]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490                                    struct ext4_map_blocks *map)
491 {
492         struct address_space *mapping = inode->i_mapping;
493         struct pagevec pvec;
494         int i, nr_pages;
495         pgoff_t index, end;
496
497         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498         end = (map->m_lblk + map->m_len - 1) >>
499                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501         pagevec_init(&pvec, 0);
502         while (index <= end) {
503                 nr_pages = pagevec_lookup(&pvec, mapping, index,
504                                           min(end - index + 1,
505                                               (pgoff_t)PAGEVEC_SIZE));
506                 if (nr_pages == 0)
507                         break;
508                 for (i = 0; i < nr_pages; i++) {
509                         struct page *page = pvec.pages[i];
510                         struct buffer_head *bh, *head;
511
512                         if (unlikely(page->mapping != mapping) ||
513                             !PageDirty(page))
514                                 break;
515
516                         if (page_has_buffers(page)) {
517                                 bh = head = page_buffers(page);
518                                 do {
519                                         set_buffer_da_mapped(bh);
520                                         bh = bh->b_this_page;
521                                 } while (bh != head);
522                         }
523                         index++;
524                 }
525                 pagevec_release(&pvec);
526         }
527 }
528
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552                     struct ext4_map_blocks *map, int flags)
553 {
554         int retval;
555
556         map->m_flags = 0;
557         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
559                   (unsigned long) map->m_lblk);
560         /*
561          * Try to see if we can get the block without requesting a new
562          * file system block.
563          */
564         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565                 down_read((&EXT4_I(inode)->i_data_sem));
566         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568                                              EXT4_GET_BLOCKS_KEEP_SIZE);
569         } else {
570                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571                                              EXT4_GET_BLOCKS_KEEP_SIZE);
572         }
573         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574                 up_read((&EXT4_I(inode)->i_data_sem));
575
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 int ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 return retval;
595
596         /*
597          * When we call get_blocks without the create flag, the
598          * BH_Unwritten flag could have gotten set if the blocks
599          * requested were part of a uninitialized extent.  We need to
600          * clear this flag now that we are committed to convert all or
601          * part of the uninitialized extent to be an initialized
602          * extent.  This is because we need to avoid the combination
603          * of BH_Unwritten and BH_Mapped flags being simultaneously
604          * set on the buffer_head.
605          */
606         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655                 /* If we have successfully mapped the delayed allocated blocks,
656                  * set the BH_Da_Mapped bit on them. Its important to do this
657                  * under the protection of i_data_sem.
658                  */
659                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                         set_buffers_da_mapped(inode, map);
661         }
662
663         up_write((&EXT4_I(inode)->i_data_sem));
664         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665                 int ret = check_block_validity(inode, map);
666                 if (ret != 0)
667                         return ret;
668         }
669         return retval;
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         map.m_lblk = iblock;
684         map.m_len = bh->b_size >> inode->i_blkbits;
685
686         if (flags && !handle) {
687                 /* Direct IO write... */
688                 if (map.m_len > DIO_MAX_BLOCKS)
689                         map.m_len = DIO_MAX_BLOCKS;
690                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691                 handle = ext4_journal_start(inode, dio_credits);
692                 if (IS_ERR(handle)) {
693                         ret = PTR_ERR(handle);
694                         return ret;
695                 }
696                 started = 1;
697         }
698
699         ret = ext4_map_blocks(handle, inode, &map, flags);
700         if (ret > 0) {
701                 map_bh(bh, inode->i_sb, map.m_pblk);
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704                 ret = 0;
705         }
706         if (started)
707                 ext4_journal_stop(handle);
708         return ret;
709 }
710
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712                    struct buffer_head *bh, int create)
713 {
714         return _ext4_get_block(inode, iblock, bh,
715                                create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722                                 ext4_lblk_t block, int create, int *errp)
723 {
724         struct ext4_map_blocks map;
725         struct buffer_head *bh;
726         int fatal = 0, err;
727
728         J_ASSERT(handle != NULL || create == 0);
729
730         map.m_lblk = block;
731         map.m_len = 1;
732         err = ext4_map_blocks(handle, inode, &map,
733                               create ? EXT4_GET_BLOCKS_CREATE : 0);
734
735         /* ensure we send some value back into *errp */
736         *errp = 0;
737
738         if (err < 0)
739                 *errp = err;
740         if (err <= 0)
741                 return NULL;
742
743         bh = sb_getblk(inode->i_sb, map.m_pblk);
744         if (!bh) {
745                 *errp = -EIO;
746                 return NULL;
747         }
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 fatal = ext4_journal_get_create_access(handle, bh);
762                 if (!fatal && !buffer_uptodate(bh)) {
763                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764                         set_buffer_uptodate(bh);
765                 }
766                 unlock_buffer(bh);
767                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768                 err = ext4_handle_dirty_metadata(handle, inode, bh);
769                 if (!fatal)
770                         fatal = err;
771         } else {
772                 BUFFER_TRACE(bh, "not a new buffer");
773         }
774         if (fatal) {
775                 *errp = fatal;
776                 brelse(bh);
777                 bh = NULL;
778         }
779         return bh;
780 }
781
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783                                ext4_lblk_t block, int create, int *err)
784 {
785         struct buffer_head *bh;
786
787         bh = ext4_getblk(handle, inode, block, create, err);
788         if (!bh)
789                 return bh;
790         if (buffer_uptodate(bh))
791                 return bh;
792         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793         wait_on_buffer(bh);
794         if (buffer_uptodate(bh))
795                 return bh;
796         put_bh(bh);
797         *err = -EIO;
798         return NULL;
799 }
800
801 static int walk_page_buffers(handle_t *handle,
802                              struct buffer_head *head,
803                              unsigned from,
804                              unsigned to,
805                              int *partial,
806                              int (*fn)(handle_t *handle,
807                                        struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage() ->
840  * block_write_full_page(). In that case, we *know* that ext4_writepage()
841  * has generated enough buffer credits to do the whole page.  So we won't
842  * block on the journal in that case, which is good, because the caller may
843  * be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 static int do_journal_get_write_access(handle_t *handle,
858                                        struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884                             loff_t pos, unsigned len, unsigned flags,
885                             struct page **pagep, void **fsdata)
886 {
887         struct inode *inode = mapping->host;
888         int ret, needed_blocks;
889         handle_t *handle;
890         int retries = 0;
891         struct page *page;
892         pgoff_t index;
893         unsigned from, to;
894
895         trace_ext4_write_begin(inode, pos, len, flags);
896         /*
897          * Reserve one block more for addition to orphan list in case
898          * we allocate blocks but write fails for some reason
899          */
900         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901         index = pos >> PAGE_CACHE_SHIFT;
902         from = pos & (PAGE_CACHE_SIZE - 1);
903         to = from + len;
904
905 retry:
906         handle = ext4_journal_start(inode, needed_blocks);
907         if (IS_ERR(handle)) {
908                 ret = PTR_ERR(handle);
909                 goto out;
910         }
911
912         /* We cannot recurse into the filesystem as the transaction is already
913          * started */
914         flags |= AOP_FLAG_NOFS;
915
916         page = grab_cache_page_write_begin(mapping, index, flags);
917         if (!page) {
918                 ext4_journal_stop(handle);
919                 ret = -ENOMEM;
920                 goto out;
921         }
922         *pagep = page;
923
924         if (ext4_should_dioread_nolock(inode))
925                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
926         else
927                 ret = __block_write_begin(page, pos, len, ext4_get_block);
928
929         if (!ret && ext4_should_journal_data(inode)) {
930                 ret = walk_page_buffers(handle, page_buffers(page),
931                                 from, to, NULL, do_journal_get_write_access);
932         }
933
934         if (ret) {
935                 unlock_page(page);
936                 page_cache_release(page);
937                 /*
938                  * __block_write_begin may have instantiated a few blocks
939                  * outside i_size.  Trim these off again. Don't need
940                  * i_size_read because we hold i_mutex.
941                  *
942                  * Add inode to orphan list in case we crash before
943                  * truncate finishes
944                  */
945                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946                         ext4_orphan_add(handle, inode);
947
948                 ext4_journal_stop(handle);
949                 if (pos + len > inode->i_size) {
950                         ext4_truncate_failed_write(inode);
951                         /*
952                          * If truncate failed early the inode might
953                          * still be on the orphan list; we need to
954                          * make sure the inode is removed from the
955                          * orphan list in that case.
956                          */
957                         if (inode->i_nlink)
958                                 ext4_orphan_del(NULL, inode);
959                 }
960         }
961
962         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
963                 goto retry;
964 out:
965         return ret;
966 }
967
968 /* For write_end() in data=journal mode */
969 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
970 {
971         if (!buffer_mapped(bh) || buffer_freed(bh))
972                 return 0;
973         set_buffer_uptodate(bh);
974         return ext4_handle_dirty_metadata(handle, NULL, bh);
975 }
976
977 static int ext4_generic_write_end(struct file *file,
978                                   struct address_space *mapping,
979                                   loff_t pos, unsigned len, unsigned copied,
980                                   struct page *page, void *fsdata)
981 {
982         int i_size_changed = 0;
983         struct inode *inode = mapping->host;
984         handle_t *handle = ext4_journal_current_handle();
985
986         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
987
988         /*
989          * No need to use i_size_read() here, the i_size
990          * cannot change under us because we hold i_mutex.
991          *
992          * But it's important to update i_size while still holding page lock:
993          * page writeout could otherwise come in and zero beyond i_size.
994          */
995         if (pos + copied > inode->i_size) {
996                 i_size_write(inode, pos + copied);
997                 i_size_changed = 1;
998         }
999
1000         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1001                 /* We need to mark inode dirty even if
1002                  * new_i_size is less that inode->i_size
1003                  * bu greater than i_disksize.(hint delalloc)
1004                  */
1005                 ext4_update_i_disksize(inode, (pos + copied));
1006                 i_size_changed = 1;
1007         }
1008         unlock_page(page);
1009         page_cache_release(page);
1010
1011         /*
1012          * Don't mark the inode dirty under page lock. First, it unnecessarily
1013          * makes the holding time of page lock longer. Second, it forces lock
1014          * ordering of page lock and transaction start for journaling
1015          * filesystems.
1016          */
1017         if (i_size_changed)
1018                 ext4_mark_inode_dirty(handle, inode);
1019
1020         return copied;
1021 }
1022
1023 /*
1024  * We need to pick up the new inode size which generic_commit_write gave us
1025  * `file' can be NULL - eg, when called from page_symlink().
1026  *
1027  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1028  * buffers are managed internally.
1029  */
1030 static int ext4_ordered_write_end(struct file *file,
1031                                   struct address_space *mapping,
1032                                   loff_t pos, unsigned len, unsigned copied,
1033                                   struct page *page, void *fsdata)
1034 {
1035         handle_t *handle = ext4_journal_current_handle();
1036         struct inode *inode = mapping->host;
1037         int ret = 0, ret2;
1038
1039         trace_ext4_ordered_write_end(inode, pos, len, copied);
1040         ret = ext4_jbd2_file_inode(handle, inode);
1041
1042         if (ret == 0) {
1043                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1044                                                         page, fsdata);
1045                 copied = ret2;
1046                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1047                         /* if we have allocated more blocks and copied
1048                          * less. We will have blocks allocated outside
1049                          * inode->i_size. So truncate them
1050                          */
1051                         ext4_orphan_add(handle, inode);
1052                 if (ret2 < 0)
1053                         ret = ret2;
1054         } else {
1055                 unlock_page(page);
1056                 page_cache_release(page);
1057         }
1058
1059         ret2 = ext4_journal_stop(handle);
1060         if (!ret)
1061                 ret = ret2;
1062
1063         if (pos + len > inode->i_size) {
1064                 ext4_truncate_failed_write(inode);
1065                 /*
1066                  * If truncate failed early the inode might still be
1067                  * on the orphan list; we need to make sure the inode
1068                  * is removed from the orphan list in that case.
1069                  */
1070                 if (inode->i_nlink)
1071                         ext4_orphan_del(NULL, inode);
1072         }
1073
1074
1075         return ret ? ret : copied;
1076 }
1077
1078 static int ext4_writeback_write_end(struct file *file,
1079                                     struct address_space *mapping,
1080                                     loff_t pos, unsigned len, unsigned copied,
1081                                     struct page *page, void *fsdata)
1082 {
1083         handle_t *handle = ext4_journal_current_handle();
1084         struct inode *inode = mapping->host;
1085         int ret = 0, ret2;
1086
1087         trace_ext4_writeback_write_end(inode, pos, len, copied);
1088         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1089                                                         page, fsdata);
1090         copied = ret2;
1091         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092                 /* if we have allocated more blocks and copied
1093                  * less. We will have blocks allocated outside
1094                  * inode->i_size. So truncate them
1095                  */
1096                 ext4_orphan_add(handle, inode);
1097
1098         if (ret2 < 0)
1099                 ret = ret2;
1100
1101         ret2 = ext4_journal_stop(handle);
1102         if (!ret)
1103                 ret = ret2;
1104
1105         if (pos + len > inode->i_size) {
1106                 ext4_truncate_failed_write(inode);
1107                 /*
1108                  * If truncate failed early the inode might still be
1109                  * on the orphan list; we need to make sure the inode
1110                  * is removed from the orphan list in that case.
1111                  */
1112                 if (inode->i_nlink)
1113                         ext4_orphan_del(NULL, inode);
1114         }
1115
1116         return ret ? ret : copied;
1117 }
1118
1119 static int ext4_journalled_write_end(struct file *file,
1120                                      struct address_space *mapping,
1121                                      loff_t pos, unsigned len, unsigned copied,
1122                                      struct page *page, void *fsdata)
1123 {
1124         handle_t *handle = ext4_journal_current_handle();
1125         struct inode *inode = mapping->host;
1126         int ret = 0, ret2;
1127         int partial = 0;
1128         unsigned from, to;
1129         loff_t new_i_size;
1130
1131         trace_ext4_journalled_write_end(inode, pos, len, copied);
1132         from = pos & (PAGE_CACHE_SIZE - 1);
1133         to = from + len;
1134
1135         BUG_ON(!ext4_handle_valid(handle));
1136
1137         if (copied < len) {
1138                 if (!PageUptodate(page))
1139                         copied = 0;
1140                 page_zero_new_buffers(page, from+copied, to);
1141         }
1142
1143         ret = walk_page_buffers(handle, page_buffers(page), from,
1144                                 to, &partial, write_end_fn);
1145         if (!partial)
1146                 SetPageUptodate(page);
1147         new_i_size = pos + copied;
1148         if (new_i_size > inode->i_size)
1149                 i_size_write(inode, pos+copied);
1150         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152         if (new_i_size > EXT4_I(inode)->i_disksize) {
1153                 ext4_update_i_disksize(inode, new_i_size);
1154                 ret2 = ext4_mark_inode_dirty(handle, inode);
1155                 if (!ret)
1156                         ret = ret2;
1157         }
1158
1159         unlock_page(page);
1160         page_cache_release(page);
1161         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162                 /* if we have allocated more blocks and copied
1163                  * less. We will have blocks allocated outside
1164                  * inode->i_size. So truncate them
1165                  */
1166                 ext4_orphan_add(handle, inode);
1167
1168         ret2 = ext4_journal_stop(handle);
1169         if (!ret)
1170                 ret = ret2;
1171         if (pos + len > inode->i_size) {
1172                 ext4_truncate_failed_write(inode);
1173                 /*
1174                  * If truncate failed early the inode might still be
1175                  * on the orphan list; we need to make sure the inode
1176                  * is removed from the orphan list in that case.
1177                  */
1178                 if (inode->i_nlink)
1179                         ext4_orphan_del(NULL, inode);
1180         }
1181
1182         return ret ? ret : copied;
1183 }
1184
1185 /*
1186  * Reserve a single cluster located at lblock
1187  */
1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189 {
1190         int retries = 0;
1191         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192         struct ext4_inode_info *ei = EXT4_I(inode);
1193         unsigned int md_needed;
1194         int ret;
1195         ext4_lblk_t save_last_lblock;
1196         int save_len;
1197
1198         /*
1199          * We will charge metadata quota at writeout time; this saves
1200          * us from metadata over-estimation, though we may go over by
1201          * a small amount in the end.  Here we just reserve for data.
1202          */
1203         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204         if (ret)
1205                 return ret;
1206
1207         /*
1208          * recalculate the amount of metadata blocks to reserve
1209          * in order to allocate nrblocks
1210          * worse case is one extent per block
1211          */
1212 repeat:
1213         spin_lock(&ei->i_block_reservation_lock);
1214         /*
1215          * ext4_calc_metadata_amount() has side effects, which we have
1216          * to be prepared undo if we fail to claim space.
1217          */
1218         save_len = ei->i_da_metadata_calc_len;
1219         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220         md_needed = EXT4_NUM_B2C(sbi,
1221                                  ext4_calc_metadata_amount(inode, lblock));
1222         trace_ext4_da_reserve_space(inode, md_needed);
1223
1224         /*
1225          * We do still charge estimated metadata to the sb though;
1226          * we cannot afford to run out of free blocks.
