]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: add a new nolock flag in ext4_map_blocks
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 goto no_delete;
246         }
247
248         if (IS_SYNC(inode))
249                 ext4_handle_sync(handle);
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks)
258                 ext4_truncate(inode);
259
260         /*
261          * ext4_ext_truncate() doesn't reserve any slop when it
262          * restarts journal transactions; therefore there may not be
263          * enough credits left in the handle to remove the inode from
264          * the orphan list and set the dtime field.
265          */
266         if (!ext4_handle_has_enough_credits(handle, 3)) {
267                 err = ext4_journal_extend(handle, 3);
268                 if (err > 0)
269                         err = ext4_journal_restart(handle, 3);
270                 if (err != 0) {
271                         ext4_warning(inode->i_sb,
272                                      "couldn't extend journal (err %d)", err);
273                 stop_handle:
274                         ext4_journal_stop(handle);
275                         ext4_orphan_del(NULL, inode);
276                         goto no_delete;
277                 }
278         }
279
280         /*
281          * Kill off the orphan record which ext4_truncate created.
282          * AKPM: I think this can be inside the above `if'.
283          * Note that ext4_orphan_del() has to be able to cope with the
284          * deletion of a non-existent orphan - this is because we don't
285          * know if ext4_truncate() actually created an orphan record.
286          * (Well, we could do this if we need to, but heck - it works)
287          */
288         ext4_orphan_del(handle, inode);
289         EXT4_I(inode)->i_dtime  = get_seconds();
290
291         /*
292          * One subtle ordering requirement: if anything has gone wrong
293          * (transaction abort, IO errors, whatever), then we can still
294          * do these next steps (the fs will already have been marked as
295          * having errors), but we can't free the inode if the mark_dirty
296          * fails.
297          */
298         if (ext4_mark_inode_dirty(handle, inode))
299                 /* If that failed, just do the required in-core inode clear. */
300                 ext4_clear_inode(inode);
301         else
302                 ext4_free_inode(handle, inode);
303         ext4_journal_stop(handle);
304         return;
305 no_delete:
306         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
307 }
308
309 #ifdef CONFIG_QUOTA
310 qsize_t *ext4_get_reserved_space(struct inode *inode)
311 {
312         return &EXT4_I(inode)->i_reserved_quota;
313 }
314 #endif
315
316 /*
317  * Calculate the number of metadata blocks need to reserve
318  * to allocate a block located at @lblock
319  */
320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321 {
322         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323                 return ext4_ext_calc_metadata_amount(inode, lblock);
324
325         return ext4_ind_calc_metadata_amount(inode, lblock);
326 }
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353                            used + ei->i_allocated_meta_blocks);
354         ei->i_allocated_meta_blocks = 0;
355
356         if (ei->i_reserved_data_blocks == 0) {
357                 /*
358                  * We can release all of the reserved metadata blocks
359                  * only when we have written all of the delayed
360                  * allocation blocks.
361                  */
362                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363                                    ei->i_reserved_meta_blocks);
364                 ei->i_reserved_meta_blocks = 0;
365                 ei->i_da_metadata_calc_len = 0;
366         }
367         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368
369         /* Update quota subsystem for data blocks */
370         if (quota_claim)
371                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
372         else {
373                 /*
374                  * We did fallocate with an offset that is already delayed
375                  * allocated. So on delayed allocated writeback we should
376                  * not re-claim the quota for fallocated blocks.
377                  */
378                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379         }
380
381         /*
382          * If we have done all the pending block allocations and if
383          * there aren't any writers on the inode, we can discard the
384          * inode's preallocations.
385          */
386         if ((ei->i_reserved_data_blocks == 0) &&
387             (atomic_read(&inode->i_writecount) == 0))
388                 ext4_discard_preallocations(inode);
389 }
390
391 static int __check_block_validity(struct inode *inode, const char *func,
392                                 unsigned int line,
393                                 struct ext4_map_blocks *map)
394 {
395         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396                                    map->m_len)) {
397                 ext4_error_inode(inode, func, line, map->m_pblk,
398                                  "lblock %lu mapped to illegal pblock "
399                                  "(length %d)", (unsigned long) map->m_lblk,
400                                  map->m_len);
401                 return -EIO;
402         }
403         return 0;
404 }
405
406 #define check_block_validity(inode, map)        \
407         __check_block_validity((inode), __func__, __LINE__, (map))
408
409 /*
410  * Return the number of contiguous dirty pages in a given inode
411  * starting at page frame idx.
412  */
413 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414                                     unsigned int max_pages)
415 {
416         struct address_space *mapping = inode->i_mapping;
417         pgoff_t index;
418         struct pagevec pvec;
419         pgoff_t num = 0;
420         int i, nr_pages, done = 0;
421
422         if (max_pages == 0)
423                 return 0;
424         pagevec_init(&pvec, 0);
425         while (!done) {
426                 index = idx;
427                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428                                               PAGECACHE_TAG_DIRTY,
429                                               (pgoff_t)PAGEVEC_SIZE);
430                 if (nr_pages == 0)
431                         break;
432                 for (i = 0; i < nr_pages; i++) {
433                         struct page *page = pvec.pages[i];
434                         struct buffer_head *bh, *head;
435
436                         lock_page(page);
437                         if (unlikely(page->mapping != mapping) ||
438                             !PageDirty(page) ||
439                             PageWriteback(page) ||
440                             page->index != idx) {
441                                 done = 1;
442                                 unlock_page(page);
443                                 break;
444                         }
445                         if (page_has_buffers(page)) {
446                                 bh = head = page_buffers(page);
447                                 do {
448                                         if (!buffer_delay(bh) &&
449                                             !buffer_unwritten(bh))
450                                                 done = 1;
451                                         bh = bh->b_this_page;
452                                 } while (!done && (bh != head));
453                         }
454                         unlock_page(page);
455                         if (done)
456                                 break;
457                         idx++;
458                         num++;
459                         if (num >= max_pages) {
460                                 done = 1;
461                                 break;
462                         }
463                 }
464                 pagevec_release(&pvec);
465         }
466         return num;
467 }
468
469 /*
470  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
471  */
472 static void set_buffers_da_mapped(struct inode *inode,
473                                    struct ext4_map_blocks *map)
474 {
475         struct address_space *mapping = inode->i_mapping;
476         struct pagevec pvec;
477         int i, nr_pages;
478         pgoff_t index, end;
479
480         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481         end = (map->m_lblk + map->m_len - 1) >>
482                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
483
484         pagevec_init(&pvec, 0);
485         while (index <= end) {
486                 nr_pages = pagevec_lookup(&pvec, mapping, index,
487                                           min(end - index + 1,
488                                               (pgoff_t)PAGEVEC_SIZE));
489                 if (nr_pages == 0)
490                         break;
491                 for (i = 0; i < nr_pages; i++) {
492                         struct page *page = pvec.pages[i];
493                         struct buffer_head *bh, *head;
494
495                         if (unlikely(page->mapping != mapping) ||
496                             !PageDirty(page))
497                                 break;
498
499                         if (page_has_buffers(page)) {
500                                 bh = head = page_buffers(page);
501                                 do {
502                                         set_buffer_da_mapped(bh);
503                                         bh = bh->b_this_page;
504                                 } while (bh != head);
505                         }
506                         index++;
507                 }
508                 pagevec_release(&pvec);
509         }
510 }
511
512 /*
513  * The ext4_map_blocks() function tries to look up the requested blocks,
514  * and returns if the blocks are already mapped.
515  *
516  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517  * and store the allocated blocks in the result buffer head and mark it
518  * mapped.
519  *
520  * If file type is extents based, it will call ext4_ext_map_blocks(),
521  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522  * based files
523  *
524  * On success, it returns the number of blocks being mapped or allocate.
525  * if create==0 and the blocks are pre-allocated and uninitialized block,
526  * the result buffer head is unmapped. If the create ==1, it will make sure
527  * the buffer head is mapped.
528  *
529  * It returns 0 if plain look up failed (blocks have not been allocated), in
530  * that case, buffer head is unmapped
531  *
532  * It returns the error in case of allocation failure.
533  */
534 int ext4_map_blocks(handle_t *handle, struct inode *inode,
535                     struct ext4_map_blocks *map, int flags)
536 {
537         int retval;
538
539         map->m_flags = 0;
540         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
542                   (unsigned long) map->m_lblk);
543         /*
544          * Try to see if we can get the block without requesting a new
545          * file system block.
546          */
547         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
548                 down_read((&EXT4_I(inode)->i_data_sem));
549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
551                                              EXT4_GET_BLOCKS_KEEP_SIZE);
552         } else {
553                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
554                                              EXT4_GET_BLOCKS_KEEP_SIZE);
555         }
556         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
557                 up_read((&EXT4_I(inode)->i_data_sem));
558
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560                 int ret = check_block_validity(inode, map);
561                 if (ret != 0)
562                         return ret;
563         }
564
565         /* If it is only a block(s) look up */
566         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567                 return retval;
568
569         /*
570          * Returns if the blocks have already allocated
571          *
572          * Note that if blocks have been preallocated
573          * ext4_ext_get_block() returns the create = 0
574          * with buffer head unmapped.
575          */
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577                 return retval;
578
579         /*
580          * When we call get_blocks without the create flag, the
581          * BH_Unwritten flag could have gotten set if the blocks
582          * requested were part of a uninitialized extent.  We need to
583          * clear this flag now that we are committed to convert all or
584          * part of the uninitialized extent to be an initialized
585          * extent.  This is because we need to avoid the combination
586          * of BH_Unwritten and BH_Mapped flags being simultaneously
587          * set on the buffer_head.
588          */
589         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
590
591         /*
592          * New blocks allocate and/or writing to uninitialized extent
593          * will possibly result in updating i_data, so we take
594          * the write lock of i_data_sem, and call get_blocks()
595          * with create == 1 flag.
596          */
597         down_write((&EXT4_I(inode)->i_data_sem));
598
599         /*
600          * if the caller is from delayed allocation writeout path
601          * we have already reserved fs blocks for allocation
602          * let the underlying get_block() function know to
603          * avoid double accounting
604          */
605         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
606                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
607         /*
608          * We need to check for EXT4 here because migrate
609          * could have changed the inode type in between
610          */
611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613         } else {
614                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617                         /*
618                          * We allocated new blocks which will result in
619                          * i_data's format changing.  Force the migrate
620                          * to fail by clearing migrate flags
621                          */
622                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623                 }
624
625                 /*
626                  * Update reserved blocks/metadata blocks after successful
627                  * block allocation which had been deferred till now. We don't
628                  * support fallocate for non extent files. So we can update
629                  * reserve space here.
630                  */
631                 if ((retval > 0) &&
632                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633                         ext4_da_update_reserve_space(inode, retval, 1);
634         }
635         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
636                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
637
638                 /* If we have successfully mapped the delayed allocated blocks,
639                  * set the BH_Da_Mapped bit on them. Its important to do this
640                  * under the protection of i_data_sem.
641                  */
642                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
643                         set_buffers_da_mapped(inode, map);
644         }
645
646         up_write((&EXT4_I(inode)->i_data_sem));
647         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
648                 int ret = check_block_validity(inode, map);
649                 if (ret != 0)
650                         return ret;
651         }
652         return retval;
653 }
654
655 /* Maximum number of blocks we map for direct IO at once. */
656 #define DIO_MAX_BLOCKS 4096
657
658 static int _ext4_get_block(struct inode *inode, sector_t iblock,
659                            struct buffer_head *bh, int flags)
660 {
661         handle_t *handle = ext4_journal_current_handle();
662         struct ext4_map_blocks map;
663         int ret = 0, started = 0;
664         int dio_credits;
665
666         map.m_lblk = iblock;
667         map.m_len = bh->b_size >> inode->i_blkbits;
668
669         if (flags && !handle) {
670                 /* Direct IO write... */
671                 if (map.m_len > DIO_MAX_BLOCKS)
672                         map.m_len = DIO_MAX_BLOCKS;
673                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
674                 handle = ext4_journal_start(inode, dio_credits);
675                 if (IS_ERR(handle)) {
676                         ret = PTR_ERR(handle);
677                         return ret;
678                 }
679                 started = 1;
680         }
681
682         ret = ext4_map_blocks(handle, inode, &map, flags);
683         if (ret > 0) {
684                 map_bh(bh, inode->i_sb, map.m_pblk);
685                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
686                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
687                 ret = 0;
688         }
689         if (started)
690                 ext4_journal_stop(handle);
691         return ret;
692 }
693
694 int ext4_get_block(struct inode *inode, sector_t iblock,
695                    struct buffer_head *bh, int create)
696 {
697         return _ext4_get_block(inode, iblock, bh,
698                                create ? EXT4_GET_BLOCKS_CREATE : 0);
699 }
700
701 /*
702  * `handle' can be NULL if create is zero
703  */
704 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
705                                 ext4_lblk_t block, int create, int *errp)
706 {
707         struct ext4_map_blocks map;
708         struct buffer_head *bh;
709         int fatal = 0, err;
710
711         J_ASSERT(handle != NULL || create == 0);
712
713         map.m_lblk = block;
714         map.m_len = 1;
715         err = ext4_map_blocks(handle, inode, &map,
716                               create ? EXT4_GET_BLOCKS_CREATE : 0);
717
718         if (err < 0)
719                 *errp = err;
720         if (err <= 0)
721                 return NULL;
722         *errp = 0;
723
724         bh = sb_getblk(inode->i_sb, map.m_pblk);
725         if (!bh) {
726                 *errp = -EIO;
727                 return NULL;
728         }
729         if (map.m_flags & EXT4_MAP_NEW) {
730                 J_ASSERT(create != 0);
731                 J_ASSERT(handle != NULL);
732
733                 /*
734                  * Now that we do not always journal data, we should
735                  * keep in mind whether this should always journal the
736                  * new buffer as metadata.  For now, regular file
737                  * writes use ext4_get_block instead, so it's not a
738                  * problem.
739                  */
740                 lock_buffer(bh);
741                 BUFFER_TRACE(bh, "call get_create_access");
742                 fatal = ext4_journal_get_create_access(handle, bh);
743                 if (!fatal && !buffer_uptodate(bh)) {
744                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
745                         set_buffer_uptodate(bh);
746                 }
747                 unlock_buffer(bh);
748                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
749                 err = ext4_handle_dirty_metadata(handle, inode, bh);
750                 if (!fatal)
751                         fatal = err;
752         } else {
753                 BUFFER_TRACE(bh, "not a new buffer");
754         }
755         if (fatal) {
756                 *errp = fatal;
757                 brelse(bh);
758                 bh = NULL;
759         }
760         return bh;
761 }
762
763 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
764                                ext4_lblk_t block, int create, int *err)
765 {
766         struct buffer_head *bh;
767
768         bh = ext4_getblk(handle, inode, block, create, err);
769         if (!bh)
770                 return bh;
771         if (buffer_uptodate(bh))
772                 return bh;
773         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
774         wait_on_buffer(bh);
775         if (buffer_uptodate(bh))
776                 return bh;
777         put_bh(bh);
778         *err = -EIO;
779         return NULL;
780 }
781
782 static int walk_page_buffers(handle_t *handle,
783                              struct buffer_head *head,
784                              unsigned from,
785                              unsigned to,
786                              int *partial,
787                              int (*fn)(handle_t *handle,
788                                        struct buffer_head *bh))
789 {
790         struct buffer_head *bh;
791         unsigned block_start, block_end;
792         unsigned blocksize = head->b_size;
793         int err, ret = 0;
794         struct buffer_head *next;
795
796         for (bh = head, block_start = 0;
797              ret == 0 && (bh != head || !block_start);
798              block_start = block_end, bh = next) {
799                 next = bh->b_this_page;
800                 block_end = block_start + blocksize;
801                 if (block_end <= from || block_start >= to) {
802                         if (partial && !buffer_uptodate(bh))
803                                 *partial = 1;
804                         continue;
805                 }
806                 err = (*fn)(handle, bh);
807                 if (!ret)
808                         ret = err;
809         }
810         return ret;
811 }
812
813 /*
814  * To preserve ordering, it is essential that the hole instantiation and
815  * the data write be encapsulated in a single transaction.  We cannot
816  * close off a transaction and start a new one between the ext4_get_block()
817  * and the commit_write().  So doing the jbd2_journal_start at the start of
818  * prepare_write() is the right place.
819  *
820  * Also, this function can nest inside ext4_writepage() ->
821  * block_write_full_page(). In that case, we *know* that ext4_writepage()
822  * has generated enough buffer credits to do the whole page.  So we won't
823  * block on the journal in that case, which is good, because the caller may
824  * be PF_MEMALLOC.
825  *
826  * By accident, ext4 can be reentered when a transaction is open via
827  * quota file writes.  If we were to commit the transaction while thus
828  * reentered, there can be a deadlock - we would be holding a quota
829  * lock, and the commit would never complete if another thread had a
830  * transaction open and was blocking on the quota lock - a ranking
831  * violation.
832  *
833  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
834  * will _not_ run commit under these circumstances because handle->h_ref
835  * is elevated.  We'll still have enough credits for the tiny quotafile
836  * write.
837  */
838 static int do_journal_get_write_access(handle_t *handle,
839                                        struct buffer_head *bh)
840 {
841         int dirty = buffer_dirty(bh);
842         int ret;
843
844         if (!buffer_mapped(bh) || buffer_freed(bh))
845                 return 0;
846         /*
847          * __block_write_begin() could have dirtied some buffers. Clean
848          * the dirty bit as jbd2_journal_get_write_access() could complain
849          * otherwise about fs integrity issues. Setting of the dirty bit
850          * by __block_write_begin() isn't a real problem here as we clear
851          * the bit before releasing a page lock and thus writeback cannot
852          * ever write the buffer.
