2976         struct inode *inode = file->f_mapping->host;
2977         struct ext4_inode_info *ei = EXT4_I(inode);
2978         handle_t *handle;
2979         ssize_t ret;
2980         int orphan = 0;
2981         size_t count = iov_length(iov, nr_segs);
2982
2983         if (rw == WRITE) {
2984                 loff_t final_size = offset + count;
2985
2986                 if (final_size > inode->i_size) {
2987                         /* Credits for sb + inode write */
2988                         handle = ext4_journal_start(inode, 2);
2989                         if (IS_ERR(handle)) {
2990                                 ret = PTR_ERR(handle);
2991                                 goto out;
2992                         }
2993                         ret = ext4_orphan_add(handle, inode);
2994                         if (ret) {
2995                                 ext4_journal_stop(handle);
2996                                 goto out;
2997                         }
2998                         orphan = 1;
2999                         ei->i_disksize = inode->i_size;
3000                         ext4_journal_stop(handle);
3001                 }
3002         }
3003
3004         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3005                                  offset, nr_segs,
3006                                  ext4_get_block, NULL);
3007
3008         if (orphan) {
3009                 int err;
3010
3011                 /* Credits for sb + inode write */
3012                 handle = ext4_journal_start(inode, 2);
3013                 if (IS_ERR(handle)) {
3014                         /* This is really bad luck. We've written the data
3015                          * but cannot extend i_size. Bail out and pretend
3016                          * the write failed... */
3017                         ret = PTR_ERR(handle);
3018                         goto out;
3019                 }
3020                 if (inode->i_nlink)
3021                         ext4_orphan_del(handle, inode);
3022                 if (ret > 0) {
3023                         loff_t end = offset + ret;
3024                         if (end > inode->i_size) {
3025                                 ei->i_disksize = end;
3026                                 i_size_write(inode, end);
3027                                 /*
3028                                  * We're going to return a positive `ret'
3029                                  * here due to non-zero-length I/O, so there's
3030                                  * no way of reporting error returns from
3031                                  * ext4_mark_inode_dirty() to userspace.  So
3032                                  * ignore it.
3033                                  */
3034                                 ext4_mark_inode_dirty(handle, inode);
3035                         }
3036                 }
3037                 err = ext4_journal_stop(handle);
3038                 if (ret == 0)
3039                         ret = err;
3040         }
3041 out:
3042         return ret;
3043 }
3044
3045 /*
3046  * Pages can be marked dirty completely asynchronously from ext4's journalling
3047  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3048  * much here because ->set_page_dirty is called under VFS locks.  The page is
3049  * not necessarily locked.
3050  *
3051  * We cannot just dirty the page and leave attached buffers clean, because the
3052  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3053  * or jbddirty because all the journalling code will explode.
3054  *
3055  * So what we do is to mark the page "pending dirty" and next time writepage
3056  * is called, propagate that into the buffers appropriately.
3057  */
3058 static int ext4_journalled_set_page_dirty(struct page *page)
3059 {
3060         SetPageChecked(page);
3061         return __set_page_dirty_nobuffers(page);
3062 }
3063
3064 static const struct address_space_operations ext4_ordered_aops = {
3065         .readpage               = ext4_readpage,
3066         .readpages              = ext4_readpages,
3067         .writepage              = ext4_normal_writepage,
3068         .sync_page              = block_sync_page,
3069         .write_begin            = ext4_write_begin,
3070         .write_end              = ext4_ordered_write_end,
3071         .bmap                   = ext4_bmap,
3072         .invalidatepage         = ext4_invalidatepage,
3073         .releasepage            = ext4_releasepage,
3074         .direct_IO              = ext4_direct_IO,
3075         .migratepage            = buffer_migrate_page,
3076         .is_partially_uptodate  = block_is_partially_uptodate,
3077 };
3078
3079 static const struct address_space_operations ext4_writeback_aops = {
3080         .readpage               = ext4_readpage,
3081         .readpages              = ext4_readpages,
3082         .writepage              = ext4_normal_writepage,
3083         .sync_page              = block_sync_page,
3084         .write_begin            = ext4_write_begin,
3085         .write_end              = ext4_writeback_write_end,
3086         .bmap                   = ext4_bmap,
3087         .invalidatepage         = ext4_invalidatepage,
3088         .releasepage            = ext4_releasepage,
3089         .direct_IO              = ext4_direct_IO,
3090         .migratepage            = buffer_migrate_page,
3091         .is_partially_uptodate  = block_is_partially_uptodate,
3092 };
3093
3094 static const struct address_space_operations ext4_journalled_aops = {
3095         .readpage               = ext4_readpage,
3096         .readpages              = ext4_readpages,
3097         .writepage              = ext4_journalled_writepage,
3098         .sync_page              = block_sync_page,
3099         .write_begin            = ext4_write_begin,
3100         .write_end              = ext4_journalled_write_end,
3101         .set_page_dirty         = ext4_journalled_set_page_dirty,
3102         .bmap                   = ext4_bmap,
3103         .invalidatepage         = ext4_invalidatepage,
3104         .releasepage            = ext4_releasepage,
3105         .is_partially_uptodate  = block_is_partially_uptodate,
3106 };
3107
3108 static const struct address_space_operations ext4_da_aops = {
3109         .readpage               = ext4_readpage,
3110         .readpages              = ext4_readpages,
3111         .writepage              = ext4_da_writepage,
3112         .writepages             = ext4_da_writepages,
3113         .sync_page              = block_sync_page,
3114         .write_begin            = ext4_da_write_begin,
3115         .write_end              = ext4_da_write_end,
3116         .bmap                   = ext4_bmap,
3117         .invalidatepage         = ext4_da_invalidatepage,
3118         .releasepage            = ext4_releasepage,
3119         .direct_IO              = ext4_direct_IO,
3120         .migratepage            = buffer_migrate_page,
3121         .is_partially_uptodate  = block_is_partially_uptodate,
3122 };
3123
3124 void ext4_set_aops(struct inode *inode)
3125 {
3126         if (ext4_should_order_data(inode) &&
3127                 test_opt(inode->i_sb, DELALLOC))
3128                 inode->i_mapping->a_ops = &ext4_da_aops;
3129         else if (ext4_should_order_data(inode))
3130                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3131         else if (ext4_should_writeback_data(inode) &&
3132                  test_opt(inode->i_sb, DELALLOC))
3133                 inode->i_mapping->a_ops = &ext4_da_aops;
3134         else if (ext4_should_writeback_data(inode))
3135                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3136         else
3137                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3138 }
3139
3140 /*
3141  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3142  * up to the end of the block which corresponds to `from'.
3143  * This required during truncate. We need to physically zero the tail end
3144  * of that block so it doesn't yield old data if the file is later grown.
3145  */
3146 int ext4_block_truncate_page(handle_t *handle,
3147                 struct address_space *mapping, loff_t from)
3148 {
3149         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3150         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3151         unsigned blocksize, length, pos;
3152         ext4_lblk_t iblock;
3153         struct inode *inode = mapping->host;
3154         struct buffer_head *bh;
3155         struct page *page;
3156         int err = 0;
3157
3158         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3159         if (!page)
3160                 return -EINVAL;
3161
3162         blocksize = inode->i_sb->s_blocksize;
3163         length = blocksize - (offset & (blocksize - 1));
3164         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3165
3166         /*
3167          * For "nobh" option,  we can only work if we don't need to
3168          * read-in the page - otherwise we create buffers to do the IO.