1227          */
1228         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229                 ei->i_da_metadata_calc_len = save_len;
1230                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1231                 spin_unlock(&ei->i_block_reservation_lock);
1232                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1233                         yield();
1234                         goto repeat;
1235                 }
1236                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237                 return -ENOSPC;
1238         }
1239         ei->i_reserved_data_blocks++;
1240         ei->i_reserved_meta_blocks += md_needed;
1241         spin_unlock(&ei->i_block_reservation_lock);
1242
1243         return 0;       /* success */
1244 }
1245
1246 static void ext4_da_release_space(struct inode *inode, int to_free)
1247 {
1248         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249         struct ext4_inode_info *ei = EXT4_I(inode);
1250
1251         if (!to_free)
1252                 return;         /* Nothing to release, exit */
1253
1254         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255
1256         trace_ext4_da_release_space(inode, to_free);
1257         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258                 /*
1259                  * if there aren't enough reserved blocks, then the
1260                  * counter is messed up somewhere.  Since this
1261                  * function is called from invalidate page, it's
1262                  * harmless to return without any action.
1263                  */
1264                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1265                          "ino %lu, to_free %d with only %d reserved "
1266                          "data blocks", inode->i_ino, to_free,
1267                          ei->i_reserved_data_blocks);
1268                 WARN_ON(1);
1269                 to_free = ei->i_reserved_data_blocks;
1270         }
1271         ei->i_reserved_data_blocks -= to_free;
1272
1273         if (ei->i_reserved_data_blocks == 0) {
1274                 /*
1275                  * We can release all of the reserved metadata blocks
1276                  * only when we have written all of the delayed
1277                  * allocation blocks.
1278                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1279                  * i_reserved_data_blocks, etc. refer to number of clusters.
1280                  */
1281                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282                                    ei->i_reserved_meta_blocks);
1283                 ei->i_reserved_meta_blocks = 0;
1284                 ei->i_da_metadata_calc_len = 0;
1285         }
1286
1287         /* update fs dirty data blocks counter */
1288         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289
1290         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291
1292         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 }
1294
1295 static void ext4_da_page_release_reservation(struct page *page,
1296                                              unsigned long offset)
1297 {
1298         int to_release = 0;
1299         struct buffer_head *head, *bh;
1300         unsigned int curr_off = 0;
1301         struct inode *inode = page->mapping->host;
1302         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303         int num_clusters;
1304
1305         head = page_buffers(page);
1306         bh = head;
1307         do {
1308                 unsigned int next_off = curr_off + bh->b_size;
1309
1310                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1311                         to_release++;
1312                         clear_buffer_delay(bh);
1313                         clear_buffer_da_mapped(bh);
1314                 }
1315                 curr_off = next_off;
1316         } while ((bh = bh->b_this_page) != head);
1317
1318         /* If we have released all the blocks belonging to a cluster, then we
1319          * need to release the reserved space for that cluster. */
1320         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321         while (num_clusters > 0) {
1322                 ext4_fsblk_t lblk;
1323                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1324                         ((num_clusters - 1) << sbi->s_cluster_bits);
1325                 if (sbi->s_cluster_ratio == 1 ||
1326                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1327                         ext4_da_release_space(inode, 1);
1328
1329                 num_clusters--;
1330         }
1331 }
1332
1333 /*
1334  * Delayed allocation stuff
1335  */
1336
1337 /*
1338  * mpage_da_submit_io - walks through extent of pages and try to write
1339  * them with writepage() call back
1340  *
1341  * @mpd->inode: inode
1342  * @mpd->first_page: first page of the extent
1343  * @mpd->next_page: page after the last page of the extent
1344  *
1345  * By the time mpage_da_submit_io() is called we expect all blocks
1346  * to be allocated. this may be wrong if allocation failed.
1347  *
1348  * As pages are already locked by write_cache_pages(), we can't use it
1349  */
1350 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1351                               struct ext4_map_blocks *map)
1352 {
1353         struct pagevec pvec;
1354         unsigned long index, end;
1355         int ret = 0, err, nr_pages, i;
1356         struct inode *inode = mpd->inode;
1357         struct address_space *mapping = inode->i_mapping;
1358         loff_t size = i_size_read(inode);
1359         unsigned int len, block_start;
1360         struct buffer_head *bh, *page_bufs = NULL;
1361         int journal_data = ext4_should_journal_data(inode);
1362         sector_t pblock = 0, cur_logical = 0;
1363         struct ext4_io_submit io_submit;
1364
1365         BUG_ON(mpd->next_page <= mpd->first_page);
1366         memset(&io_submit, 0, sizeof(io_submit));
1367         /*
1368          * We need to start from the first_page to the next_page - 1
1369          * to make sure we also write the mapped dirty buffer_heads.
1370          * If we look at mpd->b_blocknr we would only be looking
1371          * at the currently mapped buffer_heads.
1372          */
1373         index = mpd->first_page;
1374         end = mpd->next_page - 1;
1375
1376         pagevec_init(&pvec, 0);
1377         while (index <= end) {
1378                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1379                 if (nr_pages == 0)
1380                         break;
1381                 for (i = 0; i < nr_pages; i++) {
1382                         int commit_write = 0, skip_page = 0;
1383                         struct page *page = pvec.pages[i];
1384
1385                         index = page->index;
1386                         if (index > end)
1387                                 break;
1388
1389                         if (index == size >> PAGE_CACHE_SHIFT)
1390                                 len = size & ~PAGE_CACHE_MASK;
1391                         else
1392                                 len = PAGE_CACHE_SIZE;
1393                         if (map) {
1394                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1395                                                         inode->i_blkbits);
1396                                 pblock = map->m_pblk + (cur_logical -
1397                                                         map->m_lblk);
1398                         }
1399                         index++;
1400
1401                         BUG_ON(!PageLocked(page));
1402                         BUG_ON(PageWriteback(page));
1403
1404                         /*
1405                          * If the page does not have buffers (for
1406                          * whatever reason), try to create them using
1407                          * __block_write_begin.  If this fails,
1408                          * skip the page and move on.
1409                          */
1410                         if (!page_has_buffers(page)) {
1411                                 if (__block_write_begin(page, 0, len,
1412                                                 noalloc_get_block_write)) {
1413                                 skip_page:
1414                                         unlock_page(page);
1415                                         continue;
1416                                 }
1417                                 commit_write = 1;
1418                         }
1419
1420                         bh = page_bufs = page_buffers(page);
1421                         block_start = 0;
1422                         do {
1423                                 if (!bh)
1424                                         goto skip_page;
1425                                 if (map && (cur_logical >= map->m_lblk) &&
1426                                     (cur_logical <= (map->m_lblk +
1427                                                      (map->m_len - 1)))) {
1428                                         if (buffer_delay(bh)) {
1429                                                 clear_buffer_delay(bh);
1430                                                 bh->b_blocknr = pblock;
1431                                         }
1432                                         if (buffer_da_mapped(bh))
1433                                                 clear_buffer_da_mapped(bh);
1434                                         if (buffer_unwritten(bh) ||
1435                                             buffer_mapped(bh))
1436                                                 BUG_ON(bh->b_blocknr != pblock);
1437                                         if (map->m_flags & EXT4_MAP_UNINIT)
1438                                                 set_buffer_uninit(bh);
1439                                         clear_buffer_unwritten(bh);
1440                                 }
1441
1442                                 /*
1443                                  * skip page if block allocation undone and
1444                                  * block is dirty
1445                                  */
1446                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1447                                         skip_page = 1;
1448                                 bh = bh->b_this_page;
1449                                 block_start += bh->b_size;
1450                                 cur_logical++;
1451                                 pblock++;
1452                         } while (bh != page_bufs);
1453
1454                         if (skip_page)
1455                                 goto skip_page;
1456
1457                         if (commit_write)
1458                                 /* mark the buffer_heads as dirty & uptodate */
1459                                 block_commit_write(page, 0, len);
1460
1461                         clear_page_dirty_for_io(page);
1462                         /*
1463                          * Delalloc doesn't support data journalling,
1464                          * but eventually maybe we'll lift this
1465                          * restriction.
1466                          */
1467                         if (unlikely(journal_data && PageChecked(page)))
1468                                 err = __ext4_journalled_writepage(page, len);
1469                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1470                                 err = ext4_bio_write_page(&io_submit, page,
1471                                                           len, mpd->wbc);
1472                         else if (buffer_uninit(page_bufs)) {
1473                                 ext4_set_bh_endio(page_bufs, inode);
1474                                 err = block_write_full_page_endio(page,
1475                                         noalloc_get_block_write,
1476                                         mpd->wbc, ext4_end_io_buffer_write);
1477                         } else
1478                                 err = block_write_full_page(page,
1479                                         noalloc_get_block_write, mpd->wbc);
1480
1481                         if (!err)
1482                                 mpd->pages_written++;
1483                         /*
1484                          * In error case, we have to continue because
1485                          * remaining pages are still locked
1486                          */
1487                         if (ret == 0)
1488                                 ret = err;
1489                 }
1490                 pagevec_release(&pvec);
1491         }
1492         ext4_io_submit(&io_submit);
1493         return ret;
1494 }
1495
1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1497 {
1498         int nr_pages, i;
1499         pgoff_t index, end;
1500         struct pagevec pvec;
1501         struct inode *inode = mpd->inode;
1502         struct address_space *mapping = inode->i_mapping;
1503
1504         index = mpd->first_page;
1505         end   = mpd->next_page - 1;
1506         while (index <= end) {
1507                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508                 if (nr_pages == 0)
1509                         break;
1510                 for (i = 0; i < nr_pages; i++) {
1511                         struct page *page = pvec.pages[i];
1512                         if (page->index > end)
1513                                 break;
1514                         BUG_ON(!PageLocked(page));
1515                         BUG_ON(PageWriteback(page));
1516                         block_invalidatepage(page, 0);
1517                         ClearPageUptodate(page);
1518                         unlock_page(page);
1519                 }
1520                 index = pvec.pages[nr_pages - 1]->index + 1;
1521                 pagevec_release(&pvec);
1522         }
1523         return;
1524 }
1525
1526 static void ext4_print_free_blocks(struct inode *inode)
1527 {
1528         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1529         struct super_block *sb = inode->i_sb;
1530
1531         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1532                EXT4_C2B(EXT4_SB(inode->i_sb),
1533                         ext4_count_free_clusters(inode->i_sb)));
1534         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1535         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1536                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1537                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1538         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1539                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1540                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1541         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1542         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1543                  EXT4_I(inode)->i_reserved_data_blocks);
1544         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1545                EXT4_I(inode)->i_reserved_meta_blocks);
1546         return;
1547 }
1548
1549 /*
1550  * mpage_da_map_and_submit - go through given space, map them
1551  *       if necessary, and then submit them for I/O
1552  *
1553  * @mpd - bh describing space
1554  *
1555  * The function skips space we know is already mapped to disk blocks.
1556  *
1557  */
1558 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1559 {
1560         int err, blks, get_blocks_flags;
1561         struct ext4_map_blocks map, *mapp = NULL;
1562         sector_t next = mpd->b_blocknr;
1563         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1564         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1565         handle_t *handle = NULL;
1566
1567         /*
1568          * If the blocks are mapped already, or we couldn't accumulate
1569          * any blocks, then proceed immediately to the submission stage.
1570          */
1571         if ((mpd->b_size == 0) ||
1572             ((mpd->b_state  & (1 << BH_Mapped)) &&
1573              !(mpd->b_state & (1 << BH_Delay)) &&
1574              !(mpd->b_state & (1 << BH_Unwritten))))
1575                 goto submit_io;
1576
1577         handle = ext4_journal_current_handle();
1578         BUG_ON(!handle);
1579
1580         /*
1581          * Call ext4_map_blocks() to allocate any delayed allocation
1582          * blocks, or to convert an uninitialized extent to be
1583          * initialized (in the case where we have written into
1584          * one or more preallocated blocks).
1585          *
1586          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1587          * indicate that we are on the delayed allocation path.  This
1588          * affects functions in many different parts of the allocation
1589          * call path.  This flag exists primarily because we don't
1590          * want to change *many* call functions, so ext4_map_blocks()
1591          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1592          * inode's allocation semaphore is taken.
1593          *
1594          * If the blocks in questions were delalloc blocks, set
1595          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1596          * variables are updated after the blocks have been allocated.
1597          */
1598         map.m_lblk = next;
1599         map.m_len = max_blocks;
1600         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1601         if (ext4_should_dioread_nolock(mpd->inode))
1602                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1603         if (mpd->b_state & (1 << BH_Delay))
1604                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1605
1606         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1607         if (blks < 0) {
1608                 struct super_block *sb = mpd->inode->i_sb;
1609
1610                 err = blks;
1611                 /*
1612                  * If get block returns EAGAIN or ENOSPC and there
1613                  * appears to be free blocks we will just let
1614                  * mpage_da_submit_io() unlock all of the pages.
1615                  */
1616                 if (err == -EAGAIN)
1617                         goto submit_io;
1618
1619                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1620                         mpd->retval = err;
1621                         goto submit_io;
1622                 }
1623
1624                 /*
1625                  * get block failure will cause us to loop in
1626                  * writepages, because a_ops->writepage won't be able
1627                  * to make progress. The page will be redirtied by
1628                  * writepage and writepages will again try to write
1629                  * the same.
1630                  */
1631                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1632                         ext4_msg(sb, KERN_CRIT,
1633                                  "delayed block allocation failed for inode %lu "
1634                                  "at logical offset %llu with max blocks %zd "
1635                                  "with error %d", mpd->inode->i_ino,
1636                                  (unsigned long long) next,
1637                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1638                         ext4_msg(sb, KERN_CRIT,
1639                                 "This should not happen!! Data will be lost\n");
1640                         if (err == -ENOSPC)
1641                                 ext4_print_free_blocks(mpd->inode);
1642                 }
1643                 /* invalidate all the pages */
1644                 ext4_da_block_invalidatepages(mpd);
1645
1646                 /* Mark this page range as having been completed */
1647                 mpd->io_done = 1;
1648                 return;
1649         }
1650         BUG_ON(blks == 0);
1651
1652         mapp = &map;
1653         if (map.m_flags & EXT4_MAP_NEW) {
1654                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1655                 int i;
1656
1657                 for (i = 0; i < map.m_len; i++)
1658                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1659
1660                 if (ext4_should_order_data(mpd->inode)) {
1661                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1662                         if (err) {
1663                                 /* Only if the journal is aborted */
1664                                 mpd->retval = err;
1665                                 goto submit_io;
1666                         }
1667                 }
1668         }
1669
1670         /*
1671          * Update on-disk size along with block allocation.
1672          */
1673         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1674         if (disksize > i_size_read(mpd->inode))
1675                 disksize = i_size_read(mpd->inode);
1676         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1677                 ext4_update_i_disksize(mpd->inode, disksize);
1678                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1679                 if (err)
1680                         ext4_error(mpd->inode->i_sb,
1681                                    "Failed to mark inode %lu dirty",
1682                                    mpd->inode->i_ino);
1683         }
1684
1685 submit_io:
1686         mpage_da_submit_io(mpd, mapp);
1687         mpd->io_done = 1;
1688 }
1689
1690 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1691                 (1 << BH_Delay) | (1 << BH_Unwritten))
1692
1693 /*
1694  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1695  *
1696  * @mpd->lbh - extent of blocks
1697  * @logical - logical number of the block in the file
1698  * @bh - bh of the block (used to access block's state)
1699  *
1700  * the function is used to collect contig. blocks in same state
1701  */
1702 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1703                                    sector_t logical, size_t b_size,
1704                                    unsigned long b_state)
1705 {
1706         sector_t next;
1707         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1708
1709         /*
1710          * XXX Don't go larger than mballoc is willing to allocate
1711          * This is a stopgap solution.  We eventually need to fold
1712          * mpage_da_submit_io() into this function and then call
1713          * ext4_map_blocks() multiple times in a loop
1714          */
1715         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1716                 goto flush_it;
1717
1718         /* check if thereserved journal credits might overflow */
1719         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1720                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1721                         /*
1722                          * With non-extent format we are limited by the journal
1723                          * credit available.  Total credit needed to insert
1724                          * nrblocks contiguous blocks is dependent on the
1725                          * nrblocks.  So limit nrblocks.
1726                          */
1727                         goto flush_it;
1728                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1729                                 EXT4_MAX_TRANS_DATA) {
1730                         /*
1731                          * Adding the new buffer_head would make it cross the
1732                          * allowed limit for which we have journal credit
1733                          * reserved. So limit the new bh->b_size
1734                          */
1735                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1736                                                 mpd->inode->i_blkbits;
1737                         /* we will do mpage_da_submit_io in the next loop */
1738                 }
1739         }
1740         /*
1741          * First block in the extent
1742          */
1743         if (mpd->b_size == 0) {
1744                 mpd->b_blocknr = logical;
1745                 mpd->b_size = b_size;
1746                 mpd->b_state = b_state & BH_FLAGS;
1747                 return;
1748         }
1749
1750         next = mpd->b_blocknr + nrblocks;
1751         /*
1752          * Can we merge the block to our big extent?