853          */
854         if (dirty)
855                 clear_buffer_dirty(bh);
856         ret = ext4_journal_get_write_access(handle, bh);
857         if (!ret && dirty)
858                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
859         return ret;
860 }
861
862 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
863                    struct buffer_head *bh_result, int create);
864 static int ext4_write_begin(struct file *file, struct address_space *mapping,
865                             loff_t pos, unsigned len, unsigned flags,
866                             struct page **pagep, void **fsdata)
867 {
868         struct inode *inode = mapping->host;
869         int ret, needed_blocks;
870         handle_t *handle;
871         int retries = 0;
872         struct page *page;
873         pgoff_t index;
874         unsigned from, to;
875
876         trace_ext4_write_begin(inode, pos, len, flags);
877         /*
878          * Reserve one block more for addition to orphan list in case
879          * we allocate blocks but write fails for some reason
880          */
881         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
882         index = pos >> PAGE_CACHE_SHIFT;
883         from = pos & (PAGE_CACHE_SIZE - 1);
884         to = from + len;
885
886 retry:
887         handle = ext4_journal_start(inode, needed_blocks);
888         if (IS_ERR(handle)) {
889                 ret = PTR_ERR(handle);
890                 goto out;
891         }
892
893         /* We cannot recurse into the filesystem as the transaction is already
894          * started */
895         flags |= AOP_FLAG_NOFS;
896
897         page = grab_cache_page_write_begin(mapping, index, flags);
898         if (!page) {
899                 ext4_journal_stop(handle);
900                 ret = -ENOMEM;
901                 goto out;
902         }
903         *pagep = page;
904
905         if (ext4_should_dioread_nolock(inode))
906                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907         else
908                 ret = __block_write_begin(page, pos, len, ext4_get_block);
909
910         if (!ret && ext4_should_journal_data(inode)) {
911                 ret = walk_page_buffers(handle, page_buffers(page),
912                                 from, to, NULL, do_journal_get_write_access);
913         }
914
915         if (ret) {
916                 unlock_page(page);
917                 page_cache_release(page);
918                 /*
919                  * __block_write_begin may have instantiated a few blocks
920                  * outside i_size.  Trim these off again. Don't need
921                  * i_size_read because we hold i_mutex.
922                  *
923                  * Add inode to orphan list in case we crash before
924                  * truncate finishes
925                  */
926                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
927                         ext4_orphan_add(handle, inode);
928
929                 ext4_journal_stop(handle);
930                 if (pos + len > inode->i_size) {
931                         ext4_truncate_failed_write(inode);
932                         /*
933                          * If truncate failed early the inode might
934                          * still be on the orphan list; we need to
935                          * make sure the inode is removed from the
936                          * orphan list in that case.
937                          */
938                         if (inode->i_nlink)
939                                 ext4_orphan_del(NULL, inode);
940                 }
941         }
942
943         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
944                 goto retry;
945 out:
946         return ret;
947 }
948
949 /* For write_end() in data=journal mode */
950 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
951 {
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         set_buffer_uptodate(bh);
955         return ext4_handle_dirty_metadata(handle, NULL, bh);
956 }
957
958 static int ext4_generic_write_end(struct file *file,
959                                   struct address_space *mapping,
960                                   loff_t pos, unsigned len, unsigned copied,
961                                   struct page *page, void *fsdata)
962 {
963         int i_size_changed = 0;
964         struct inode *inode = mapping->host;
965         handle_t *handle = ext4_journal_current_handle();
966
967         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
968
969         /*
970          * No need to use i_size_read() here, the i_size
971          * cannot change under us because we hold i_mutex.
972          *
973          * But it's important to update i_size while still holding page lock:
974          * page writeout could otherwise come in and zero beyond i_size.
975          */
976         if (pos + copied > inode->i_size) {
977                 i_size_write(inode, pos + copied);
978                 i_size_changed = 1;
979         }
980
981         if (pos + copied >  EXT4_I(inode)->i_disksize) {
982                 /* We need to mark inode dirty even if
983                  * new_i_size is less that inode->i_size
984                  * bu greater than i_disksize.(hint delalloc)
985                  */
986                 ext4_update_i_disksize(inode, (pos + copied));
987                 i_size_changed = 1;
988         }
989         unlock_page(page);
990         page_cache_release(page);
991
992         /*
993          * Don't mark the inode dirty under page lock. First, it unnecessarily
994          * makes the holding time of page lock longer. Second, it forces lock
995          * ordering of page lock and transaction start for journaling
996          * filesystems.
997          */
998         if (i_size_changed)
999                 ext4_mark_inode_dirty(handle, inode);
1000
1001         return copied;
1002 }
1003
1004 /*
1005  * We need to pick up the new inode size which generic_commit_write gave us
1006  * `file' can be NULL - eg, when called from page_symlink().
1007  *
1008  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1009  * buffers are managed internally.
1010  */
1011 static int ext4_ordered_write_end(struct file *file,
1012                                   struct address_space *mapping,
1013                                   loff_t pos, unsigned len, unsigned copied,
1014                                   struct page *page, void *fsdata)
1015 {
1016         handle_t *handle = ext4_journal_current_handle();
1017         struct inode *inode = mapping->host;
1018         int ret = 0, ret2;
1019
1020         trace_ext4_ordered_write_end(inode, pos, len, copied);
1021         ret = ext4_jbd2_file_inode(handle, inode);
1022
1023         if (ret == 0) {
1024                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1025                                                         page, fsdata);
1026                 copied = ret2;
1027                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1028                         /* if we have allocated more blocks and copied
1029                          * less. We will have blocks allocated outside
1030                          * inode->i_size. So truncate them
1031                          */
1032                         ext4_orphan_add(handle, inode);
1033                 if (ret2 < 0)
1034                         ret = ret2;
1035         } else {
1036                 unlock_page(page);
1037                 page_cache_release(page);
1038         }
1039
1040         ret2 = ext4_journal_stop(handle);
1041         if (!ret)
1042                 ret = ret2;
1043
1044         if (pos + len > inode->i_size) {
1045                 ext4_truncate_failed_write(inode);
1046                 /*
1047                  * If truncate failed early the inode might still be
1048                  * on the orphan list; we need to make sure the inode
1049                  * is removed from the orphan list in that case.
1050                  */
1051                 if (inode->i_nlink)
1052                         ext4_orphan_del(NULL, inode);
1053         }
1054
1055
1056         return ret ? ret : copied;
1057 }
1058
1059 static int ext4_writeback_write_end(struct file *file,
1060                                     struct address_space *mapping,
1061                                     loff_t pos, unsigned len, unsigned copied,
1062                                     struct page *page, void *fsdata)
1063 {
1064         handle_t *handle = ext4_journal_current_handle();
1065         struct inode *inode = mapping->host;
1066         int ret = 0, ret2;
1067
1068         trace_ext4_writeback_write_end(inode, pos, len, copied);
1069         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1070                                                         page, fsdata);
1071         copied = ret2;
1072         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1073                 /* if we have allocated more blocks and copied
1074                  * less. We will have blocks allocated outside
1075                  * inode->i_size. So truncate them
1076                  */
1077                 ext4_orphan_add(handle, inode);
1078
1079         if (ret2 < 0)
1080                 ret = ret2;
1081
1082         ret2 = ext4_journal_stop(handle);
1083         if (!ret)
1084                 ret = ret2;
1085
1086         if (pos + len > inode->i_size) {
1087                 ext4_truncate_failed_write(inode);
1088                 /*
1089                  * If truncate failed early the inode might still be
1090                  * on the orphan list; we need to make sure the inode
1091                  * is removed from the orphan list in that case.
1092                  */
1093                 if (inode->i_nlink)
1094                         ext4_orphan_del(NULL, inode);
1095         }
1096
1097         return ret ? ret : copied;
1098 }
1099
1100 static int ext4_journalled_write_end(struct file *file,
1101                                      struct address_space *mapping,
1102                                      loff_t pos, unsigned len, unsigned copied,
1103                                      struct page *page, void *fsdata)
1104 {
1105         handle_t *handle = ext4_journal_current_handle();
1106         struct inode *inode = mapping->host;
1107         int ret = 0, ret2;
1108         int partial = 0;
1109         unsigned from, to;
1110         loff_t new_i_size;
1111
1112         trace_ext4_journalled_write_end(inode, pos, len, copied);
1113         from = pos & (PAGE_CACHE_SIZE - 1);
1114         to = from + len;
1115
1116         BUG_ON(!ext4_handle_valid(handle));
1117
1118         if (copied < len) {
1119                 if (!PageUptodate(page))
1120                         copied = 0;
1121                 page_zero_new_buffers(page, from+copied, to);
1122         }
1123
1124         ret = walk_page_buffers(handle, page_buffers(page), from,
1125                                 to, &partial, write_end_fn);
1126         if (!partial)
1127                 SetPageUptodate(page);
1128         new_i_size = pos + copied;
1129         if (new_i_size > inode->i_size)
1130                 i_size_write(inode, pos+copied);
1131         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1132         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1133         if (new_i_size > EXT4_I(inode)->i_disksize) {
1134                 ext4_update_i_disksize(inode, new_i_size);
1135                 ret2 = ext4_mark_inode_dirty(handle, inode);
1136                 if (!ret)
1137                         ret = ret2;
1138         }
1139
1140         unlock_page(page);
1141         page_cache_release(page);
1142         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143                 /* if we have allocated more blocks and copied
1144                  * less. We will have blocks allocated outside
1145                  * inode->i_size. So truncate them
1146                  */
1147                 ext4_orphan_add(handle, inode);
1148
1149         ret2 = ext4_journal_stop(handle);
1150         if (!ret)
1151                 ret = ret2;
1152         if (pos + len > inode->i_size) {
1153                 ext4_truncate_failed_write(inode);
1154                 /*
1155                  * If truncate failed early the inode might still be
1156                  * on the orphan list; we need to make sure the inode
1157                  * is removed from the orphan list in that case.
1158                  */
1159                 if (inode->i_nlink)
1160                         ext4_orphan_del(NULL, inode);
1161         }
1162
1163         return ret ? ret : copied;
1164 }
1165
1166 /*
1167  * Reserve a single cluster located at lblock
1168  */
1169 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1170 {
1171         int retries = 0;
1172         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173         struct ext4_inode_info *ei = EXT4_I(inode);
1174         unsigned int md_needed;
1175         int ret;
1176
1177         /*
1178          * recalculate the amount of metadata blocks to reserve
1179          * in order to allocate nrblocks
1180          * worse case is one extent per block
1181          */
1182 repeat:
1183         spin_lock(&ei->i_block_reservation_lock);
1184         md_needed = EXT4_NUM_B2C(sbi,
1185                                  ext4_calc_metadata_amount(inode, lblock));
1186         trace_ext4_da_reserve_space(inode, md_needed);
1187         spin_unlock(&ei->i_block_reservation_lock);
1188
1189         /*
1190          * We will charge metadata quota at writeout time; this saves
1191          * us from metadata over-estimation, though we may go over by
1192          * a small amount in the end.  Here we just reserve for data.
1193          */
1194         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1195         if (ret)
1196                 return ret;
1197         /*
1198          * We do still charge estimated metadata to the sb though;
1199          * we cannot afford to run out of free blocks.
1200          */
1201         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1202                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1203                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1204                         yield();
1205                         goto repeat;
1206                 }
1207                 return -ENOSPC;
1208         }
1209         spin_lock(&ei->i_block_reservation_lock);
1210         ei->i_reserved_data_blocks++;
1211         ei->i_reserved_meta_blocks += md_needed;
1212         spin_unlock(&ei->i_block_reservation_lock);
1213
1214         return 0;       /* success */
1215 }
1216
1217 static void ext4_da_release_space(struct inode *inode, int to_free)
1218 {
1219         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1220         struct ext4_inode_info *ei = EXT4_I(inode);
1221
1222         if (!to_free)
1223                 return;         /* Nothing to release, exit */
1224
1225         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1226
1227         trace_ext4_da_release_space(inode, to_free);
1228         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1229                 /*
1230                  * if there aren't enough reserved blocks, then the
1231                  * counter is messed up somewhere.  Since this
1232                  * function is called from invalidate page, it's
1233                  * harmless to return without any action.
1234                  */
1235                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1236                          "ino %lu, to_free %d with only %d reserved "
1237                          "data blocks", inode->i_ino, to_free,
1238                          ei->i_reserved_data_blocks);
1239                 WARN_ON(1);
1240                 to_free = ei->i_reserved_data_blocks;
1241         }
1242         ei->i_reserved_data_blocks -= to_free;
1243
1244         if (ei->i_reserved_data_blocks == 0) {
1245                 /*
1246                  * We can release all of the reserved metadata blocks
1247                  * only when we have written all of the delayed
1248                  * allocation blocks.
1249                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1250                  * i_reserved_data_blocks, etc. refer to number of clusters.
1251                  */
1252                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1253                                    ei->i_reserved_meta_blocks);
1254                 ei->i_reserved_meta_blocks = 0;
1255                 ei->i_da_metadata_calc_len = 0;
1256         }
1257
1258         /* update fs dirty data blocks counter */
1259         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1260
1261         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1262
1263         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1264 }
1265
1266 static void ext4_da_page_release_reservation(struct page *page,
1267                                              unsigned long offset)
1268 {
1269         int to_release = 0;
1270         struct buffer_head *head, *bh;
1271         unsigned int curr_off = 0;
1272         struct inode *inode = page->mapping->host;
1273         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1274         int num_clusters;
1275
1276         head = page_buffers(page);
1277         bh = head;
1278         do {
1279                 unsigned int next_off = curr_off + bh->b_size;
1280
1281                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1282                         to_release++;
1283                         clear_buffer_delay(bh);
1284                         clear_buffer_da_mapped(bh);
1285                 }
1286                 curr_off = next_off;
1287         } while ((bh = bh->b_this_page) != head);
1288
1289         /* If we have released all the blocks belonging to a cluster, then we
1290          * need to release the reserved space for that cluster. */
1291         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1292         while (num_clusters > 0) {
1293                 ext4_fsblk_t lblk;
1294                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1295                         ((num_clusters - 1) << sbi->s_cluster_bits);
1296                 if (sbi->s_cluster_ratio == 1 ||
1297                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1298                         ext4_da_release_space(inode, 1);
1299
1300                 num_clusters--;
1301         }
1302 }
1303
1304 /*
1305  * Delayed allocation stuff
1306  */
1307
1308 /*
1309  * mpage_da_submit_io - walks through extent of pages and try to write
1310  * them with writepage() call back
1311  *
1312  * @mpd->inode: inode
1313  * @mpd->first_page: first page of the extent
1314  * @mpd->next_page: page after the last page of the extent
1315  *
1316  * By the time mpage_da_submit_io() is called we expect all blocks
1317  * to be allocated. this may be wrong if allocation failed.
1318  *
1319  * As pages are already locked by write_cache_pages(), we can't use it
1320  */
1321 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1322                               struct ext4_map_blocks *map)
1323 {
1324         struct pagevec pvec;
1325         unsigned long index, end;
1326         int ret = 0, err, nr_pages, i;
1327         struct inode *inode = mpd->inode;
1328         struct address_space *mapping = inode->i_mapping;
1329         loff_t size = i_size_read(inode);
1330         unsigned int len, block_start;
1331         struct buffer_head *bh, *page_bufs = NULL;
1332         int journal_data = ext4_should_journal_data(inode);
1333         sector_t pblock = 0, cur_logical = 0;
1334         struct ext4_io_submit io_submit;
1335
1336         BUG_ON(mpd->next_page <= mpd->first_page);
1337         memset(&io_submit, 0, sizeof(io_submit));
1338         /*
1339          * We need to start from the first_page to the next_page - 1
1340          * to make sure we also write the mapped dirty buffer_heads.
1341          * If we look at mpd->b_blocknr we would only be looking
1342          * at the currently mapped buffer_heads.
1343          */
1344         index = mpd->first_page;
1345         end = mpd->next_page - 1;
1346
1347         pagevec_init(&pvec, 0);
1348         while (index <= end) {
1349                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1350                 if (nr_pages == 0)
1351                         break;
1352                 for (i = 0; i < nr_pages; i++) {
1353                         int commit_write = 0, skip_page = 0;
1354                         struct page *page = pvec.pages[i];
1355
1356                         index = page->index;
1357                         if (index > end)
1358                                 break;
1359
1360                         if (index == size >> PAGE_CACHE_SHIFT)
1361                                 len = size & ~PAGE_CACHE_MASK;
1362                         else
1363                                 len = PAGE_CACHE_SIZE;
1364                         if (map) {
1365                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1366                                                         inode->i_blkbits);
1367                                 pblock = map->m_pblk + (cur_logical -
1368                                                         map->m_lblk);
1369                         }
1370                         index++;
1371
1372                         BUG_ON(!PageLocked(page));
1373                         BUG_ON(PageWriteback(page));
1374
1375                         /*
1376                          * If the page does not have buffers (for
1377                          * whatever reason), try to create them using
1378                          * __block_write_begin.  If this fails,
1379                          * skip the page and move on.
1380                          */
1381                         if (!page_has_buffers(page)) {
1382                                 if (__block_write_begin(page, 0, len,
1383                                                 noalloc_get_block_write)) {
1384                                 skip_page:
1385                                         unlock_page(page);
1386                                         continue;
1387                                 }
1388                                 commit_write = 1;
1389                         }
1390
1391                         bh = page_bufs = page_buffers(page);
1392                         block_start = 0;
1393                         do {
1394                                 if (!bh)
1395                                         goto skip_page;
1396                                 if (map && (cur_logical >= map->m_lblk) &&
1397                                     (cur_logical <= (map->m_lblk +
1398                                                      (map->m_len - 1)))) {
1399                                         if (buffer_delay(bh)) {
1400                                                 clear_buffer_delay(bh);
1401                                                 bh->b_blocknr = pblock;
1402                                         }
1403                                         if (buffer_da_mapped(bh))
1404                                                 clear_buffer_da_mapped(bh);
1405                                         if (buffer_unwritten(bh) ||
1406                                             buffer_mapped(bh))
1407                                                 BUG_ON(bh->b_blocknr != pblock);
1408                                         if (map->m_flags & EXT4_MAP_UNINIT)
1409                                                 set_buffer_uninit(bh);
1410                                         clear_buffer_unwritten(bh);
1411                                 }
1412
1413                                 /*
1414                                  * skip page if block allocation undone and
1415                                  * block is dirty
1416                                  */
1417                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1418                                         skip_page = 1;
1419                                 bh = bh->b_this_page;
1420                                 block_start += bh->b_size;
1421                                 cur_logical++;
1422                                 pblock++;
1423                         } while (bh != page_bufs);
1424
1425                         if (skip_page)
1426                                 goto skip_page;
1427
1428                         if (commit_write)
1429                                 /* mark the buffer_heads as dirty & uptodate */
1430                                 block_commit_write(page, 0, len);
1431
1432                         clear_page_dirty_for_io(page);
1433                         /*
1434                          * Delalloc doesn't support data journalling,
1435                          * but eventually maybe we'll lift this
1436                          * restriction.