3169          */
3170         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3171              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3172                 zero_user(page, offset, length);
3173                 set_page_dirty(page);
3174                 goto unlock;
3175         }
3176
3177         if (!page_has_buffers(page))
3178                 create_empty_buffers(page, blocksize, 0);
3179
3180         /* Find the buffer that contains "offset" */
3181         bh = page_buffers(page);
3182         pos = blocksize;
3183         while (offset >= pos) {
3184                 bh = bh->b_this_page;
3185                 iblock++;
3186                 pos += blocksize;
3187         }
3188
3189         err = 0;
3190         if (buffer_freed(bh)) {
3191                 BUFFER_TRACE(bh, "freed: skip");
3192                 goto unlock;
3193         }
3194
3195         if (!buffer_mapped(bh)) {
3196                 BUFFER_TRACE(bh, "unmapped");
3197                 ext4_get_block(inode, iblock, bh, 0);
3198                 /* unmapped? It's a hole - nothing to do */
3199                 if (!buffer_mapped(bh)) {
3200                         BUFFER_TRACE(bh, "still unmapped");
3201                         goto unlock;
3202                 }
3203         }
3204
3205         /* Ok, it's mapped. Make sure it's up-to-date */
3206         if (PageUptodate(page))
3207                 set_buffer_uptodate(bh);
3208
3209         if (!buffer_uptodate(bh)) {
3210                 err = -EIO;
3211                 ll_rw_block(READ, 1, &bh);
3212                 wait_on_buffer(bh);
3213                 /* Uhhuh. Read error. Complain and punt. */
3214                 if (!buffer_uptodate(bh))
3215                         goto unlock;
3216         }
3217
3218         if (ext4_should_journal_data(inode)) {
3219                 BUFFER_TRACE(bh, "get write access");
3220                 err = ext4_journal_get_write_access(handle, bh);
3221                 if (err)
3222                         goto unlock;
3223         }
3224
3225         zero_user(page, offset, length);
3226
3227         BUFFER_TRACE(bh, "zeroed end of block");
3228
3229         err = 0;
3230         if (ext4_should_journal_data(inode)) {
3231                 err = ext4_journal_dirty_metadata(handle, bh);
3232         } else {
3233                 if (ext4_should_order_data(inode))
3234                         err = ext4_jbd2_file_inode(handle, inode);
3235                 mark_buffer_dirty(bh);
3236         }
3237
3238 unlock:
3239         unlock_page(page);
3240         page_cache_release(page);
3241         return err;
3242 }
3243
3244 /*
3245  * Probably it should be a library function... search for first non-zero word
3246  * or memcmp with zero_page, whatever is better for particular architecture.
3247  * Linus?
3248  */
3249 static inline int all_zeroes(__le32 *p, __le32 *q)
3250 {
3251         while (p < q)
3252                 if (*p++)
3253                         return 0;
3254         return 1;
3255 }
3256
3257 /**
3258  *      ext4_find_shared - find the indirect blocks for partial truncation.
3259  *      @inode:   inode in question
3260  *      @depth:   depth of the affected branch
3261  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3262  *      @chain:   place to store the pointers to partial indirect blocks
3263  *      @top:     place to the (detached) top of branch
3264  *
3265  *      This is a helper function used by ext4_truncate().
3266  *
3267  *      When we do truncate() we may have to clean the ends of several
3268  *      indirect blocks but leave the blocks themselves alive. Block is
3269  *      partially truncated if some data below the new i_size is refered
3270  *      from it (and it is on the path to the first completely truncated
3271  *      data block, indeed).  We have to free the top of that path along
3272  *      with everything to the right of the path. Since no allocation
3273  *      past the truncation point is possible until ext4_truncate()
3274  *      finishes, we may safely do the latter, but top of branch may
3275  *      require special attention - pageout below the truncation point
3276  *      might try to populate it.
3277  *
3278  *      We atomically detach the top of branch from the tree, store the
3279  *      block number of its root in *@top, pointers to buffer_heads of
3280  *      partially truncated blocks - in @chain[].bh and pointers to
3281  *      their last elements that should not be removed - in
3282  *      @chain[].p. Return value is the pointer to last filled element
3283  *      of @chain.
3284  *
3285  *      The work left to caller to do the actual freeing of subtrees:
3286  *              a) free the subtree starting from *@top
3287  *              b) free the subtrees whose roots are stored in
3288  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3289  *              c) free the subtrees growing from the inode past the @chain[0].
3290  *                      (no partially truncated stuff there).  */
3291
3292 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3293                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3294 {
3295         Indirect *partial, *p;
3296         int k, err;
3297
3298         *top = 0;
3299         /* Make k index the deepest non-null offest + 1 */
3300         for (k = depth; k > 1 && !offsets[k-1]; k--)
3301                 ;
3302         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3303         /* Writer: pointers */
3304         if (!partial)
3305                 partial = chain + k-1;
3306         /*
3307          * If the branch acquired continuation since we've looked at it -
3308          * fine, it should all survive and (new) top doesn't belong to us.
3309          */
3310         if (!partial->key && *partial->p)
3311                 /* Writer: end */
3312                 goto no_top;
3313         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3314                 ;
3315         /*
3316          * OK, we've found the last block that must survive. The rest of our
3317          * branch should be detached before unlocking. However, if that rest
3318          * of branch is all ours and does not grow immediately from the inode
3319          * it's easier to cheat and just decrement partial->p.
3320          */
3321         if (p == chain + k - 1 && p > chain) {
3322                 p->p--;
3323         } else {
3324                 *top = *p->p;
3325                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3326 #if 0
3327                 *p->p = 0;
3328 #endif
3329         }
3330         /* Writer: end */
3331
3332         while (partial > p) {
3333                 brelse(partial->bh);
3334                 partial--;
3335         }
3336 no_top:
3337         return partial;
3338 }
3339
3340 /*
3341  * Zero a number of block pointers in either an inode or an indirect block.
3342  * If we restart the transaction we must again get write access to the
3343  * indirect block for further modification.
3344  *
3345  * We release `count' blocks on disk, but (last - first) may be greater
3346  * than `count' because there can be holes in there.
3347  */
3348 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3349                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3350                 unsigned long count, __le32 *first, __le32 *last)
3351 {
3352         __le32 *p;
3353         if (try_to_extend_transaction(handle, inode)) {
3354                 if (bh) {
3355                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3356                         ext4_journal_dirty_metadata(handle, bh);
3357                 }
3358                 ext4_mark_inode_dirty(handle, inode);
3359                 ext4_journal_test_restart(handle, inode);
3360                 if (bh) {
3361                         BUFFER_TRACE(bh, "retaking write access");
3362                         ext4_journal_get_write_access(handle, bh);
3363                 }
3364         }
3365
3366         /*
3367          * Any buffers which are on the journal will be in memory. We find
3368          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3369          * on them.  We've already detached each block from the file, so
3370          * bforget() in jbd2_journal_forget() should be safe.
3371          *
3372          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3373          */
3374         for (p = first; p < last; p++) {
3375                 u32 nr = le32_to_cpu(*p);
3376                 if (nr) {
3377                         struct buffer_head *tbh;
3378
3379                         *p = 0;
3380                         tbh = sb_find_get_block(inode->i_sb, nr);
3381                         ext4_forget(handle, 0, inode, tbh, nr);
3382                 }
3383         }
3384
3385         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3386 }
3387
3388 /**
3389  * ext4_free_data - free a list of data blocks
3390  * @handle:     handle for this transaction
3391  * @inode:      inode we are dealing with
3392  * @this_bh:    indirect buffer_head which contains *@first and *@last
3393  * @first:      array of block numbers
3394  * @last:       points immediately past the end of array
3395  *
3396  * We are freeing all blocks refered from that array (numbers are stored as
3397  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3398  *
3399  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3400  * blocks are contiguous then releasing them at one time will only affect one
3401  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3402  * actually use a lot of journal space.
3403  *
3404  * @this_bh will be %NULL if @first and @last point into the inode's direct
3405  * block pointers.
3406  */
3407 static void ext4_free_data(handle_t *handle, struct inode *inode,
3408                            struct buffer_head *this_bh,
3409                            __le32 *first, __le32 *last)
3410 {
3411         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3412         unsigned long count = 0;            /* Number of blocks in the run */
3413         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3414                                                corresponding to
3415                                                block_to_free */
3416         ext4_fsblk_t nr;                    /* Current block # */
3417         __le32 *p;                          /* Pointer into inode/ind
3418                                                for current block */
3419         int err;
3420
3421         if (this_bh) {                          /* For indirect block */
3422                 BUFFER_TRACE(this_bh, "get_write_access");
3423                 err = ext4_journal_get_write_access(handle, this_bh);
3424                 /* Important: if we can't update the indirect pointers
3425                  * to the blocks, we can't free them. */
3426                 if (err)
3427                         return;
3428         }
3429
3430         for (p = first; p < last; p++) {
3431                 nr = le32_to_cpu(*p);
3432                 if (nr) {
3433                         /* accumulate blocks to free if they're contiguous */
3434                         if (count == 0) {
3435                                 block_to_free = nr;
3436                                 block_to_free_p = p;
3437                                 count = 1;
3438                         } else if (nr == block_to_free + count) {
3439                                 count++;
3440                         } else {
3441                                 ext4_clear_blocks(handle, inode, this_bh,
3442                                                   block_to_free,
3443                                                   count, block_to_free_p, p);
3444                                 block_to_free = nr;
3445                                 block_to_free_p = p;
3446                                 count = 1;
3447                         }
3448                 }
3449         }
3450
3451         if (count > 0)
3452                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3453                                   count, block_to_free_p, p);
3454
3455         if (this_bh) {
3456                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3457
3458                 /*
3459                  * The buffer head should have an attached journal head at this
3460                  * point. However, if the data is corrupted and an indirect
3461                  * block pointed to itself, it would have been detached when
3462                  * the block was cleared. Check for this instead of OOPSing.