1753          */
1754         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1755                 mpd->b_size += b_size;
1756                 return;
1757         }
1758
1759 flush_it:
1760         /*
1761          * We couldn't merge the block to our extent, so we
1762          * need to flush current  extent and start new one
1763          */
1764         mpage_da_map_and_submit(mpd);
1765         return;
1766 }
1767
1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 {
1770         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 }
1772
1773 /*
1774  * This function is grabs code from the very beginning of
1775  * ext4_map_blocks, but assumes that the caller is from delayed write
1776  * time. This function looks up the requested blocks and sets the
1777  * buffer delay bit under the protection of i_data_sem.
1778  */
1779 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1780                               struct ext4_map_blocks *map,
1781                               struct buffer_head *bh)
1782 {
1783         int retval;
1784         sector_t invalid_block = ~((sector_t) 0xffff);
1785
1786         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1787                 invalid_block = ~0;
1788
1789         map->m_flags = 0;
1790         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1791                   "logical block %lu\n", inode->i_ino, map->m_len,
1792                   (unsigned long) map->m_lblk);
1793         /*
1794          * Try to see if we can get the block without requesting a new
1795          * file system block.
1796          */
1797         down_read((&EXT4_I(inode)->i_data_sem));
1798         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1799                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1800         else
1801                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1802
1803         if (retval == 0) {
1804                 /*
1805                  * XXX: __block_prepare_write() unmaps passed block,
1806                  * is it OK?
1807                  */
1808                 /* If the block was allocated from previously allocated cluster,
1809                  * then we dont need to reserve it again. */
1810                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1811                         retval = ext4_da_reserve_space(inode, iblock);
1812                         if (retval)
1813                                 /* not enough space to reserve */
1814                                 goto out_unlock;
1815                 }
1816
1817                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1818                  * and it should not appear on the bh->b_state.
1819                  */
1820                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821
1822                 map_bh(bh, inode->i_sb, invalid_block);
1823                 set_buffer_new(bh);
1824                 set_buffer_delay(bh);
1825         }
1826
1827 out_unlock:
1828         up_read((&EXT4_I(inode)->i_data_sem));
1829
1830         return retval;
1831 }
1832
1833 /*
1834  * This is a special get_blocks_t callback which is used by
1835  * ext4_da_write_begin().  It will either return mapped block or
1836  * reserve space for a single block.
1837  *
1838  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839  * We also have b_blocknr = -1 and b_bdev initialized properly
1840  *
1841  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843  * initialized properly.
1844  */
1845 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846                                   struct buffer_head *bh, int create)
1847 {
1848         struct ext4_map_blocks map;
1849         int ret = 0;
1850
1851         BUG_ON(create == 0);
1852         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854         map.m_lblk = iblock;
1855         map.m_len = 1;
1856
1857         /*
1858          * first, we need to know whether the block is allocated already
1859          * preallocated blocks are unmapped but should treated
1860          * the same as allocated blocks.
1861          */
1862         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863         if (ret <= 0)
1864                 return ret;
1865
1866         map_bh(bh, inode->i_sb, map.m_pblk);
1867         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868
1869         if (buffer_unwritten(bh)) {
1870                 /* A delayed write to unwritten bh should be marked
1871                  * new and mapped.  Mapped ensures that we don't do
1872                  * get_block multiple times when we write to the same
1873                  * offset and new ensures that we do proper zero out
1874                  * for partial write.
1875                  */
1876                 set_buffer_new(bh);
1877                 set_buffer_mapped(bh);
1878         }
1879         return 0;
1880 }
1881
1882 /*
1883  * This function is used as a standard get_block_t calback function
1884  * when there is no desire to allocate any blocks.  It is used as a
1885  * callback function for block_write_begin() and block_write_full_page().
1886  * These functions should only try to map a single block at a time.
1887  *
1888  * Since this function doesn't do block allocations even if the caller
1889  * requests it by passing in create=1, it is critically important that
1890  * any caller checks to make sure that any buffer heads are returned
1891  * by this function are either all already mapped or marked for
1892  * delayed allocation before calling  block_write_full_page().  Otherwise,
1893  * b_blocknr could be left unitialized, and the page write functions will
1894  * be taken by surprise.
1895  */
1896 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1897                                    struct buffer_head *bh_result, int create)
1898 {
1899         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1900         return _ext4_get_block(inode, iblock, bh_result, 0);
1901 }
1902
1903 static int bget_one(handle_t *handle, struct buffer_head *bh)
1904 {
1905         get_bh(bh);
1906         return 0;
1907 }
1908
1909 static int bput_one(handle_t *handle, struct buffer_head *bh)
1910 {
1911         put_bh(bh);
1912         return 0;
1913 }
1914
1915 static int __ext4_journalled_writepage(struct page *page,
1916                                        unsigned int len)
1917 {
1918         struct address_space *mapping = page->mapping;
1919         struct inode *inode = mapping->host;
1920         struct buffer_head *page_bufs;
1921         handle_t *handle = NULL;
1922         int ret = 0;
1923         int err;
1924
1925         ClearPageChecked(page);
1926         page_bufs = page_buffers(page);
1927         BUG_ON(!page_bufs);
1928         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1929         /* As soon as we unlock the page, it can go away, but we have
1930          * references to buffers so we are safe */
1931         unlock_page(page);
1932
1933         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1934         if (IS_ERR(handle)) {
1935                 ret = PTR_ERR(handle);
1936                 goto out;
1937         }
1938
1939         BUG_ON(!ext4_handle_valid(handle));
1940
1941         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1942                                 do_journal_get_write_access);
1943
1944         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1945                                 write_end_fn);
1946         if (ret == 0)
1947                 ret = err;
1948         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949         err = ext4_journal_stop(handle);
1950         if (!ret)
1951                 ret = err;
1952
1953         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1954         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1955 out:
1956         return ret;
1957 }
1958
1959 /*
1960  * Note that we don't need to start a transaction unless we're journaling data
1961  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1962  * need to file the inode to the transaction's list in ordered mode because if
1963  * we are writing back data added by write(), the inode is already there and if
1964  * we are writing back data modified via mmap(), no one guarantees in which
1965  * transaction the data will hit the disk. In case we are journaling data, we
1966  * cannot start transaction directly because transaction start ranks above page
1967  * lock so we have to do some magic.
1968  *
1969  * This function can get called via...
1970  *   - ext4_da_writepages after taking page lock (have journal handle)
1971  *   - journal_submit_inode_data_buffers (no journal handle)
1972  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1973  *   - grab_page_cache when doing write_begin (have journal handle)
1974  *
1975  * We don't do any block allocation in this function. If we have page with
1976  * multiple blocks we need to write those buffer_heads that are mapped. This
1977  * is important for mmaped based write. So if we do with blocksize 1K
1978  * truncate(f, 1024);
1979  * a = mmap(f, 0, 4096);
1980  * a[0] = 'a';
1981  * truncate(f, 4096);
1982  * we have in the page first buffer_head mapped via page_mkwrite call back
1983  * but other buffer_heads would be unmapped but dirty (dirty done via the
1984  * do_wp_page). So writepage should write the first block. If we modify
1985  * the mmap area beyond 1024 we will again get a page_fault and the
1986  * page_mkwrite callback will do the block allocation and mark the
1987  * buffer_heads mapped.
1988  *
1989  * We redirty the page if we have any buffer_heads that is either delay or
1990  * unwritten in the page.
1991  *
1992  * We can get recursively called as show below.
1993  *
1994  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1995  *              ext4_writepage()
1996  *
1997  * But since we don't do any block allocation we should not deadlock.
1998  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1999  */
2000 static int ext4_writepage(struct page *page,
2001                           struct writeback_control *wbc)
2002 {
2003         int ret = 0, commit_write = 0;
2004         loff_t size;
2005         unsigned int len;
2006         struct buffer_head *page_bufs = NULL;
2007         struct inode *inode = page->mapping->host;
2008
2009         trace_ext4_writepage(page);
2010         size = i_size_read(inode);
2011         if (page->index == size >> PAGE_CACHE_SHIFT)
2012                 len = size & ~PAGE_CACHE_MASK;
2013         else
2014                 len = PAGE_CACHE_SIZE;
2015
2016         /*
2017          * If the page does not have buffers (for whatever reason),
2018          * try to create them using __block_write_begin.  If this
2019          * fails, redirty the page and move on.
2020          */
2021         if (!page_has_buffers(page)) {
2022                 if (__block_write_begin(page, 0, len,
2023                                         noalloc_get_block_write)) {
2024                 redirty_page:
2025                         redirty_page_for_writepage(wbc, page);
2026                         unlock_page(page);
2027                         return 0;
2028                 }
2029                 commit_write = 1;
2030         }
2031         page_bufs = page_buffers(page);
2032         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2033                               ext4_bh_delay_or_unwritten)) {
2034                 /*
2035                  * We don't want to do block allocation, so redirty
2036                  * the page and return.  We may reach here when we do
2037                  * a journal commit via journal_submit_inode_data_buffers.
2038                  * We can also reach here via shrink_page_list but it
2039                  * should never be for direct reclaim so warn if that
2040                  * happens
2041                  */
2042                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2043                                                                 PF_MEMALLOC);
2044                 goto redirty_page;
2045         }
2046         if (commit_write)
2047                 /* now mark the buffer_heads as dirty and uptodate */
2048                 block_commit_write(page, 0, len);
2049
2050         if (PageChecked(page) && ext4_should_journal_data(inode))
2051                 /*
2052                  * It's mmapped pagecache.  Add buffers and journal it.  There
2053                  * doesn't seem much point in redirtying the page here.
2054                  */
2055                 return __ext4_journalled_writepage(page, len);
2056
2057         if (buffer_uninit(page_bufs)) {
2058                 ext4_set_bh_endio(page_bufs, inode);
2059                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2060                                             wbc, ext4_end_io_buffer_write);
2061         } else
2062                 ret = block_write_full_page(page, noalloc_get_block_write,
2063                                             wbc);
2064
2065         return ret;
2066 }
2067
2068 /*
2069  * This is called via ext4_da_writepages() to
2070  * calculate the total number of credits to reserve to fit
2071  * a single extent allocation into a single transaction,
2072  * ext4_da_writpeages() will loop calling this before
2073  * the block allocation.
2074  */
2075
2076 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2077 {
2078         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2079
2080         /*
2081          * With non-extent format the journal credit needed to
2082          * insert nrblocks contiguous block is dependent on
2083          * number of contiguous block. So we will limit
2084          * number of contiguous block to a sane value
2085          */
2086         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2087             (max_blocks > EXT4_MAX_TRANS_DATA))
2088                 max_blocks = EXT4_MAX_TRANS_DATA;
2089
2090         return ext4_chunk_trans_blocks(inode, max_blocks);
2091 }
2092
2093 /*
2094  * write_cache_pages_da - walk the list of dirty pages of the given
2095  * address space and accumulate pages that need writing, and call
2096  * mpage_da_map_and_submit to map a single contiguous memory region
2097  * and then write them.
2098  */
2099 static int write_cache_pages_da(struct address_space *mapping,
2100                                 struct writeback_control *wbc,
2101                                 struct mpage_da_data *mpd,
2102                                 pgoff_t *done_index)
2103 {
2104         struct buffer_head      *bh, *head;
2105         struct inode            *inode = mapping->host;
2106         struct pagevec          pvec;
2107         unsigned int            nr_pages;
2108         sector_t                logical;
2109         pgoff_t                 index, end;
2110         long                    nr_to_write = wbc->nr_to_write;
2111         int                     i, tag, ret = 0;
2112
2113         memset(mpd, 0, sizeof(struct mpage_da_data));
2114         mpd->wbc = wbc;
2115         mpd->inode = inode;
2116         pagevec_init(&pvec, 0);
2117         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2118         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2119
2120         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121                 tag = PAGECACHE_TAG_TOWRITE;
2122         else
2123                 tag = PAGECACHE_TAG_DIRTY;
2124
2125         *done_index = index;
2126         while (index <= end) {
2127                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2128                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2129                 if (nr_pages == 0)
2130                         return 0;
2131
2132                 for (i = 0; i < nr_pages; i++) {
2133                         struct page *page = pvec.pages[i];
2134
2135                         /*
2136                          * At this point, the page may be truncated or
2137                          * invalidated (changing page->mapping to NULL), or
2138                          * even swizzled back from swapper_space to tmpfs file
2139                          * mapping. However, page->index will not change
2140                          * because we have a reference on the page.
2141                          */
2142                         if (page->index > end)
2143                                 goto out;
2144
2145                         *done_index = page->index + 1;
2146
2147                         /*
2148                          * If we can't merge this page, and we have
2149                          * accumulated an contiguous region, write it
2150                          */
2151                         if ((mpd->next_page != page->index) &&
2152                             (mpd->next_page != mpd->first_page)) {
2153                                 mpage_da_map_and_submit(mpd);
2154                                 goto ret_extent_tail;
2155                         }
2156
2157                         lock_page(page);
2158
2159                         /*
2160                          * If the page is no longer dirty, or its
2161                          * mapping no longer corresponds to inode we
2162                          * are writing (which means it has been
2163                          * truncated or invalidated), or the page is
2164                          * already under writeback and we are not
2165                          * doing a data integrity writeback, skip the page
2166                          */
2167                         if (!PageDirty(page) ||
2168                             (PageWriteback(page) &&
2169                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2170                             unlikely(page->mapping != mapping)) {
2171                                 unlock_page(page);
2172                                 continue;
2173                         }
2174
2175                         wait_on_page_writeback(page);
2176                         BUG_ON(PageWriteback(page));
2177
2178                         if (mpd->next_page != page->index)
2179                                 mpd->first_page = page->index;
2180                         mpd->next_page = page->index + 1;
2181                         logical = (sector_t) page->index <<
2182                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2183
2184                         if (!page_has_buffers(page)) {
2185                                 mpage_add_bh_to_extent(mpd, logical,
2186                                                        PAGE_CACHE_SIZE,
2187                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2188                                 if (mpd->io_done)
2189                                         goto ret_extent_tail;
2190                         } else {
2191                                 /*
2192                                  * Page with regular buffer heads,
2193                                  * just add all dirty ones
2194                                  */
2195                                 head = page_buffers(page);
2196                                 bh = head;
2197                                 do {
2198                                         BUG_ON(buffer_locked(bh));
2199                                         /*
2200                                          * We need to try to allocate
2201                                          * unmapped blocks in the same page.
2202                                          * Otherwise we won't make progress
2203                                          * with the page in ext4_writepage
2204                                          */
2205                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2206                                                 mpage_add_bh_to_extent(mpd, logical,
2207                                                                        bh->b_size,
2208                                                                        bh->b_state);
2209                                                 if (mpd->io_done)
2210                                                         goto ret_extent_tail;
2211                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2212                                                 /*
2213                                                  * mapped dirty buffer. We need
2214                                                  * to update the b_state
2215                                                  * because we look at b_state
2216                                                  * in mpage_da_map_blocks.  We
2217                                                  * don't update b_size because
2218                                                  * if we find an unmapped
2219                                                  * buffer_head later we need to
2220                                                  * use the b_state flag of that
2221                                                  * buffer_head.
2222                                                  */
2223                                                 if (mpd->b_size == 0)
2224                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2225                                         }
2226                                         logical++;
2227                                 } while ((bh = bh->b_this_page) != head);
2228                         }
2229
2230                         if (nr_to_write > 0) {
2231                                 nr_to_write--;
2232                                 if (nr_to_write == 0 &&
2233                                     wbc->sync_mode == WB_SYNC_NONE)
2234                                         /*
2235                                          * We stop writing back only if we are
2236                                          * not doing integrity sync. In case of
2237                                          * integrity sync we have to keep going
2238                                          * because someone may be concurrently
2239                                          * dirtying pages, and we might have
2240                                          * synced a lot of newly appeared dirty
2241                                          * pages, but have not synced all of the
2242                                          * old dirty pages.