1437                          */
1438                         if (unlikely(journal_data && PageChecked(page)))
1439                                 err = __ext4_journalled_writepage(page, len);
1440                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1441                                 err = ext4_bio_write_page(&io_submit, page,
1442                                                           len, mpd->wbc);
1443                         else if (buffer_uninit(page_bufs)) {
1444                                 ext4_set_bh_endio(page_bufs, inode);
1445                                 err = block_write_full_page_endio(page,
1446                                         noalloc_get_block_write,
1447                                         mpd->wbc, ext4_end_io_buffer_write);
1448                         } else
1449                                 err = block_write_full_page(page,
1450                                         noalloc_get_block_write, mpd->wbc);
1451
1452                         if (!err)
1453                                 mpd->pages_written++;
1454                         /*
1455                          * In error case, we have to continue because
1456                          * remaining pages are still locked
1457                          */
1458                         if (ret == 0)
1459                                 ret = err;
1460                 }
1461                 pagevec_release(&pvec);
1462         }
1463         ext4_io_submit(&io_submit);
1464         return ret;
1465 }
1466
1467 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1468 {
1469         int nr_pages, i;
1470         pgoff_t index, end;
1471         struct pagevec pvec;
1472         struct inode *inode = mpd->inode;
1473         struct address_space *mapping = inode->i_mapping;
1474
1475         index = mpd->first_page;
1476         end   = mpd->next_page - 1;
1477         while (index <= end) {
1478                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1479                 if (nr_pages == 0)
1480                         break;
1481                 for (i = 0; i < nr_pages; i++) {
1482                         struct page *page = pvec.pages[i];
1483                         if (page->index > end)
1484                                 break;
1485                         BUG_ON(!PageLocked(page));
1486                         BUG_ON(PageWriteback(page));
1487                         block_invalidatepage(page, 0);
1488                         ClearPageUptodate(page);
1489                         unlock_page(page);
1490                 }
1491                 index = pvec.pages[nr_pages - 1]->index + 1;
1492                 pagevec_release(&pvec);
1493         }
1494         return;
1495 }
1496
1497 static void ext4_print_free_blocks(struct inode *inode)
1498 {
1499         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500         struct super_block *sb = inode->i_sb;
1501
1502         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1503                EXT4_C2B(EXT4_SB(inode->i_sb),
1504                         ext4_count_free_clusters(inode->i_sb)));
1505         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1506         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1507                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1508                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1509         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1510                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1511                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1512         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1513         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1514                  EXT4_I(inode)->i_reserved_data_blocks);
1515         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1516                EXT4_I(inode)->i_reserved_meta_blocks);
1517         return;
1518 }
1519
1520 /*
1521  * mpage_da_map_and_submit - go through given space, map them
1522  *       if necessary, and then submit them for I/O
1523  *
1524  * @mpd - bh describing space
1525  *
1526  * The function skips space we know is already mapped to disk blocks.
1527  *
1528  */
1529 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1530 {
1531         int err, blks, get_blocks_flags;
1532         struct ext4_map_blocks map, *mapp = NULL;
1533         sector_t next = mpd->b_blocknr;
1534         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1535         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1536         handle_t *handle = NULL;
1537
1538         /*
1539          * If the blocks are mapped already, or we couldn't accumulate
1540          * any blocks, then proceed immediately to the submission stage.
1541          */
1542         if ((mpd->b_size == 0) ||
1543             ((mpd->b_state  & (1 << BH_Mapped)) &&
1544              !(mpd->b_state & (1 << BH_Delay)) &&
1545              !(mpd->b_state & (1 << BH_Unwritten))))
1546                 goto submit_io;
1547
1548         handle = ext4_journal_current_handle();
1549         BUG_ON(!handle);
1550
1551         /*
1552          * Call ext4_map_blocks() to allocate any delayed allocation
1553          * blocks, or to convert an uninitialized extent to be
1554          * initialized (in the case where we have written into
1555          * one or more preallocated blocks).
1556          *
1557          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1558          * indicate that we are on the delayed allocation path.  This
1559          * affects functions in many different parts of the allocation
1560          * call path.  This flag exists primarily because we don't
1561          * want to change *many* call functions, so ext4_map_blocks()
1562          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1563          * inode's allocation semaphore is taken.
1564          *
1565          * If the blocks in questions were delalloc blocks, set
1566          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1567          * variables are updated after the blocks have been allocated.
1568          */
1569         map.m_lblk = next;
1570         map.m_len = max_blocks;
1571         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1572         if (ext4_should_dioread_nolock(mpd->inode))
1573                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1574         if (mpd->b_state & (1 << BH_Delay))
1575                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1576
1577         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1578         if (blks < 0) {
1579                 struct super_block *sb = mpd->inode->i_sb;
1580
1581                 err = blks;
1582                 /*
1583                  * If get block returns EAGAIN or ENOSPC and there
1584                  * appears to be free blocks we will just let
1585                  * mpage_da_submit_io() unlock all of the pages.
1586                  */
1587                 if (err == -EAGAIN)
1588                         goto submit_io;
1589
1590                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1591                         mpd->retval = err;
1592                         goto submit_io;
1593                 }
1594
1595                 /*
1596                  * get block failure will cause us to loop in
1597                  * writepages, because a_ops->writepage won't be able
1598                  * to make progress. The page will be redirtied by
1599                  * writepage and writepages will again try to write
1600                  * the same.
1601                  */
1602                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1603                         ext4_msg(sb, KERN_CRIT,
1604                                  "delayed block allocation failed for inode %lu "
1605                                  "at logical offset %llu with max blocks %zd "
1606                                  "with error %d", mpd->inode->i_ino,
1607                                  (unsigned long long) next,
1608                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1609                         ext4_msg(sb, KERN_CRIT,
1610                                 "This should not happen!! Data will be lost\n");
1611                         if (err == -ENOSPC)
1612                                 ext4_print_free_blocks(mpd->inode);
1613                 }
1614                 /* invalidate all the pages */
1615                 ext4_da_block_invalidatepages(mpd);
1616
1617                 /* Mark this page range as having been completed */
1618                 mpd->io_done = 1;
1619                 return;
1620         }
1621         BUG_ON(blks == 0);
1622
1623         mapp = &map;
1624         if (map.m_flags & EXT4_MAP_NEW) {
1625                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1626                 int i;
1627
1628                 for (i = 0; i < map.m_len; i++)
1629                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1630
1631                 if (ext4_should_order_data(mpd->inode)) {
1632                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1633                         if (err) {
1634                                 /* Only if the journal is aborted */
1635                                 mpd->retval = err;
1636                                 goto submit_io;
1637                         }
1638                 }
1639         }
1640
1641         /*
1642          * Update on-disk size along with block allocation.
1643          */
1644         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1645         if (disksize > i_size_read(mpd->inode))
1646                 disksize = i_size_read(mpd->inode);
1647         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1648                 ext4_update_i_disksize(mpd->inode, disksize);
1649                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1650                 if (err)
1651                         ext4_error(mpd->inode->i_sb,
1652                                    "Failed to mark inode %lu dirty",
1653                                    mpd->inode->i_ino);
1654         }
1655
1656 submit_io:
1657         mpage_da_submit_io(mpd, mapp);
1658         mpd->io_done = 1;
1659 }
1660
1661 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1662                 (1 << BH_Delay) | (1 << BH_Unwritten))
1663
1664 /*
1665  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1666  *
1667  * @mpd->lbh - extent of blocks
1668  * @logical - logical number of the block in the file
1669  * @bh - bh of the block (used to access block's state)
1670  *
1671  * the function is used to collect contig. blocks in same state
1672  */
1673 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1674                                    sector_t logical, size_t b_size,
1675                                    unsigned long b_state)
1676 {
1677         sector_t next;
1678         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1679
1680         /*
1681          * XXX Don't go larger than mballoc is willing to allocate
1682          * This is a stopgap solution.  We eventually need to fold
1683          * mpage_da_submit_io() into this function and then call
1684          * ext4_map_blocks() multiple times in a loop
1685          */
1686         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1687                 goto flush_it;
1688
1689         /* check if thereserved journal credits might overflow */
1690         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1691                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1692                         /*
1693                          * With non-extent format we are limited by the journal
1694                          * credit available.  Total credit needed to insert
1695                          * nrblocks contiguous blocks is dependent on the
1696                          * nrblocks.  So limit nrblocks.
1697                          */
1698                         goto flush_it;
1699                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1700                                 EXT4_MAX_TRANS_DATA) {
1701                         /*
1702                          * Adding the new buffer_head would make it cross the
1703                          * allowed limit for which we have journal credit
1704                          * reserved. So limit the new bh->b_size
1705                          */
1706                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1707                                                 mpd->inode->i_blkbits;
1708                         /* we will do mpage_da_submit_io in the next loop */
1709                 }
1710         }
1711         /*
1712          * First block in the extent
1713          */
1714         if (mpd->b_size == 0) {
1715                 mpd->b_blocknr = logical;
1716                 mpd->b_size = b_size;
1717                 mpd->b_state = b_state & BH_FLAGS;
1718                 return;
1719         }
1720
1721         next = mpd->b_blocknr + nrblocks;
1722         /*
1723          * Can we merge the block to our big extent?
1724          */
1725         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1726                 mpd->b_size += b_size;
1727                 return;
1728         }
1729
1730 flush_it:
1731         /*
1732          * We couldn't merge the block to our extent, so we
1733          * need to flush current  extent and start new one
1734          */
1735         mpage_da_map_and_submit(mpd);
1736         return;
1737 }
1738
1739 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1740 {
1741         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1742 }
1743
1744 /*
1745  * This function is grabs code from the very beginning of
1746  * ext4_map_blocks, but assumes that the caller is from delayed write
1747  * time. This function looks up the requested blocks and sets the
1748  * buffer delay bit under the protection of i_data_sem.
1749  */
1750 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1751                               struct ext4_map_blocks *map,
1752                               struct buffer_head *bh)
1753 {
1754         int retval;
1755         sector_t invalid_block = ~((sector_t) 0xffff);
1756
1757         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1758                 invalid_block = ~0;
1759
1760         map->m_flags = 0;
1761         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1762                   "logical block %lu\n", inode->i_ino, map->m_len,
1763                   (unsigned long) map->m_lblk);
1764         /*
1765          * Try to see if we can get the block without requesting a new
1766          * file system block.
1767          */
1768         down_read((&EXT4_I(inode)->i_data_sem));
1769         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1770                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1771         else
1772                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1773
1774         if (retval == 0) {
1775                 /*
1776                  * XXX: __block_prepare_write() unmaps passed block,
1777                  * is it OK?
1778                  */
1779                 /* If the block was allocated from previously allocated cluster,
1780                  * then we dont need to reserve it again. */
1781                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1782                         retval = ext4_da_reserve_space(inode, iblock);
1783                         if (retval)
1784                                 /* not enough space to reserve */
1785                                 goto out_unlock;
1786                 }
1787
1788                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1789                  * and it should not appear on the bh->b_state.
1790                  */
1791                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1792
1793                 map_bh(bh, inode->i_sb, invalid_block);
1794                 set_buffer_new(bh);
1795                 set_buffer_delay(bh);
1796         }
1797
1798 out_unlock:
1799         up_read((&EXT4_I(inode)->i_data_sem));
1800
1801         return retval;
1802 }
1803
1804 /*
1805  * This is a special get_blocks_t callback which is used by
1806  * ext4_da_write_begin().  It will either return mapped block or
1807  * reserve space for a single block.
1808  *
1809  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1810  * We also have b_blocknr = -1 and b_bdev initialized properly
1811  *
1812  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1813  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1814  * initialized properly.
1815  */
1816 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1817                                   struct buffer_head *bh, int create)
1818 {
1819         struct ext4_map_blocks map;
1820         int ret = 0;
1821
1822         BUG_ON(create == 0);
1823         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1824
1825         map.m_lblk = iblock;
1826         map.m_len = 1;
1827
1828         /*
1829          * first, we need to know whether the block is allocated already
1830          * preallocated blocks are unmapped but should treated
1831          * the same as allocated blocks.
1832          */
1833         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1834         if (ret <= 0)
1835                 return ret;
1836
1837         map_bh(bh, inode->i_sb, map.m_pblk);
1838         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1839
1840         if (buffer_unwritten(bh)) {
1841                 /* A delayed write to unwritten bh should be marked
1842                  * new and mapped.  Mapped ensures that we don't do
1843                  * get_block multiple times when we write to the same
1844                  * offset and new ensures that we do proper zero out
1845                  * for partial write.
1846                  */
1847                 set_buffer_new(bh);
1848                 set_buffer_mapped(bh);
1849         }
1850         return 0;
1851 }
1852
1853 /*
1854  * This function is used as a standard get_block_t calback function
1855  * when there is no desire to allocate any blocks.  It is used as a
1856  * callback function for block_write_begin() and block_write_full_page().
1857  * These functions should only try to map a single block at a time.
1858  *
1859  * Since this function doesn't do block allocations even if the caller
1860  * requests it by passing in create=1, it is critically important that
1861  * any caller checks to make sure that any buffer heads are returned
1862  * by this function are either all already mapped or marked for
1863  * delayed allocation before calling  block_write_full_page().  Otherwise,
1864  * b_blocknr could be left unitialized, and the page write functions will
1865  * be taken by surprise.
1866  */
1867 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1868                                    struct buffer_head *bh_result, int create)
1869 {
1870         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1871         return _ext4_get_block(inode, iblock, bh_result, 0);
1872 }
1873
1874 static int bget_one(handle_t *handle, struct buffer_head *bh)
1875 {
1876         get_bh(bh);
1877         return 0;
1878 }
1879
1880 static int bput_one(handle_t *handle, struct buffer_head *bh)
1881 {
1882         put_bh(bh);
1883         return 0;
1884 }
1885
1886 static int __ext4_journalled_writepage(struct page *page,
1887                                        unsigned int len)
1888 {
1889         struct address_space *mapping = page->mapping;
1890         struct inode *inode = mapping->host;
1891         struct buffer_head *page_bufs;
1892         handle_t *handle = NULL;
1893         int ret = 0;
1894         int err;
1895
1896         ClearPageChecked(page);
1897         page_bufs = page_buffers(page);
1898         BUG_ON(!page_bufs);
1899         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1900         /* As soon as we unlock the page, it can go away, but we have
1901          * references to buffers so we are safe */
1902         unlock_page(page);
1903
1904         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1905         if (IS_ERR(handle)) {
1906                 ret = PTR_ERR(handle);
1907                 goto out;
1908         }
1909
1910         BUG_ON(!ext4_handle_valid(handle));
1911
1912         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1913                                 do_journal_get_write_access);
1914
1915         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1916                                 write_end_fn);
1917         if (ret == 0)
1918                 ret = err;
1919         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1920         err = ext4_journal_stop(handle);
1921         if (!ret)
1922                 ret = err;
1923
1924         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1925         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1926 out:
1927         return ret;
1928 }
1929
1930 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1931 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1932
1933 /*
1934  * Note that we don't need to start a transaction unless we're journaling data
1935  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1936  * need to file the inode to the transaction's list in ordered mode because if
1937  * we are writing back data added by write(), the inode is already there and if
1938  * we are writing back data modified via mmap(), no one guarantees in which
1939  * transaction the data will hit the disk. In case we are journaling data, we
1940  * cannot start transaction directly because transaction start ranks above page
1941  * lock so we have to do some magic.
1942  *
1943  * This function can get called via...
1944  *   - ext4_da_writepages after taking page lock (have journal handle)
1945  *   - journal_submit_inode_data_buffers (no journal handle)
1946  *   - shrink_page_list via pdflush (no journal handle)
1947  *   - grab_page_cache when doing write_begin (have journal handle)
1948  *
1949  * We don't do any block allocation in this function. If we have page with
1950  * multiple blocks we need to write those buffer_heads that are mapped. This
1951  * is important for mmaped based write. So if we do with blocksize 1K
1952  * truncate(f, 1024);
1953  * a = mmap(f, 0, 4096);
1954  * a[0] = 'a';
1955  * truncate(f, 4096);
1956  * we have in the page first buffer_head mapped via page_mkwrite call back
1957  * but other buffer_heads would be unmapped but dirty (dirty done via the
1958  * do_wp_page). So writepage should write the first block. If we modify
1959  * the mmap area beyond 1024 we will again get a page_fault and the
1960  * page_mkwrite callback will do the block allocation and mark the
1961  * buffer_heads mapped.
1962  *
1963  * We redirty the page if we have any buffer_heads that is either delay or
1964  * unwritten in the page.
1965  *
1966  * We can get recursively called as show below.
1967  *
1968  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1969  *              ext4_writepage()
1970  *
1971  * But since we don't do any block allocation we should not deadlock.
1972  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1973  */
1974 static int ext4_writepage(struct page *page,
1975                           struct writeback_control *wbc)
1976 {
1977         int ret = 0, commit_write = 0;
1978         loff_t size;
1979         unsigned int len;
1980         struct buffer_head *page_bufs = NULL;
1981         struct inode *inode = page->mapping->host;
1982
1983         trace_ext4_writepage(page);
1984         size = i_size_read(inode);
1985         if (page->index == size >> PAGE_CACHE_SHIFT)
1986                 len = size & ~PAGE_CACHE_MASK;
1987         else
1988                 len = PAGE_CACHE_SIZE;
1989
1990         /*
1991          * If the page does not have buffers (for whatever reason),
1992          * try to create them using __block_write_begin.  If this
1993          * fails, redirty the page and move on.
1994          */
1995         if (!page_has_buffers(page)) {
1996                 if (__block_write_begin(page, 0, len,
1997                                         noalloc_get_block_write)) {
1998                 redirty_page:
1999                         redirty_page_for_writepage(wbc, page);
2000                         unlock_page(page);
2001                         return 0;
2002                 }
2003                 commit_write = 1;
2004         }
2005         page_bufs = page_buffers(page);
2006         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2007                               ext4_bh_delay_or_unwritten)) {
2008                 /*
2009                  * We don't want to do block allocation, so redirty
2010                  * the page and return.  We may reach here when we do
2011                  * a journal commit via journal_submit_inode_data_buffers.
