]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge commit '9f12600fe425bc28f0ccba034a77783c09c15af4' into for-linus
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.
493  * if create==0 and the blocks are pre-allocated and unwritten block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EIO;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 ext4_es_lru_add(inode);
532                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533                         map->m_pblk = ext4_es_pblock(&es) +
534                                         map->m_lblk - es.es_lblk;
535                         map->m_flags |= ext4_es_is_written(&es) ?
536                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537                         retval = es.es_len - (map->m_lblk - es.es_lblk);
538                         if (retval > map->m_len)
539                                 retval = map->m_len;
540                         map->m_len = retval;
541                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558                 down_read((&EXT4_I(inode)->i_data_sem));
559         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561                                              EXT4_GET_BLOCKS_KEEP_SIZE);
562         } else {
563                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589                 up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_blocks()
628          * with create == 1 flag.
629          */
630         down_write((&EXT4_I(inode)->i_data_sem));
631
632         /*
633          * if the caller is from delayed allocation writeout path
634          * we have already reserved fs blocks for allocation
635          * let the underlying get_block() function know to
636          * avoid double accounting
637          */
638         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640         /*
641          * We need to check for EXT4 here because migrate
642          * could have changed the inode type in between
643          */
644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646         } else {
647                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650                         /*
651                          * We allocated new blocks which will result in
652                          * i_data's format changing.  Force the migrate
653                          * to fail by clearing migrate flags
654                          */
655                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656                 }
657
658                 /*
659                  * Update reserved blocks/metadata blocks after successful
660                  * block allocation which had been deferred till now. We don't
661                  * support fallocate for non extent files. So we can update
662                  * reserve space here.
663                  */
664                 if ((retval > 0) &&
665                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666                         ext4_da_update_reserve_space(inode, retval, 1);
667         }
668         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670
671         if (retval > 0) {
672                 unsigned int status;
673
674                 if (unlikely(retval != map->m_len)) {
675                         ext4_warning(inode->i_sb,
676                                      "ES len assertion failed for inode "
677                                      "%lu: retval %d != map->m_len %d",
678                                      inode->i_ino, retval, map->m_len);
679                         WARN_ON(1);
680                 }
681
682                 /*
683                  * If the extent has been zeroed out, we don't need to update
684                  * extent status tree.
685                  */
686                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688                         if (ext4_es_is_written(&es))
689                                 goto has_zeroout;
690                 }
691                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694                     ext4_find_delalloc_range(inode, map->m_lblk,
695                                              map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0)
700                         retval = ret;
701         }
702
703 has_zeroout:
704         up_write((&EXT4_I(inode)->i_data_sem));
705         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706                 ret = check_block_validity(inode, map);
707                 if (ret != 0)
708                         return ret;
709         }
710         return retval;
711 }
712
713 /* Maximum number of blocks we map for direct IO at once. */
714 #define DIO_MAX_BLOCKS 4096
715
716 static int _ext4_get_block(struct inode *inode, sector_t iblock,
717                            struct buffer_head *bh, int flags)
718 {
719         handle_t *handle = ext4_journal_current_handle();
720         struct ext4_map_blocks map;
721         int ret = 0, started = 0;
722         int dio_credits;
723
724         if (ext4_has_inline_data(inode))
725                 return -ERANGE;
726
727         map.m_lblk = iblock;
728         map.m_len = bh->b_size >> inode->i_blkbits;
729
730         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731                 /* Direct IO write... */
732                 if (map.m_len > DIO_MAX_BLOCKS)
733                         map.m_len = DIO_MAX_BLOCKS;
734                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736                                             dio_credits);
737                 if (IS_ERR(handle)) {
738                         ret = PTR_ERR(handle);
739                         return ret;
740                 }
741                 started = 1;
742         }
743
744         ret = ext4_map_blocks(handle, inode, &map, flags);
745         if (ret > 0) {
746                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
748                 map_bh(bh, inode->i_sb, map.m_pblk);
749                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751                         set_buffer_defer_completion(bh);
752                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753                 ret = 0;
754         }
755         if (started)
756                 ext4_journal_stop(handle);
757         return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761                    struct buffer_head *bh, int create)
762 {
763         return _ext4_get_block(inode, iblock, bh,
764                                create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768  * `handle' can be NULL if create is zero
769  */
770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771                                 ext4_lblk_t block, int create, int *errp)
772 {
773         struct ext4_map_blocks map;
774         struct buffer_head *bh;
775         int fatal = 0, err;
776
777         J_ASSERT(handle != NULL || create == 0);
778
779         map.m_lblk = block;
780         map.m_len = 1;
781         err = ext4_map_blocks(handle, inode, &map,
782                               create ? EXT4_GET_BLOCKS_CREATE : 0);
783
784         /* ensure we send some value back into *errp */
785         *errp = 0;
786
787         if (create && err == 0)
788                 err = -ENOSPC;  /* should never happen */
789         if (err < 0)
790                 *errp = err;
791         if (err <= 0)
792                 return NULL;
793
794         bh = sb_getblk(inode->i_sb, map.m_pblk);
795         if (unlikely(!bh)) {
796                 *errp = -ENOMEM;
797                 return NULL;
798         }
799         if (map.m_flags & EXT4_MAP_NEW) {
800                 J_ASSERT(create != 0);
801                 J_ASSERT(handle != NULL);
802
803                 /*
804                  * Now that we do not always journal data, we should
805                  * keep in mind whether this should always journal the
806                  * new buffer as metadata.  For now, regular file
807                  * writes use ext4_get_block instead, so it's not a
808                  * problem.