2243                                          */
2244                                         goto out;
2245                         }
2246                 }
2247                 pagevec_release(&pvec);
2248                 cond_resched();
2249         }
2250         return 0;
2251 ret_extent_tail:
2252         ret = MPAGE_DA_EXTENT_TAIL;
2253 out:
2254         pagevec_release(&pvec);
2255         cond_resched();
2256         return ret;
2257 }
2258
2259
2260 static int ext4_da_writepages(struct address_space *mapping,
2261                               struct writeback_control *wbc)
2262 {
2263         pgoff_t index;
2264         int range_whole = 0;
2265         handle_t *handle = NULL;
2266         struct mpage_da_data mpd;
2267         struct inode *inode = mapping->host;
2268         int pages_written = 0;
2269         unsigned int max_pages;
2270         int range_cyclic, cycled = 1, io_done = 0;
2271         int needed_blocks, ret = 0;
2272         long desired_nr_to_write, nr_to_writebump = 0;
2273         loff_t range_start = wbc->range_start;
2274         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2275         pgoff_t done_index = 0;
2276         pgoff_t end;
2277         struct blk_plug plug;
2278
2279         trace_ext4_da_writepages(inode, wbc);
2280
2281         /*
2282          * No pages to write? This is mainly a kludge to avoid starting
2283          * a transaction for special inodes like journal inode on last iput()
2284          * because that could violate lock ordering on umount
2285          */
2286         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2287                 return 0;
2288
2289         /*
2290          * If the filesystem has aborted, it is read-only, so return
2291          * right away instead of dumping stack traces later on that
2292          * will obscure the real source of the problem.  We test
2293          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2294          * the latter could be true if the filesystem is mounted
2295          * read-only, and in that case, ext4_da_writepages should
2296          * *never* be called, so if that ever happens, we would want
2297          * the stack trace.
2298          */
2299         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2300                 return -EROFS;
2301
2302         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2303                 range_whole = 1;
2304
2305         range_cyclic = wbc->range_cyclic;
2306         if (wbc->range_cyclic) {
2307                 index = mapping->writeback_index;
2308                 if (index)
2309                         cycled = 0;
2310                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2311                 wbc->range_end  = LLONG_MAX;
2312                 wbc->range_cyclic = 0;
2313                 end = -1;
2314         } else {
2315                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2316                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2317         }
2318
2319         /*
2320          * This works around two forms of stupidity.  The first is in
2321          * the writeback code, which caps the maximum number of pages
2322          * written to be 1024 pages.  This is wrong on multiple
2323          * levels; different architectues have a different page size,
2324          * which changes the maximum amount of data which gets
2325          * written.  Secondly, 4 megabytes is way too small.  XFS
2326          * forces this value to be 16 megabytes by multiplying
2327          * nr_to_write parameter by four, and then relies on its
2328          * allocator to allocate larger extents to make them
2329          * contiguous.  Unfortunately this brings us to the second
2330          * stupidity, which is that ext4's mballoc code only allocates
2331          * at most 2048 blocks.  So we force contiguous writes up to
2332          * the number of dirty blocks in the inode, or
2333          * sbi->max_writeback_mb_bump whichever is smaller.
2334          */
2335         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2336         if (!range_cyclic && range_whole) {
2337                 if (wbc->nr_to_write == LONG_MAX)
2338                         desired_nr_to_write = wbc->nr_to_write;
2339                 else
2340                         desired_nr_to_write = wbc->nr_to_write * 8;
2341         } else
2342                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2343                                                            max_pages);
2344         if (desired_nr_to_write > max_pages)
2345                 desired_nr_to_write = max_pages;
2346
2347         if (wbc->nr_to_write < desired_nr_to_write) {
2348                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2349                 wbc->nr_to_write = desired_nr_to_write;
2350         }
2351
2352 retry:
2353         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2354                 tag_pages_for_writeback(mapping, index, end);
2355
2356         blk_start_plug(&plug);
2357         while (!ret && wbc->nr_to_write > 0) {
2358
2359                 /*
2360                  * we  insert one extent at a time. So we need
2361                  * credit needed for single extent allocation.
2362                  * journalled mode is currently not supported
2363                  * by delalloc
2364                  */
2365                 BUG_ON(ext4_should_journal_data(inode));
2366                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367
2368                 /* start a new transaction*/
2369                 handle = ext4_journal_start(inode, needed_blocks);
2370                 if (IS_ERR(handle)) {
2371                         ret = PTR_ERR(handle);
2372                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2373                                "%ld pages, ino %lu; err %d", __func__,
2374                                 wbc->nr_to_write, inode->i_ino, ret);
2375                         blk_finish_plug(&plug);
2376                         goto out_writepages;
2377                 }
2378
2379                 /*
2380                  * Now call write_cache_pages_da() to find the next
2381                  * contiguous region of logical blocks that need
2382                  * blocks to be allocated by ext4 and submit them.
2383                  */
2384                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2385                 /*
2386                  * If we have a contiguous extent of pages and we
2387                  * haven't done the I/O yet, map the blocks and submit
2388                  * them for I/O.
2389                  */
2390                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2391                         mpage_da_map_and_submit(&mpd);
2392                         ret = MPAGE_DA_EXTENT_TAIL;
2393                 }
2394                 trace_ext4_da_write_pages(inode, &mpd);
2395                 wbc->nr_to_write -= mpd.pages_written;
2396
2397                 ext4_journal_stop(handle);
2398
2399                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2400                         /* commit the transaction which would
2401                          * free blocks released in the transaction
2402                          * and try again
2403                          */
2404                         jbd2_journal_force_commit_nested(sbi->s_journal);
2405                         ret = 0;
2406                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2407                         /*
2408                          * Got one extent now try with rest of the pages.
2409                          * If mpd.retval is set -EIO, journal is aborted.
2410                          * So we don't need to write any more.
2411                          */
2412                         pages_written += mpd.pages_written;
2413                         ret = mpd.retval;
2414                         io_done = 1;
2415                 } else if (wbc->nr_to_write)
2416                         /*
2417                          * There is no more writeout needed
2418                          * or we requested for a noblocking writeout
2419                          * and we found the device congested
2420                          */
2421                         break;
2422         }
2423         blk_finish_plug(&plug);
2424         if (!io_done && !cycled) {
2425                 cycled = 1;
2426                 index = 0;
2427                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2428                 wbc->range_end  = mapping->writeback_index - 1;
2429                 goto retry;
2430         }
2431
2432         /* Update index */
2433         wbc->range_cyclic = range_cyclic;
2434         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2435                 /*
2436                  * set the writeback_index so that range_cyclic
2437                  * mode will write it back later
2438                  */
2439                 mapping->writeback_index = done_index;
2440
2441 out_writepages:
2442         wbc->nr_to_write -= nr_to_writebump;
2443         wbc->range_start = range_start;
2444         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2445         return ret;
2446 }
2447
2448 #define FALL_BACK_TO_NONDELALLOC 1
2449 static int ext4_nonda_switch(struct super_block *sb)
2450 {
2451         s64 free_blocks, dirty_blocks;
2452         struct ext4_sb_info *sbi = EXT4_SB(sb);
2453
2454         /*
2455          * switch to non delalloc mode if we are running low
2456          * on free block. The free block accounting via percpu
2457          * counters can get slightly wrong with percpu_counter_batch getting
2458          * accumulated on each CPU without updating global counters
2459          * Delalloc need an accurate free block accounting. So switch
2460          * to non delalloc when we are near to error range.
2461          */
2462         free_blocks  = EXT4_C2B(sbi,
2463                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2464         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2465         /*
2466          * Start pushing delalloc when 1/2 of free blocks are dirty.
2467          */
2468         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2469             !writeback_in_progress(sb->s_bdi) &&
2470             down_read_trylock(&sb->s_umount)) {
2471                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2472                 up_read(&sb->s_umount);
2473         }
2474
2475         if (2 * free_blocks < 3 * dirty_blocks ||
2476                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2477                 /*
2478                  * free block count is less than 150% of dirty blocks
2479                  * or free blocks is less than watermark
2480                  */
2481                 return 1;
2482         }
2483         return 0;
2484 }
2485
2486 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2487                                loff_t pos, unsigned len, unsigned flags,
2488                                struct page **pagep, void **fsdata)
2489 {
2490         int ret, retries = 0;
2491         struct page *page;
2492         pgoff_t index;
2493         struct inode *inode = mapping->host;
2494         handle_t *handle;
2495
2496         index = pos >> PAGE_CACHE_SHIFT;
2497
2498         if (ext4_nonda_switch(inode->i_sb)) {
2499                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2500                 return ext4_write_begin(file, mapping, pos,
2501                                         len, flags, pagep, fsdata);
2502         }
2503         *fsdata = (void *)0;
2504         trace_ext4_da_write_begin(inode, pos, len, flags);
2505 retry:
2506         /*
2507          * With delayed allocation, we don't log the i_disksize update
2508          * if there is delayed block allocation. But we still need
2509          * to journalling the i_disksize update if writes to the end
2510          * of file which has an already mapped buffer.
2511          */
2512         handle = ext4_journal_start(inode, 1);
2513         if (IS_ERR(handle)) {
2514                 ret = PTR_ERR(handle);
2515                 goto out;
2516         }
2517         /* We cannot recurse into the filesystem as the transaction is already
2518          * started */
2519         flags |= AOP_FLAG_NOFS;
2520
2521         page = grab_cache_page_write_begin(mapping, index, flags);
2522         if (!page) {
2523                 ext4_journal_stop(handle);
2524                 ret = -ENOMEM;
2525                 goto out;
2526         }
2527         *pagep = page;
2528
2529         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2530         if (ret < 0) {
2531                 unlock_page(page);
2532                 ext4_journal_stop(handle);
2533                 page_cache_release(page);
2534                 /*
2535                  * block_write_begin may have instantiated a few blocks
2536                  * outside i_size.  Trim these off again. Don't need
2537                  * i_size_read because we hold i_mutex.
2538                  */
2539                 if (pos + len > inode->i_size)
2540                         ext4_truncate_failed_write(inode);
2541         }
2542
2543         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2544                 goto retry;
2545 out:
2546         return ret;
2547 }
2548
2549 /*
2550  * Check if we should update i_disksize
2551  * when write to the end of file but not require block allocation
2552  */
2553 static int ext4_da_should_update_i_disksize(struct page *page,
2554                                             unsigned long offset)
2555 {
2556         struct buffer_head *bh;
2557         struct inode *inode = page->mapping->host;
2558         unsigned int idx;
2559         int i;
2560
2561         bh = page_buffers(page);
2562         idx = offset >> inode->i_blkbits;
2563
2564         for (i = 0; i < idx; i++)
2565                 bh = bh->b_this_page;
2566
2567         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2568                 return 0;
2569         return 1;
2570 }
2571
2572 static int ext4_da_write_end(struct file *file,
2573                              struct address_space *mapping,
2574                              loff_t pos, unsigned len, unsigned copied,
2575                              struct page *page, void *fsdata)
2576 {
2577         struct inode *inode = mapping->host;
2578         int ret = 0, ret2;
2579         handle_t *handle = ext4_journal_current_handle();
2580         loff_t new_i_size;
2581         unsigned long start, end;
2582         int write_mode = (int)(unsigned long)fsdata;
2583
2584         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2585                 switch (ext4_inode_journal_mode(inode)) {
2586                 case EXT4_INODE_ORDERED_DATA_MODE:
2587                         return ext4_ordered_write_end(file, mapping, pos,
2588                                         len, copied, page, fsdata);
2589                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2590                         return ext4_writeback_write_end(file, mapping, pos,
2591                                         len, copied, page, fsdata);
2592                 default:
2593                         BUG();
2594                 }
2595         }
2596
2597         trace_ext4_da_write_end(inode, pos, len, copied);
2598         start = pos & (PAGE_CACHE_SIZE - 1);
2599         end = start + copied - 1;
2600
2601         /*
2602          * generic_write_end() will run mark_inode_dirty() if i_size
2603          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2604          * into that.
2605          */
2606
2607         new_i_size = pos + copied;
2608         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2609                 if (ext4_da_should_update_i_disksize(page, end)) {
2610                         down_write(&EXT4_I(inode)->i_data_sem);
2611                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2612                                 /*
2613                                  * Updating i_disksize when extending file
2614                                  * without needing block allocation
2615                                  */
2616                                 if (ext4_should_order_data(inode))
2617                                         ret = ext4_jbd2_file_inode(handle,
2618                                                                    inode);
2619
2620                                 EXT4_I(inode)->i_disksize = new_i_size;
2621                         }
2622                         up_write(&EXT4_I(inode)->i_data_sem);
2623                         /* We need to mark inode dirty even if
2624                          * new_i_size is less that inode->i_size
2625                          * bu greater than i_disksize.(hint delalloc)
2626                          */
2627                         ext4_mark_inode_dirty(handle, inode);
2628                 }
2629         }
2630         ret2 = generic_write_end(file, mapping, pos, len, copied,
2631                                                         page, fsdata);
2632         copied = ret2;
2633         if (ret2 < 0)
2634                 ret = ret2;
2635         ret2 = ext4_journal_stop(handle);
2636         if (!ret)
2637                 ret = ret2;
2638
2639         return ret ? ret : copied;
2640 }
2641
2642 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2643 {
2644         /*
2645          * Drop reserved blocks
2646          */
2647         BUG_ON(!PageLocked(page));
2648         if (!page_has_buffers(page))
2649                 goto out;
2650
2651         ext4_da_page_release_reservation(page, offset);
2652
2653 out:
2654         ext4_invalidatepage(page, offset);
2655
2656         return;
2657 }
2658
2659 /*
2660  * Force all delayed allocation blocks to be allocated for a given inode.
2661  */
2662 int ext4_alloc_da_blocks(struct inode *inode)
2663 {
2664         trace_ext4_alloc_da_blocks(inode);
2665
2666         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2667             !EXT4_I(inode)->i_reserved_meta_blocks)
2668                 return 0;
2669
2670         /*
2671          * We do something simple for now.  The filemap_flush() will
2672          * also start triggering a write of the data blocks, which is
2673          * not strictly speaking necessary (and for users of
2674          * laptop_mode, not even desirable).  However, to do otherwise
2675          * would require replicating code paths in:
2676          *
2677          * ext4_da_writepages() ->
2678          *    write_cache_pages() ---> (via passed in callback function)
2679          *        __mpage_da_writepage() -->
2680          *           mpage_add_bh_to_extent()
2681          *           mpage_da_map_blocks()
2682          *
2683          * The problem is that write_cache_pages(), located in
2684          * mm/page-writeback.c, marks pages clean in preparation for
2685          * doing I/O, which is not desirable if we're not planning on
2686          * doing I/O at all.
2687          *
2688          * We could call write_cache_pages(), and then redirty all of
2689          * the pages by calling redirty_page_for_writepage() but that
2690          * would be ugly in the extreme.  So instead we would need to
2691          * replicate parts of the code in the above functions,
2692          * simplifying them because we wouldn't actually intend to
2693          * write out the pages, but rather only collect contiguous
2694          * logical block extents, call the multi-block allocator, and
2695          * then update the buffer heads with the block allocations.
2696          *
2697          * For now, though, we'll cheat by calling filemap_flush(),
2698          * which will map the blocks, and start the I/O, but not
2699          * actually wait for the I/O to complete.
2700          */
2701         return filemap_flush(inode->i_mapping);
2702 }
2703
2704 /*
2705  * bmap() is special.  It gets used by applications such as lilo and by
2706  * the swapper to find the on-disk block of a specific piece of data.
2707  *
2708  * Naturally, this is dangerous if the block concerned is still in the
2709  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2710  * filesystem and enables swap, then they may get a nasty shock when the
2711  * data getting swapped to that swapfile suddenly gets overwritten by
2712  * the original zero's written out previously to the journal and
2713  * awaiting writeback in the kernel's buffer cache.
2714  *
2715  * So, if we see any bmap calls here on a modified, data-journaled file,
2716  * take extra steps to flush any blocks which might be in the cache.
2717  */
2718 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2719 {
2720         struct inode *inode = mapping->host;
2721         journal_t *journal;
2722         int err;
2723
2724         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2725                         test_opt(inode->i_sb, DELALLOC)) {
2726                 /*
2727                  * With delalloc we want to sync the file
2728                  * so that we can make sure we allocate
2729                  * blocks for file
2730                  */
2731                 filemap_write_and_wait(mapping);
2732         }
2733
2734         if (EXT4_JOURNAL(inode) &&
2735             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2736                 /*
2737                  * This is a REALLY heavyweight approach, but the use of
2738                  * bmap on dirty files is expected to be extremely rare:
2739                  * only if we run lilo or swapon on a freshly made file
2740                  * do we expect this to happen.
2741                  *
2742                  * (bmap requires CAP_SYS_RAWIO so this does not
2743                  * represent an unprivileged user DOS attack --- we'd be
2744                  * in trouble if mortal users could trigger this path at
2745                  * will.)
2746                  *
2747                  * NB. EXT4_STATE_JDATA is not set on files other than
2748                  * regular files.  If somebody wants to bmap a directory
2749                  * or symlink and gets confused because the buffer
2750                  * hasn't yet been flushed to disk, they deserve
2751                  * everything they get.