2012                  * We can also reach here via shrink_page_list but it
2013                  * should never be for direct reclaim so warn if that
2014                  * happens
2015                  */
2016                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2017                                                                 PF_MEMALLOC);
2018                 goto redirty_page;
2019         }
2020         if (commit_write)
2021                 /* now mark the buffer_heads as dirty and uptodate */
2022                 block_commit_write(page, 0, len);
2023
2024         if (PageChecked(page) && ext4_should_journal_data(inode))
2025                 /*
2026                  * It's mmapped pagecache.  Add buffers and journal it.  There
2027                  * doesn't seem much point in redirtying the page here.
2028                  */
2029                 return __ext4_journalled_writepage(page, len);
2030
2031         if (buffer_uninit(page_bufs)) {
2032                 ext4_set_bh_endio(page_bufs, inode);
2033                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2034                                             wbc, ext4_end_io_buffer_write);
2035         } else
2036                 ret = block_write_full_page(page, noalloc_get_block_write,
2037                                             wbc);
2038
2039         return ret;
2040 }
2041
2042 /*
2043  * This is called via ext4_da_writepages() to
2044  * calculate the total number of credits to reserve to fit
2045  * a single extent allocation into a single transaction,
2046  * ext4_da_writpeages() will loop calling this before
2047  * the block allocation.
2048  */
2049
2050 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2051 {
2052         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2053
2054         /*
2055          * With non-extent format the journal credit needed to
2056          * insert nrblocks contiguous block is dependent on
2057          * number of contiguous block. So we will limit
2058          * number of contiguous block to a sane value
2059          */
2060         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2061             (max_blocks > EXT4_MAX_TRANS_DATA))
2062                 max_blocks = EXT4_MAX_TRANS_DATA;
2063
2064         return ext4_chunk_trans_blocks(inode, max_blocks);
2065 }
2066
2067 /*
2068  * write_cache_pages_da - walk the list of dirty pages of the given
2069  * address space and accumulate pages that need writing, and call
2070  * mpage_da_map_and_submit to map a single contiguous memory region
2071  * and then write them.
2072  */
2073 static int write_cache_pages_da(struct address_space *mapping,
2074                                 struct writeback_control *wbc,
2075                                 struct mpage_da_data *mpd,
2076                                 pgoff_t *done_index)
2077 {
2078         struct buffer_head      *bh, *head;
2079         struct inode            *inode = mapping->host;
2080         struct pagevec          pvec;
2081         unsigned int            nr_pages;
2082         sector_t                logical;
2083         pgoff_t                 index, end;
2084         long                    nr_to_write = wbc->nr_to_write;
2085         int                     i, tag, ret = 0;
2086
2087         memset(mpd, 0, sizeof(struct mpage_da_data));
2088         mpd->wbc = wbc;
2089         mpd->inode = inode;
2090         pagevec_init(&pvec, 0);
2091         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2092         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2093
2094         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2095                 tag = PAGECACHE_TAG_TOWRITE;
2096         else
2097                 tag = PAGECACHE_TAG_DIRTY;
2098
2099         *done_index = index;
2100         while (index <= end) {
2101                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2102                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2103                 if (nr_pages == 0)
2104                         return 0;
2105
2106                 for (i = 0; i < nr_pages; i++) {
2107                         struct page *page = pvec.pages[i];
2108
2109                         /*
2110                          * At this point, the page may be truncated or
2111                          * invalidated (changing page->mapping to NULL), or
2112                          * even swizzled back from swapper_space to tmpfs file
2113                          * mapping. However, page->index will not change
2114                          * because we have a reference on the page.
2115                          */
2116                         if (page->index > end)
2117                                 goto out;
2118
2119                         *done_index = page->index + 1;
2120
2121                         /*
2122                          * If we can't merge this page, and we have
2123                          * accumulated an contiguous region, write it
2124                          */
2125                         if ((mpd->next_page != page->index) &&
2126                             (mpd->next_page != mpd->first_page)) {
2127                                 mpage_da_map_and_submit(mpd);
2128                                 goto ret_extent_tail;
2129                         }
2130
2131                         lock_page(page);
2132
2133                         /*
2134                          * If the page is no longer dirty, or its
2135                          * mapping no longer corresponds to inode we
2136                          * are writing (which means it has been
2137                          * truncated or invalidated), or the page is
2138                          * already under writeback and we are not
2139                          * doing a data integrity writeback, skip the page
2140                          */
2141                         if (!PageDirty(page) ||
2142                             (PageWriteback(page) &&
2143                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2144                             unlikely(page->mapping != mapping)) {
2145                                 unlock_page(page);
2146                                 continue;
2147                         }
2148
2149                         wait_on_page_writeback(page);
2150                         BUG_ON(PageWriteback(page));
2151
2152                         if (mpd->next_page != page->index)
2153                                 mpd->first_page = page->index;
2154                         mpd->next_page = page->index + 1;
2155                         logical = (sector_t) page->index <<
2156                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157
2158                         if (!page_has_buffers(page)) {
2159                                 mpage_add_bh_to_extent(mpd, logical,
2160                                                        PAGE_CACHE_SIZE,
2161                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2162                                 if (mpd->io_done)
2163                                         goto ret_extent_tail;
2164                         } else {
2165                                 /*
2166                                  * Page with regular buffer heads,
2167                                  * just add all dirty ones
2168                                  */
2169                                 head = page_buffers(page);
2170                                 bh = head;
2171                                 do {
2172                                         BUG_ON(buffer_locked(bh));
2173                                         /*
2174                                          * We need to try to allocate
2175                                          * unmapped blocks in the same page.
2176                                          * Otherwise we won't make progress
2177                                          * with the page in ext4_writepage
2178                                          */
2179                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2180                                                 mpage_add_bh_to_extent(mpd, logical,
2181                                                                        bh->b_size,
2182                                                                        bh->b_state);
2183                                                 if (mpd->io_done)
2184                                                         goto ret_extent_tail;
2185                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2186                                                 /*
2187                                                  * mapped dirty buffer. We need
2188                                                  * to update the b_state
2189                                                  * because we look at b_state
2190                                                  * in mpage_da_map_blocks.  We
2191                                                  * don't update b_size because
2192                                                  * if we find an unmapped
2193                                                  * buffer_head later we need to
2194                                                  * use the b_state flag of that
2195                                                  * buffer_head.
2196                                                  */
2197                                                 if (mpd->b_size == 0)
2198                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2199                                         }
2200                                         logical++;
2201                                 } while ((bh = bh->b_this_page) != head);
2202                         }
2203
2204                         if (nr_to_write > 0) {
2205                                 nr_to_write--;
2206                                 if (nr_to_write == 0 &&
2207                                     wbc->sync_mode == WB_SYNC_NONE)
2208                                         /*
2209                                          * We stop writing back only if we are
2210                                          * not doing integrity sync. In case of
2211                                          * integrity sync we have to keep going
2212                                          * because someone may be concurrently
2213                                          * dirtying pages, and we might have
2214                                          * synced a lot of newly appeared dirty
2215                                          * pages, but have not synced all of the
2216                                          * old dirty pages.
2217                                          */
2218                                         goto out;
2219                         }
2220                 }
2221                 pagevec_release(&pvec);
2222                 cond_resched();
2223         }
2224         return 0;
2225 ret_extent_tail:
2226         ret = MPAGE_DA_EXTENT_TAIL;
2227 out:
2228         pagevec_release(&pvec);
2229         cond_resched();
2230         return ret;
2231 }
2232
2233
2234 static int ext4_da_writepages(struct address_space *mapping,
2235                               struct writeback_control *wbc)
2236 {
2237         pgoff_t index;
2238         int range_whole = 0;
2239         handle_t *handle = NULL;
2240         struct mpage_da_data mpd;
2241         struct inode *inode = mapping->host;
2242         int pages_written = 0;
2243         unsigned int max_pages;
2244         int range_cyclic, cycled = 1, io_done = 0;
2245         int needed_blocks, ret = 0;
2246         long desired_nr_to_write, nr_to_writebump = 0;
2247         loff_t range_start = wbc->range_start;
2248         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2249         pgoff_t done_index = 0;
2250         pgoff_t end;
2251         struct blk_plug plug;
2252
2253         trace_ext4_da_writepages(inode, wbc);
2254
2255         /*
2256          * No pages to write? This is mainly a kludge to avoid starting
2257          * a transaction for special inodes like journal inode on last iput()
2258          * because that could violate lock ordering on umount
2259          */
2260         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2261                 return 0;
2262
2263         /*
2264          * If the filesystem has aborted, it is read-only, so return
2265          * right away instead of dumping stack traces later on that
2266          * will obscure the real source of the problem.  We test
2267          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2268          * the latter could be true if the filesystem is mounted
2269          * read-only, and in that case, ext4_da_writepages should
2270          * *never* be called, so if that ever happens, we would want
2271          * the stack trace.
2272          */
2273         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2274                 return -EROFS;
2275
2276         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2277                 range_whole = 1;
2278
2279         range_cyclic = wbc->range_cyclic;
2280         if (wbc->range_cyclic) {
2281                 index = mapping->writeback_index;
2282                 if (index)
2283                         cycled = 0;
2284                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2285                 wbc->range_end  = LLONG_MAX;
2286                 wbc->range_cyclic = 0;
2287                 end = -1;
2288         } else {
2289                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2290                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2291         }
2292
2293         /*
2294          * This works around two forms of stupidity.  The first is in
2295          * the writeback code, which caps the maximum number of pages
2296          * written to be 1024 pages.  This is wrong on multiple
2297          * levels; different architectues have a different page size,
2298          * which changes the maximum amount of data which gets
2299          * written.  Secondly, 4 megabytes is way too small.  XFS
2300          * forces this value to be 16 megabytes by multiplying
2301          * nr_to_write parameter by four, and then relies on its
2302          * allocator to allocate larger extents to make them
2303          * contiguous.  Unfortunately this brings us to the second
2304          * stupidity, which is that ext4's mballoc code only allocates
2305          * at most 2048 blocks.  So we force contiguous writes up to
2306          * the number of dirty blocks in the inode, or
2307          * sbi->max_writeback_mb_bump whichever is smaller.
2308          */
2309         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2310         if (!range_cyclic && range_whole) {
2311                 if (wbc->nr_to_write == LONG_MAX)
2312                         desired_nr_to_write = wbc->nr_to_write;
2313                 else
2314                         desired_nr_to_write = wbc->nr_to_write * 8;
2315         } else
2316                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2317                                                            max_pages);
2318         if (desired_nr_to_write > max_pages)
2319                 desired_nr_to_write = max_pages;
2320
2321         if (wbc->nr_to_write < desired_nr_to_write) {
2322                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2323                 wbc->nr_to_write = desired_nr_to_write;
2324         }
2325
2326 retry:
2327         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2328                 tag_pages_for_writeback(mapping, index, end);
2329
2330         blk_start_plug(&plug);
2331         while (!ret && wbc->nr_to_write > 0) {
2332
2333                 /*
2334                  * we  insert one extent at a time. So we need
2335                  * credit needed for single extent allocation.
2336                  * journalled mode is currently not supported
2337                  * by delalloc
2338                  */
2339                 BUG_ON(ext4_should_journal_data(inode));
2340                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2341
2342                 /* start a new transaction*/
2343                 handle = ext4_journal_start(inode, needed_blocks);
2344                 if (IS_ERR(handle)) {
2345                         ret = PTR_ERR(handle);
2346                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2347                                "%ld pages, ino %lu; err %d", __func__,
2348                                 wbc->nr_to_write, inode->i_ino, ret);
2349                         blk_finish_plug(&plug);
2350                         goto out_writepages;
2351                 }
2352
2353                 /*
2354                  * Now call write_cache_pages_da() to find the next
2355                  * contiguous region of logical blocks that need
2356                  * blocks to be allocated by ext4 and submit them.
2357                  */
2358                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2359                 /*
2360                  * If we have a contiguous extent of pages and we
2361                  * haven't done the I/O yet, map the blocks and submit
2362                  * them for I/O.
2363                  */
2364                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2365                         mpage_da_map_and_submit(&mpd);
2366                         ret = MPAGE_DA_EXTENT_TAIL;
2367                 }
2368                 trace_ext4_da_write_pages(inode, &mpd);
2369                 wbc->nr_to_write -= mpd.pages_written;
2370
2371                 ext4_journal_stop(handle);
2372
2373                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2374                         /* commit the transaction which would
2375                          * free blocks released in the transaction
2376                          * and try again
2377                          */
2378                         jbd2_journal_force_commit_nested(sbi->s_journal);
2379                         ret = 0;
2380                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2381                         /*
2382                          * Got one extent now try with rest of the pages.
2383                          * If mpd.retval is set -EIO, journal is aborted.
2384                          * So we don't need to write any more.
2385                          */
2386                         pages_written += mpd.pages_written;
2387                         ret = mpd.retval;
2388                         io_done = 1;
2389                 } else if (wbc->nr_to_write)
2390                         /*
2391                          * There is no more writeout needed
2392                          * or we requested for a noblocking writeout
2393                          * and we found the device congested
2394                          */
2395                         break;
2396         }
2397         blk_finish_plug(&plug);
2398         if (!io_done && !cycled) {
2399                 cycled = 1;
2400                 index = 0;
2401                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2402                 wbc->range_end  = mapping->writeback_index - 1;
2403                 goto retry;
2404         }
2405
2406         /* Update index */
2407         wbc->range_cyclic = range_cyclic;
2408         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2409                 /*
2410                  * set the writeback_index so that range_cyclic
2411                  * mode will write it back later
2412                  */
2413                 mapping->writeback_index = done_index;
2414
2415 out_writepages:
2416         wbc->nr_to_write -= nr_to_writebump;
2417         wbc->range_start = range_start;
2418         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2419         return ret;
2420 }
2421
2422 #define FALL_BACK_TO_NONDELALLOC 1
2423 static int ext4_nonda_switch(struct super_block *sb)
2424 {
2425         s64 free_blocks, dirty_blocks;
2426         struct ext4_sb_info *sbi = EXT4_SB(sb);
2427
2428         /*
2429          * switch to non delalloc mode if we are running low
2430          * on free block. The free block accounting via percpu
2431          * counters can get slightly wrong with percpu_counter_batch getting
2432          * accumulated on each CPU without updating global counters
2433          * Delalloc need an accurate free block accounting. So switch
2434          * to non delalloc when we are near to error range.
2435          */
2436         free_blocks  = EXT4_C2B(sbi,
2437                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2438         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2439         if (2 * free_blocks < 3 * dirty_blocks ||
2440                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2441                 /*
2442                  * free block count is less than 150% of dirty blocks
2443                  * or free blocks is less than watermark
2444                  */
2445                 return 1;
2446         }
2447         /*
2448          * Even if we don't switch but are nearing capacity,
2449          * start pushing delalloc when 1/2 of free blocks are dirty.
2450          */
2451         if (free_blocks < 2 * dirty_blocks)
2452                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2453
2454         return 0;
2455 }
2456
2457 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2458                                loff_t pos, unsigned len, unsigned flags,
2459                                struct page **pagep, void **fsdata)
2460 {
2461         int ret, retries = 0;
2462         struct page *page;
2463         pgoff_t index;
2464         struct inode *inode = mapping->host;
2465         handle_t *handle;
2466
2467         index = pos >> PAGE_CACHE_SHIFT;
2468
2469         if (ext4_nonda_switch(inode->i_sb)) {
2470                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2471                 return ext4_write_begin(file, mapping, pos,
2472                                         len, flags, pagep, fsdata);
2473         }
2474         *fsdata = (void *)0;
2475         trace_ext4_da_write_begin(inode, pos, len, flags);
2476 retry:
2477         /*
2478          * With delayed allocation, we don't log the i_disksize update
2479          * if there is delayed block allocation. But we still need
2480          * to journalling the i_disksize update if writes to the end
2481          * of file which has an already mapped buffer.
2482          */
2483         handle = ext4_journal_start(inode, 1);
2484         if (IS_ERR(handle)) {
2485                 ret = PTR_ERR(handle);
2486                 goto out;
2487         }
2488         /* We cannot recurse into the filesystem as the transaction is already
2489          * started */
2490         flags |= AOP_FLAG_NOFS;
2491
2492         page = grab_cache_page_write_begin(mapping, index, flags);
2493         if (!page) {
2494                 ext4_journal_stop(handle);
2495                 ret = -ENOMEM;
2496                 goto out;
2497         }
2498         *pagep = page;
2499
2500         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2501         if (ret < 0) {
2502                 unlock_page(page);
2503                 ext4_journal_stop(handle);
2504                 page_cache_release(page);
2505                 /*
2506                  * block_write_begin may have instantiated a few blocks
2507                  * outside i_size.  Trim these off again. Don't need
2508                  * i_size_read because we hold i_mutex.
2509                  */
2510                 if (pos + len > inode->i_size)
2511                         ext4_truncate_failed_write(inode);
2512         }
2513
2514         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2515                 goto retry;
2516 out:
2517         return ret;
2518 }
2519
2520 /*
2521  * Check if we should update i_disksize
2522  * when write to the end of file but not require block allocation
2523  */
2524 static int ext4_da_should_update_i_disksize(struct page *page,
2525                                             unsigned long offset)
2526 {
2527         struct buffer_head *bh;
2528         struct inode *inode = page->mapping->host;
2529         unsigned int idx;
2530         int i;
2531
2532         bh = page_buffers(page);
2533         idx = offset >> inode->i_blkbits;
2534
2535         for (i = 0; i < idx; i++)
2536                 bh = bh->b_this_page;
2537
2538         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2539                 return 0;
2540         return 1;
2541 }
2542
2543 static int ext4_da_write_end(struct file *file,
2544                              struct address_space *mapping,
2545                              loff_t pos, unsigned len, unsigned copied,
2546                              struct page *page, void *fsdata)
2547 {
2548         struct inode *inode = mapping->host;
2549         int ret = 0, ret2;
2550         handle_t *handle = ext4_journal_current_handle();
2551         loff_t new_i_size;
2552         unsigned long start, end;
2553         int write_mode = (int)(unsigned long)fsdata;
2554
2555         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2556                 switch (ext4_inode_journal_mode(inode)) {
2557                 case EXT4_INODE_ORDERED_DATA_MODE:
2558                         return ext4_ordered_write_end(file, mapping, pos,
2559                                         len, copied, page, fsdata);
2560                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2561                         return ext4_writeback_write_end(file, mapping, pos,
2562                                         len, copied, page, fsdata);
2563                 default:
2564                         BUG();
2565                 }
2566         }
2567
2568         trace_ext4_da_write_end(inode, pos, len, copied);
2569         start = pos & (PAGE_CACHE_SIZE - 1);
2570         end = start + copied - 1;
2571
2572         /*
2573          * generic_write_end() will run mark_inode_dirty() if i_size
2574          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2575          * into that.