809                  */
810                 lock_buffer(bh);
811                 BUFFER_TRACE(bh, "call get_create_access");
812                 fatal = ext4_journal_get_create_access(handle, bh);
813                 if (!fatal && !buffer_uptodate(bh)) {
814                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815                         set_buffer_uptodate(bh);
816                 }
817                 unlock_buffer(bh);
818                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819                 err = ext4_handle_dirty_metadata(handle, inode, bh);
820                 if (!fatal)
821                         fatal = err;
822         } else {
823                 BUFFER_TRACE(bh, "not a new buffer");
824         }
825         if (fatal) {
826                 *errp = fatal;
827                 brelse(bh);
828                 bh = NULL;
829         }
830         return bh;
831 }
832
833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834                                ext4_lblk_t block, int create, int *err)
835 {
836         struct buffer_head *bh;
837
838         bh = ext4_getblk(handle, inode, block, create, err);
839         if (!bh)
840                 return bh;
841         if (buffer_uptodate(bh))
842                 return bh;
843         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844         wait_on_buffer(bh);
845         if (buffer_uptodate(bh))
846                 return bh;
847         put_bh(bh);
848         *err = -EIO;
849         return NULL;
850 }
851
852 int ext4_walk_page_buffers(handle_t *handle,
853                            struct buffer_head *head,
854                            unsigned from,
855                            unsigned to,
856                            int *partial,
857                            int (*fn)(handle_t *handle,
858                                      struct buffer_head *bh))
859 {
860         struct buffer_head *bh;
861         unsigned block_start, block_end;
862         unsigned blocksize = head->b_size;
863         int err, ret = 0;
864         struct buffer_head *next;
865
866         for (bh = head, block_start = 0;
867              ret == 0 && (bh != head || !block_start);
868              block_start = block_end, bh = next) {
869                 next = bh->b_this_page;
870                 block_end = block_start + blocksize;
871                 if (block_end <= from || block_start >= to) {
872                         if (partial && !buffer_uptodate(bh))
873                                 *partial = 1;
874                         continue;
875                 }
876                 err = (*fn)(handle, bh);
877                 if (!ret)
878                         ret = err;
879         }
880         return ret;
881 }
882
883 /*
884  * To preserve ordering, it is essential that the hole instantiation and
885  * the data write be encapsulated in a single transaction.  We cannot
886  * close off a transaction and start a new one between the ext4_get_block()
887  * and the commit_write().  So doing the jbd2_journal_start at the start of
888  * prepare_write() is the right place.
889  *
890  * Also, this function can nest inside ext4_writepage().  In that case, we
891  * *know* that ext4_writepage() has generated enough buffer credits to do the
892  * whole page.  So we won't block on the journal in that case, which is good,
893  * because the caller may be PF_MEMALLOC.
894  *
895  * By accident, ext4 can be reentered when a transaction is open via
896  * quota file writes.  If we were to commit the transaction while thus
897  * reentered, there can be a deadlock - we would be holding a quota
898  * lock, and the commit would never complete if another thread had a
899  * transaction open and was blocking on the quota lock - a ranking
900  * violation.
901  *
902  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903  * will _not_ run commit under these circumstances because handle->h_ref
904  * is elevated.  We'll still have enough credits for the tiny quotafile
905  * write.
906  */
907 int do_journal_get_write_access(handle_t *handle,
908                                 struct buffer_head *bh)
909 {
910         int dirty = buffer_dirty(bh);
911         int ret;
912
913         if (!buffer_mapped(bh) || buffer_freed(bh))
914                 return 0;
915         /*
916          * __block_write_begin() could have dirtied some buffers. Clean
917          * the dirty bit as jbd2_journal_get_write_access() could complain
918          * otherwise about fs integrity issues. Setting of the dirty bit
919          * by __block_write_begin() isn't a real problem here as we clear
920          * the bit before releasing a page lock and thus writeback cannot
921          * ever write the buffer.