2752                  */
2753
2754                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2755                 journal = EXT4_JOURNAL(inode);
2756                 jbd2_journal_lock_updates(journal);
2757                 err = jbd2_journal_flush(journal);
2758                 jbd2_journal_unlock_updates(journal);
2759
2760                 if (err)
2761                         return 0;
2762         }
2763
2764         return generic_block_bmap(mapping, block, ext4_get_block);
2765 }
2766
2767 static int ext4_readpage(struct file *file, struct page *page)
2768 {
2769         trace_ext4_readpage(page);
2770         return mpage_readpage(page, ext4_get_block);
2771 }
2772
2773 static int
2774 ext4_readpages(struct file *file, struct address_space *mapping,
2775                 struct list_head *pages, unsigned nr_pages)
2776 {
2777         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2778 }
2779
2780 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2781 {
2782         struct buffer_head *head, *bh;
2783         unsigned int curr_off = 0;
2784
2785         if (!page_has_buffers(page))
2786                 return;
2787         head = bh = page_buffers(page);
2788         do {
2789                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2790                                         && bh->b_private) {
2791                         ext4_free_io_end(bh->b_private);
2792                         bh->b_private = NULL;
2793                         bh->b_end_io = NULL;
2794                 }
2795                 curr_off = curr_off + bh->b_size;
2796                 bh = bh->b_this_page;
2797         } while (bh != head);
2798 }
2799
2800 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2801 {
2802         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803
2804         trace_ext4_invalidatepage(page, offset);
2805
2806         /*
2807          * free any io_end structure allocated for buffers to be discarded
2808          */
2809         if (ext4_should_dioread_nolock(page->mapping->host))
2810                 ext4_invalidatepage_free_endio(page, offset);
2811         /*
2812          * If it's a full truncate we just forget about the pending dirtying
2813          */
2814         if (offset == 0)
2815                 ClearPageChecked(page);
2816
2817         if (journal)
2818                 jbd2_journal_invalidatepage(journal, page, offset);
2819         else
2820                 block_invalidatepage(page, offset);
2821 }
2822
2823 static int ext4_releasepage(struct page *page, gfp_t wait)
2824 {
2825         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2826
2827         trace_ext4_releasepage(page);
2828
2829         WARN_ON(PageChecked(page));
2830         if (!page_has_buffers(page))
2831                 return 0;
2832         if (journal)
2833                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2834         else
2835                 return try_to_free_buffers(page);
2836 }
2837
2838 /*
2839  * ext4_get_block used when preparing for a DIO write or buffer write.
2840  * We allocate an uinitialized extent if blocks haven't been allocated.
2841  * The extent will be converted to initialized after the IO is complete.
2842  */
2843 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2844                    struct buffer_head *bh_result, int create)
2845 {
2846         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2847                    inode->i_ino, create);
2848         return _ext4_get_block(inode, iblock, bh_result,
2849                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2850 }
2851
2852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2853                    struct buffer_head *bh_result, int flags)
2854 {
2855         handle_t *handle = ext4_journal_current_handle();
2856         struct ext4_map_blocks map;
2857         int ret = 0;
2858
2859         ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2860                    inode->i_ino, flags);
2861
2862         flags = EXT4_GET_BLOCKS_NO_LOCK;
2863
2864         map.m_lblk = iblock;
2865         map.m_len = bh_result->b_size >> inode->i_blkbits;
2866
2867         ret = ext4_map_blocks(handle, inode, &map, flags);
2868         if (ret > 0) {
2869                 map_bh(bh_result, inode->i_sb, map.m_pblk);
2870                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2871                                         map.m_flags;
2872                 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2873                 ret = 0;
2874         }
2875         return ret;
2876 }
2877
2878 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2879                             ssize_t size, void *private, int ret,
2880                             bool is_async)
2881 {
2882         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2883         ext4_io_end_t *io_end = iocb->private;
2884
2885         /* if not async direct IO or dio with 0 bytes write, just return */
2886         if (!io_end || !size)
2887                 goto out;
2888
2889         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2890                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2891                   iocb->private, io_end->inode->i_ino, iocb, offset,
2892                   size);
2893
2894         iocb->private = NULL;
2895
2896         /* if not aio dio with unwritten extents, just free io and return */
2897         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2898                 ext4_free_io_end(io_end);
2899 out:
2900                 if (is_async)
2901                         aio_complete(iocb, ret, 0);
2902                 inode_dio_done(inode);
2903                 return;
2904         }
2905
2906         io_end->offset = offset;
2907         io_end->size = size;
2908         if (is_async) {
2909                 io_end->iocb = iocb;
2910                 io_end->result = ret;
2911         }
2912
2913         ext4_add_complete_io(io_end);
2914 }
2915
2916 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2917 {
2918         ext4_io_end_t *io_end = bh->b_private;
2919         struct inode *inode;
2920
2921         if (!test_clear_buffer_uninit(bh) || !io_end)
2922                 goto out;
2923
2924         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2925                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2926                          "sb umounted, discard end_io request for inode %lu",
2927                          io_end->inode->i_ino);
2928                 ext4_free_io_end(io_end);
2929                 goto out;
2930         }
2931
2932         /*
2933          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2934          * but being more careful is always safe for the future change.
2935          */
2936         inode = io_end->inode;
2937         ext4_set_io_unwritten_flag(inode, io_end);
2938         ext4_add_complete_io(io_end);
2939 out:
2940         bh->b_private = NULL;
2941         bh->b_end_io = NULL;
2942         clear_buffer_uninit(bh);
2943         end_buffer_async_write(bh, uptodate);
2944 }
2945
2946 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2947 {
2948         ext4_io_end_t *io_end;
2949         struct page *page = bh->b_page;
2950         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2951         size_t size = bh->b_size;
2952
2953 retry:
2954         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2955         if (!io_end) {
2956                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2957                 schedule();
2958                 goto retry;
2959         }
2960         io_end->offset = offset;
2961         io_end->size = size;
2962         /*
2963          * We need to hold a reference to the page to make sure it
2964          * doesn't get evicted before ext4_end_io_work() has a chance
2965          * to convert the extent from written to unwritten.
2966          */
2967         io_end->page = page;
2968         get_page(io_end->page);
2969
2970         bh->b_private = io_end;
2971         bh->b_end_io = ext4_end_io_buffer_write;
2972         return 0;
2973 }
2974
2975 /*
2976  * For ext4 extent files, ext4 will do direct-io write to holes,
2977  * preallocated extents, and those write extend the file, no need to
2978  * fall back to buffered IO.
2979  *
2980  * For holes, we fallocate those blocks, mark them as uninitialized
2981  * If those blocks were preallocated, we mark sure they are splited, but
2982  * still keep the range to write as uninitialized.
2983  *
2984  * The unwrritten extents will be converted to written when DIO is completed.
2985  * For async direct IO, since the IO may still pending when return, we
2986  * set up an end_io call back function, which will do the conversion
2987  * when async direct IO completed.
2988  *
2989  * If the O_DIRECT write will extend the file then add this inode to the
2990  * orphan list.  So recovery will truncate it back to the original size
2991  * if the machine crashes during the write.
2992  *
2993  */
2994 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2995                               const struct iovec *iov, loff_t offset,
2996                               unsigned long nr_segs)
2997 {
2998         struct file *file = iocb->ki_filp;
2999         struct inode *inode = file->f_mapping->host;
3000         ssize_t ret;
3001         size_t count = iov_length(iov, nr_segs);
3002
3003         loff_t final_size = offset + count;
3004         if (rw == WRITE && final_size <= inode->i_size) {
3005                 int overwrite = 0;
3006
3007                 BUG_ON(iocb->private == NULL);
3008
3009                 /* If we do a overwrite dio, i_mutex locking can be released */
3010                 overwrite = *((int *)iocb->private);
3011
3012                 if (overwrite) {
3013                         atomic_inc(&inode->i_dio_count);
3014                         down_read(&EXT4_I(inode)->i_data_sem);
3015                         mutex_unlock(&inode->i_mutex);
3016                 }
3017
3018                 /*
3019                  * We could direct write to holes and fallocate.
3020                  *
3021                  * Allocated blocks to fill the hole are marked as uninitialized
3022                  * to prevent parallel buffered read to expose the stale data
3023                  * before DIO complete the data IO.
3024                  *
3025                  * As to previously fallocated extents, ext4 get_block
3026                  * will just simply mark the buffer mapped but still
3027                  * keep the extents uninitialized.
3028                  *
3029                  * for non AIO case, we will convert those unwritten extents
3030                  * to written after return back from blockdev_direct_IO.
3031                  *
3032                  * for async DIO, the conversion needs to be defered when
3033                  * the IO is completed. The ext4 end_io callback function
3034                  * will be called to take care of the conversion work.
3035                  * Here for async case, we allocate an io_end structure to
3036                  * hook to the iocb.
3037                  */
3038                 iocb->private = NULL;
3039                 ext4_inode_aio_set(inode, NULL);
3040                 if (!is_sync_kiocb(iocb)) {
3041                         ext4_io_end_t *io_end =
3042                                 ext4_init_io_end(inode, GFP_NOFS);
3043                         if (!io_end) {
3044                                 ret = -ENOMEM;
3045                                 goto retake_lock;
3046                         }
3047                         io_end->flag |= EXT4_IO_END_DIRECT;
3048                         iocb->private = io_end;
3049                         /*
3050                          * we save the io structure for current async
3051                          * direct IO, so that later ext4_map_blocks()
3052                          * could flag the io structure whether there
3053                          * is a unwritten extents needs to be converted
3054                          * when IO is completed.
3055                          */
3056                         ext4_inode_aio_set(inode, io_end);
3057                 }
3058
3059                 if (overwrite)
3060                         ret = __blockdev_direct_IO(rw, iocb, inode,
3061                                                  inode->i_sb->s_bdev, iov,
3062                                                  offset, nr_segs,
3063                                                  ext4_get_block_write_nolock,
3064                                                  ext4_end_io_dio,
3065                                                  NULL,
3066                                                  0);
3067                 else
3068                         ret = __blockdev_direct_IO(rw, iocb, inode,
3069                                                  inode->i_sb->s_bdev, iov,
3070                                                  offset, nr_segs,
3071                                                  ext4_get_block_write,
3072                                                  ext4_end_io_dio,
3073                                                  NULL,
3074                                                  DIO_LOCKING);
3075                 if (iocb->private)
3076                         ext4_inode_aio_set(inode, NULL);
3077                 /*
3078                  * The io_end structure takes a reference to the inode,
3079                  * that structure needs to be destroyed and the
3080                  * reference to the inode need to be dropped, when IO is
3081                  * complete, even with 0 byte write, or failed.
3082                  *
3083                  * In the successful AIO DIO case, the io_end structure will be
3084                  * desctroyed and the reference to the inode will be dropped
3085                  * after the end_io call back function is called.
3086                  *
3087                  * In the case there is 0 byte write, or error case, since
3088                  * VFS direct IO won't invoke the end_io call back function,
3089                  * we need to free the end_io structure here.
3090                  */
3091                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3092                         ext4_free_io_end(iocb->private);
3093                         iocb->private = NULL;
3094                 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3095                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3096                         int err;
3097                         /*
3098                          * for non AIO case, since the IO is already
3099                          * completed, we could do the conversion right here
3100                          */
3101                         err = ext4_convert_unwritten_extents(inode,
3102                                                              offset, ret);
3103                         if (err < 0)
3104                                 ret = err;
3105                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3106                 }
3107
3108         retake_lock:
3109                 /* take i_mutex locking again if we do a ovewrite dio */
3110                 if (overwrite) {
3111                         inode_dio_done(inode);
3112                         up_read(&EXT4_I(inode)->i_data_sem);
3113                         mutex_lock(&inode->i_mutex);
3114                 }
3115
3116                 return ret;
3117         }
3118
3119         /* for write the the end of file case, we fall back to old way */
3120         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3121 }
3122
3123 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3124                               const struct iovec *iov, loff_t offset,
3125                               unsigned long nr_segs)
3126 {
3127         struct file *file = iocb->ki_filp;
3128         struct inode *inode = file->f_mapping->host;
3129         ssize_t ret;
3130
3131         /*
3132          * If we are doing data journalling we don't support O_DIRECT
3133          */
3134         if (ext4_should_journal_data(inode))
3135                 return 0;
3136
3137         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3138         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3139                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3140         else
3141                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3142         trace_ext4_direct_IO_exit(inode, offset,
3143                                 iov_length(iov, nr_segs), rw, ret);
3144         return ret;
3145 }
3146
3147 /*
3148  * Pages can be marked dirty completely asynchronously from ext4's journalling
3149  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3150  * much here because ->set_page_dirty is called under VFS locks.  The page is
3151  * not necessarily locked.
3152  *
3153  * We cannot just dirty the page and leave attached buffers clean, because the
3154  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3155  * or jbddirty because all the journalling code will explode.
3156  *
3157  * So what we do is to mark the page "pending dirty" and next time writepage
3158  * is called, propagate that into the buffers appropriately.
3159  */
3160 static int ext4_journalled_set_page_dirty(struct page *page)
3161 {
3162         SetPageChecked(page);
3163         return __set_page_dirty_nobuffers(page);
3164 }
3165
3166 static const struct address_space_operations ext4_ordered_aops = {
3167         .readpage               = ext4_readpage,
3168         .readpages              = ext4_readpages,
3169         .writepage              = ext4_writepage,
3170         .write_begin            = ext4_write_begin,
3171         .write_end              = ext4_ordered_write_end,
3172         .bmap                   = ext4_bmap,
3173         .invalidatepage         = ext4_invalidatepage,
3174         .releasepage            = ext4_releasepage,
3175         .direct_IO              = ext4_direct_IO,
3176         .migratepage            = buffer_migrate_page,
3177         .is_partially_uptodate  = block_is_partially_uptodate,
3178         .error_remove_page      = generic_error_remove_page,
3179 };
3180
3181 static const struct address_space_operations ext4_writeback_aops = {
3182         .readpage               = ext4_readpage,
3183         .readpages              = ext4_readpages,
3184         .writepage              = ext4_writepage,
3185         .write_begin            = ext4_write_begin,
3186         .write_end              = ext4_writeback_write_end,
3187         .bmap                   = ext4_bmap,
3188         .invalidatepage         = ext4_invalidatepage,
3189         .releasepage            = ext4_releasepage,
3190         .direct_IO              = ext4_direct_IO,
3191         .migratepage            = buffer_migrate_page,
3192         .is_partially_uptodate  = block_is_partially_uptodate,
3193         .error_remove_page      = generic_error_remove_page,
3194 };
3195
3196 static const struct address_space_operations ext4_journalled_aops = {
3197         .readpage               = ext4_readpage,
3198         .readpages              = ext4_readpages,
3199         .writepage              = ext4_writepage,
3200         .write_begin            = ext4_write_begin,
3201         .write_end              = ext4_journalled_write_end,
3202         .set_page_dirty         = ext4_journalled_set_page_dirty,
3203         .bmap                   = ext4_bmap,
3204         .invalidatepage         = ext4_invalidatepage,
3205         .releasepage            = ext4_releasepage,
3206         .direct_IO              = ext4_direct_IO,
3207         .is_partially_uptodate  = block_is_partially_uptodate,
3208         .error_remove_page      = generic_error_remove_page,
3209 };
3210
3211 static const struct address_space_operations ext4_da_aops = {
3212         .readpage               = ext4_readpage,
3213         .readpages              = ext4_readpages,
3214         .writepage              = ext4_writepage,
3215         .writepages             = ext4_da_writepages,
3216         .write_begin            = ext4_da_write_begin,
3217         .write_end              = ext4_da_write_end,
3218         .bmap                   = ext4_bmap,
3219         .invalidatepage         = ext4_da_invalidatepage,
3220         .releasepage            = ext4_releasepage,
3221         .direct_IO              = ext4_direct_IO,
3222         .migratepage            = buffer_migrate_page,
3223         .is_partially_uptodate  = block_is_partially_uptodate,
3224         .error_remove_page      = generic_error_remove_page,
3225 };
3226
3227 void ext4_set_aops(struct inode *inode)
3228 {
3229         switch (ext4_inode_journal_mode(inode)) {
3230         case EXT4_INODE_ORDERED_DATA_MODE:
3231                 if (test_opt(inode->i_sb, DELALLOC))
3232                         inode->i_mapping->a_ops = &ext4_da_aops;
3233                 else
3234                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3235                 break;
3236         case EXT4_INODE_WRITEBACK_DATA_MODE:
3237                 if (test_opt(inode->i_sb, DELALLOC))
3238                         inode->i_mapping->a_ops = &ext4_da_aops;
3239                 else
3240                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3241                 break;
3242         case EXT4_INODE_JOURNAL_DATA_MODE:
3243                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3244                 break;
3245         default:
3246                 BUG();
3247         }
3248 }
3249
3250
3251 /*
3252  * ext4_discard_partial_page_buffers()
3253  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3254  * This function finds and locks the page containing the offset
3255  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3256  * Calling functions that already have the page locked should call
3257  * ext4_discard_partial_page_buffers_no_lock directly.
3258  */
3259 int ext4_discard_partial_page_buffers(handle_t *handle,
3260                 struct address_space *mapping, loff_t from,
3261                 loff_t length, int flags)
3262 {
3263         struct inode *inode = mapping->host;
3264         struct page *page;
3265         int err = 0;
3266
3267         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3268                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3269         if (!page)
3270                 return -ENOMEM;
3271
3272         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3273                 from, length, flags);
3274
3275         unlock_page(page);
3276         page_cache_release(page);
3277         return err;
3278 }
3279
3280 /*
3281  * ext4_discard_partial_page_buffers_no_lock()
3282  * Zeros a page range of length 'length' starting from offset 'from'.