2576          */
2577
2578         new_i_size = pos + copied;
2579         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2580                 if (ext4_da_should_update_i_disksize(page, end)) {
2581                         down_write(&EXT4_I(inode)->i_data_sem);
2582                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2583                                 /*
2584                                  * Updating i_disksize when extending file
2585                                  * without needing block allocation
2586                                  */
2587                                 if (ext4_should_order_data(inode))
2588                                         ret = ext4_jbd2_file_inode(handle,
2589                                                                    inode);
2590
2591                                 EXT4_I(inode)->i_disksize = new_i_size;
2592                         }
2593                         up_write(&EXT4_I(inode)->i_data_sem);
2594                         /* We need to mark inode dirty even if
2595                          * new_i_size is less that inode->i_size
2596                          * bu greater than i_disksize.(hint delalloc)
2597                          */
2598                         ext4_mark_inode_dirty(handle, inode);
2599                 }
2600         }
2601         ret2 = generic_write_end(file, mapping, pos, len, copied,
2602                                                         page, fsdata);
2603         copied = ret2;
2604         if (ret2 < 0)
2605                 ret = ret2;
2606         ret2 = ext4_journal_stop(handle);
2607         if (!ret)
2608                 ret = ret2;
2609
2610         return ret ? ret : copied;
2611 }
2612
2613 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2614 {
2615         /*
2616          * Drop reserved blocks
2617          */
2618         BUG_ON(!PageLocked(page));
2619         if (!page_has_buffers(page))
2620                 goto out;
2621
2622         ext4_da_page_release_reservation(page, offset);
2623
2624 out:
2625         ext4_invalidatepage(page, offset);
2626
2627         return;
2628 }
2629
2630 /*
2631  * Force all delayed allocation blocks to be allocated for a given inode.
2632  */
2633 int ext4_alloc_da_blocks(struct inode *inode)
2634 {
2635         trace_ext4_alloc_da_blocks(inode);
2636
2637         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2638             !EXT4_I(inode)->i_reserved_meta_blocks)
2639                 return 0;
2640
2641         /*
2642          * We do something simple for now.  The filemap_flush() will
2643          * also start triggering a write of the data blocks, which is
2644          * not strictly speaking necessary (and for users of
2645          * laptop_mode, not even desirable).  However, to do otherwise
2646          * would require replicating code paths in:
2647          *
2648          * ext4_da_writepages() ->
2649          *    write_cache_pages() ---> (via passed in callback function)
2650          *        __mpage_da_writepage() -->
2651          *           mpage_add_bh_to_extent()
2652          *           mpage_da_map_blocks()
2653          *
2654          * The problem is that write_cache_pages(), located in
2655          * mm/page-writeback.c, marks pages clean in preparation for
2656          * doing I/O, which is not desirable if we're not planning on
2657          * doing I/O at all.
2658          *
2659          * We could call write_cache_pages(), and then redirty all of
2660          * the pages by calling redirty_page_for_writepage() but that
2661          * would be ugly in the extreme.  So instead we would need to
2662          * replicate parts of the code in the above functions,
2663          * simplifying them because we wouldn't actually intend to
2664          * write out the pages, but rather only collect contiguous
2665          * logical block extents, call the multi-block allocator, and
2666          * then update the buffer heads with the block allocations.
2667          *
2668          * For now, though, we'll cheat by calling filemap_flush(),
2669          * which will map the blocks, and start the I/O, but not
2670          * actually wait for the I/O to complete.
2671          */
2672         return filemap_flush(inode->i_mapping);
2673 }
2674
2675 /*
2676  * bmap() is special.  It gets used by applications such as lilo and by
2677  * the swapper to find the on-disk block of a specific piece of data.
2678  *
2679  * Naturally, this is dangerous if the block concerned is still in the
2680  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2681  * filesystem and enables swap, then they may get a nasty shock when the
2682  * data getting swapped to that swapfile suddenly gets overwritten by
2683  * the original zero's written out previously to the journal and
2684  * awaiting writeback in the kernel's buffer cache.
2685  *
2686  * So, if we see any bmap calls here on a modified, data-journaled file,
2687  * take extra steps to flush any blocks which might be in the cache.
2688  */
2689 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2690 {
2691         struct inode *inode = mapping->host;
2692         journal_t *journal;
2693         int err;
2694
2695         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2696                         test_opt(inode->i_sb, DELALLOC)) {
2697                 /*
2698                  * With delalloc we want to sync the file
2699                  * so that we can make sure we allocate
2700                  * blocks for file
2701                  */
2702                 filemap_write_and_wait(mapping);
2703         }
2704
2705         if (EXT4_JOURNAL(inode) &&
2706             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2707                 /*
2708                  * This is a REALLY heavyweight approach, but the use of
2709                  * bmap on dirty files is expected to be extremely rare:
2710                  * only if we run lilo or swapon on a freshly made file
2711                  * do we expect this to happen.
2712                  *
2713                  * (bmap requires CAP_SYS_RAWIO so this does not
2714                  * represent an unprivileged user DOS attack --- we'd be
2715                  * in trouble if mortal users could trigger this path at
2716                  * will.)
2717                  *
2718                  * NB. EXT4_STATE_JDATA is not set on files other than
2719                  * regular files.  If somebody wants to bmap a directory
2720                  * or symlink and gets confused because the buffer
2721                  * hasn't yet been flushed to disk, they deserve
2722                  * everything they get.
2723                  */
2724
2725                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2726                 journal = EXT4_JOURNAL(inode);
2727                 jbd2_journal_lock_updates(journal);
2728                 err = jbd2_journal_flush(journal);
2729                 jbd2_journal_unlock_updates(journal);
2730
2731                 if (err)
2732                         return 0;
2733         }
2734
2735         return generic_block_bmap(mapping, block, ext4_get_block);
2736 }
2737
2738 static int ext4_readpage(struct file *file, struct page *page)
2739 {
2740         trace_ext4_readpage(page);
2741         return mpage_readpage(page, ext4_get_block);
2742 }
2743
2744 static int
2745 ext4_readpages(struct file *file, struct address_space *mapping,
2746                 struct list_head *pages, unsigned nr_pages)
2747 {
2748         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2749 }
2750
2751 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2752 {
2753         struct buffer_head *head, *bh;
2754         unsigned int curr_off = 0;
2755
2756         if (!page_has_buffers(page))
2757                 return;
2758         head = bh = page_buffers(page);
2759         do {
2760                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2761                                         && bh->b_private) {
2762                         ext4_free_io_end(bh->b_private);
2763                         bh->b_private = NULL;
2764                         bh->b_end_io = NULL;
2765                 }
2766                 curr_off = curr_off + bh->b_size;
2767                 bh = bh->b_this_page;
2768         } while (bh != head);
2769 }
2770
2771 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2772 {
2773         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2774
2775         trace_ext4_invalidatepage(page, offset);
2776
2777         /*
2778          * free any io_end structure allocated for buffers to be discarded
2779          */
2780         if (ext4_should_dioread_nolock(page->mapping->host))
2781                 ext4_invalidatepage_free_endio(page, offset);
2782         /*
2783          * If it's a full truncate we just forget about the pending dirtying
2784          */
2785         if (offset == 0)
2786                 ClearPageChecked(page);
2787
2788         if (journal)
2789                 jbd2_journal_invalidatepage(journal, page, offset);
2790         else
2791                 block_invalidatepage(page, offset);
2792 }
2793
2794 static int ext4_releasepage(struct page *page, gfp_t wait)
2795 {
2796         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2797
2798         trace_ext4_releasepage(page);
2799
2800         WARN_ON(PageChecked(page));
2801         if (!page_has_buffers(page))
2802                 return 0;
2803         if (journal)
2804                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2805         else
2806                 return try_to_free_buffers(page);
2807 }
2808
2809 /*
2810  * ext4_get_block used when preparing for a DIO write or buffer write.
2811  * We allocate an uinitialized extent if blocks haven't been allocated.
2812  * The extent will be converted to initialized after the IO is complete.
2813  */
2814 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2815                    struct buffer_head *bh_result, int create)
2816 {
2817         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2818                    inode->i_ino, create);
2819         return _ext4_get_block(inode, iblock, bh_result,
2820                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2821 }
2822
2823 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2824                    struct buffer_head *bh_result, int flags)
2825 {
2826         handle_t *handle = ext4_journal_current_handle();
2827         struct ext4_map_blocks map;
2828         int ret = 0;
2829
2830         ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2831                    inode->i_ino, flags);
2832
2833         flags = EXT4_GET_BLOCKS_NO_LOCK;
2834
2835         map.m_lblk = iblock;
2836         map.m_len = bh_result->b_size >> inode->i_blkbits;
2837
2838         ret = ext4_map_blocks(handle, inode, &map, flags);
2839         if (ret > 0) {
2840                 map_bh(bh_result, inode->i_sb, map.m_pblk);
2841                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2842                                         map.m_flags;
2843                 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2844                 ret = 0;
2845         }
2846         return ret;
2847 }
2848
2849 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2850                             ssize_t size, void *private, int ret,
2851                             bool is_async)
2852 {
2853         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2854         ext4_io_end_t *io_end = iocb->private;
2855         struct workqueue_struct *wq;
2856         unsigned long flags;
2857         struct ext4_inode_info *ei;
2858
2859         /* if not async direct IO or dio with 0 bytes write, just return */
2860         if (!io_end || !size)
2861                 goto out;
2862
2863         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2864                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2865                   iocb->private, io_end->inode->i_ino, iocb, offset,
2866                   size);
2867
2868         iocb->private = NULL;
2869
2870         /* if not aio dio with unwritten extents, just free io and return */
2871         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2872                 ext4_free_io_end(io_end);
2873 out:
2874                 if (is_async)
2875                         aio_complete(iocb, ret, 0);
2876                 inode_dio_done(inode);
2877                 return;
2878         }
2879
2880         io_end->offset = offset;
2881         io_end->size = size;
2882         if (is_async) {
2883                 io_end->iocb = iocb;
2884                 io_end->result = ret;
2885         }
2886         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2887
2888         /* Add the io_end to per-inode completed aio dio list*/
2889         ei = EXT4_I(io_end->inode);
2890         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2891         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2892         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2893
2894         /* queue the work to convert unwritten extents to written */
2895         queue_work(wq, &io_end->work);
2896 }
2897
2898 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2899 {
2900         ext4_io_end_t *io_end = bh->b_private;
2901         struct workqueue_struct *wq;
2902         struct inode *inode;
2903         unsigned long flags;
2904
2905         if (!test_clear_buffer_uninit(bh) || !io_end)
2906                 goto out;
2907
2908         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2909                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2910                          "sb umounted, discard end_io request for inode %lu",
2911                          io_end->inode->i_ino);
2912                 ext4_free_io_end(io_end);
2913                 goto out;
2914         }
2915
2916         /*
2917          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2918          * but being more careful is always safe for the future change.
2919          */
2920         inode = io_end->inode;
2921         ext4_set_io_unwritten_flag(inode, io_end);
2922
2923         /* Add the io_end to per-inode completed io list*/
2924         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2925         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2926         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2927
2928         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2929         /* queue the work to convert unwritten extents to written */
2930         queue_work(wq, &io_end->work);
2931 out:
2932         bh->b_private = NULL;
2933         bh->b_end_io = NULL;
2934         clear_buffer_uninit(bh);
2935         end_buffer_async_write(bh, uptodate);
2936 }
2937
2938 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2939 {
2940         ext4_io_end_t *io_end;
2941         struct page *page = bh->b_page;
2942         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2943         size_t size = bh->b_size;
2944
2945 retry:
2946         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2947         if (!io_end) {
2948                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2949                 schedule();
2950                 goto retry;
2951         }
2952         io_end->offset = offset;
2953         io_end->size = size;
2954         /*
2955          * We need to hold a reference to the page to make sure it
2956          * doesn't get evicted before ext4_end_io_work() has a chance
2957          * to convert the extent from written to unwritten.
2958          */
2959         io_end->page = page;
2960         get_page(io_end->page);
2961
2962         bh->b_private = io_end;
2963         bh->b_end_io = ext4_end_io_buffer_write;
2964         return 0;
2965 }
2966
2967 /*
2968  * For ext4 extent files, ext4 will do direct-io write to holes,
2969  * preallocated extents, and those write extend the file, no need to
2970  * fall back to buffered IO.
2971  *
2972  * For holes, we fallocate those blocks, mark them as uninitialized
2973  * If those blocks were preallocated, we mark sure they are splited, but
2974  * still keep the range to write as uninitialized.
2975  *
2976  * The unwrritten extents will be converted to written when DIO is completed.
2977  * For async direct IO, since the IO may still pending when return, we
2978  * set up an end_io call back function, which will do the conversion
2979  * when async direct IO completed.
2980  *
2981  * If the O_DIRECT write will extend the file then add this inode to the
2982  * orphan list.  So recovery will truncate it back to the original size
2983  * if the machine crashes during the write.
2984  *
2985  */
2986 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2987                               const struct iovec *iov, loff_t offset,
2988                               unsigned long nr_segs)
2989 {
2990         struct file *file = iocb->ki_filp;
2991         struct inode *inode = file->f_mapping->host;
2992         ssize_t ret;
2993         size_t count = iov_length(iov, nr_segs);
2994
2995         loff_t final_size = offset + count;
2996         if (rw == WRITE && final_size <= inode->i_size) {
2997                 int overwrite = 0;
2998
2999                 /*
3000                  * We could direct write to holes and fallocate.
3001                  *
3002                  * Allocated blocks to fill the hole are marked as uninitialized
3003                  * to prevent parallel buffered read to expose the stale data
3004                  * before DIO complete the data IO.
3005                  *
3006                  * As to previously fallocated extents, ext4 get_block
3007                  * will just simply mark the buffer mapped but still
3008                  * keep the extents uninitialized.
3009                  *
3010                  * for non AIO case, we will convert those unwritten extents
3011                  * to written after return back from blockdev_direct_IO.
3012                  *
3013                  * for async DIO, the conversion needs to be defered when
3014                  * the IO is completed. The ext4 end_io callback function
3015                  * will be called to take care of the conversion work.
3016                  * Here for async case, we allocate an io_end structure to
3017                  * hook to the iocb.
3018                  */
3019                 iocb->private = NULL;
3020                 EXT4_I(inode)->cur_aio_dio = NULL;
3021                 if (!is_sync_kiocb(iocb)) {
3022                         ext4_io_end_t *io_end =
3023                                 ext4_init_io_end(inode, GFP_NOFS);
3024                         if (!io_end)
3025                                 return -ENOMEM;
3026                         io_end->flag |= EXT4_IO_END_DIRECT;
3027                         iocb->private = io_end;
3028                         /*
3029                          * we save the io structure for current async
3030                          * direct IO, so that later ext4_map_blocks()
3031                          * could flag the io structure whether there
3032                          * is a unwritten extents needs to be converted
3033                          * when IO is completed.
3034                          */
3035                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3036                 }
3037
3038                 if (overwrite)
3039                         ret = __blockdev_direct_IO(rw, iocb, inode,
3040                                                  inode->i_sb->s_bdev, iov,
3041                                                  offset, nr_segs,
3042                                                  ext4_get_block_write_nolock,
3043                                                  ext4_end_io_dio,
3044                                                  NULL,
3045                                                  0);
3046                 else
3047                         ret = __blockdev_direct_IO(rw, iocb, inode,
3048                                                  inode->i_sb->s_bdev, iov,
3049                                                  offset, nr_segs,
3050                                                  ext4_get_block_write,
3051                                                  ext4_end_io_dio,
3052                                                  NULL,
3053                                                  DIO_LOCKING);
3054                 if (iocb->private)
3055                         EXT4_I(inode)->cur_aio_dio = NULL;
3056                 /*
3057                  * The io_end structure takes a reference to the inode,
3058                  * that structure needs to be destroyed and the
3059                  * reference to the inode need to be dropped, when IO is
3060                  * complete, even with 0 byte write, or failed.
3061                  *
3062                  * In the successful AIO DIO case, the io_end structure will be
3063                  * desctroyed and the reference to the inode will be dropped
3064                  * after the end_io call back function is called.
3065                  *
3066                  * In the case there is 0 byte write, or error case, since
3067                  * VFS direct IO won't invoke the end_io call back function,
3068                  * we need to free the end_io structure here.
3069                  */
3070                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3071                         ext4_free_io_end(iocb->private);
3072                         iocb->private = NULL;
3073                 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3074                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3075                         int err;
3076                         /*
3077                          * for non AIO case, since the IO is already
3078                          * completed, we could do the conversion right here
3079                          */
3080                         err = ext4_convert_unwritten_extents(inode,
3081                                                              offset, ret);
3082                         if (err < 0)
3083                                 ret = err;
3084                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3085                 }
3086                 return ret;
3087         }
3088
3089         /* for write the the end of file case, we fall back to old way */
3090         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3091 }
3092
3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3094                               const struct iovec *iov, loff_t offset,
3095                               unsigned long nr_segs)
3096 {
3097         struct file *file = iocb->ki_filp;
3098         struct inode *inode = file->f_mapping->host;
3099         ssize_t ret;
3100
3101         /*
3102          * If we are doing data journalling we don't support O_DIRECT
3103          */
3104         if (ext4_should_journal_data(inode))
3105                 return 0;
3106
3107         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3108         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3109                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3110         else
3111                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3112         trace_ext4_direct_IO_exit(inode, offset,
3113                                 iov_length(iov, nr_segs), rw, ret);
3114         return ret;
3115 }
3116
3117 /*
3118  * Pages can be marked dirty completely asynchronously from ext4's journalling
3119  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3120  * much here because ->set_page_dirty is called under VFS locks.  The page is
3121  * not necessarily locked.
3122  *
3123  * We cannot just dirty the page and leave attached buffers clean, because the
3124  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3125  * or jbddirty because all the journalling code will explode.
3126  *
3127  * So what we do is to mark the page "pending dirty" and next time writepage
3128  * is called, propagate that into the buffers appropriately.