3463                  */
3464                 if (bh2jh(this_bh))
3465                         ext4_journal_dirty_metadata(handle, this_bh);
3466                 else
3467                         ext4_error(inode->i_sb, __func__,
3468                                    "circular indirect block detected, "
3469                                    "inode=%lu, block=%llu",
3470                                    inode->i_ino,
3471                                    (unsigned long long) this_bh->b_blocknr);
3472         }
3473 }
3474
3475 /**
3476  *      ext4_free_branches - free an array of branches
3477  *      @handle: JBD handle for this transaction
3478  *      @inode: inode we are dealing with
3479  *      @parent_bh: the buffer_head which contains *@first and *@last
3480  *      @first: array of block numbers
3481  *      @last:  pointer immediately past the end of array
3482  *      @depth: depth of the branches to free
3483  *
3484  *      We are freeing all blocks refered from these branches (numbers are
3485  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3486  *      appropriately.
3487  */
3488 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3489                                struct buffer_head *parent_bh,
3490                                __le32 *first, __le32 *last, int depth)
3491 {
3492         ext4_fsblk_t nr;
3493         __le32 *p;
3494
3495         if (is_handle_aborted(handle))
3496                 return;
3497
3498         if (depth--) {
3499                 struct buffer_head *bh;
3500                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3501                 p = last;
3502                 while (--p >= first) {
3503                         nr = le32_to_cpu(*p);
3504                         if (!nr)
3505                                 continue;               /* A hole */
3506
3507                         /* Go read the buffer for the next level down */
3508                         bh = sb_bread(inode->i_sb, nr);
3509
3510                         /*
3511                          * A read failure? Report error and clear slot
3512                          * (should be rare).
3513                          */
3514                         if (!bh) {
3515                                 ext4_error(inode->i_sb, "ext4_free_branches",
3516                                            "Read failure, inode=%lu, block=%llu",
3517                                            inode->i_ino, nr);
3518                                 continue;
3519                         }
3520
3521                         /* This zaps the entire block.  Bottom up. */
3522                         BUFFER_TRACE(bh, "free child branches");
3523                         ext4_free_branches(handle, inode, bh,
3524                                         (__le32 *) bh->b_data,
3525                                         (__le32 *) bh->b_data + addr_per_block,
3526                                         depth);
3527
3528                         /*
3529                          * We've probably journalled the indirect block several
3530                          * times during the truncate.  But it's no longer
3531                          * needed and we now drop it from the transaction via
3532                          * jbd2_journal_revoke().
3533                          *
3534                          * That's easy if it's exclusively part of this
3535                          * transaction.  But if it's part of the committing
3536                          * transaction then jbd2_journal_forget() will simply
3537                          * brelse() it.  That means that if the underlying
3538                          * block is reallocated in ext4_get_block(),
3539                          * unmap_underlying_metadata() will find this block
3540                          * and will try to get rid of it.  damn, damn.
3541                          *
3542                          * If this block has already been committed to the
3543                          * journal, a revoke record will be written.  And
3544                          * revoke records must be emitted *before* clearing
3545                          * this block's bit in the bitmaps.
3546                          */
3547                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3548
3549                         /*
3550                          * Everything below this this pointer has been
3551                          * released.  Now let this top-of-subtree go.
3552                          *
3553                          * We want the freeing of this indirect block to be
3554                          * atomic in the journal with the updating of the
3555                          * bitmap block which owns it.  So make some room in
3556                          * the journal.
3557                          *
3558                          * We zero the parent pointer *after* freeing its
3559                          * pointee in the bitmaps, so if extend_transaction()
3560                          * for some reason fails to put the bitmap changes and
3561                          * the release into the same transaction, recovery
3562                          * will merely complain about releasing a free block,
3563                          * rather than leaking blocks.
3564                          */
3565                         if (is_handle_aborted(handle))
3566                                 return;
3567                         if (try_to_extend_transaction(handle, inode)) {
3568                                 ext4_mark_inode_dirty(handle, inode);
3569                                 ext4_journal_test_restart(handle, inode);
3570                         }
3571
3572                         ext4_free_blocks(handle, inode, nr, 1, 1);
3573
3574                         if (parent_bh) {
3575                                 /*
3576                                  * The block which we have just freed is
3577                                  * pointed to by an indirect block: journal it
3578                                  */
3579                                 BUFFER_TRACE(parent_bh, "get_write_access");
3580                                 if (!ext4_journal_get_write_access(handle,
3581                                                                    parent_bh)){
3582                                         *p = 0;
3583                                         BUFFER_TRACE(parent_bh,
3584                                         "call ext4_journal_dirty_metadata");
3585                                         ext4_journal_dirty_metadata(handle,
3586                                                                     parent_bh);
3587                                 }
3588                         }
3589                 }
3590         } else {
3591                 /* We have reached the bottom of the tree. */
3592                 BUFFER_TRACE(parent_bh, "free data blocks");
3593                 ext4_free_data(handle, inode, parent_bh, first, last);
3594         }
3595 }
3596
3597 int ext4_can_truncate(struct inode *inode)
3598 {
3599         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3600                 return 0;
3601         if (S_ISREG(inode->i_mode))
3602                 return 1;
3603         if (S_ISDIR(inode->i_mode))
3604                 return 1;
3605         if (S_ISLNK(inode->i_mode))
3606                 return !ext4_inode_is_fast_symlink(inode);
3607         return 0;
3608 }
3609
3610 /*
3611  * ext4_truncate()
3612  *
3613  * We block out ext4_get_block() block instantiations across the entire
3614  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615  * simultaneously on behalf of the same inode.
3616  *
3617  * As we work through the truncate and commmit bits of it to the journal there
3618  * is one core, guiding principle: the file's tree must always be consistent on
3619  * disk.  We must be able to restart the truncate after a crash.
3620  *
3621  * The file's tree may be transiently inconsistent in memory (although it
3622  * probably isn't), but whenever we close off and commit a journal transaction,
3623  * the contents of (the filesystem + the journal) must be consistent and
3624  * restartable.  It's pretty simple, really: bottom up, right to left (although
3625  * left-to-right works OK too).
3626  *
3627  * Note that at recovery time, journal replay occurs *before* the restart of
3628  * truncate against the orphan inode list.
3629  *
3630  * The committed inode has the new, desired i_size (which is the same as
3631  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3632  * that this inode's truncate did not complete and it will again call
3633  * ext4_truncate() to have another go.  So there will be instantiated blocks
3634  * to the right of the truncation point in a crashed ext4 filesystem.  But
3635  * that's fine - as long as they are linked from the inode, the post-crash
3636  * ext4_truncate() run will find them and release them.
3637  */
3638 void ext4_truncate(struct inode *inode)
3639 {
3640         handle_t *handle;
3641         struct ext4_inode_info *ei = EXT4_I(inode);
3642         __le32 *i_data = ei->i_data;
3643         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3644         struct address_space *mapping = inode->i_mapping;
3645         ext4_lblk_t offsets[4];
3646         Indirect chain[4];
3647         Indirect *partial;
3648         __le32 nr = 0;
3649         int n;
3650         ext4_lblk_t last_block;
3651         unsigned blocksize = inode->i_sb->s_blocksize;
3652
3653         if (!ext4_can_truncate(inode))
3654                 return;
3655
3656         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3657                 ext4_ext_truncate(inode);
3658                 return;
3659         }
3660
3661         handle = start_transaction(inode);
3662         if (IS_ERR(handle))
3663                 return;         /* AKPM: return what? */
3664
3665         last_block = (inode->i_size + blocksize-1)
3666                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3667
3668         if (inode->i_size & (blocksize - 1))
3669                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3670                         goto out_stop;
3671
3672         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3673         if (n == 0)
3674                 goto out_stop;  /* error */
3675
3676         /*
3677          * OK.  This truncate is going to happen.  We add the inode to the
3678          * orphan list, so that if this truncate spans multiple transactions,
3679          * and we crash, we will resume the truncate when the filesystem
3680          * recovers.  It also marks the inode dirty, to catch the new size.