3283  * Buffer heads that correspond to the block aligned regions of the
3284  * zeroed range will be unmapped.  Unblock aligned regions
3285  * will have the corresponding buffer head mapped if needed so that
3286  * that region of the page can be updated with the partial zero out.
3287  *
3288  * This function assumes that the page has already been  locked.  The
3289  * The range to be discarded must be contained with in the given page.
3290  * If the specified range exceeds the end of the page it will be shortened
3291  * to the end of the page that corresponds to 'from'.  This function is
3292  * appropriate for updating a page and it buffer heads to be unmapped and
3293  * zeroed for blocks that have been either released, or are going to be
3294  * released.
3295  *
3296  * handle: The journal handle
3297  * inode:  The files inode
3298  * page:   A locked page that contains the offset "from"
3299  * from:   The starting byte offset (from the beginning of the file)
3300  *         to begin discarding
3301  * len:    The length of bytes to discard
3302  * flags:  Optional flags that may be used:
3303  *
3304  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3305  *         Only zero the regions of the page whose buffer heads
3306  *         have already been unmapped.  This flag is appropriate
3307  *         for updating the contents of a page whose blocks may
3308  *         have already been released, and we only want to zero
3309  *         out the regions that correspond to those released blocks.
3310  *
3311  * Returns zero on success or negative on failure.
3312  */
3313 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3314                 struct inode *inode, struct page *page, loff_t from,
3315                 loff_t length, int flags)
3316 {
3317         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3318         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3319         unsigned int blocksize, max, pos;
3320         ext4_lblk_t iblock;
3321         struct buffer_head *bh;
3322         int err = 0;
3323
3324         blocksize = inode->i_sb->s_blocksize;
3325         max = PAGE_CACHE_SIZE - offset;
3326
3327         if (index != page->index)
3328                 return -EINVAL;
3329
3330         /*
3331          * correct length if it does not fall between
3332          * 'from' and the end of the page
3333          */
3334         if (length > max || length < 0)
3335                 length = max;
3336
3337         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3338
3339         if (!page_has_buffers(page))
3340                 create_empty_buffers(page, blocksize, 0);
3341
3342         /* Find the buffer that contains "offset" */
3343         bh = page_buffers(page);
3344         pos = blocksize;
3345         while (offset >= pos) {
3346                 bh = bh->b_this_page;
3347                 iblock++;
3348                 pos += blocksize;
3349         }
3350
3351         pos = offset;
3352         while (pos < offset + length) {
3353                 unsigned int end_of_block, range_to_discard;
3354
3355                 err = 0;
3356
3357                 /* The length of space left to zero and unmap */
3358                 range_to_discard = offset + length - pos;
3359
3360                 /* The length of space until the end of the block */
3361                 end_of_block = blocksize - (pos & (blocksize-1));
3362
3363                 /*
3364                  * Do not unmap or zero past end of block
3365                  * for this buffer head
3366                  */
3367                 if (range_to_discard > end_of_block)
3368                         range_to_discard = end_of_block;
3369
3370
3371                 /*
3372                  * Skip this buffer head if we are only zeroing unampped
3373                  * regions of the page
3374                  */
3375                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3376                         buffer_mapped(bh))
3377                                 goto next;
3378
3379                 /* If the range is block aligned, unmap */
3380                 if (range_to_discard == blocksize) {
3381                         clear_buffer_dirty(bh);
3382                         bh->b_bdev = NULL;
3383                         clear_buffer_mapped(bh);
3384                         clear_buffer_req(bh);
3385                         clear_buffer_new(bh);
3386                         clear_buffer_delay(bh);
3387                         clear_buffer_unwritten(bh);
3388                         clear_buffer_uptodate(bh);
3389                         zero_user(page, pos, range_to_discard);
3390                         BUFFER_TRACE(bh, "Buffer discarded");
3391                         goto next;
3392                 }
3393
3394                 /*
3395                  * If this block is not completely contained in the range
3396                  * to be discarded, then it is not going to be released. Because
3397                  * we need to keep this block, we need to make sure this part
3398                  * of the page is uptodate before we modify it by writeing
3399                  * partial zeros on it.
3400                  */
3401                 if (!buffer_mapped(bh)) {
3402                         /*
3403                          * Buffer head must be mapped before we can read
3404                          * from the block
3405                          */
3406                         BUFFER_TRACE(bh, "unmapped");
3407                         ext4_get_block(inode, iblock, bh, 0);
3408                         /* unmapped? It's a hole - nothing to do */
3409                         if (!buffer_mapped(bh)) {
3410                                 BUFFER_TRACE(bh, "still unmapped");
3411                                 goto next;
3412                         }
3413                 }
3414
3415                 /* Ok, it's mapped. Make sure it's up-to-date */
3416                 if (PageUptodate(page))
3417                         set_buffer_uptodate(bh);
3418
3419                 if (!buffer_uptodate(bh)) {
3420                         err = -EIO;
3421                         ll_rw_block(READ, 1, &bh);
3422                         wait_on_buffer(bh);
3423                         /* Uhhuh. Read error. Complain and punt.*/
3424                         if (!buffer_uptodate(bh))
3425                                 goto next;
3426                 }
3427
3428                 if (ext4_should_journal_data(inode)) {
3429                         BUFFER_TRACE(bh, "get write access");
3430                         err = ext4_journal_get_write_access(handle, bh);
3431                         if (err)
3432                                 goto next;
3433                 }
3434
3435                 zero_user(page, pos, range_to_discard);
3436
3437                 err = 0;
3438                 if (ext4_should_journal_data(inode)) {
3439                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3440                 } else
3441                         mark_buffer_dirty(bh);
3442
3443                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3444 next:
3445                 bh = bh->b_this_page;
3446                 iblock++;
3447                 pos += range_to_discard;
3448         }
3449
3450         return err;
3451 }
3452
3453 int ext4_can_truncate(struct inode *inode)
3454 {
3455         if (S_ISREG(inode->i_mode))
3456                 return 1;
3457         if (S_ISDIR(inode->i_mode))
3458                 return 1;
3459         if (S_ISLNK(inode->i_mode))
3460                 return !ext4_inode_is_fast_symlink(inode);
3461         return 0;
3462 }
3463
3464 /*
3465  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3466  * associated with the given offset and length
3467  *
3468  * @inode:  File inode
3469  * @offset: The offset where the hole will begin
3470  * @len:    The length of the hole
3471  *
3472  * Returns: 0 on success or negative on failure
3473  */
3474
3475 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3476 {
3477         struct inode *inode = file->f_path.dentry->d_inode;
3478         if (!S_ISREG(inode->i_mode))
3479                 return -EOPNOTSUPP;
3480
3481         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3482                 /* TODO: Add support for non extent hole punching */
3483                 return -EOPNOTSUPP;
3484         }
3485
3486         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3487                 /* TODO: Add support for bigalloc file systems */
3488                 return -EOPNOTSUPP;
3489         }
3490
3491         return ext4_ext_punch_hole(file, offset, length);
3492 }
3493
3494 /*
3495  * ext4_truncate()
3496  *
3497  * We block out ext4_get_block() block instantiations across the entire
3498  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3499  * simultaneously on behalf of the same inode.
3500  *
3501  * As we work through the truncate and commit bits of it to the journal there
3502  * is one core, guiding principle: the file's tree must always be consistent on
3503  * disk.  We must be able to restart the truncate after a crash.
3504  *
3505  * The file's tree may be transiently inconsistent in memory (although it
3506  * probably isn't), but whenever we close off and commit a journal transaction,
3507  * the contents of (the filesystem + the journal) must be consistent and
3508  * restartable.  It's pretty simple, really: bottom up, right to left (although
3509  * left-to-right works OK too).
3510  *
3511  * Note that at recovery time, journal replay occurs *before* the restart of
3512  * truncate against the orphan inode list.
3513  *
3514  * The committed inode has the new, desired i_size (which is the same as
3515  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3516  * that this inode's truncate did not complete and it will again call
3517  * ext4_truncate() to have another go.  So there will be instantiated blocks
3518  * to the right of the truncation point in a crashed ext4 filesystem.  But
3519  * that's fine - as long as they are linked from the inode, the post-crash
3520  * ext4_truncate() run will find them and release them.
3521  */
3522 void ext4_truncate(struct inode *inode)
3523 {
3524         trace_ext4_truncate_enter(inode);
3525
3526         if (!ext4_can_truncate(inode))
3527                 return;
3528
3529         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3530
3531         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3532                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3533
3534         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3535                 ext4_ext_truncate(inode);
3536         else
3537                 ext4_ind_truncate(inode);
3538
3539         trace_ext4_truncate_exit(inode);
3540 }
3541
3542 /*
3543  * ext4_get_inode_loc returns with an extra refcount against the inode's
3544  * underlying buffer_head on success. If 'in_mem' is true, we have all
3545  * data in memory that is needed to recreate the on-disk version of this
3546  * inode.
3547  */
3548 static int __ext4_get_inode_loc(struct inode *inode,
3549                                 struct ext4_iloc *iloc, int in_mem)
3550 {
3551         struct ext4_group_desc  *gdp;
3552         struct buffer_head      *bh;
3553         struct super_block      *sb = inode->i_sb;
3554         ext4_fsblk_t            block;
3555         int                     inodes_per_block, inode_offset;
3556
3557         iloc->bh = NULL;
3558         if (!ext4_valid_inum(sb, inode->i_ino))
3559                 return -EIO;
3560
3561         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3562         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3563         if (!gdp)
3564                 return -EIO;
3565
3566         /*
3567          * Figure out the offset within the block group inode table
3568          */
3569         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3570         inode_offset = ((inode->i_ino - 1) %
3571                         EXT4_INODES_PER_GROUP(sb));
3572         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3573         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3574
3575         bh = sb_getblk(sb, block);
3576         if (!bh) {
3577                 EXT4_ERROR_INODE_BLOCK(inode, block,
3578                                        "unable to read itable block");
3579                 return -EIO;
3580         }
3581         if (!buffer_uptodate(bh)) {
3582                 lock_buffer(bh);
3583
3584                 /*
3585                  * If the buffer has the write error flag, we have failed
3586                  * to write out another inode in the same block.  In this
3587                  * case, we don't have to read the block because we may
3588                  * read the old inode data successfully.
3589                  */
3590                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3591                         set_buffer_uptodate(bh);
3592
3593                 if (buffer_uptodate(bh)) {
3594                         /* someone brought it uptodate while we waited */
3595                         unlock_buffer(bh);
3596                         goto has_buffer;
3597                 }
3598
3599                 /*
3600                  * If we have all information of the inode in memory and this
3601                  * is the only valid inode in the block, we need not read the
3602                  * block.
3603                  */
3604                 if (in_mem) {
3605                         struct buffer_head *bitmap_bh;
3606                         int i, start;
3607
3608                         start = inode_offset & ~(inodes_per_block - 1);
3609
3610                         /* Is the inode bitmap in cache? */
3611                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3612                         if (!bitmap_bh)
3613                                 goto make_io;
3614
3615                         /*
3616                          * If the inode bitmap isn't in cache then the
3617                          * optimisation may end up performing two reads instead
3618                          * of one, so skip it.
3619                          */
3620                         if (!buffer_uptodate(bitmap_bh)) {
3621                                 brelse(bitmap_bh);
3622                                 goto make_io;
3623                         }
3624                         for (i = start; i < start + inodes_per_block; i++) {
3625                                 if (i == inode_offset)
3626                                         continue;
3627                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3628                                         break;
3629                         }
3630                         brelse(bitmap_bh);
3631                         if (i == start + inodes_per_block) {
3632                                 /* all other inodes are free, so skip I/O */
3633                                 memset(bh->b_data, 0, bh->b_size);
3634                                 set_buffer_uptodate(bh);
3635                                 unlock_buffer(bh);
3636                                 goto has_buffer;
3637                         }
3638                 }
3639
3640 make_io:
3641                 /*
3642                  * If we need to do any I/O, try to pre-readahead extra
3643                  * blocks from the inode table.
3644                  */
3645                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3646                         ext4_fsblk_t b, end, table;
3647                         unsigned num;
3648
3649                         table = ext4_inode_table(sb, gdp);
3650                         /* s_inode_readahead_blks is always a power of 2 */
3651                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3652                         if (table > b)
3653                                 b = table;
3654                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3655                         num = EXT4_INODES_PER_GROUP(sb);
3656                         if (ext4_has_group_desc_csum(sb))
3657                                 num -= ext4_itable_unused_count(sb, gdp);
3658                         table += num / inodes_per_block;
3659                         if (end > table)
3660                                 end = table;
3661                         while (b <= end)
3662                                 sb_breadahead(sb, b++);
3663                 }
3664
3665                 /*
3666                  * There are other valid inodes in the buffer, this inode
3667                  * has in-inode xattrs, or we don't have this inode in memory.
3668                  * Read the block from disk.
3669                  */
3670                 trace_ext4_load_inode(inode);
3671                 get_bh(bh);
3672                 bh->b_end_io = end_buffer_read_sync;
3673                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3674                 wait_on_buffer(bh);
3675                 if (!buffer_uptodate(bh)) {
3676                         EXT4_ERROR_INODE_BLOCK(inode, block,
3677                                                "unable to read itable block");
3678                         brelse(bh);
3679                         return -EIO;
3680                 }
3681         }
3682 has_buffer:
3683         iloc->bh = bh;
3684         return 0;
3685 }
3686
3687 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3688 {
3689         /* We have all inode data except xattrs in memory here. */
3690         return __ext4_get_inode_loc(inode, iloc,
3691                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3692 }
3693
3694 void ext4_set_inode_flags(struct inode *inode)
3695 {
3696         unsigned int flags = EXT4_I(inode)->i_flags;
3697
3698         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3699         if (flags & EXT4_SYNC_FL)
3700                 inode->i_flags |= S_SYNC;
3701         if (flags & EXT4_APPEND_FL)
3702                 inode->i_flags |= S_APPEND;
3703         if (flags & EXT4_IMMUTABLE_FL)
3704                 inode->i_flags |= S_IMMUTABLE;
3705         if (flags & EXT4_NOATIME_FL)
3706                 inode->i_flags |= S_NOATIME;
3707         if (flags & EXT4_DIRSYNC_FL)
3708                 inode->i_flags |= S_DIRSYNC;
3709 }
3710
3711 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3712 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3713 {
3714         unsigned int vfs_fl;
3715         unsigned long old_fl, new_fl;
3716
3717         do {
3718                 vfs_fl = ei->vfs_inode.i_flags;
3719                 old_fl = ei->i_flags;
3720                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3721                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3722                                 EXT4_DIRSYNC_FL);
3723                 if (vfs_fl & S_SYNC)
3724                         new_fl |= EXT4_SYNC_FL;
3725                 if (vfs_fl & S_APPEND)
3726                         new_fl |= EXT4_APPEND_FL;
3727                 if (vfs_fl & S_IMMUTABLE)
3728                         new_fl |= EXT4_IMMUTABLE_FL;
3729                 if (vfs_fl & S_NOATIME)
3730                         new_fl |= EXT4_NOATIME_FL;
3731                 if (vfs_fl & S_DIRSYNC)
3732                         new_fl |= EXT4_DIRSYNC_FL;
3733         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3734 }
3735
3736 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3737                                   struct ext4_inode_info *ei)
3738 {
3739         blkcnt_t i_blocks ;
3740         struct inode *inode = &(ei->vfs_inode);
3741         struct super_block *sb = inode->i_sb;
3742
3743         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3744                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3745                 /* we are using combined 48 bit field */
3746                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3747                                         le32_to_cpu(raw_inode->i_blocks_lo);
3748                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3749                         /* i_blocks represent file system block size */
3750                         return i_blocks  << (inode->i_blkbits - 9);
3751                 } else {
3752                         return i_blocks;
3753                 }
3754         } else {
3755                 return le32_to_cpu(raw_inode->i_blocks_lo);
3756         }
3757 }
3758
3759 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3760 {
3761         struct ext4_iloc iloc;
3762         struct ext4_inode *raw_inode;
3763         struct ext4_inode_info *ei;
3764         struct inode *inode;
3765         journal_t *journal = EXT4_SB(sb)->s_journal;
3766         long ret;
3767         int block;
3768         uid_t i_uid;
3769         gid_t i_gid;
3770
3771         inode = iget_locked(sb, ino);
3772         if (!inode)
3773                 return ERR_PTR(-ENOMEM);
3774         if (!(inode->i_state & I_NEW))
3775                 return inode;
3776
3777         ei = EXT4_I(inode);
3778         iloc.bh = NULL;
3779
3780         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3781         if (ret < 0)
3782                 goto bad_inode;
3783         raw_inode = ext4_raw_inode(&iloc);
3784
3785         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3786                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3787                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3788                     EXT4_INODE_SIZE(inode->i_sb)) {
3789                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3790                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3791                                 EXT4_INODE_SIZE(inode->i_sb));
3792                         ret = -EIO;
3793                         goto bad_inode;
3794                 }
3795         } else
3796                 ei->i_extra_isize = 0;
3797
3798         /* Precompute checksum seed for inode metadata */
3799         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3800                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3801                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3802                 __u32 csum;
3803                 __le32 inum = cpu_to_le32(inode->i_ino);
3804                 __le32 gen = raw_inode->i_generation;
3805                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3806                                    sizeof(inum));
3807                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3808                                               sizeof(gen));
3809         }
3810
3811         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3812                 EXT4_ERROR_INODE(inode, "checksum invalid");
3813                 ret = -EIO;
3814                 goto bad_inode;
3815         }
3816
3817         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3818         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3819         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3820         if (!(test_opt(inode->i_sb, NO_UID32))) {
3821                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3822                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3823         }
3824         i_uid_write(inode, i_uid);
3825         i_gid_write(inode, i_gid);
3826         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3827
3828         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3829         ei->i_dir_start_lookup = 0;
3830         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3831         /* We now have enough fields to check if the inode was active or not.