3129  */
3130 static int ext4_journalled_set_page_dirty(struct page *page)
3131 {
3132         SetPageChecked(page);
3133         return __set_page_dirty_nobuffers(page);
3134 }
3135
3136 static const struct address_space_operations ext4_ordered_aops = {
3137         .readpage               = ext4_readpage,
3138         .readpages              = ext4_readpages,
3139         .writepage              = ext4_writepage,
3140         .write_begin            = ext4_write_begin,
3141         .write_end              = ext4_ordered_write_end,
3142         .bmap                   = ext4_bmap,
3143         .invalidatepage         = ext4_invalidatepage,
3144         .releasepage            = ext4_releasepage,
3145         .direct_IO              = ext4_direct_IO,
3146         .migratepage            = buffer_migrate_page,
3147         .is_partially_uptodate  = block_is_partially_uptodate,
3148         .error_remove_page      = generic_error_remove_page,
3149 };
3150
3151 static const struct address_space_operations ext4_writeback_aops = {
3152         .readpage               = ext4_readpage,
3153         .readpages              = ext4_readpages,
3154         .writepage              = ext4_writepage,
3155         .write_begin            = ext4_write_begin,
3156         .write_end              = ext4_writeback_write_end,
3157         .bmap                   = ext4_bmap,
3158         .invalidatepage         = ext4_invalidatepage,
3159         .releasepage            = ext4_releasepage,
3160         .direct_IO              = ext4_direct_IO,
3161         .migratepage            = buffer_migrate_page,
3162         .is_partially_uptodate  = block_is_partially_uptodate,
3163         .error_remove_page      = generic_error_remove_page,
3164 };
3165
3166 static const struct address_space_operations ext4_journalled_aops = {
3167         .readpage               = ext4_readpage,
3168         .readpages              = ext4_readpages,
3169         .writepage              = ext4_writepage,
3170         .write_begin            = ext4_write_begin,
3171         .write_end              = ext4_journalled_write_end,
3172         .set_page_dirty         = ext4_journalled_set_page_dirty,
3173         .bmap                   = ext4_bmap,
3174         .invalidatepage         = ext4_invalidatepage,
3175         .releasepage            = ext4_releasepage,
3176         .direct_IO              = ext4_direct_IO,
3177         .is_partially_uptodate  = block_is_partially_uptodate,
3178         .error_remove_page      = generic_error_remove_page,
3179 };
3180
3181 static const struct address_space_operations ext4_da_aops = {
3182         .readpage               = ext4_readpage,
3183         .readpages              = ext4_readpages,
3184         .writepage              = ext4_writepage,
3185         .writepages             = ext4_da_writepages,
3186         .write_begin            = ext4_da_write_begin,
3187         .write_end              = ext4_da_write_end,
3188         .bmap                   = ext4_bmap,
3189         .invalidatepage         = ext4_da_invalidatepage,
3190         .releasepage            = ext4_releasepage,
3191         .direct_IO              = ext4_direct_IO,
3192         .migratepage            = buffer_migrate_page,
3193         .is_partially_uptodate  = block_is_partially_uptodate,
3194         .error_remove_page      = generic_error_remove_page,
3195 };
3196
3197 void ext4_set_aops(struct inode *inode)
3198 {
3199         switch (ext4_inode_journal_mode(inode)) {
3200         case EXT4_INODE_ORDERED_DATA_MODE:
3201                 if (test_opt(inode->i_sb, DELALLOC))
3202                         inode->i_mapping->a_ops = &ext4_da_aops;
3203                 else
3204                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3205                 break;
3206         case EXT4_INODE_WRITEBACK_DATA_MODE:
3207                 if (test_opt(inode->i_sb, DELALLOC))
3208                         inode->i_mapping->a_ops = &ext4_da_aops;
3209                 else
3210                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3211                 break;
3212         case EXT4_INODE_JOURNAL_DATA_MODE:
3213                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3214                 break;
3215         default:
3216                 BUG();
3217         }
3218 }
3219
3220
3221 /*
3222  * ext4_discard_partial_page_buffers()
3223  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3224  * This function finds and locks the page containing the offset
3225  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3226  * Calling functions that already have the page locked should call
3227  * ext4_discard_partial_page_buffers_no_lock directly.
3228  */
3229 int ext4_discard_partial_page_buffers(handle_t *handle,
3230                 struct address_space *mapping, loff_t from,
3231                 loff_t length, int flags)
3232 {
3233         struct inode *inode = mapping->host;
3234         struct page *page;
3235         int err = 0;
3236
3237         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3238                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3239         if (!page)
3240                 return -ENOMEM;
3241
3242         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3243                 from, length, flags);
3244
3245         unlock_page(page);
3246         page_cache_release(page);
3247         return err;
3248 }
3249
3250 /*
3251  * ext4_discard_partial_page_buffers_no_lock()
3252  * Zeros a page range of length 'length' starting from offset 'from'.
3253  * Buffer heads that correspond to the block aligned regions of the
3254  * zeroed range will be unmapped.  Unblock aligned regions
3255  * will have the corresponding buffer head mapped if needed so that
3256  * that region of the page can be updated with the partial zero out.
3257  *
3258  * This function assumes that the page has already been  locked.  The
3259  * The range to be discarded must be contained with in the given page.
3260  * If the specified range exceeds the end of the page it will be shortened
3261  * to the end of the page that corresponds to 'from'.  This function is
3262  * appropriate for updating a page and it buffer heads to be unmapped and
3263  * zeroed for blocks that have been either released, or are going to be
3264  * released.
3265  *
3266  * handle: The journal handle
3267  * inode:  The files inode
3268  * page:   A locked page that contains the offset "from"
3269  * from:   The starting byte offset (from the begining of the file)
3270  *         to begin discarding
3271  * len:    The length of bytes to discard
3272  * flags:  Optional flags that may be used:
3273  *
3274  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3275  *         Only zero the regions of the page whose buffer heads
3276  *         have already been unmapped.  This flag is appropriate
3277  *         for updateing the contents of a page whose blocks may
3278  *         have already been released, and we only want to zero
3279  *         out the regions that correspond to those released blocks.
3280  *
3281  * Returns zero on sucess or negative on failure.
3282  */
3283 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3284                 struct inode *inode, struct page *page, loff_t from,
3285                 loff_t length, int flags)
3286 {
3287         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3288         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3289         unsigned int blocksize, max, pos;
3290         ext4_lblk_t iblock;
3291         struct buffer_head *bh;
3292         int err = 0;
3293
3294         blocksize = inode->i_sb->s_blocksize;
3295         max = PAGE_CACHE_SIZE - offset;
3296
3297         if (index != page->index)
3298                 return -EINVAL;
3299
3300         /*
3301          * correct length if it does not fall between
3302          * 'from' and the end of the page
3303          */
3304         if (length > max || length < 0)
3305                 length = max;
3306
3307         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3308
3309         if (!page_has_buffers(page))
3310                 create_empty_buffers(page, blocksize, 0);
3311
3312         /* Find the buffer that contains "offset" */
3313         bh = page_buffers(page);
3314         pos = blocksize;
3315         while (offset >= pos) {
3316                 bh = bh->b_this_page;
3317                 iblock++;
3318                 pos += blocksize;
3319         }
3320
3321         pos = offset;
3322         while (pos < offset + length) {
3323                 unsigned int end_of_block, range_to_discard;
3324
3325                 err = 0;
3326
3327                 /* The length of space left to zero and unmap */
3328                 range_to_discard = offset + length - pos;
3329
3330                 /* The length of space until the end of the block */
3331                 end_of_block = blocksize - (pos & (blocksize-1));
3332
3333                 /*
3334                  * Do not unmap or zero past end of block
3335                  * for this buffer head
3336                  */
3337                 if (range_to_discard > end_of_block)
3338                         range_to_discard = end_of_block;
3339
3340
3341                 /*
3342                  * Skip this buffer head if we are only zeroing unampped
3343                  * regions of the page
3344                  */
3345                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3346                         buffer_mapped(bh))
3347                                 goto next;
3348
3349                 /* If the range is block aligned, unmap */
3350                 if (range_to_discard == blocksize) {
3351                         clear_buffer_dirty(bh);
3352                         bh->b_bdev = NULL;
3353                         clear_buffer_mapped(bh);
3354                         clear_buffer_req(bh);
3355                         clear_buffer_new(bh);
3356                         clear_buffer_delay(bh);
3357                         clear_buffer_unwritten(bh);
3358                         clear_buffer_uptodate(bh);
3359                         zero_user(page, pos, range_to_discard);
3360                         BUFFER_TRACE(bh, "Buffer discarded");
3361                         goto next;
3362                 }
3363
3364                 /*
3365                  * If this block is not completely contained in the range
3366                  * to be discarded, then it is not going to be released. Because
3367                  * we need to keep this block, we need to make sure this part
3368                  * of the page is uptodate before we modify it by writeing
3369                  * partial zeros on it.
3370                  */
3371                 if (!buffer_mapped(bh)) {
3372                         /*
3373                          * Buffer head must be mapped before we can read
3374                          * from the block
3375                          */
3376                         BUFFER_TRACE(bh, "unmapped");
3377                         ext4_get_block(inode, iblock, bh, 0);
3378                         /* unmapped? It's a hole - nothing to do */
3379                         if (!buffer_mapped(bh)) {
3380                                 BUFFER_TRACE(bh, "still unmapped");
3381                                 goto next;
3382                         }
3383                 }
3384
3385                 /* Ok, it's mapped. Make sure it's up-to-date */
3386                 if (PageUptodate(page))
3387                         set_buffer_uptodate(bh);
3388
3389                 if (!buffer_uptodate(bh)) {
3390                         err = -EIO;
3391                         ll_rw_block(READ, 1, &bh);
3392                         wait_on_buffer(bh);
3393                         /* Uhhuh. Read error. Complain and punt.*/
3394                         if (!buffer_uptodate(bh))
3395                                 goto next;
3396                 }
3397
3398                 if (ext4_should_journal_data(inode)) {
3399                         BUFFER_TRACE(bh, "get write access");
3400                         err = ext4_journal_get_write_access(handle, bh);
3401                         if (err)
3402                                 goto next;
3403                 }
3404
3405                 zero_user(page, pos, range_to_discard);
3406
3407                 err = 0;
3408                 if (ext4_should_journal_data(inode)) {
3409                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3410                 } else
3411                         mark_buffer_dirty(bh);
3412
3413                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3414 next:
3415                 bh = bh->b_this_page;
3416                 iblock++;
3417                 pos += range_to_discard;
3418         }
3419
3420         return err;
3421 }
3422
3423 int ext4_can_truncate(struct inode *inode)
3424 {
3425         if (S_ISREG(inode->i_mode))
3426                 return 1;
3427         if (S_ISDIR(inode->i_mode))
3428                 return 1;
3429         if (S_ISLNK(inode->i_mode))
3430                 return !ext4_inode_is_fast_symlink(inode);
3431         return 0;
3432 }
3433
3434 /*
3435  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3436  * associated with the given offset and length
3437  *
3438  * @inode:  File inode
3439  * @offset: The offset where the hole will begin
3440  * @len:    The length of the hole
3441  *
3442  * Returns: 0 on sucess or negative on failure
3443  */
3444
3445 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3446 {
3447         struct inode *inode = file->f_path.dentry->d_inode;
3448         if (!S_ISREG(inode->i_mode))
3449                 return -EOPNOTSUPP;
3450
3451         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3452                 /* TODO: Add support for non extent hole punching */
3453                 return -EOPNOTSUPP;
3454         }
3455
3456         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3457                 /* TODO: Add support for bigalloc file systems */
3458                 return -EOPNOTSUPP;
3459         }
3460
3461         return ext4_ext_punch_hole(file, offset, length);
3462 }
3463
3464 /*
3465  * ext4_truncate()
3466  *
3467  * We block out ext4_get_block() block instantiations across the entire
3468  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3469  * simultaneously on behalf of the same inode.
3470  *
3471  * As we work through the truncate and commit bits of it to the journal there
3472  * is one core, guiding principle: the file's tree must always be consistent on
3473  * disk.  We must be able to restart the truncate after a crash.
3474  *
3475  * The file's tree may be transiently inconsistent in memory (although it
3476  * probably isn't), but whenever we close off and commit a journal transaction,
3477  * the contents of (the filesystem + the journal) must be consistent and
3478  * restartable.  It's pretty simple, really: bottom up, right to left (although
3479  * left-to-right works OK too).
3480  *
3481  * Note that at recovery time, journal replay occurs *before* the restart of
3482  * truncate against the orphan inode list.
3483  *
3484  * The committed inode has the new, desired i_size (which is the same as
3485  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3486  * that this inode's truncate did not complete and it will again call
3487  * ext4_truncate() to have another go.  So there will be instantiated blocks
3488  * to the right of the truncation point in a crashed ext4 filesystem.  But
3489  * that's fine - as long as they are linked from the inode, the post-crash
3490  * ext4_truncate() run will find them and release them.
3491  */
3492 void ext4_truncate(struct inode *inode)
3493 {
3494         trace_ext4_truncate_enter(inode);
3495
3496         if (!ext4_can_truncate(inode))
3497                 return;
3498
3499         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3500
3501         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3502                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3503
3504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3505                 ext4_ext_truncate(inode);
3506         else
3507                 ext4_ind_truncate(inode);
3508
3509         trace_ext4_truncate_exit(inode);
3510 }
3511
3512 /*
3513  * ext4_get_inode_loc returns with an extra refcount against the inode's
3514  * underlying buffer_head on success. If 'in_mem' is true, we have all
3515  * data in memory that is needed to recreate the on-disk version of this
3516  * inode.
3517  */
3518 static int __ext4_get_inode_loc(struct inode *inode,
3519                                 struct ext4_iloc *iloc, int in_mem)
3520 {
3521         struct ext4_group_desc  *gdp;
3522         struct buffer_head      *bh;
3523         struct super_block      *sb = inode->i_sb;
3524         ext4_fsblk_t            block;
3525         int                     inodes_per_block, inode_offset;
3526
3527         iloc->bh = NULL;
3528         if (!ext4_valid_inum(sb, inode->i_ino))
3529                 return -EIO;
3530
3531         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3532         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3533         if (!gdp)
3534                 return -EIO;
3535
3536         /*
3537          * Figure out the offset within the block group inode table
3538          */
3539         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3540         inode_offset = ((inode->i_ino - 1) %
3541                         EXT4_INODES_PER_GROUP(sb));
3542         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3543         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3544
3545         bh = sb_getblk(sb, block);
3546         if (!bh) {
3547                 EXT4_ERROR_INODE_BLOCK(inode, block,
3548                                        "unable to read itable block");
3549                 return -EIO;
3550         }
3551         if (!buffer_uptodate(bh)) {
3552                 lock_buffer(bh);
3553
3554                 /*
3555                  * If the buffer has the write error flag, we have failed
3556                  * to write out another inode in the same block.  In this
3557                  * case, we don't have to read the block because we may
3558                  * read the old inode data successfully.
3559                  */
3560                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3561                         set_buffer_uptodate(bh);
3562
3563                 if (buffer_uptodate(bh)) {
3564                         /* someone brought it uptodate while we waited */
3565                         unlock_buffer(bh);
3566                         goto has_buffer;
3567                 }
3568
3569                 /*
3570                  * If we have all information of the inode in memory and this
3571                  * is the only valid inode in the block, we need not read the
3572                  * block.
3573                  */
3574                 if (in_mem) {
3575                         struct buffer_head *bitmap_bh;
3576                         int i, start;
3577
3578                         start = inode_offset & ~(inodes_per_block - 1);
3579
3580                         /* Is the inode bitmap in cache? */
3581                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3582                         if (!bitmap_bh)
3583                                 goto make_io;
3584
3585                         /*
3586                          * If the inode bitmap isn't in cache then the
3587                          * optimisation may end up performing two reads instead
3588                          * of one, so skip it.
3589                          */
3590                         if (!buffer_uptodate(bitmap_bh)) {
3591                                 brelse(bitmap_bh);
3592                                 goto make_io;
3593                         }
3594                         for (i = start; i < start + inodes_per_block; i++) {
3595                                 if (i == inode_offset)
3596                                         continue;
3597                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3598                                         break;
3599                         }
3600                         brelse(bitmap_bh);
3601                         if (i == start + inodes_per_block) {
3602                                 /* all other inodes are free, so skip I/O */
3603                                 memset(bh->b_data, 0, bh->b_size);
3604                                 set_buffer_uptodate(bh);
3605                                 unlock_buffer(bh);
3606                                 goto has_buffer;
3607                         }
3608                 }
3609
3610 make_io:
3611                 /*
3612                  * If we need to do any I/O, try to pre-readahead extra
3613                  * blocks from the inode table.
3614                  */
3615                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3616                         ext4_fsblk_t b, end, table;
3617                         unsigned num;
3618
3619                         table = ext4_inode_table(sb, gdp);
3620                         /* s_inode_readahead_blks is always a power of 2 */
3621                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3622                         if (table > b)
3623                                 b = table;
3624                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3625                         num = EXT4_INODES_PER_GROUP(sb);
3626                         if (ext4_has_group_desc_csum(sb))
3627                                 num -= ext4_itable_unused_count(sb, gdp);
3628                         table += num / inodes_per_block;
3629                         if (end > table)
3630                                 end = table;
3631                         while (b <= end)
3632                                 sb_breadahead(sb, b++);
3633                 }
3634
3635                 /*
3636                  * There are other valid inodes in the buffer, this inode
3637                  * has in-inode xattrs, or we don't have this inode in memory.
3638                  * Read the block from disk.