3681          *
3682          * Implication: the file must always be in a sane, consistent
3683          * truncatable state while each transaction commits.
3684          */
3685         if (ext4_orphan_add(handle, inode))
3686                 goto out_stop;
3687
3688         /*
3689          * From here we block out all ext4_get_block() callers who want to
3690          * modify the block allocation tree.
3691          */
3692         down_write(&ei->i_data_sem);
3693
3694         ext4_discard_reservation(inode);
3695
3696         /*
3697          * The orphan list entry will now protect us from any crash which
3698          * occurs before the truncate completes, so it is now safe to propagate
3699          * the new, shorter inode size (held for now in i_size) into the
3700          * on-disk inode. We do this via i_disksize, which is the value which
3701          * ext4 *really* writes onto the disk inode.
3702          */
3703         ei->i_disksize = inode->i_size;
3704
3705         if (n == 1) {           /* direct blocks */
3706                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3707                                i_data + EXT4_NDIR_BLOCKS);
3708                 goto do_indirects;
3709         }
3710
3711         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3712         /* Kill the top of shared branch (not detached) */
3713         if (nr) {
3714                 if (partial == chain) {
3715                         /* Shared branch grows from the inode */
3716                         ext4_free_branches(handle, inode, NULL,
3717                                            &nr, &nr+1, (chain+n-1) - partial);
3718                         *partial->p = 0;
3719                         /*
3720                          * We mark the inode dirty prior to restart,
3721                          * and prior to stop.  No need for it here.
3722                          */
3723                 } else {
3724                         /* Shared branch grows from an indirect block */
3725                         BUFFER_TRACE(partial->bh, "get_write_access");
3726                         ext4_free_branches(handle, inode, partial->bh,
3727                                         partial->p,
3728                                         partial->p+1, (chain+n-1) - partial);
3729                 }
3730         }
3731         /* Clear the ends of indirect blocks on the shared branch */
3732         while (partial > chain) {
3733                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3734                                    (__le32*)partial->bh->b_data+addr_per_block,
3735                                    (chain+n-1) - partial);
3736                 BUFFER_TRACE(partial->bh, "call brelse");
3737                 brelse (partial->bh);
3738                 partial--;
3739         }
3740 do_indirects:
3741         /* Kill the remaining (whole) subtrees */
3742         switch (offsets[0]) {
3743         default:
3744                 nr = i_data[EXT4_IND_BLOCK];
3745                 if (nr) {
3746                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3747                         i_data[EXT4_IND_BLOCK] = 0;
3748                 }
3749         case EXT4_IND_BLOCK:
3750                 nr = i_data[EXT4_DIND_BLOCK];
3751                 if (nr) {
3752                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3753                         i_data[EXT4_DIND_BLOCK] = 0;
3754                 }
3755         case EXT4_DIND_BLOCK:
3756                 nr = i_data[EXT4_TIND_BLOCK];
3757                 if (nr) {
3758                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3759                         i_data[EXT4_TIND_BLOCK] = 0;
3760                 }
3761         case EXT4_TIND_BLOCK:
3762                 ;
3763         }
3764
3765         up_write(&ei->i_data_sem);
3766         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3767         ext4_mark_inode_dirty(handle, inode);
3768
3769         /*
3770          * In a multi-transaction truncate, we only make the final transaction
3771          * synchronous
3772          */
3773         if (IS_SYNC(inode))
3774                 handle->h_sync = 1;
3775 out_stop:
3776         /*
3777          * If this was a simple ftruncate(), and the file will remain alive
3778          * then we need to clear up the orphan record which we created above.
3779          * However, if this was a real unlink then we were called by
3780          * ext4_delete_inode(), and we allow that function to clean up the
3781          * orphan info for us.
3782          */
3783         if (inode->i_nlink)
3784                 ext4_orphan_del(handle, inode);
3785
3786         ext4_journal_stop(handle);
3787 }
3788
3789 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3790                 unsigned long ino, struct ext4_iloc *iloc)
3791 {
3792         ext4_group_t block_group;
3793         unsigned long offset;
3794         ext4_fsblk_t block;
3795         struct ext4_group_desc *gdp;
3796
3797         if (!ext4_valid_inum(sb, ino)) {
3798                 /*
3799                  * This error is already checked for in namei.c unless we are
3800                  * looking at an NFS filehandle, in which case no error
3801                  * report is needed
3802                  */
3803                 return 0;
3804         }
3805
3806         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3807         gdp = ext4_get_group_desc(sb, block_group, NULL);
3808         if (!gdp)
3809                 return 0;
3810
3811         /*
3812          * Figure out the offset within the block group inode table
3813          */
3814         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3815                 EXT4_INODE_SIZE(sb);
3816         block = ext4_inode_table(sb, gdp) +
3817                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3818
3819         iloc->block_group = block_group;
3820         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3821         return block;
3822 }
3823
3824 /*
3825  * ext4_get_inode_loc returns with an extra refcount against the inode's
3826  * underlying buffer_head on success. If 'in_mem' is true, we have all
3827  * data in memory that is needed to recreate the on-disk version of this
3828  * inode.
3829  */
3830 static int __ext4_get_inode_loc(struct inode *inode,
3831                                 struct ext4_iloc *iloc, int in_mem)
3832 {
3833         ext4_fsblk_t block;
3834         struct buffer_head *bh;
3835
3836         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3837         if (!block)
3838                 return -EIO;
3839
3840         bh = sb_getblk(inode->i_sb, block);
3841         if (!bh) {
3842                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3843                                 "unable to read inode block - "
3844                                 "inode=%lu, block=%llu",
3845                                  inode->i_ino, block);
3846                 return -EIO;
3847         }
3848         if (!buffer_uptodate(bh)) {
3849                 lock_buffer(bh);
3850
3851                 /*
3852                  * If the buffer has the write error flag, we have failed
3853                  * to write out another inode in the same block.  In this
3854                  * case, we don't have to read the block because we may
3855                  * read the old inode data successfully.
3856                  */
3857                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3858                         set_buffer_uptodate(bh);
3859
3860                 if (buffer_uptodate(bh)) {
3861                         /* someone brought it uptodate while we waited */
3862                         unlock_buffer(bh);
3863                         goto has_buffer;
3864                 }
3865
3866                 /*
3867                  * If we have all information of the inode in memory and this
3868                  * is the only valid inode in the block, we need not read the
3869                  * block.
3870                  */
3871                 if (in_mem) {
3872                         struct buffer_head *bitmap_bh;
3873                         struct ext4_group_desc *desc;
3874                         int inodes_per_buffer;
3875                         int inode_offset, i;
3876                         ext4_group_t block_group;
3877                         int start;
3878
3879                         block_group = (inode->i_ino - 1) /
3880                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3881                         inodes_per_buffer = bh->b_size /
3882                                 EXT4_INODE_SIZE(inode->i_sb);
3883                         inode_offset = ((inode->i_ino - 1) %
3884                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3885                         start = inode_offset & ~(inodes_per_buffer - 1);
3886
3887                         /* Is the inode bitmap in cache? */
3888                         desc = ext4_get_group_desc(inode->i_sb,
3889                                                 block_group, NULL);
3890                         if (!desc)
3891                                 goto make_io;
3892
3893                         bitmap_bh = sb_getblk(inode->i_sb,
3894                                 ext4_inode_bitmap(inode->i_sb, desc));
3895                         if (!bitmap_bh)
3896                                 goto make_io;
3897
3898                         /*
3899                          * If the inode bitmap isn't in cache then the
3900                          * optimisation may end up performing two reads instead
3901                          * of one, so skip it.
3902                          */
3903                         if (!buffer_uptodate(bitmap_bh)) {
3904                                 brelse(bitmap_bh);
3905                                 goto make_io;
3906                         }
3907                         for (i = start; i < start + inodes_per_buffer; i++) {
3908                                 if (i == inode_offset)
3909                                         continue;
3910                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3911                                         break;
3912                         }
3913                         brelse(bitmap_bh);
3914                         if (i == start + inodes_per_buffer) {
3915                                 /* all other inodes are free, so skip I/O */
3916                                 memset(bh->b_data, 0, bh->b_size);
3917                                 set_buffer_uptodate(bh);
3918                                 unlock_buffer(bh);
3919                                 goto has_buffer;
3920                         }
3921                 }
3922
3923 make_io:
3924                 /*
3925                  * There are other valid inodes in the buffer, this inode
3926                  * has in-inode xattrs, or we don't have this inode in memory.