3832          * This is needed because nfsd might try to access dead inodes
3833          * the test is that same one that e2fsck uses
3834          * NeilBrown 1999oct15
3835          */
3836         if (inode->i_nlink == 0) {
3837                 if (inode->i_mode == 0 ||
3838                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3839                         /* this inode is deleted */
3840                         ret = -ESTALE;
3841                         goto bad_inode;
3842                 }
3843                 /* The only unlinked inodes we let through here have
3844                  * valid i_mode and are being read by the orphan
3845                  * recovery code: that's fine, we're about to complete
3846                  * the process of deleting those. */
3847         }
3848         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3849         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3850         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3851         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3852                 ei->i_file_acl |=
3853                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3854         inode->i_size = ext4_isize(raw_inode);
3855         ei->i_disksize = inode->i_size;
3856 #ifdef CONFIG_QUOTA
3857         ei->i_reserved_quota = 0;
3858 #endif
3859         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3860         ei->i_block_group = iloc.block_group;
3861         ei->i_last_alloc_group = ~0;
3862         /*
3863          * NOTE! The in-memory inode i_data array is in little-endian order
3864          * even on big-endian machines: we do NOT byteswap the block numbers!
3865          */
3866         for (block = 0; block < EXT4_N_BLOCKS; block++)
3867                 ei->i_data[block] = raw_inode->i_block[block];
3868         INIT_LIST_HEAD(&ei->i_orphan);
3869
3870         /*
3871          * Set transaction id's of transactions that have to be committed
3872          * to finish f[data]sync. We set them to currently running transaction
3873          * as we cannot be sure that the inode or some of its metadata isn't
3874          * part of the transaction - the inode could have been reclaimed and
3875          * now it is reread from disk.
3876          */
3877         if (journal) {
3878                 transaction_t *transaction;
3879                 tid_t tid;
3880
3881                 read_lock(&journal->j_state_lock);
3882                 if (journal->j_running_transaction)
3883                         transaction = journal->j_running_transaction;
3884                 else
3885                         transaction = journal->j_committing_transaction;
3886                 if (transaction)
3887                         tid = transaction->t_tid;
3888                 else
3889                         tid = journal->j_commit_sequence;
3890                 read_unlock(&journal->j_state_lock);
3891                 ei->i_sync_tid = tid;
3892                 ei->i_datasync_tid = tid;
3893         }
3894
3895         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3896                 if (ei->i_extra_isize == 0) {
3897                         /* The extra space is currently unused. Use it. */
3898                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3899                                             EXT4_GOOD_OLD_INODE_SIZE;
3900                 } else {
3901                         __le32 *magic = (void *)raw_inode +
3902                                         EXT4_GOOD_OLD_INODE_SIZE +
3903                                         ei->i_extra_isize;
3904                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3905                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3906                 }
3907         }
3908
3909         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3910         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3911         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3912         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3913
3914         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3915         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3917                         inode->i_version |=
3918                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3919         }
3920
3921         ret = 0;
3922         if (ei->i_file_acl &&
3923             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3924                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3925                                  ei->i_file_acl);
3926                 ret = -EIO;
3927                 goto bad_inode;
3928         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3929                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3930                     (S_ISLNK(inode->i_mode) &&
3931                      !ext4_inode_is_fast_symlink(inode)))
3932                         /* Validate extent which is part of inode */
3933                         ret = ext4_ext_check_inode(inode);
3934         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3935                    (S_ISLNK(inode->i_mode) &&
3936                     !ext4_inode_is_fast_symlink(inode))) {
3937                 /* Validate block references which are part of inode */
3938                 ret = ext4_ind_check_inode(inode);
3939         }
3940         if (ret)
3941                 goto bad_inode;
3942
3943         if (S_ISREG(inode->i_mode)) {
3944                 inode->i_op = &ext4_file_inode_operations;
3945                 inode->i_fop = &ext4_file_operations;
3946                 ext4_set_aops(inode);
3947         } else if (S_ISDIR(inode->i_mode)) {
3948                 inode->i_op = &ext4_dir_inode_operations;
3949                 inode->i_fop = &ext4_dir_operations;
3950         } else if (S_ISLNK(inode->i_mode)) {
3951                 if (ext4_inode_is_fast_symlink(inode)) {
3952                         inode->i_op = &ext4_fast_symlink_inode_operations;
3953                         nd_terminate_link(ei->i_data, inode->i_size,
3954                                 sizeof(ei->i_data) - 1);
3955                 } else {
3956                         inode->i_op = &ext4_symlink_inode_operations;
3957                         ext4_set_aops(inode);
3958                 }
3959         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3960               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3961                 inode->i_op = &ext4_special_inode_operations;
3962                 if (raw_inode->i_block[0])
3963                         init_special_inode(inode, inode->i_mode,
3964                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3965                 else
3966                         init_special_inode(inode, inode->i_mode,
3967                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3968         } else {
3969                 ret = -EIO;
3970                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3971                 goto bad_inode;
3972         }
3973         brelse(iloc.bh);
3974         ext4_set_inode_flags(inode);
3975         unlock_new_inode(inode);
3976         return inode;
3977
3978 bad_inode:
3979         brelse(iloc.bh);
3980         iget_failed(inode);
3981         return ERR_PTR(ret);
3982 }
3983
3984 static int ext4_inode_blocks_set(handle_t *handle,
3985                                 struct ext4_inode *raw_inode,
3986                                 struct ext4_inode_info *ei)
3987 {
3988         struct inode *inode = &(ei->vfs_inode);
3989         u64 i_blocks = inode->i_blocks;
3990         struct super_block *sb = inode->i_sb;
3991
3992         if (i_blocks <= ~0U) {
3993                 /*
3994                  * i_blocks can be represented in a 32 bit variable
3995                  * as multiple of 512 bytes
3996                  */
3997                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3998                 raw_inode->i_blocks_high = 0;
3999                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4000                 return 0;
4001         }
4002         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4003                 return -EFBIG;
4004
4005         if (i_blocks <= 0xffffffffffffULL) {
4006                 /*
4007                  * i_blocks can be represented in a 48 bit variable
4008                  * as multiple of 512 bytes
4009                  */
4010                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4011                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4012                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4013         } else {
4014                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4015                 /* i_block is stored in file system block size */
4016                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4017                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4018                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4019         }
4020         return 0;
4021 }
4022
4023 /*
4024  * Post the struct inode info into an on-disk inode location in the
4025  * buffer-cache.  This gobbles the caller's reference to the
4026  * buffer_head in the inode location struct.
4027  *
4028  * The caller must have write access to iloc->bh.
4029  */
4030 static int ext4_do_update_inode(handle_t *handle,
4031                                 struct inode *inode,
4032                                 struct ext4_iloc *iloc)
4033 {
4034         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4035         struct ext4_inode_info *ei = EXT4_I(inode);
4036         struct buffer_head *bh = iloc->bh;
4037         int err = 0, rc, block;
4038         int need_datasync = 0;
4039         uid_t i_uid;
4040         gid_t i_gid;
4041
4042         /* For fields not not tracking in the in-memory inode,
4043          * initialise them to zero for new inodes. */
4044         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4045                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4046
4047         ext4_get_inode_flags(ei);
4048         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4049         i_uid = i_uid_read(inode);
4050         i_gid = i_gid_read(inode);
4051         if (!(test_opt(inode->i_sb, NO_UID32))) {
4052                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4053                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4054 /*
4055  * Fix up interoperability with old kernels. Otherwise, old inodes get
4056  * re-used with the upper 16 bits of the uid/gid intact
4057  */
4058                 if (!ei->i_dtime) {
4059                         raw_inode->i_uid_high =
4060                                 cpu_to_le16(high_16_bits(i_uid));
4061                         raw_inode->i_gid_high =
4062                                 cpu_to_le16(high_16_bits(i_gid));
4063                 } else {
4064                         raw_inode->i_uid_high = 0;
4065                         raw_inode->i_gid_high = 0;
4066                 }
4067         } else {
4068                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4069                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4070                 raw_inode->i_uid_high = 0;
4071                 raw_inode->i_gid_high = 0;
4072         }
4073         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4074
4075         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4076         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4077         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4078         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4079
4080         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4081                 goto out_brelse;
4082         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4083         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4084         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4085             cpu_to_le32(EXT4_OS_HURD))
4086                 raw_inode->i_file_acl_high =
4087                         cpu_to_le16(ei->i_file_acl >> 32);
4088         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4089         if (ei->i_disksize != ext4_isize(raw_inode)) {
4090                 ext4_isize_set(raw_inode, ei->i_disksize);
4091                 need_datasync = 1;
4092         }
4093         if (ei->i_disksize > 0x7fffffffULL) {
4094                 struct super_block *sb = inode->i_sb;
4095                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4096                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4097                                 EXT4_SB(sb)->s_es->s_rev_level ==
4098                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4099                         /* If this is the first large file
4100                          * created, add a flag to the superblock.
4101                          */
4102                         err = ext4_journal_get_write_access(handle,
4103                                         EXT4_SB(sb)->s_sbh);
4104                         if (err)
4105                                 goto out_brelse;
4106                         ext4_update_dynamic_rev(sb);
4107                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4108                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4109                         ext4_handle_sync(handle);
4110                         err = ext4_handle_dirty_super(handle, sb);
4111                 }
4112         }
4113         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4114         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4115                 if (old_valid_dev(inode->i_rdev)) {
4116                         raw_inode->i_block[0] =
4117                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4118                         raw_inode->i_block[1] = 0;
4119                 } else {
4120                         raw_inode->i_block[0] = 0;
4121                         raw_inode->i_block[1] =
4122                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4123                         raw_inode->i_block[2] = 0;
4124                 }
4125         } else
4126                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4127                         raw_inode->i_block[block] = ei->i_data[block];
4128
4129         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4130         if (ei->i_extra_isize) {
4131                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4132                         raw_inode->i_version_hi =
4133                         cpu_to_le32(inode->i_version >> 32);
4134                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4135         }
4136
4137         ext4_inode_csum_set(inode, raw_inode, ei);
4138
4139         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4141         if (!err)
4142                 err = rc;
4143         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4144
4145         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4146 out_brelse:
4147         brelse(bh);
4148         ext4_std_error(inode->i_sb, err);
4149         return err;
4150 }
4151
4152 /*
4153  * ext4_write_inode()
4154  *
4155  * We are called from a few places:
4156  *
4157  * - Within generic_file_write() for O_SYNC files.
4158  *   Here, there will be no transaction running. We wait for any running
4159  *   transaction to commit.
4160  *
4161  * - Within sys_sync(), kupdate and such.
4162  *   We wait on commit, if tol to.
4163  *
4164  * - Within prune_icache() (PF_MEMALLOC == true)
4165  *   Here we simply return.  We can't afford to block kswapd on the
4166  *   journal commit.
4167  *
4168  * In all cases it is actually safe for us to return without doing anything,
4169  * because the inode has been copied into a raw inode buffer in
4170  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4171  * knfsd.
4172  *
4173  * Note that we are absolutely dependent upon all inode dirtiers doing the
4174  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4175  * which we are interested.
4176  *
4177  * It would be a bug for them to not do this.  The code:
4178  *
4179  *      mark_inode_dirty(inode)
4180  *      stuff();
4181  *      inode->i_size = expr;
4182  *
4183  * is in error because a kswapd-driven write_inode() could occur while
4184  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4185  * will no longer be on the superblock's dirty inode list.
4186  */
4187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4188 {
4189         int err;
4190
4191         if (current->flags & PF_MEMALLOC)
4192                 return 0;
4193
4194         if (EXT4_SB(inode->i_sb)->s_journal) {
4195                 if (ext4_journal_current_handle()) {
4196                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4197                         dump_stack();
4198                         return -EIO;
4199                 }
4200
4201                 if (wbc->sync_mode != WB_SYNC_ALL)
4202                         return 0;
4203
4204                 err = ext4_force_commit(inode->i_sb);
4205         } else {
4206                 struct ext4_iloc iloc;
4207
4208                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4209                 if (err)
4210                         return err;
4211                 if (wbc->sync_mode == WB_SYNC_ALL)
4212                         sync_dirty_buffer(iloc.bh);
4213                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4214                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4215                                          "IO error syncing inode");
4216                         err = -EIO;
4217                 }
4218                 brelse(iloc.bh);
4219         }
4220         return err;
4221 }
4222
4223 /*
4224  * ext4_setattr()
4225  *
4226  * Called from notify_change.
4227  *
4228  * We want to trap VFS attempts to truncate the file as soon as
4229  * possible.  In particular, we want to make sure that when the VFS
4230  * shrinks i_size, we put the inode on the orphan list and modify
4231  * i_disksize immediately, so that during the subsequent flushing of
4232  * dirty pages and freeing of disk blocks, we can guarantee that any
4233  * commit will leave the blocks being flushed in an unused state on
4234  * disk.  (On recovery, the inode will get truncated and the blocks will
4235  * be freed, so we have a strong guarantee that no future commit will
4236  * leave these blocks visible to the user.)
4237  *
4238  * Another thing we have to assure is that if we are in ordered mode
4239  * and inode is still attached to the committing transaction, we must
4240  * we start writeout of all the dirty pages which are being truncated.
4241  * This way we are sure that all the data written in the previous
4242  * transaction are already on disk (truncate waits for pages under
4243  * writeback).
4244  *
4245  * Called with inode->i_mutex down.
4246  */
4247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4248 {
4249         struct inode *inode = dentry->d_inode;
4250         int error, rc = 0;
4251         int orphan = 0;
4252         const unsigned int ia_valid = attr->ia_valid;
4253
4254         error = inode_change_ok(inode, attr);
4255         if (error)
4256                 return error;
4257
4258         if (is_quota_modification(inode, attr))
4259                 dquot_initialize(inode);
4260         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4261             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4262                 handle_t *handle;
4263
4264                 /* (user+group)*(old+new) structure, inode write (sb,
4265                  * inode block, ? - but truncate inode update has it) */
4266                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4267                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4268                 if (IS_ERR(handle)) {
4269                         error = PTR_ERR(handle);
4270                         goto err_out;
4271                 }
4272                 error = dquot_transfer(inode, attr);
4273                 if (error) {
4274                         ext4_journal_stop(handle);
4275                         return error;
4276                 }
4277                 /* Update corresponding info in inode so that everything is in
4278                  * one transaction */
4279                 if (attr->ia_valid & ATTR_UID)
4280                         inode->i_uid = attr->ia_uid;
4281                 if (attr->ia_valid & ATTR_GID)
4282                         inode->i_gid = attr->ia_gid;
4283                 error = ext4_mark_inode_dirty(handle, inode);
4284                 ext4_journal_stop(handle);
4285         }
4286
4287         if (attr->ia_valid & ATTR_SIZE) {
4288
4289                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4290                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4291
4292                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4293                                 return -EFBIG;
4294                 }
4295         }
4296
4297         if (S_ISREG(inode->i_mode) &&
4298             attr->ia_valid & ATTR_SIZE &&
4299             (attr->ia_size < inode->i_size)) {
4300                 handle_t *handle;
4301
4302                 handle = ext4_journal_start(inode, 3);
4303                 if (IS_ERR(handle)) {
4304                         error = PTR_ERR(handle);
4305                         goto err_out;
4306                 }
4307                 if (ext4_handle_valid(handle)) {
4308                         error = ext4_orphan_add(handle, inode);
4309                         orphan = 1;
4310                 }
4311                 EXT4_I(inode)->i_disksize = attr->ia_size;
4312                 rc = ext4_mark_inode_dirty(handle, inode);
4313                 if (!error)
4314                         error = rc;
4315                 ext4_journal_stop(handle);
4316
4317                 if (ext4_should_order_data(inode)) {
4318                         error = ext4_begin_ordered_truncate(inode,
4319                                                             attr->ia_size);
4320                         if (error) {
4321                                 /* Do as much error cleanup as possible */
4322                                 handle = ext4_journal_start(inode, 3);
4323                                 if (IS_ERR(handle)) {
4324                                         ext4_orphan_del(NULL, inode);
4325                                         goto err_out;
4326                                 }
4327                                 ext4_orphan_del(handle, inode);
4328                                 orphan = 0;
4329                                 ext4_journal_stop(handle);
4330                                 goto err_out;
4331                         }
4332                 }
4333         }
4334
4335         if (attr->ia_valid & ATTR_SIZE) {
4336                 if (attr->ia_size != i_size_read(inode)) {
4337                         truncate_setsize(inode, attr->ia_size);
4338                         /* Inode size will be reduced, wait for dio in flight.