3639                  */
3640                 trace_ext4_load_inode(inode);
3641                 get_bh(bh);
3642                 bh->b_end_io = end_buffer_read_sync;
3643                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3644                 wait_on_buffer(bh);
3645                 if (!buffer_uptodate(bh)) {
3646                         EXT4_ERROR_INODE_BLOCK(inode, block,
3647                                                "unable to read itable block");
3648                         brelse(bh);
3649                         return -EIO;
3650                 }
3651         }
3652 has_buffer:
3653         iloc->bh = bh;
3654         return 0;
3655 }
3656
3657 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3658 {
3659         /* We have all inode data except xattrs in memory here. */
3660         return __ext4_get_inode_loc(inode, iloc,
3661                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3662 }
3663
3664 void ext4_set_inode_flags(struct inode *inode)
3665 {
3666         unsigned int flags = EXT4_I(inode)->i_flags;
3667
3668         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3669         if (flags & EXT4_SYNC_FL)
3670                 inode->i_flags |= S_SYNC;
3671         if (flags & EXT4_APPEND_FL)
3672                 inode->i_flags |= S_APPEND;
3673         if (flags & EXT4_IMMUTABLE_FL)
3674                 inode->i_flags |= S_IMMUTABLE;
3675         if (flags & EXT4_NOATIME_FL)
3676                 inode->i_flags |= S_NOATIME;
3677         if (flags & EXT4_DIRSYNC_FL)
3678                 inode->i_flags |= S_DIRSYNC;
3679 }
3680
3681 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3682 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3683 {
3684         unsigned int vfs_fl;
3685         unsigned long old_fl, new_fl;
3686
3687         do {
3688                 vfs_fl = ei->vfs_inode.i_flags;
3689                 old_fl = ei->i_flags;
3690                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3691                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3692                                 EXT4_DIRSYNC_FL);
3693                 if (vfs_fl & S_SYNC)
3694                         new_fl |= EXT4_SYNC_FL;
3695                 if (vfs_fl & S_APPEND)
3696                         new_fl |= EXT4_APPEND_FL;
3697                 if (vfs_fl & S_IMMUTABLE)
3698                         new_fl |= EXT4_IMMUTABLE_FL;
3699                 if (vfs_fl & S_NOATIME)
3700                         new_fl |= EXT4_NOATIME_FL;
3701                 if (vfs_fl & S_DIRSYNC)
3702                         new_fl |= EXT4_DIRSYNC_FL;
3703         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3704 }
3705
3706 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3707                                   struct ext4_inode_info *ei)
3708 {
3709         blkcnt_t i_blocks ;
3710         struct inode *inode = &(ei->vfs_inode);
3711         struct super_block *sb = inode->i_sb;
3712
3713         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3714                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3715                 /* we are using combined 48 bit field */
3716                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3717                                         le32_to_cpu(raw_inode->i_blocks_lo);
3718                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3719                         /* i_blocks represent file system block size */
3720                         return i_blocks  << (inode->i_blkbits - 9);
3721                 } else {
3722                         return i_blocks;
3723                 }
3724         } else {
3725                 return le32_to_cpu(raw_inode->i_blocks_lo);
3726         }
3727 }
3728
3729 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3730 {
3731         struct ext4_iloc iloc;
3732         struct ext4_inode *raw_inode;
3733         struct ext4_inode_info *ei;
3734         struct inode *inode;
3735         journal_t *journal = EXT4_SB(sb)->s_journal;
3736         long ret;
3737         int block;
3738         uid_t i_uid;
3739         gid_t i_gid;
3740
3741         inode = iget_locked(sb, ino);
3742         if (!inode)
3743                 return ERR_PTR(-ENOMEM);
3744         if (!(inode->i_state & I_NEW))
3745                 return inode;
3746
3747         ei = EXT4_I(inode);
3748         iloc.bh = NULL;
3749
3750         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3751         if (ret < 0)
3752                 goto bad_inode;
3753         raw_inode = ext4_raw_inode(&iloc);
3754
3755         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3756                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3757                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3758                     EXT4_INODE_SIZE(inode->i_sb)) {
3759                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3760                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3761                                 EXT4_INODE_SIZE(inode->i_sb));
3762                         ret = -EIO;
3763                         goto bad_inode;
3764                 }
3765         } else
3766                 ei->i_extra_isize = 0;
3767
3768         /* Precompute checksum seed for inode metadata */
3769         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3770                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3771                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3772                 __u32 csum;
3773                 __le32 inum = cpu_to_le32(inode->i_ino);
3774                 __le32 gen = raw_inode->i_generation;
3775                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3776                                    sizeof(inum));
3777                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3778                                               sizeof(gen));
3779         }
3780
3781         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3782                 EXT4_ERROR_INODE(inode, "checksum invalid");
3783                 ret = -EIO;
3784                 goto bad_inode;
3785         }
3786
3787         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3788         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3789         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3790         if (!(test_opt(inode->i_sb, NO_UID32))) {
3791                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3792                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3793         }
3794         i_uid_write(inode, i_uid);
3795         i_gid_write(inode, i_gid);
3796         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3797
3798         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3799         ei->i_dir_start_lookup = 0;
3800         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3801         /* We now have enough fields to check if the inode was active or not.
3802          * This is needed because nfsd might try to access dead inodes
3803          * the test is that same one that e2fsck uses
3804          * NeilBrown 1999oct15
3805          */
3806         if (inode->i_nlink == 0) {
3807                 if (inode->i_mode == 0 ||
3808                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3809                         /* this inode is deleted */
3810                         ret = -ESTALE;
3811                         goto bad_inode;
3812                 }
3813                 /* The only unlinked inodes we let through here have
3814                  * valid i_mode and are being read by the orphan
3815                  * recovery code: that's fine, we're about to complete
3816                  * the process of deleting those. */
3817         }
3818         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3819         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3820         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3821         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3822                 ei->i_file_acl |=
3823                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3824         inode->i_size = ext4_isize(raw_inode);
3825         ei->i_disksize = inode->i_size;
3826 #ifdef CONFIG_QUOTA
3827         ei->i_reserved_quota = 0;
3828 #endif
3829         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3830         ei->i_block_group = iloc.block_group;
3831         ei->i_last_alloc_group = ~0;
3832         /*
3833          * NOTE! The in-memory inode i_data array is in little-endian order
3834          * even on big-endian machines: we do NOT byteswap the block numbers!
3835          */
3836         for (block = 0; block < EXT4_N_BLOCKS; block++)
3837                 ei->i_data[block] = raw_inode->i_block[block];
3838         INIT_LIST_HEAD(&ei->i_orphan);
3839
3840         /*
3841          * Set transaction id's of transactions that have to be committed
3842          * to finish f[data]sync. We set them to currently running transaction
3843          * as we cannot be sure that the inode or some of its metadata isn't
3844          * part of the transaction - the inode could have been reclaimed and
3845          * now it is reread from disk.
3846          */
3847         if (journal) {
3848                 transaction_t *transaction;
3849                 tid_t tid;
3850
3851                 read_lock(&journal->j_state_lock);
3852                 if (journal->j_running_transaction)
3853                         transaction = journal->j_running_transaction;
3854                 else
3855                         transaction = journal->j_committing_transaction;
3856                 if (transaction)
3857                         tid = transaction->t_tid;
3858                 else
3859                         tid = journal->j_commit_sequence;
3860                 read_unlock(&journal->j_state_lock);
3861                 ei->i_sync_tid = tid;
3862                 ei->i_datasync_tid = tid;
3863         }
3864
3865         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866                 if (ei->i_extra_isize == 0) {
3867                         /* The extra space is currently unused. Use it. */
3868                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3869                                             EXT4_GOOD_OLD_INODE_SIZE;
3870                 } else {
3871                         __le32 *magic = (void *)raw_inode +
3872                                         EXT4_GOOD_OLD_INODE_SIZE +
3873                                         ei->i_extra_isize;
3874                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3875                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3876                 }
3877         }
3878
3879         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3880         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3881         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3882         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3883
3884         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3885         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3887                         inode->i_version |=
3888                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3889         }
3890
3891         ret = 0;
3892         if (ei->i_file_acl &&
3893             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3894                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3895                                  ei->i_file_acl);
3896                 ret = -EIO;
3897                 goto bad_inode;
3898         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3899                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3900                     (S_ISLNK(inode->i_mode) &&
3901                      !ext4_inode_is_fast_symlink(inode)))
3902                         /* Validate extent which is part of inode */
3903                         ret = ext4_ext_check_inode(inode);
3904         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3905                    (S_ISLNK(inode->i_mode) &&
3906                     !ext4_inode_is_fast_symlink(inode))) {
3907                 /* Validate block references which are part of inode */
3908                 ret = ext4_ind_check_inode(inode);
3909         }
3910         if (ret)
3911                 goto bad_inode;
3912
3913         if (S_ISREG(inode->i_mode)) {
3914                 inode->i_op = &ext4_file_inode_operations;
3915                 inode->i_fop = &ext4_file_operations;
3916                 ext4_set_aops(inode);
3917         } else if (S_ISDIR(inode->i_mode)) {
3918                 inode->i_op = &ext4_dir_inode_operations;
3919                 inode->i_fop = &ext4_dir_operations;
3920         } else if (S_ISLNK(inode->i_mode)) {
3921                 if (ext4_inode_is_fast_symlink(inode)) {
3922                         inode->i_op = &ext4_fast_symlink_inode_operations;
3923                         nd_terminate_link(ei->i_data, inode->i_size,
3924                                 sizeof(ei->i_data) - 1);
3925                 } else {
3926                         inode->i_op = &ext4_symlink_inode_operations;
3927                         ext4_set_aops(inode);
3928                 }
3929         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3930               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3931                 inode->i_op = &ext4_special_inode_operations;
3932                 if (raw_inode->i_block[0])
3933                         init_special_inode(inode, inode->i_mode,
3934                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3935                 else
3936                         init_special_inode(inode, inode->i_mode,
3937                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3938         } else {
3939                 ret = -EIO;
3940                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3941                 goto bad_inode;
3942         }
3943         brelse(iloc.bh);
3944         ext4_set_inode_flags(inode);
3945         unlock_new_inode(inode);
3946         return inode;
3947
3948 bad_inode:
3949         brelse(iloc.bh);
3950         iget_failed(inode);
3951         return ERR_PTR(ret);
3952 }
3953
3954 static int ext4_inode_blocks_set(handle_t *handle,
3955                                 struct ext4_inode *raw_inode,
3956                                 struct ext4_inode_info *ei)
3957 {
3958         struct inode *inode = &(ei->vfs_inode);
3959         u64 i_blocks = inode->i_blocks;
3960         struct super_block *sb = inode->i_sb;
3961
3962         if (i_blocks <= ~0U) {
3963                 /*
3964                  * i_blocks can be represnted in a 32 bit variable
3965                  * as multiple of 512 bytes
3966                  */
3967                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968                 raw_inode->i_blocks_high = 0;
3969                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3970                 return 0;
3971         }
3972         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3973                 return -EFBIG;
3974
3975         if (i_blocks <= 0xffffffffffffULL) {
3976                 /*
3977                  * i_blocks can be represented in a 48 bit variable
3978                  * as multiple of 512 bytes
3979                  */
3980                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3981                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3982                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3983         } else {
3984                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3985                 /* i_block is stored in file system block size */
3986                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3987                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3988                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3989         }
3990         return 0;
3991 }
3992
3993 /*
3994  * Post the struct inode info into an on-disk inode location in the
3995  * buffer-cache.  This gobbles the caller's reference to the
3996  * buffer_head in the inode location struct.
3997  *
3998  * The caller must have write access to iloc->bh.
3999  */
4000 static int ext4_do_update_inode(handle_t *handle,
4001                                 struct inode *inode,
4002                                 struct ext4_iloc *iloc)
4003 {
4004         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4005         struct ext4_inode_info *ei = EXT4_I(inode);
4006         struct buffer_head *bh = iloc->bh;
4007         int err = 0, rc, block;
4008         uid_t i_uid;
4009         gid_t i_gid;
4010
4011         /* For fields not not tracking in the in-memory inode,
4012          * initialise them to zero for new inodes. */
4013         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4014                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4015
4016         ext4_get_inode_flags(ei);
4017         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4018         i_uid = i_uid_read(inode);
4019         i_gid = i_gid_read(inode);
4020         if (!(test_opt(inode->i_sb, NO_UID32))) {
4021                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4022                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4023 /*
4024  * Fix up interoperability with old kernels. Otherwise, old inodes get
4025  * re-used with the upper 16 bits of the uid/gid intact
4026  */
4027                 if (!ei->i_dtime) {
4028                         raw_inode->i_uid_high =
4029                                 cpu_to_le16(high_16_bits(i_uid));
4030                         raw_inode->i_gid_high =
4031                                 cpu_to_le16(high_16_bits(i_gid));
4032                 } else {
4033                         raw_inode->i_uid_high = 0;
4034                         raw_inode->i_gid_high = 0;
4035                 }
4036         } else {
4037                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4038                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4039                 raw_inode->i_uid_high = 0;
4040                 raw_inode->i_gid_high = 0;
4041         }
4042         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4043
4044         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4045         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4046         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4047         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4048
4049         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4050                 goto out_brelse;
4051         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4052         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4053         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4054             cpu_to_le32(EXT4_OS_HURD))
4055                 raw_inode->i_file_acl_high =
4056                         cpu_to_le16(ei->i_file_acl >> 32);
4057         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4058         ext4_isize_set(raw_inode, ei->i_disksize);
4059         if (ei->i_disksize > 0x7fffffffULL) {
4060                 struct super_block *sb = inode->i_sb;
4061                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4062                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4063                                 EXT4_SB(sb)->s_es->s_rev_level ==
4064                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4065                         /* If this is the first large file
4066                          * created, add a flag to the superblock.
4067                          */
4068                         err = ext4_journal_get_write_access(handle,
4069                                         EXT4_SB(sb)->s_sbh);
4070                         if (err)
4071                                 goto out_brelse;
4072                         ext4_update_dynamic_rev(sb);
4073                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4074                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4075                         ext4_handle_sync(handle);
4076                         err = ext4_handle_dirty_super_now(handle, sb);
4077                 }
4078         }
4079         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4080         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4081                 if (old_valid_dev(inode->i_rdev)) {
4082                         raw_inode->i_block[0] =
4083                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4084                         raw_inode->i_block[1] = 0;
4085                 } else {
4086                         raw_inode->i_block[0] = 0;
4087                         raw_inode->i_block[1] =
4088                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4089                         raw_inode->i_block[2] = 0;
4090                 }
4091         } else
4092                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4093                         raw_inode->i_block[block] = ei->i_data[block];
4094
4095         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4096         if (ei->i_extra_isize) {
4097                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4098                         raw_inode->i_version_hi =
4099                         cpu_to_le32(inode->i_version >> 32);
4100                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4101         }
4102
4103         ext4_inode_csum_set(inode, raw_inode, ei);
4104
4105         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4106         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4107         if (!err)
4108                 err = rc;
4109         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4110
4111         ext4_update_inode_fsync_trans(handle, inode, 0);
4112 out_brelse:
4113         brelse(bh);
4114         ext4_std_error(inode->i_sb, err);
4115         return err;
4116 }
4117
4118 /*
4119  * ext4_write_inode()
4120  *
4121  * We are called from a few places:
4122  *
4123  * - Within generic_file_write() for O_SYNC files.
4124  *   Here, there will be no transaction running. We wait for any running
4125  *   trasnaction to commit.
4126  *
4127  * - Within sys_sync(), kupdate and such.
4128  *   We wait on commit, if tol to.
4129  *
4130  * - Within prune_icache() (PF_MEMALLOC == true)
4131  *   Here we simply return.  We can't afford to block kswapd on the
4132  *   journal commit.
4133  *
4134  * In all cases it is actually safe for us to return without doing anything,
4135  * because the inode has been copied into a raw inode buffer in
4136  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4137  * knfsd.
4138  *
4139  * Note that we are absolutely dependent upon all inode dirtiers doing the
4140  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4141  * which we are interested.
4142  *
4143  * It would be a bug for them to not do this.  The code:
4144  *
4145  *      mark_inode_dirty(inode)
4146  *      stuff();
4147  *      inode->i_size = expr;
4148  *
4149  * is in error because a kswapd-driven write_inode() could occur while
4150  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4151  * will no longer be on the superblock's dirty inode list.
4152  */
4153 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4154 {
4155         int err;
4156
4157         if (current->flags & PF_MEMALLOC)
4158                 return 0;
4159
4160         if (EXT4_SB(inode->i_sb)->s_journal) {
4161                 if (ext4_journal_current_handle()) {
4162                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4163                         dump_stack();
4164                         return -EIO;
4165                 }
4166
4167                 if (wbc->sync_mode != WB_SYNC_ALL)
4168                         return 0;
4169
4170                 err = ext4_force_commit(inode->i_sb);
4171         } else {
4172                 struct ext4_iloc iloc;
4173
4174                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4175                 if (err)
4176                         return err;
4177                 if (wbc->sync_mode == WB_SYNC_ALL)
4178                         sync_dirty_buffer(iloc.bh);
4179                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4180                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4181                                          "IO error syncing inode");
4182                         err = -EIO;
4183                 }
4184                 brelse(iloc.bh);
4185         }
4186         return err;
4187 }
4188
4189 /*
4190  * ext4_setattr()
4191  *
4192  * Called from notify_change.
4193  *
4194  * We want to trap VFS attempts to truncate the file as soon as
4195  * possible.  In particular, we want to make sure that when the VFS
4196  * shrinks i_size, we put the inode on the orphan list and modify
4197  * i_disksize immediately, so that during the subsequent flushing of
4198  * dirty pages and freeing of disk blocks, we can guarantee that any
4199  * commit will leave the blocks being flushed in an unused state on
4200  * disk.  (On recovery, the inode will get truncated and the blocks will
4201  * be freed, so we have a strong guarantee that no future commit will
4202  * leave these blocks visible to the user.)
4203  *
4204  * Another thing we have to assure is that if we are in ordered mode
4205  * and inode is still attached to the committing transaction, we must
4206  * we start writeout of all the dirty pages which are being truncated.
4207  * This way we are sure that all the data written in the previous
4208  * transaction are already on disk (truncate waits for pages under
4209  * writeback).
4210  *
4211  * Called with inode->i_mutex down.