3927                  * Read the block from disk.
3928                  */
3929                 get_bh(bh);
3930                 bh->b_end_io = end_buffer_read_sync;
3931                 submit_bh(READ_META, bh);
3932                 wait_on_buffer(bh);
3933                 if (!buffer_uptodate(bh)) {
3934                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3935                                         "unable to read inode block - "
3936                                         "inode=%lu, block=%llu",
3937                                         inode->i_ino, block);
3938                         brelse(bh);
3939                         return -EIO;
3940                 }
3941         }
3942 has_buffer:
3943         iloc->bh = bh;
3944         return 0;
3945 }
3946
3947 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3948 {
3949         /* We have all inode data except xattrs in memory here. */
3950         return __ext4_get_inode_loc(inode, iloc,
3951                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3952 }
3953
3954 void ext4_set_inode_flags(struct inode *inode)
3955 {
3956         unsigned int flags = EXT4_I(inode)->i_flags;
3957
3958         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3959         if (flags & EXT4_SYNC_FL)
3960                 inode->i_flags |= S_SYNC;
3961         if (flags & EXT4_APPEND_FL)
3962                 inode->i_flags |= S_APPEND;
3963         if (flags & EXT4_IMMUTABLE_FL)
3964                 inode->i_flags |= S_IMMUTABLE;
3965         if (flags & EXT4_NOATIME_FL)
3966                 inode->i_flags |= S_NOATIME;
3967         if (flags & EXT4_DIRSYNC_FL)
3968                 inode->i_flags |= S_DIRSYNC;
3969 }
3970
3971 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3972 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3973 {
3974         unsigned int flags = ei->vfs_inode.i_flags;
3975
3976         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3977                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3978         if (flags & S_SYNC)
3979                 ei->i_flags |= EXT4_SYNC_FL;
3980         if (flags & S_APPEND)
3981                 ei->i_flags |= EXT4_APPEND_FL;
3982         if (flags & S_IMMUTABLE)
3983                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3984         if (flags & S_NOATIME)
3985                 ei->i_flags |= EXT4_NOATIME_FL;
3986         if (flags & S_DIRSYNC)
3987                 ei->i_flags |= EXT4_DIRSYNC_FL;
3988 }
3989 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3990                                         struct ext4_inode_info *ei)
3991 {
3992         blkcnt_t i_blocks ;
3993         struct inode *inode = &(ei->vfs_inode);
3994         struct super_block *sb = inode->i_sb;
3995
3996         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3998                 /* we are using combined 48 bit field */
3999                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4000                                         le32_to_cpu(raw_inode->i_blocks_lo);
4001                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4002                         /* i_blocks represent file system block size */
4003                         return i_blocks  << (inode->i_blkbits - 9);
4004                 } else {
4005                         return i_blocks;
4006                 }
4007         } else {
4008                 return le32_to_cpu(raw_inode->i_blocks_lo);
4009         }
4010 }
4011
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014         struct ext4_iloc iloc;
4015         struct ext4_inode *raw_inode;
4016         struct ext4_inode_info *ei;
4017         struct buffer_head *bh;
4018         struct inode *inode;
4019         long ret;
4020         int block;
4021
4022         inode = iget_locked(sb, ino);
4023         if (!inode)
4024                 return ERR_PTR(-ENOMEM);
4025         if (!(inode->i_state & I_NEW))
4026                 return inode;
4027
4028         ei = EXT4_I(inode);
4029 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4030         ei->i_acl = EXT4_ACL_NOT_CACHED;
4031         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4032 #endif
4033         ei->i_block_alloc_info = NULL;
4034
4035         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4036         if (ret < 0)
4037                 goto bad_inode;
4038         bh = iloc.bh;
4039         raw_inode = ext4_raw_inode(&iloc);
4040         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4041         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4042         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4043         if (!(test_opt(inode->i_sb, NO_UID32))) {
4044                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4045                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4046         }
4047         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4048
4049         ei->i_state = 0;
4050         ei->i_dir_start_lookup = 0;
4051         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4052         /* We now have enough fields to check if the inode was active or not.
4053          * This is needed because nfsd might try to access dead inodes
4054          * the test is that same one that e2fsck uses
4055          * NeilBrown 1999oct15
4056          */
4057         if (inode->i_nlink == 0) {
4058                 if (inode->i_mode == 0 ||
4059                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4060                         /* this inode is deleted */
4061                         brelse(bh);
4062                         ret = -ESTALE;
4063                         goto bad_inode;
4064                 }
4065                 /* The only unlinked inodes we let through here have
4066                  * valid i_mode and are being read by the orphan
4067                  * recovery code: that's fine, we're about to complete
4068                  * the process of deleting those. */
4069         }
4070         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4071         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4072         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4073         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4074             cpu_to_le32(EXT4_OS_HURD)) {
4075                 ei->i_file_acl |=
4076                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4077         }
4078         inode->i_size = ext4_isize(raw_inode);
4079         ei->i_disksize = inode->i_size;
4080         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4081         ei->i_block_group = iloc.block_group;
4082         /*
4083          * NOTE! The in-memory inode i_data array is in little-endian order
4084          * even on big-endian machines: we do NOT byteswap the block numbers!
4085          */
4086         for (block = 0; block < EXT4_N_BLOCKS; block++)
4087                 ei->i_data[block] = raw_inode->i_block[block];
4088         INIT_LIST_HEAD(&ei->i_orphan);
4089
4090         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4091                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4092                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4093                     EXT4_INODE_SIZE(inode->i_sb)) {
4094                         brelse(bh);
4095                         ret = -EIO;
4096                         goto bad_inode;
4097                 }
4098                 if (ei->i_extra_isize == 0) {
4099                         /* The extra space is currently unused. Use it. */
4100                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4101                                             EXT4_GOOD_OLD_INODE_SIZE;
4102                 } else {
4103                         __le32 *magic = (void *)raw_inode +
4104                                         EXT4_GOOD_OLD_INODE_SIZE +
4105                                         ei->i_extra_isize;
4106                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4107                                  ei->i_state |= EXT4_STATE_XATTR;
4108                 }
4109         } else
4110                 ei->i_extra_isize = 0;
4111
4112         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4113         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4114         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4115         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4116
4117         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4119                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4120                         inode->i_version |=
4121                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4122         }
4123
4124         if (S_ISREG(inode->i_mode)) {
4125                 inode->i_op = &ext4_file_inode_operations;
4126                 inode->i_fop = &ext4_file_operations;
4127                 ext4_set_aops(inode);
4128         } else if (S_ISDIR(inode->i_mode)) {
4129                 inode->i_op = &ext4_dir_inode_operations;
4130                 inode->i_fop = &ext4_dir_operations;
4131         } else if (S_ISLNK(inode->i_mode)) {
4132                 if (ext4_inode_is_fast_symlink(inode))
4133                         inode->i_op = &ext4_fast_symlink_inode_operations;
4134                 else {
4135                         inode->i_op = &ext4_symlink_inode_operations;
4136                         ext4_set_aops(inode);
4137                 }
4138         } else {
4139                 inode->i_op = &ext4_special_inode_operations;
4140                 if (raw_inode->i_block[0])
4141                         init_special_inode(inode, inode->i_mode,
4142                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4143                 else
4144                         init_special_inode(inode, inode->i_mode,
4145                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4146         }
4147         brelse(iloc.bh);
4148         ext4_set_inode_flags(inode);
4149         unlock_new_inode(inode);
4150         return inode;
4151
4152 bad_inode:
4153         iget_failed(inode);
4154         return ERR_PTR(ret);
4155 }
4156
4157 static int ext4_inode_blocks_set(handle_t *handle,
4158                                 struct ext4_inode *raw_inode,
4159                                 struct ext4_inode_info *ei)
4160 {
4161         struct inode *inode = &(ei->vfs_inode);
4162         u64 i_blocks = inode->i_blocks;
4163         struct super_block *sb = inode->i_sb;
4164         int err = 0;
4165
4166         if (i_blocks <= ~0U) {
4167                 /*
4168                  * i_blocks can be represnted in a 32 bit variable
4169                  * as multiple of 512 bytes
4170                  */
4171                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4172                 raw_inode->i_blocks_high = 0;
4173                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4174         } else if (i_blocks <= 0xffffffffffffULL) {
4175                 /*
4176                  * i_blocks can be represented in a 48 bit variable
4177                  * as multiple of 512 bytes
4178                  */
4179                 err = ext4_update_rocompat_feature(handle, sb,
4180                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4181                 if (err)
4182                         goto  err_out;
4183                 /* i_block is stored in the split  48 bit fields */
4184                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4185                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4186                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4187         } else {
4188                 /*
4189                  * i_blocks should be represented in a 48 bit variable
4190                  * as multiple of  file system block size
4191                  */
4192                 err = ext4_update_rocompat_feature(handle, sb,
4193                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4194                 if (err)
4195                         goto  err_out;
4196                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4197                 /* i_block is stored in file system block size */
4198                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4199                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4200                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4201         }
4202 err_out:
4203         return err;
4204 }
4205
4206 /*
4207  * Post the struct inode info into an on-disk inode location in the
4208  * buffer-cache.  This gobbles the caller's reference to the
4209  * buffer_head in the inode location struct.