4339                          * Temporarily disable dioread_nolock to prevent
4340                          * livelock. */
4341                         if (orphan) {
4342                                 ext4_inode_block_unlocked_dio(inode);
4343                                 inode_dio_wait(inode);
4344                                 ext4_inode_resume_unlocked_dio(inode);
4345                         }
4346                 }
4347                 ext4_truncate(inode);
4348         }
4349
4350         if (!rc) {
4351                 setattr_copy(inode, attr);
4352                 mark_inode_dirty(inode);
4353         }
4354
4355         /*
4356          * If the call to ext4_truncate failed to get a transaction handle at
4357          * all, we need to clean up the in-core orphan list manually.
4358          */
4359         if (orphan && inode->i_nlink)
4360                 ext4_orphan_del(NULL, inode);
4361
4362         if (!rc && (ia_valid & ATTR_MODE))
4363                 rc = ext4_acl_chmod(inode);
4364
4365 err_out:
4366         ext4_std_error(inode->i_sb, error);
4367         if (!error)
4368                 error = rc;
4369         return error;
4370 }
4371
4372 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4373                  struct kstat *stat)
4374 {
4375         struct inode *inode;
4376         unsigned long delalloc_blocks;
4377
4378         inode = dentry->d_inode;
4379         generic_fillattr(inode, stat);
4380
4381         /*
4382          * We can't update i_blocks if the block allocation is delayed
4383          * otherwise in the case of system crash before the real block
4384          * allocation is done, we will have i_blocks inconsistent with
4385          * on-disk file blocks.
4386          * We always keep i_blocks updated together with real
4387          * allocation. But to not confuse with user, stat
4388          * will return the blocks that include the delayed allocation
4389          * blocks for this file.
4390          */
4391         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4392                                 EXT4_I(inode)->i_reserved_data_blocks);
4393
4394         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4395         return 0;
4396 }
4397
4398 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399 {
4400         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4401                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4402         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4403 }
4404
4405 /*
4406  * Account for index blocks, block groups bitmaps and block group
4407  * descriptor blocks if modify datablocks and index blocks
4408  * worse case, the indexs blocks spread over different block groups
4409  *
4410  * If datablocks are discontiguous, they are possible to spread over
4411  * different block groups too. If they are contiguous, with flexbg,
4412  * they could still across block group boundary.
4413  *
4414  * Also account for superblock, inode, quota and xattr blocks
4415  */
4416 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4417 {
4418         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4419         int gdpblocks;
4420         int idxblocks;
4421         int ret = 0;
4422
4423         /*
4424          * How many index blocks need to touch to modify nrblocks?
4425          * The "Chunk" flag indicating whether the nrblocks is
4426          * physically contiguous on disk
4427          *
4428          * For Direct IO and fallocate, they calls get_block to allocate
4429          * one single extent at a time, so they could set the "Chunk" flag
4430          */
4431         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4432
4433         ret = idxblocks;
4434
4435         /*
4436          * Now let's see how many group bitmaps and group descriptors need
4437          * to account
4438          */
4439         groups = idxblocks;
4440         if (chunk)
4441                 groups += 1;
4442         else
4443                 groups += nrblocks;
4444
4445         gdpblocks = groups;
4446         if (groups > ngroups)
4447                 groups = ngroups;
4448         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4449                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4450
4451         /* bitmaps and block group descriptor blocks */
4452         ret += groups + gdpblocks;
4453
4454         /* Blocks for super block, inode, quota and xattr blocks */
4455         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4456
4457         return ret;
4458 }
4459
4460 /*
4461  * Calculate the total number of credits to reserve to fit
4462  * the modification of a single pages into a single transaction,
4463  * which may include multiple chunks of block allocations.
4464  *
4465  * This could be called via ext4_write_begin()
4466  *
4467  * We need to consider the worse case, when
4468  * one new block per extent.
4469  */
4470 int ext4_writepage_trans_blocks(struct inode *inode)
4471 {
4472         int bpp = ext4_journal_blocks_per_page(inode);
4473         int ret;
4474
4475         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4476
4477         /* Account for data blocks for journalled mode */
4478         if (ext4_should_journal_data(inode))
4479                 ret += bpp;
4480         return ret;
4481 }
4482
4483 /*
4484  * Calculate the journal credits for a chunk of data modification.
4485  *
4486  * This is called from DIO, fallocate or whoever calling
4487  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4488  *
4489  * journal buffers for data blocks are not included here, as DIO
4490  * and fallocate do no need to journal data buffers.
4491  */
4492 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4493 {
4494         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4495 }
4496
4497 /*
4498  * The caller must have previously called ext4_reserve_inode_write().
4499  * Give this, we know that the caller already has write access to iloc->bh.
4500  */
4501 int ext4_mark_iloc_dirty(handle_t *handle,
4502                          struct inode *inode, struct ext4_iloc *iloc)
4503 {
4504         int err = 0;
4505
4506         if (IS_I_VERSION(inode))
4507                 inode_inc_iversion(inode);
4508
4509         /* the do_update_inode consumes one bh->b_count */
4510         get_bh(iloc->bh);
4511
4512         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4513         err = ext4_do_update_inode(handle, inode, iloc);
4514         put_bh(iloc->bh);
4515         return err;
4516 }
4517
4518 /*
4519  * On success, We end up with an outstanding reference count against
4520  * iloc->bh.  This _must_ be cleaned up later.
4521  */
4522
4523 int
4524 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4525                          struct ext4_iloc *iloc)
4526 {
4527         int err;
4528
4529         err = ext4_get_inode_loc(inode, iloc);
4530         if (!err) {
4531                 BUFFER_TRACE(iloc->bh, "get_write_access");
4532                 err = ext4_journal_get_write_access(handle, iloc->bh);
4533                 if (err) {
4534                         brelse(iloc->bh);
4535                         iloc->bh = NULL;
4536                 }
4537         }
4538         ext4_std_error(inode->i_sb, err);
4539         return err;
4540 }
4541
4542 /*
4543  * Expand an inode by new_extra_isize bytes.
4544  * Returns 0 on success or negative error number on failure.
4545  */
4546 static int ext4_expand_extra_isize(struct inode *inode,
4547                                    unsigned int new_extra_isize,
4548                                    struct ext4_iloc iloc,
4549                                    handle_t *handle)
4550 {
4551         struct ext4_inode *raw_inode;
4552         struct ext4_xattr_ibody_header *header;
4553
4554         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4555                 return 0;
4556
4557         raw_inode = ext4_raw_inode(&iloc);
4558
4559         header = IHDR(inode, raw_inode);
4560
4561         /* No extended attributes present */
4562         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4563             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4564                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4565                         new_extra_isize);
4566                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4567                 return 0;
4568         }
4569
4570         /* try to expand with EAs present */
4571         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4572                                           raw_inode, handle);
4573 }
4574
4575 /*
4576  * What we do here is to mark the in-core inode as clean with respect to inode
4577  * dirtiness (it may still be data-dirty).
4578  * This means that the in-core inode may be reaped by prune_icache
4579  * without having to perform any I/O.  This is a very good thing,
4580  * because *any* task may call prune_icache - even ones which
4581  * have a transaction open against a different journal.
4582  *
4583  * Is this cheating?  Not really.  Sure, we haven't written the
4584  * inode out, but prune_icache isn't a user-visible syncing function.
4585  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4586  * we start and wait on commits.
4587  */
4588 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4589 {
4590         struct ext4_iloc iloc;
4591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592         static unsigned int mnt_count;
4593         int err, ret;
4594
4595         might_sleep();
4596         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4597         err = ext4_reserve_inode_write(handle, inode, &iloc);
4598         if (ext4_handle_valid(handle) &&
4599             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4600             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4601                 /*
4602                  * We need extra buffer credits since we may write into EA block
4603                  * with this same handle. If journal_extend fails, then it will
4604                  * only result in a minor loss of functionality for that inode.
4605                  * If this is felt to be critical, then e2fsck should be run to
4606                  * force a large enough s_min_extra_isize.
4607                  */
4608                 if ((jbd2_journal_extend(handle,
4609                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4610                         ret = ext4_expand_extra_isize(inode,
4611                                                       sbi->s_want_extra_isize,
4612                                                       iloc, handle);
4613                         if (ret) {
4614                                 ext4_set_inode_state(inode,
4615                                                      EXT4_STATE_NO_EXPAND);
4616                                 if (mnt_count !=
4617                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4618                                         ext4_warning(inode->i_sb,
4619                                         "Unable to expand inode %lu. Delete"
4620                                         " some EAs or run e2fsck.",
4621                                         inode->i_ino);
4622                                         mnt_count =
4623                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4624                                 }
4625                         }
4626                 }
4627         }
4628         if (!err)
4629                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4630         return err;
4631 }
4632
4633 /*
4634  * ext4_dirty_inode() is called from __mark_inode_dirty()
4635  *
4636  * We're really interested in the case where a file is being extended.
4637  * i_size has been changed by generic_commit_write() and we thus need
4638  * to include the updated inode in the current transaction.
4639  *
4640  * Also, dquot_alloc_block() will always dirty the inode when blocks
4641  * are allocated to the file.
4642  *
4643  * If the inode is marked synchronous, we don't honour that here - doing
4644  * so would cause a commit on atime updates, which we don't bother doing.
4645  * We handle synchronous inodes at the highest possible level.
4646  */
4647 void ext4_dirty_inode(struct inode *inode, int flags)
4648 {
4649         handle_t *handle;
4650
4651         handle = ext4_journal_start(inode, 2);
4652         if (IS_ERR(handle))
4653                 goto out;
4654
4655         ext4_mark_inode_dirty(handle, inode);
4656
4657         ext4_journal_stop(handle);
4658 out:
4659         return;
4660 }
4661
4662 #if 0
4663 /*
4664  * Bind an inode's backing buffer_head into this transaction, to prevent
4665  * it from being flushed to disk early.  Unlike
4666  * ext4_reserve_inode_write, this leaves behind no bh reference and
4667  * returns no iloc structure, so the caller needs to repeat the iloc
4668  * lookup to mark the inode dirty later.
4669  */
4670 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4671 {
4672         struct ext4_iloc iloc;
4673
4674         int err = 0;
4675         if (handle) {
4676                 err = ext4_get_inode_loc(inode, &iloc);
4677                 if (!err) {
4678                         BUFFER_TRACE(iloc.bh, "get_write_access");
4679                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4680                         if (!err)
4681                                 err = ext4_handle_dirty_metadata(handle,
4682                                                                  NULL,
4683                                                                  iloc.bh);
4684                         brelse(iloc.bh);
4685                 }
4686         }
4687         ext4_std_error(inode->i_sb, err);
4688         return err;
4689 }
4690 #endif
4691
4692 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4693 {
4694         journal_t *journal;
4695         handle_t *handle;
4696         int err;
4697
4698         /*
4699          * We have to be very careful here: changing a data block's
4700          * journaling status dynamically is dangerous.  If we write a
4701          * data block to the journal, change the status and then delete
4702          * that block, we risk forgetting to revoke the old log record
4703          * from the journal and so a subsequent replay can corrupt data.
4704          * So, first we make sure that the journal is empty and that
4705          * nobody is changing anything.
4706          */
4707
4708         journal = EXT4_JOURNAL(inode);
4709         if (!journal)
4710                 return 0;
4711         if (is_journal_aborted(journal))
4712                 return -EROFS;
4713         /* We have to allocate physical blocks for delalloc blocks
4714          * before flushing journal. otherwise delalloc blocks can not
4715          * be allocated any more. even more truncate on delalloc blocks
4716          * could trigger BUG by flushing delalloc blocks in journal.
4717          * There is no delalloc block in non-journal data mode.
4718          */
4719         if (val && test_opt(inode->i_sb, DELALLOC)) {
4720                 err = ext4_alloc_da_blocks(inode);
4721                 if (err < 0)
4722                         return err;
4723         }
4724
4725         /* Wait for all existing dio workers */
4726         ext4_inode_block_unlocked_dio(inode);
4727         inode_dio_wait(inode);
4728
4729         jbd2_journal_lock_updates(journal);
4730
4731         /*
4732          * OK, there are no updates running now, and all cached data is
4733          * synced to disk.  We are now in a completely consistent state
4734          * which doesn't have anything in the journal, and we know that
4735          * no filesystem updates are running, so it is safe to modify
4736          * the inode's in-core data-journaling state flag now.
4737          */
4738
4739         if (val)
4740                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741         else {
4742                 jbd2_journal_flush(journal);
4743                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4744         }
4745         ext4_set_aops(inode);
4746
4747         jbd2_journal_unlock_updates(journal);
4748         ext4_inode_resume_unlocked_dio(inode);
4749
4750         /* Finally we can mark the inode as dirty. */
4751
4752         handle = ext4_journal_start(inode, 1);
4753         if (IS_ERR(handle))
4754                 return PTR_ERR(handle);
4755
4756         err = ext4_mark_inode_dirty(handle, inode);
4757         ext4_handle_sync(handle);
4758         ext4_journal_stop(handle);
4759         ext4_std_error(inode->i_sb, err);
4760
4761         return err;
4762 }
4763
4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765 {
4766         return !buffer_mapped(bh);
4767 }
4768
4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770 {
4771         struct page *page = vmf->page;
4772         loff_t size;
4773         unsigned long len;
4774         int ret;
4775         struct file *file = vma->vm_file;
4776         struct inode *inode = file->f_path.dentry->d_inode;
4777         struct address_space *mapping = inode->i_mapping;
4778         handle_t *handle;
4779         get_block_t *get_block;
4780         int retries = 0;
4781
4782         sb_start_pagefault(inode->i_sb);
4783         file_update_time(vma->vm_file);
4784         /* Delalloc case is easy... */
4785         if (test_opt(inode->i_sb, DELALLOC) &&
4786             !ext4_should_journal_data(inode) &&
4787             !ext4_nonda_switch(inode->i_sb)) {
4788                 do {
4789                         ret = __block_page_mkwrite(vma, vmf,
4790                                                    ext4_da_get_block_prep);
4791                 } while (ret == -ENOSPC &&
4792                        ext4_should_retry_alloc(inode->i_sb, &retries));
4793                 goto out_ret;
4794         }
4795
4796         lock_page(page);
4797         size = i_size_read(inode);
4798         /* Page got truncated from under us? */
4799         if (page->mapping != mapping || page_offset(page) > size) {
4800                 unlock_page(page);
4801                 ret = VM_FAULT_NOPAGE;
4802                 goto out;
4803         }
4804
4805         if (page->index == size >> PAGE_CACHE_SHIFT)
4806                 len = size & ~PAGE_CACHE_MASK;
4807         else
4808                 len = PAGE_CACHE_SIZE;
4809         /*
4810          * Return if we have all the buffers mapped. This avoids the need to do
4811          * journal_start/journal_stop which can block and take a long time
4812          */
4813         if (page_has_buffers(page)) {
4814                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4815                                         ext4_bh_unmapped)) {
4816                         /* Wait so that we don't change page under IO */
4817                         wait_on_page_writeback(page);
4818                         ret = VM_FAULT_LOCKED;
4819                         goto out;
4820                 }
4821         }
4822         unlock_page(page);
4823         /* OK, we need to fill the hole... */
4824         if (ext4_should_dioread_nolock(inode))
4825                 get_block = ext4_get_block_write;
4826         else
4827                 get_block = ext4_get_block;
4828 retry_alloc:
4829         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4830         if (IS_ERR(handle)) {
4831                 ret = VM_FAULT_SIGBUS;
4832                 goto out;
4833         }
4834         ret = __block_page_mkwrite(vma, vmf, get_block);
4835         if (!ret && ext4_should_journal_data(inode)) {
4836                 if (walk_page_buffers(handle, page_buffers(page), 0,
4837                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4838                         unlock_page(page);
4839                         ret = VM_FAULT_SIGBUS;
4840                         ext4_journal_stop(handle);
4841                         goto out;
4842                 }
4843                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4844         }
4845         ext4_journal_stop(handle);
4846         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4847                 goto retry_alloc;
4848 out_ret:
4849         ret = block_page_mkwrite_return(ret);
4850 out:
4851         sb_end_pagefault(inode->i_sb);
4852         return ret;
4853 }