4212  */
4213 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4214 {
4215         struct inode *inode = dentry->d_inode;
4216         int error, rc = 0;
4217         int orphan = 0;
4218         const unsigned int ia_valid = attr->ia_valid;
4219
4220         error = inode_change_ok(inode, attr);
4221         if (error)
4222                 return error;
4223
4224         if (is_quota_modification(inode, attr))
4225                 dquot_initialize(inode);
4226         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4227             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4228                 handle_t *handle;
4229
4230                 /* (user+group)*(old+new) structure, inode write (sb,
4231                  * inode block, ? - but truncate inode update has it) */
4232                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4233                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4234                 if (IS_ERR(handle)) {
4235                         error = PTR_ERR(handle);
4236                         goto err_out;
4237                 }
4238                 error = dquot_transfer(inode, attr);
4239                 if (error) {
4240                         ext4_journal_stop(handle);
4241                         return error;
4242                 }
4243                 /* Update corresponding info in inode so that everything is in
4244                  * one transaction */
4245                 if (attr->ia_valid & ATTR_UID)
4246                         inode->i_uid = attr->ia_uid;
4247                 if (attr->ia_valid & ATTR_GID)
4248                         inode->i_gid = attr->ia_gid;
4249                 error = ext4_mark_inode_dirty(handle, inode);
4250                 ext4_journal_stop(handle);
4251         }
4252
4253         if (attr->ia_valid & ATTR_SIZE) {
4254                 inode_dio_wait(inode);
4255
4256                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4257                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4258
4259                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4260                                 return -EFBIG;
4261                 }
4262         }
4263
4264         if (S_ISREG(inode->i_mode) &&
4265             attr->ia_valid & ATTR_SIZE &&
4266             (attr->ia_size < inode->i_size)) {
4267                 handle_t *handle;
4268
4269                 handle = ext4_journal_start(inode, 3);
4270                 if (IS_ERR(handle)) {
4271                         error = PTR_ERR(handle);
4272                         goto err_out;
4273                 }
4274                 if (ext4_handle_valid(handle)) {
4275                         error = ext4_orphan_add(handle, inode);
4276                         orphan = 1;
4277                 }
4278                 EXT4_I(inode)->i_disksize = attr->ia_size;
4279                 rc = ext4_mark_inode_dirty(handle, inode);
4280                 if (!error)
4281                         error = rc;
4282                 ext4_journal_stop(handle);
4283
4284                 if (ext4_should_order_data(inode)) {
4285                         error = ext4_begin_ordered_truncate(inode,
4286                                                             attr->ia_size);
4287                         if (error) {
4288                                 /* Do as much error cleanup as possible */
4289                                 handle = ext4_journal_start(inode, 3);
4290                                 if (IS_ERR(handle)) {
4291                                         ext4_orphan_del(NULL, inode);
4292                                         goto err_out;
4293                                 }
4294                                 ext4_orphan_del(handle, inode);
4295                                 orphan = 0;
4296                                 ext4_journal_stop(handle);
4297                                 goto err_out;
4298                         }
4299                 }
4300         }
4301
4302         if (attr->ia_valid & ATTR_SIZE) {
4303                 if (attr->ia_size != i_size_read(inode))
4304                         truncate_setsize(inode, attr->ia_size);
4305                 ext4_truncate(inode);
4306         }
4307
4308         if (!rc) {
4309                 setattr_copy(inode, attr);
4310                 mark_inode_dirty(inode);
4311         }
4312
4313         /*
4314          * If the call to ext4_truncate failed to get a transaction handle at
4315          * all, we need to clean up the in-core orphan list manually.
4316          */
4317         if (orphan && inode->i_nlink)
4318                 ext4_orphan_del(NULL, inode);
4319
4320         if (!rc && (ia_valid & ATTR_MODE))
4321                 rc = ext4_acl_chmod(inode);
4322
4323 err_out:
4324         ext4_std_error(inode->i_sb, error);
4325         if (!error)
4326                 error = rc;
4327         return error;
4328 }
4329
4330 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4331                  struct kstat *stat)
4332 {
4333         struct inode *inode;
4334         unsigned long delalloc_blocks;
4335
4336         inode = dentry->d_inode;
4337         generic_fillattr(inode, stat);
4338
4339         /*
4340          * We can't update i_blocks if the block allocation is delayed
4341          * otherwise in the case of system crash before the real block
4342          * allocation is done, we will have i_blocks inconsistent with
4343          * on-disk file blocks.
4344          * We always keep i_blocks updated together with real
4345          * allocation. But to not confuse with user, stat
4346          * will return the blocks that include the delayed allocation
4347          * blocks for this file.
4348          */
4349         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4350                                 EXT4_I(inode)->i_reserved_data_blocks);
4351
4352         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4353         return 0;
4354 }
4355
4356 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4357 {
4358         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4359                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4360         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4361 }
4362
4363 /*
4364  * Account for index blocks, block groups bitmaps and block group
4365  * descriptor blocks if modify datablocks and index blocks
4366  * worse case, the indexs blocks spread over different block groups
4367  *
4368  * If datablocks are discontiguous, they are possible to spread over
4369  * different block groups too. If they are contiuguous, with flexbg,
4370  * they could still across block group boundary.
4371  *
4372  * Also account for superblock, inode, quota and xattr blocks
4373  */
4374 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375 {
4376         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4377         int gdpblocks;
4378         int idxblocks;
4379         int ret = 0;
4380
4381         /*
4382          * How many index blocks need to touch to modify nrblocks?
4383          * The "Chunk" flag indicating whether the nrblocks is
4384          * physically contiguous on disk
4385          *
4386          * For Direct IO and fallocate, they calls get_block to allocate
4387          * one single extent at a time, so they could set the "Chunk" flag
4388          */
4389         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4390
4391         ret = idxblocks;
4392
4393         /*
4394          * Now let's see how many group bitmaps and group descriptors need
4395          * to account
4396          */
4397         groups = idxblocks;
4398         if (chunk)
4399                 groups += 1;
4400         else
4401                 groups += nrblocks;
4402
4403         gdpblocks = groups;
4404         if (groups > ngroups)
4405                 groups = ngroups;
4406         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4407                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4408
4409         /* bitmaps and block group descriptor blocks */
4410         ret += groups + gdpblocks;
4411
4412         /* Blocks for super block, inode, quota and xattr blocks */
4413         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4414
4415         return ret;
4416 }
4417
4418 /*
4419  * Calculate the total number of credits to reserve to fit
4420  * the modification of a single pages into a single transaction,
4421  * which may include multiple chunks of block allocations.
4422  *
4423  * This could be called via ext4_write_begin()
4424  *
4425  * We need to consider the worse case, when
4426  * one new block per extent.
4427  */
4428 int ext4_writepage_trans_blocks(struct inode *inode)
4429 {
4430         int bpp = ext4_journal_blocks_per_page(inode);
4431         int ret;
4432
4433         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4434
4435         /* Account for data blocks for journalled mode */
4436         if (ext4_should_journal_data(inode))
4437                 ret += bpp;
4438         return ret;
4439 }
4440
4441 /*
4442  * Calculate the journal credits for a chunk of data modification.
4443  *
4444  * This is called from DIO, fallocate or whoever calling
4445  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4446  *
4447  * journal buffers for data blocks are not included here, as DIO
4448  * and fallocate do no need to journal data buffers.
4449  */
4450 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4451 {
4452         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4453 }
4454
4455 /*
4456  * The caller must have previously called ext4_reserve_inode_write().
4457  * Give this, we know that the caller already has write access to iloc->bh.
4458  */
4459 int ext4_mark_iloc_dirty(handle_t *handle,
4460                          struct inode *inode, struct ext4_iloc *iloc)
4461 {
4462         int err = 0;
4463
4464         if (IS_I_VERSION(inode))
4465                 inode_inc_iversion(inode);
4466
4467         /* the do_update_inode consumes one bh->b_count */
4468         get_bh(iloc->bh);
4469
4470         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4471         err = ext4_do_update_inode(handle, inode, iloc);
4472         put_bh(iloc->bh);
4473         return err;
4474 }
4475
4476 /*
4477  * On success, We end up with an outstanding reference count against
4478  * iloc->bh.  This _must_ be cleaned up later.
4479  */
4480
4481 int
4482 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4483                          struct ext4_iloc *iloc)
4484 {
4485         int err;
4486
4487         err = ext4_get_inode_loc(inode, iloc);
4488         if (!err) {
4489                 BUFFER_TRACE(iloc->bh, "get_write_access");
4490                 err = ext4_journal_get_write_access(handle, iloc->bh);
4491                 if (err) {
4492                         brelse(iloc->bh);
4493                         iloc->bh = NULL;
4494                 }
4495         }
4496         ext4_std_error(inode->i_sb, err);
4497         return err;
4498 }
4499
4500 /*
4501  * Expand an inode by new_extra_isize bytes.
4502  * Returns 0 on success or negative error number on failure.
4503  */
4504 static int ext4_expand_extra_isize(struct inode *inode,
4505                                    unsigned int new_extra_isize,
4506                                    struct ext4_iloc iloc,
4507                                    handle_t *handle)
4508 {
4509         struct ext4_inode *raw_inode;
4510         struct ext4_xattr_ibody_header *header;
4511
4512         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4513                 return 0;
4514
4515         raw_inode = ext4_raw_inode(&iloc);
4516
4517         header = IHDR(inode, raw_inode);
4518
4519         /* No extended attributes present */
4520         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4521             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4522                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4523                         new_extra_isize);
4524                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4525                 return 0;
4526         }
4527
4528         /* try to expand with EAs present */
4529         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4530                                           raw_inode, handle);
4531 }
4532
4533 /*
4534  * What we do here is to mark the in-core inode as clean with respect to inode
4535  * dirtiness (it may still be data-dirty).
4536  * This means that the in-core inode may be reaped by prune_icache
4537  * without having to perform any I/O.  This is a very good thing,
4538  * because *any* task may call prune_icache - even ones which
4539  * have a transaction open against a different journal.
4540  *
4541  * Is this cheating?  Not really.  Sure, we haven't written the
4542  * inode out, but prune_icache isn't a user-visible syncing function.
4543  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4544  * we start and wait on commits.
4545  *
4546  * Is this efficient/effective?  Well, we're being nice to the system
4547  * by cleaning up our inodes proactively so they can be reaped
4548  * without I/O.  But we are potentially leaving up to five seconds'
4549  * worth of inodes floating about which prune_icache wants us to
4550  * write out.  One way to fix that would be to get prune_icache()
4551  * to do a write_super() to free up some memory.  It has the desired
4552  * effect.
4553  */
4554 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4555 {
4556         struct ext4_iloc iloc;
4557         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4558         static unsigned int mnt_count;
4559         int err, ret;
4560
4561         might_sleep();
4562         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4563         err = ext4_reserve_inode_write(handle, inode, &iloc);
4564         if (ext4_handle_valid(handle) &&
4565             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4566             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4567                 /*
4568                  * We need extra buffer credits since we may write into EA block
4569                  * with this same handle. If journal_extend fails, then it will
4570                  * only result in a minor loss of functionality for that inode.
4571                  * If this is felt to be critical, then e2fsck should be run to
4572                  * force a large enough s_min_extra_isize.
4573                  */
4574                 if ((jbd2_journal_extend(handle,
4575                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4576                         ret = ext4_expand_extra_isize(inode,
4577                                                       sbi->s_want_extra_isize,
4578                                                       iloc, handle);
4579                         if (ret) {
4580                                 ext4_set_inode_state(inode,
4581                                                      EXT4_STATE_NO_EXPAND);
4582                                 if (mnt_count !=
4583                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4584                                         ext4_warning(inode->i_sb,
4585                                         "Unable to expand inode %lu. Delete"
4586                                         " some EAs or run e2fsck.",
4587                                         inode->i_ino);
4588                                         mnt_count =
4589                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4590                                 }
4591                         }
4592                 }
4593         }
4594         if (!err)
4595                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4596         return err;
4597 }
4598
4599 /*
4600  * ext4_dirty_inode() is called from __mark_inode_dirty()
4601  *
4602  * We're really interested in the case where a file is being extended.
4603  * i_size has been changed by generic_commit_write() and we thus need
4604  * to include the updated inode in the current transaction.
4605  *
4606  * Also, dquot_alloc_block() will always dirty the inode when blocks
4607  * are allocated to the file.
4608  *
4609  * If the inode is marked synchronous, we don't honour that here - doing
4610  * so would cause a commit on atime updates, which we don't bother doing.
4611  * We handle synchronous inodes at the highest possible level.
4612  */
4613 void ext4_dirty_inode(struct inode *inode, int flags)
4614 {
4615         handle_t *handle;
4616
4617         handle = ext4_journal_start(inode, 2);
4618         if (IS_ERR(handle))
4619                 goto out;
4620
4621         ext4_mark_inode_dirty(handle, inode);
4622
4623         ext4_journal_stop(handle);
4624 out:
4625         return;
4626 }
4627
4628 #if 0
4629 /*
4630  * Bind an inode's backing buffer_head into this transaction, to prevent
4631  * it from being flushed to disk early.  Unlike
4632  * ext4_reserve_inode_write, this leaves behind no bh reference and
4633  * returns no iloc structure, so the caller needs to repeat the iloc
4634  * lookup to mark the inode dirty later.
4635  */
4636 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4637 {
4638         struct ext4_iloc iloc;
4639
4640         int err = 0;
4641         if (handle) {
4642                 err = ext4_get_inode_loc(inode, &iloc);
4643                 if (!err) {
4644                         BUFFER_TRACE(iloc.bh, "get_write_access");
4645                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4646                         if (!err)
4647                                 err = ext4_handle_dirty_metadata(handle,
4648                                                                  NULL,
4649                                                                  iloc.bh);
4650                         brelse(iloc.bh);
4651                 }
4652         }
4653         ext4_std_error(inode->i_sb, err);
4654         return err;
4655 }
4656 #endif
4657
4658 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4659 {
4660         journal_t *journal;
4661         handle_t *handle;
4662         int err;
4663
4664         /*
4665          * We have to be very careful here: changing a data block's
4666          * journaling status dynamically is dangerous.  If we write a
4667          * data block to the journal, change the status and then delete
4668          * that block, we risk forgetting to revoke the old log record
4669          * from the journal and so a subsequent replay can corrupt data.
4670          * So, first we make sure that the journal is empty and that
4671          * nobody is changing anything.
4672          */
4673
4674         journal = EXT4_JOURNAL(inode);
4675         if (!journal)
4676                 return 0;
4677         if (is_journal_aborted(journal))
4678                 return -EROFS;
4679         /* We have to allocate physical blocks for delalloc blocks
4680          * before flushing journal. otherwise delalloc blocks can not
4681          * be allocated any more. even more truncate on delalloc blocks
4682          * could trigger BUG by flushing delalloc blocks in journal.
4683          * There is no delalloc block in non-journal data mode.
4684          */
4685         if (val && test_opt(inode->i_sb, DELALLOC)) {
4686                 err = ext4_alloc_da_blocks(inode);
4687                 if (err < 0)
4688                         return err;
4689         }
4690
4691         jbd2_journal_lock_updates(journal);
4692
4693         /*
4694          * OK, there are no updates running now, and all cached data is
4695          * synced to disk.  We are now in a completely consistent state
4696          * which doesn't have anything in the journal, and we know that
4697          * no filesystem updates are running, so it is safe to modify
4698          * the inode's in-core data-journaling state flag now.
4699          */
4700
4701         if (val)
4702                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4703         else {
4704                 jbd2_journal_flush(journal);
4705                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4706         }
4707         ext4_set_aops(inode);
4708
4709         jbd2_journal_unlock_updates(journal);
4710
4711         /* Finally we can mark the inode as dirty. */
4712
4713         handle = ext4_journal_start(inode, 1);
4714         if (IS_ERR(handle))
4715                 return PTR_ERR(handle);
4716
4717         err = ext4_mark_inode_dirty(handle, inode);
4718         ext4_handle_sync(handle);
4719         ext4_journal_stop(handle);
4720         ext4_std_error(inode->i_sb, err);
4721
4722         return err;
4723 }
4724
4725 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4726 {
4727         return !buffer_mapped(bh);
4728 }
4729
4730 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4731 {
4732         struct page *page = vmf->page;
4733         loff_t size;
4734         unsigned long len;
4735         int ret;
4736         struct file *file = vma->vm_file;
4737         struct inode *inode = file->f_path.dentry->d_inode;
4738         struct address_space *mapping = inode->i_mapping;
4739         handle_t *handle;
4740         get_block_t *get_block;
4741         int retries = 0;
4742
4743         /*
4744          * This check is racy but catches the common case. We rely on
4745          * __block_page_mkwrite() to do a reliable check.
4746          */
4747         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4748         /* Delalloc case is easy... */
4749         if (test_opt(inode->i_sb, DELALLOC) &&
4750             !ext4_should_journal_data(inode) &&
4751             !ext4_nonda_switch(inode->i_sb)) {
4752                 do {
4753                         ret = __block_page_mkwrite(vma, vmf,
4754                                                    ext4_da_get_block_prep);
4755                 } while (ret == -ENOSPC &&
4756                        ext4_should_retry_alloc(inode->i_sb, &retries));
4757                 goto out_ret;
4758         }
4759
4760         lock_page(page);
4761         size = i_size_read(inode);
4762         /* Page got truncated from under us? */
4763         if (page->mapping != mapping || page_offset(page) > size) {
4764                 unlock_page(page);
4765                 ret = VM_FAULT_NOPAGE;
4766                 goto out;
4767         }
4768
4769         if (page->index == size >> PAGE_CACHE_SHIFT)
4770                 len = size & ~PAGE_CACHE_MASK;
4771         else
4772                 len = PAGE_CACHE_SIZE;
4773         /*
4774          * Return if we have all the buffers mapped. This avoids the need to do
4775          * journal_start/journal_stop which can block and take a long time
4776          */
4777         if (page_has_buffers(page)) {
4778                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4779                                         ext4_bh_unmapped)) {
4780                         /* Wait so that we don't change page under IO */
4781                         wait_on_page_writeback(page);
4782                         ret = VM_FAULT_LOCKED;
4783                         goto out;
4784                 }
4785         }
4786         unlock_page(page);
4787         /* OK, we need to fill the hole... */
4788         if (ext4_should_dioread_nolock(inode))
4789                 get_block = ext4_get_block_write;
4790         else
4791                 get_block = ext4_get_block;
4792 retry_alloc:
4793         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4794         if (IS_ERR(handle)) {
4795                 ret = VM_FAULT_SIGBUS;
4796                 goto out;
4797         }
4798         ret = __block_page_mkwrite(vma, vmf, get_block);
4799         if (!ret && ext4_should_journal_data(inode)) {
4800                 if (walk_page_buffers(handle, page_buffers(page), 0,
4801                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4802                         unlock_page(page);
4803                         ret = VM_FAULT_SIGBUS;
4804                         ext4_journal_stop(handle);
4805                         goto out;
4806                 }
4807                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4808         }
4809         ext4_journal_stop(handle);
4810         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4811                 goto retry_alloc;
4812 out_ret:
4813         ret = block_page_mkwrite_return(ret);
4814 out:
4815         return ret;
4816 }