922          */
923         if (dirty)
924                 clear_buffer_dirty(bh);
925         ret = ext4_journal_get_write_access(handle, bh);
926         if (!ret && dirty)
927                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928         return ret;
929 }
930
931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932                    struct buffer_head *bh_result, int create);
933 static int ext4_write_begin(struct file *file, struct address_space *mapping,
934                             loff_t pos, unsigned len, unsigned flags,
935                             struct page **pagep, void **fsdata)
936 {
937         struct inode *inode = mapping->host;
938         int ret, needed_blocks;
939         handle_t *handle;
940         int retries = 0;
941         struct page *page;
942         pgoff_t index;
943         unsigned from, to;
944
945         trace_ext4_write_begin(inode, pos, len, flags);
946         /*
947          * Reserve one block more for addition to orphan list in case
948          * we allocate blocks but write fails for some reason
949          */
950         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951         index = pos >> PAGE_CACHE_SHIFT;
952         from = pos & (PAGE_CACHE_SIZE - 1);
953         to = from + len;
954
955         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957                                                     flags, pagep);
958                 if (ret < 0)
959                         return ret;
960                 if (ret == 1)
961                         return 0;
962         }
963
964         /*
965          * grab_cache_page_write_begin() can take a long time if the
966          * system is thrashing due to memory pressure, or if the page
967          * is being written back.  So grab it first before we start
968          * the transaction handle.  This also allows us to allocate
969          * the page (if needed) without using GFP_NOFS.
970          */
971 retry_grab:
972         page = grab_cache_page_write_begin(mapping, index, flags);
973         if (!page)
974                 return -ENOMEM;
975         unlock_page(page);
976
977 retry_journal:
978         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979         if (IS_ERR(handle)) {
980                 page_cache_release(page);
981                 return PTR_ERR(handle);
982         }
983
984         lock_page(page);
985         if (page->mapping != mapping) {
986                 /* The page got truncated from under us */
987                 unlock_page(page);
988                 page_cache_release(page);
989                 ext4_journal_stop(handle);
990                 goto retry_grab;
991         }
992         /* In case writeback began while the page was unlocked */
993         wait_for_stable_page(page);
994
995         if (ext4_should_dioread_nolock(inode))
996                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997         else
998                 ret = __block_write_begin(page, pos, len, ext4_get_block);
999
1000         if (!ret && ext4_should_journal_data(inode)) {
1001                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002                                              from, to, NULL,
1003                                              do_journal_get_write_access);
1004         }
1005
1006         if (ret) {
1007                 unlock_page(page);
1008                 /*
1009                  * __block_write_begin may have instantiated a few blocks
1010                  * outside i_size.  Trim these off again. Don't need
1011                  * i_size_read because we hold i_mutex.
1012                  *
1013                  * Add inode to orphan list in case we crash before
1014                  * truncate finishes
1015                  */
1016                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017                         ext4_orphan_add(handle, inode);
1018
1019                 ext4_journal_stop(handle);
1020                 if (pos + len > inode->i_size) {
1021                         ext4_truncate_failed_write(inode);
1022                         /*
1023                          * If truncate failed early the inode might
1024                          * still be on the orphan list; we need to
1025                          * make sure the inode is removed from the
1026                          * orphan list in that case.
1027                          */
1028                         if (inode->i_nlink)
1029                                 ext4_orphan_del(NULL, inode);
1030                 }
1031
1032                 if (ret == -ENOSPC &&
1033                     ext4_should_retry_alloc(inode->i_sb, &retries))
1034                         goto retry_journal;
1035                 page_cache_release(page);
1036                 return ret;
1037         }
1038         *pagep = page;
1039         return ret;
1040 }
1041
1042 /* For write_end() in data=journal mode */
1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044 {
1045         int ret;
1046         if (!buffer_mapped(bh) || buffer_freed(bh))
1047                 return 0;
1048         set_buffer_uptodate(bh);
1049         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050         clear_buffer_meta(bh);
1051         clear_buffer_prio(bh);
1052         return ret;
1053 }
1054
1055 /*
1056  * We need to pick up the new inode size which generic_commit_write gave us
1057  * `file' can be NULL - eg, when called from page_symlink().
1058  *
1059  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060  * buffers are managed internally.