4210  *
4211  * The caller must have write access to iloc->bh.
4212  */
4213 static int ext4_do_update_inode(handle_t *handle,
4214                                 struct inode *inode,
4215                                 struct ext4_iloc *iloc)
4216 {
4217         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4218         struct ext4_inode_info *ei = EXT4_I(inode);
4219         struct buffer_head *bh = iloc->bh;
4220         int err = 0, rc, block;
4221
4222         /* For fields not not tracking in the in-memory inode,
4223          * initialise them to zero for new inodes. */
4224         if (ei->i_state & EXT4_STATE_NEW)
4225                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4226
4227         ext4_get_inode_flags(ei);
4228         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4229         if (!(test_opt(inode->i_sb, NO_UID32))) {
4230                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4231                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4232 /*
4233  * Fix up interoperability with old kernels. Otherwise, old inodes get
4234  * re-used with the upper 16 bits of the uid/gid intact
4235  */
4236                 if (!ei->i_dtime) {
4237                         raw_inode->i_uid_high =
4238                                 cpu_to_le16(high_16_bits(inode->i_uid));
4239                         raw_inode->i_gid_high =
4240                                 cpu_to_le16(high_16_bits(inode->i_gid));
4241                 } else {
4242                         raw_inode->i_uid_high = 0;
4243                         raw_inode->i_gid_high = 0;
4244                 }
4245         } else {
4246                 raw_inode->i_uid_low =
4247                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4248                 raw_inode->i_gid_low =
4249                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4250                 raw_inode->i_uid_high = 0;
4251                 raw_inode->i_gid_high = 0;
4252         }
4253         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4254
4255         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4256         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4257         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4258         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4259
4260         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4261                 goto out_brelse;
4262         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4263         /* clear the migrate flag in the raw_inode */
4264         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4265         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4266             cpu_to_le32(EXT4_OS_HURD))
4267                 raw_inode->i_file_acl_high =
4268                         cpu_to_le16(ei->i_file_acl >> 32);
4269         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4270         ext4_isize_set(raw_inode, ei->i_disksize);
4271         if (ei->i_disksize > 0x7fffffffULL) {
4272                 struct super_block *sb = inode->i_sb;
4273                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4274                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4275                                 EXT4_SB(sb)->s_es->s_rev_level ==
4276                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4277                         /* If this is the first large file
4278                          * created, add a flag to the superblock.
4279                          */
4280                         err = ext4_journal_get_write_access(handle,
4281                                         EXT4_SB(sb)->s_sbh);
4282                         if (err)
4283                                 goto out_brelse;
4284                         ext4_update_dynamic_rev(sb);
4285                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4286                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4287                         sb->s_dirt = 1;
4288                         handle->h_sync = 1;
4289                         err = ext4_journal_dirty_metadata(handle,
4290                                         EXT4_SB(sb)->s_sbh);
4291                 }
4292         }
4293         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4294         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4295                 if (old_valid_dev(inode->i_rdev)) {
4296                         raw_inode->i_block[0] =
4297                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4298                         raw_inode->i_block[1] = 0;
4299                 } else {
4300                         raw_inode->i_block[0] = 0;
4301                         raw_inode->i_block[1] =
4302                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4303                         raw_inode->i_block[2] = 0;
4304                 }
4305         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4306                 raw_inode->i_block[block] = ei->i_data[block];
4307
4308         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4309         if (ei->i_extra_isize) {
4310                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4311                         raw_inode->i_version_hi =
4312                         cpu_to_le32(inode->i_version >> 32);
4313                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4314         }
4315
4316
4317         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4318         rc = ext4_journal_dirty_metadata(handle, bh);
4319         if (!err)
4320                 err = rc;
4321         ei->i_state &= ~EXT4_STATE_NEW;
4322
4323 out_brelse:
4324         brelse(bh);
4325         ext4_std_error(inode->i_sb, err);
4326         return err;
4327 }
4328
4329 /*
4330  * ext4_write_inode()
4331  *
4332  * We are called from a few places:
4333  *
4334  * - Within generic_file_write() for O_SYNC files.
4335  *   Here, there will be no transaction running. We wait for any running
4336  *   trasnaction to commit.
4337  *
4338  * - Within sys_sync(), kupdate and such.
4339  *   We wait on commit, if tol to.
4340  *
4341  * - Within prune_icache() (PF_MEMALLOC == true)
4342  *   Here we simply return.  We can't afford to block kswapd on the
4343  *   journal commit.
4344  *
4345  * In all cases it is actually safe for us to return without doing anything,
4346  * because the inode has been copied into a raw inode buffer in
4347  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4348  * knfsd.
4349  *
4350  * Note that we are absolutely dependent upon all inode dirtiers doing the
4351  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4352  * which we are interested.
4353  *
4354  * It would be a bug for them to not do this.  The code:
4355  *
4356  *      mark_inode_dirty(inode)
4357  *      stuff();
4358  *      inode->i_size = expr;
4359  *
4360  * is in error because a kswapd-driven write_inode() could occur while
4361  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4362  * will no longer be on the superblock's dirty inode list.
4363  */
4364 int ext4_write_inode(struct inode *inode, int wait)
4365 {
4366         if (current->flags & PF_MEMALLOC)
4367                 return 0;
4368
4369         if (ext4_journal_current_handle()) {
4370                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4371                 dump_stack();
4372                 return -EIO;
4373         }
4374
4375         if (!wait)
4376                 return 0;
4377
4378         return ext4_force_commit(inode->i_sb);
4379 }
4380
4381 /*
4382  * ext4_setattr()
4383  *
4384  * Called from notify_change.
4385  *
4386  * We want to trap VFS attempts to truncate the file as soon as
4387  * possible.  In particular, we want to make sure that when the VFS
4388  * shrinks i_size, we put the inode on the orphan list and modify
4389  * i_disksize immediately, so that during the subsequent flushing of
4390  * dirty pages and freeing of disk blocks, we can guarantee that any
4391  * commit will leave the blocks being flushed in an unused state on
4392  * disk.  (On recovery, the inode will get truncated and the blocks will
4393  * be freed, so we have a strong guarantee that no future commit will
4394  * leave these blocks visible to the user.)
4395  *
4396  * Another thing we have to assure is that if we are in ordered mode
4397  * and inode is still attached to the committing transaction, we must
4398  * we start writeout of all the dirty pages which are being truncated.
4399  * This way we are sure that all the data written in the previous
4400  * transaction are already on disk (truncate waits for pages under
4401  * writeback).
4402  *
4403  * Called with inode->i_mutex down.
4404  */
4405 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4406 {
4407         struct inode *inode = dentry->d_inode;
4408         int error, rc = 0;
4409         const unsigned int ia_valid = attr->ia_valid;
4410
4411         error = inode_change_ok(inode, attr);
4412         if (error)
4413                 return error;
4414
4415         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4416                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4417                 handle_t *handle;
4418
4419                 /* (user+group)*(old+new) structure, inode write (sb,
4420                  * inode block, ? - but truncate inode update has it) */
4421                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4422                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4423                 if (IS_ERR(handle)) {
4424                         error = PTR_ERR(handle);
4425                         goto err_out;
4426                 }
4427                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4428                 if (error) {
4429                         ext4_journal_stop(handle);
4430                         return error;
4431                 }
4432                 /* Update corresponding info in inode so that everything is in
4433                  * one transaction */
4434                 if (attr->ia_valid & ATTR_UID)
4435                         inode->i_uid = attr->ia_uid;
4436                 if (attr->ia_valid & ATTR_GID)
4437                         inode->i_gid = attr->ia_gid;
4438                 error = ext4_mark_inode_dirty(handle, inode);
4439                 ext4_journal_stop(handle);
4440         }
4441
4442         if (attr->ia_valid & ATTR_SIZE) {
4443                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4444                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4445
4446                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4447                                 error = -EFBIG;
4448                                 goto err_out;
4449                         }
4450                 }
4451         }
4452
4453         if (S_ISREG(inode->i_mode) &&
4454             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4455                 handle_t *handle;
4456
4457                 handle = ext4_journal_start(inode, 3);
4458                 if (IS_ERR(handle)) {
4459                         error = PTR_ERR(handle);
4460                         goto err_out;
4461                 }
4462
4463                 error = ext4_orphan_add(handle, inode);
4464                 EXT4_I(inode)->i_disksize = attr->ia_size;
4465                 rc = ext4_mark_inode_dirty(handle, inode);
4466                 if (!error)
4467                         error = rc;
4468                 ext4_journal_stop(handle);
4469
4470                 if (ext4_should_order_data(inode)) {
4471                         error = ext4_begin_ordered_truncate(inode,
4472                                                             attr->ia_size);
4473                         if (error) {
4474                                 /* Do as much error cleanup as possible */
4475                                 handle = ext4_journal_start(inode, 3);
4476                                 if (IS_ERR(handle)) {
4477                                         ext4_orphan_del(NULL, inode);
4478                                         goto err_out;
4479                                 }
4480                                 ext4_orphan_del(handle, inode);
4481                                 ext4_journal_stop(handle);
4482                                 goto err_out;
4483                         }
4484                 }
4485         }
4486
4487         rc = inode_setattr(inode, attr);
4488
4489         /* If inode_setattr's call to ext4_truncate failed to get a
4490          * transaction handle at all, we need to clean up the in-core
4491          * orphan list manually. */
4492         if (inode->i_nlink)
4493                 ext4_orphan_del(NULL, inode);
4494
4495         if (!rc && (ia_valid & ATTR_MODE))
4496                 rc = ext4_acl_chmod(inode);
4497
4498 err_out:
4499         ext4_std_error(inode->i_sb, error);
4500         if (!error)
4501                 error = rc;
4502         return error;
4503 }
4504
4505 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4506                  struct kstat *stat)
4507 {
4508         struct inode *inode;
4509         unsigned long delalloc_blocks;
4510
4511         inode = dentry->d_inode;
4512         generic_fillattr(inode, stat);
4513
4514         /*
4515          * We can't update i_blocks if the block allocation is delayed
4516          * otherwise in the case of system crash before the real block
4517          * allocation is done, we will have i_blocks inconsistent with
4518          * on-disk file blocks.
4519          * We always keep i_blocks updated together with real
4520          * allocation. But to not confuse with user, stat
4521          * will return the blocks that include the delayed allocation
4522          * blocks for this file.
4523          */
4524         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4525         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4526         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4527
4528         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4529         return 0;
4530 }
4531
4532 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4533                                       int chunk)
4534 {
4535         int indirects;
4536
4537         /* if nrblocks are contiguous */
4538         if (chunk) {
4539                 /*
4540                  * With N contiguous data blocks, it need at most
4541                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4542                  * 2 dindirect blocks
4543                  * 1 tindirect block
4544                  */
4545                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4546                 return indirects + 3;
4547         }
4548         /*
4549          * if nrblocks are not contiguous, worse case, each block touch
4550          * a indirect block, and each indirect block touch a double indirect
4551          * block, plus a triple indirect block
4552          */
4553         indirects = nrblocks * 2 + 1;
4554         return indirects;
4555 }
4556
4557 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4558 {
4559         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4560                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4561         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4562 }
4563 /*
4564  * Account for index blocks, block groups bitmaps and block group
4565  * descriptor blocks if modify datablocks and index blocks
4566  * worse case, the indexs blocks spread over different block groups
4567  *
4568  * If datablocks are discontiguous, they are possible to spread over
4569  * different block groups too. If they are contiugous, with flexbg,
4570  * they could still across block group boundary.
4571  *
4572  * Also account for superblock, inode, quota and xattr blocks
4573  */
4574 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4575 {
4576         int groups, gdpblocks;
4577         int idxblocks;
4578         int ret = 0;
4579
4580         /*
4581          * How many index blocks need to touch to modify nrblocks?
4582          * The "Chunk" flag indicating whether the nrblocks is
4583          * physically contiguous on disk
4584          *
4585          * For Direct IO and fallocate, they calls get_block to allocate
4586          * one single extent at a time, so they could set the "Chunk" flag
4587          */
4588         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4589
4590         ret = idxblocks;
4591
4592         /*
4593          * Now let's see how many group bitmaps and group descriptors need
4594          * to account
4595          */
4596         groups = idxblocks;
4597         if (chunk)
4598                 groups += 1;
4599         else
4600                 groups += nrblocks;
4601
4602         gdpblocks = groups;
4603         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4604                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4605         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4606                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4607
4608         /* bitmaps and block group descriptor blocks */
4609         ret += groups + gdpblocks;
4610
4611         /* Blocks for super block, inode, quota and xattr blocks */
4612         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4613
4614         return ret;
4615 }
4616
4617 /*
4618  * Calulate the total number of credits to reserve to fit
4619  * the modification of a single pages into a single transaction,
4620  * which may include multiple chunks of block allocations.
4621  *
4622  * This could be called via ext4_write_begin()
4623  *
4624  * We need to consider the worse case, when
4625  * one new block per extent.
4626  */
4627 int ext4_writepage_trans_blocks(struct inode *inode)
4628 {
4629         int bpp = ext4_journal_blocks_per_page(inode);
4630         int ret;
4631
4632         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4633
4634         /* Account for data blocks for journalled mode */
4635         if (ext4_should_journal_data(inode))
4636                 ret += bpp;
4637         return ret;
4638 }
4639
4640 /*
4641  * Calculate the journal credits for a chunk of data modification.
4642  *
4643  * This is called from DIO, fallocate or whoever calling
4644  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4645  *
4646  * journal buffers for data blocks are not included here, as DIO
4647  * and fallocate do no need to journal data buffers.
4648  */
4649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4650 {
4651         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4652 }
4653
4654 /*
4655  * The caller must have previously called ext4_reserve_inode_write().
4656  * Give this, we know that the caller already has write access to iloc->bh.
4657  */
4658 int ext4_mark_iloc_dirty(handle_t *handle,
4659                 struct inode *inode, struct ext4_iloc *iloc)
4660 {
4661         int err = 0;
4662
4663         if (test_opt(inode->i_sb, I_VERSION))
4664                 inode_inc_iversion(inode);
4665
4666         /* the do_update_inode consumes one bh->b_count */
4667         get_bh(iloc->bh);
4668
4669         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4670         err = ext4_do_update_inode(handle, inode, iloc);
4671         put_bh(iloc->bh);
4672         return err;
4673 }
4674
4675 /*
4676  * On success, We end up with an outstanding reference count against
4677  * iloc->bh.  This _must_ be cleaned up later.
4678  */
4679
4680 int
4681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4682                          struct ext4_iloc *iloc)
4683 {
4684         int err = 0;
4685         if (handle) {
4686                 err = ext4_get_inode_loc(inode, iloc);
4687                 if (!err) {
4688                         BUFFER_TRACE(iloc->bh, "get_write_access");
4689                         err = ext4_journal_get_write_access(handle, iloc->bh);
4690                         if (err) {
4691                                 brelse(iloc->bh);
4692                                 iloc->bh = NULL;
4693                         }
4694                 }
4695         }
4696         ext4_std_error(inode->i_sb, err);
4697         return err;
4698 }
4699
4700 /*
4701  * Expand an inode by new_extra_isize bytes.
4702  * Returns 0 on success or negative error number on failure.
4703  */
4704 static int ext4_expand_extra_isize(struct inode *inode,
4705                                    unsigned int new_extra_isize,
4706                                    struct ext4_iloc iloc,
4707                                    handle_t *handle)
4708 {
4709         struct ext4_inode *raw_inode;
4710         struct ext4_xattr_ibody_header *header;
4711         struct ext4_xattr_entry *entry;
4712
4713         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4714                 return 0;
4715
4716         raw_inode = ext4_raw_inode(&iloc);
4717
4718         header = IHDR(inode, raw_inode);
4719         entry = IFIRST(header);
4720
4721         /* No extended attributes present */
4722         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4723                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4724                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4725                         new_extra_isize);
4726                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4727                 return 0;
4728         }
4729
4730         /* try to expand with EAs present */
4731         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4732                                           raw_inode, handle);
4733 }
4734
4735 /*
4736  * What we do here is to mark the in-core inode as clean with respect to inode
4737  * dirtiness (it may still be data-dirty).
4738  * This means that the in-core inode may be reaped by prune_icache
4739  * without having to perform any I/O.  This is a very good thing,
4740  * because *any* task may call prune_icache - even ones which
4741  * have a transaction open against a different journal.
4742  *
4743  * Is this cheating?  Not really.  Sure, we haven't written the
4744  * inode out, but prune_icache isn't a user-visible syncing function.
4745  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4746  * we start and wait on commits.
4747  *
4748  * Is this efficient/effective?  Well, we're being nice to the system
4749  * by cleaning up our inodes proactively so they can be reaped
4750  * without I/O.  But we are potentially leaving up to five seconds'
4751  * worth of inodes floating about which prune_icache wants us to
4752  * write out.  One way to fix that would be to get prune_icache()
4753  * to do a write_super() to free up some memory.  It has the desired
4754  * effect.
4755  */
4756 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4757 {
4758         struct ext4_iloc iloc;
4759         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4760         static unsigned int mnt_count;
4761         int err, ret;
4762
4763         might_sleep();
4764         err = ext4_reserve_inode_write(handle, inode, &iloc);
4765         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4766             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4767                 /*
4768                  * We need extra buffer credits since we may write into EA block
4769                  * with this same handle. If journal_extend fails, then it will
4770                  * only result in a minor loss of functionality for that inode.
4771                  * If this is felt to be critical, then e2fsck should be run to
4772                  * force a large enough s_min_extra_isize.
4773                  */
4774                 if ((jbd2_journal_extend(handle,
4775                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4776                         ret = ext4_expand_extra_isize(inode,
4777                                                       sbi->s_want_extra_isize,
4778                                                       iloc, handle);
4779                         if (ret) {
4780                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4781                                 if (mnt_count !=
4782                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4783                                         ext4_warning(inode->i_sb, __func__,
4784                                         "Unable to expand inode %lu. Delete"
4785                                         " some EAs or run e2fsck.",
4786                                         inode->i_ino);
4787                                         mnt_count =
4788                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4789                                 }
4790                         }
4791                 }
4792         }
4793         if (!err)
4794                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4795         return err;
4796 }
4797
4798 /*
4799  * ext4_dirty_inode() is called from __mark_inode_dirty()
4800  *
4801  * We're really interested in the case where a file is being extended.
4802  * i_size has been changed by generic_commit_write() and we thus need
4803  * to include the updated inode in the current transaction.
4804  *
4805  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4806  * are allocated to the file.
4807  *
4808  * If the inode is marked synchronous, we don't honour that here - doing
4809  * so would cause a commit on atime updates, which we don't bother doing.
4810  * We handle synchronous inodes at the highest possible level.
4811  */
4812 void ext4_dirty_inode(struct inode *inode)
4813 {
4814         handle_t *current_handle = ext4_journal_current_handle();
4815         handle_t *handle;
4816
4817         handle = ext4_journal_start(inode, 2);
4818         if (IS_ERR(handle))
4819                 goto out;
4820         if (current_handle &&
4821                 current_handle->h_transaction != handle->h_transaction) {
4822                 /* This task has a transaction open against a different fs */
4823                 printk(KERN_EMERG "%s: transactions do not match!\n",
4824                        __func__);
4825         } else {
4826                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4827                                 current_handle);
4828                 ext4_mark_inode_dirty(handle, inode);
4829         }
4830         ext4_journal_stop(handle);
4831 out:
4832         return;
4833 }
4834
4835 #if 0
4836 /*
4837  * Bind an inode's backing buffer_head into this transaction, to prevent
4838  * it from being flushed to disk early.  Unlike
4839  * ext4_reserve_inode_write, this leaves behind no bh reference and
4840  * returns no iloc structure, so the caller needs to repeat the iloc
4841  * lookup to mark the inode dirty later.
4842  */
4843 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4844 {
4845         struct ext4_iloc iloc;
4846
4847         int err = 0;
4848         if (handle) {
4849                 err = ext4_get_inode_loc(inode, &iloc);
4850                 if (!err) {
4851                         BUFFER_TRACE(iloc.bh, "get_write_access");
4852                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4853                         if (!err)
4854                                 err = ext4_journal_dirty_metadata(handle,
4855                                                                   iloc.bh);
4856                         brelse(iloc.bh);
4857                 }
4858         }
4859         ext4_std_error(inode->i_sb, err);
4860         return err;
4861 }
4862 #endif
4863
4864 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4865 {
4866         journal_t *journal;
4867         handle_t *handle;
4868         int err;
4869
4870         /*
4871          * We have to be very careful here: changing a data block's
4872          * journaling status dynamically is dangerous.  If we write a
4873          * data block to the journal, change the status and then delete
4874          * that block, we risk forgetting to revoke the old log record
4875          * from the journal and so a subsequent replay can corrupt data.
4876          * So, first we make sure that the journal is empty and that
4877          * nobody is changing anything.
4878          */
4879
4880         journal = EXT4_JOURNAL(inode);
4881         if (is_journal_aborted(journal))
4882                 return -EROFS;
4883
4884         jbd2_journal_lock_updates(journal);
4885         jbd2_journal_flush(journal);
4886
4887         /*
4888          * OK, there are no updates running now, and all cached data is
4889          * synced to disk.  We are now in a completely consistent state
4890          * which doesn't have anything in the journal, and we know that
4891          * no filesystem updates are running, so it is safe to modify
4892          * the inode's in-core data-journaling state flag now.
4893          */
4894
4895         if (val)
4896                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4897         else
4898                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4899         ext4_set_aops(inode);
4900
4901         jbd2_journal_unlock_updates(journal);
4902
4903         /* Finally we can mark the inode as dirty. */
4904
4905         handle = ext4_journal_start(inode, 1);
4906         if (IS_ERR(handle))
4907                 return PTR_ERR(handle);
4908
4909         err = ext4_mark_inode_dirty(handle, inode);
4910         handle->h_sync = 1;
4911         ext4_journal_stop(handle);
4912         ext4_std_error(inode->i_sb, err);
4913
4914         return err;
4915 }
4916
4917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4918 {
4919         return !buffer_mapped(bh);
4920 }
4921
4922 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4923 {
4924         loff_t size;
4925         unsigned long len;
4926         int ret = -EINVAL;
4927         void *fsdata;
4928         struct file *file = vma->vm_file;
4929         struct inode *inode = file->f_path.dentry->d_inode;
4930         struct address_space *mapping = inode->i_mapping;
4931
4932         /*
4933          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4934          * get i_mutex because we are already holding mmap_sem.
4935          */
4936         down_read(&inode->i_alloc_sem);
4937         size = i_size_read(inode);
4938         if (page->mapping != mapping || size <= page_offset(page)
4939             || !PageUptodate(page)) {
4940                 /* page got truncated from under us? */
4941                 goto out_unlock;
4942         }
4943         ret = 0;
4944         if (PageMappedToDisk(page))
4945                 goto out_unlock;
4946
4947         if (page->index == size >> PAGE_CACHE_SHIFT)
4948                 len = size & ~PAGE_CACHE_MASK;
4949         else
4950                 len = PAGE_CACHE_SIZE;
4951
4952         if (page_has_buffers(page)) {
4953                 /* return if we have all the buffers mapped */
4954                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4955                                        ext4_bh_unmapped))
4956                         goto out_unlock;
4957         }
4958         /*
4959          * OK, we need to fill the hole... Do write_begin write_end
4960          * to do block allocation/reservation.We are not holding
4961          * inode.i__mutex here. That allow * parallel write_begin,
4962          * write_end call. lock_page prevent this from happening
4963          * on the same page though
4964          */
4965         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4966                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4967         if (ret < 0)
4968                 goto out_unlock;
4969         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4970                         len, len, page, fsdata);
4971         if (ret < 0)
4972                 goto out_unlock;
4973         ret = 0;
4974 out_unlock:
4975         up_read(&inode->i_alloc_sem);
4976         return ret;
4977 }