1061  */
1062 static int ext4_write_end(struct file *file,
1063                           struct address_space *mapping,
1064                           loff_t pos, unsigned len, unsigned copied,
1065                           struct page *page, void *fsdata)
1066 {
1067         handle_t *handle = ext4_journal_current_handle();
1068         struct inode *inode = mapping->host;
1069         int ret = 0, ret2;
1070         int i_size_changed = 0;
1071
1072         trace_ext4_write_end(inode, pos, len, copied);
1073         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074                 ret = ext4_jbd2_file_inode(handle, inode);
1075                 if (ret) {
1076                         unlock_page(page);
1077                         page_cache_release(page);
1078                         goto errout;
1079                 }
1080         }
1081
1082         if (ext4_has_inline_data(inode)) {
1083                 ret = ext4_write_inline_data_end(inode, pos, len,
1084                                                  copied, page);
1085                 if (ret < 0)
1086                         goto errout;
1087                 copied = ret;
1088         } else
1089                 copied = block_write_end(file, mapping, pos,
1090                                          len, copied, page, fsdata);
1091
1092         /*
1093          * No need to use i_size_read() here, the i_size
1094          * cannot change under us because we hole i_mutex.
1095          *
1096          * But it's important to update i_size while still holding page lock:
1097          * page writeout could otherwise come in and zero beyond i_size.
1098          */
1099         if (pos + copied > inode->i_size) {
1100                 i_size_write(inode, pos + copied);
1101                 i_size_changed = 1;
1102         }
1103
1104         if (pos + copied > EXT4_I(inode)->i_disksize) {
1105                 /* We need to mark inode dirty even if
1106                  * new_i_size is less that inode->i_size
1107                  * but greater than i_disksize. (hint delalloc)
1108                  */
1109                 ext4_update_i_disksize(inode, (pos + copied));
1110                 i_size_changed = 1;
1111         }
1112         unlock_page(page);
1113         page_cache_release(page);
1114
1115         /*
1116          * Don't mark the inode dirty under page lock. First, it unnecessarily
1117          * makes the holding time of page lock longer. Second, it forces lock
1118          * ordering of page lock and transaction start for journaling
1119          * filesystems.
1120          */
1121         if (i_size_changed)
1122                 ext4_mark_inode_dirty(handle, inode);
1123
1124         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125                 /* if we have allocated more blocks and copied
1126                  * less. We will have blocks allocated outside
1127                  * inode->i_size. So truncate them
1128                  */
1129                 ext4_orphan_add(handle, inode);
1130 errout:
1131         ret2 = ext4_journal_stop(handle);
1132         if (!ret)
1133                 ret = ret2;
1134
1135         if (pos + len > inode->i_size) {
1136                 ext4_truncate_failed_write(inode);
1137                 /*
1138                  * If truncate failed early the inode might still be
1139                  * on the orphan list; we need to make sure the inode
1140                  * is removed from the orphan list in that case.
1141                  */
1142                 if (inode->i_nlink)
1143                         ext4_orphan_del(NULL, inode);
1144         }
1145
1146         return ret ? ret : copied;
1147 }
1148
1149 static int ext4_journalled_write_end(struct file *file,
1150                                      struct address_space *mapping,
1151                                      loff_t pos, unsigned len, unsigned copied,
1152                                      struct page *page, void *fsdata)
1153 {
1154         handle_t *handle = ext4_journal_current_handle();
1155         struct inode *inode = mapping->host;
1156         int ret = 0, ret2;
1157         int partial = 0;
1158         unsigned from, to;
1159         loff_t new_i_size;
1160
1161         trace_ext4_journalled_write_end(inode, pos, len, copied);
1162         from = pos & (PAGE_CACHE_SIZE - 1);
1163         to = from + len;
1164
1165         BUG_ON(!ext4_handle_valid(handle));
1166
1167         if (ext4_has_inline_data(inode))
1168                 copied = ext4_write_inline_data_end(inode, pos, len,
1169                                                     copied, page);
1170         else {
1171                 if (copied < len) {
1172                         if (!PageUptodate(page))
1173                                 copied = 0;
1174                         page_zero_new_buffers(page, from+copied, to);
1175                 }
1176
1177                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178                                              to, &partial, write_end_fn);
1179                 if (!partial)
1180                         SetPageUptodate(page);
1181         }
1182         new_i_size = pos + copied;
1183         if (new_i_size > inode->i_size)
1184                 i_size_write(inode, pos+copied);
1185         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187         if (new_i_size > EXT4_I(inode)->i_disksize) {
1188                 ext4_update_i_disksize(inode, new_i_size);
1189                 ret2 = ext4_mark_inode_dirty(handle, inode);
1190                 if (!ret)
1191                         ret = ret2;
1192         }
1193
1194         unlock_page(page);
1195         page_cache_release(page);
1196         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197                 /* if we have allocated more blocks and copied
1198                  * less. We will have blocks allocated outside
1199                  * inode->i_size. So truncate them
1200                  */
1201                 ext4_orphan_add(handle, inode);
1202
1203         ret2 = ext4_journal_stop(handle);
1204         if (!ret)
1205                 ret = ret2;
1206         if (pos + len > inode->i_size) {
1207                 ext4_truncate_failed_write(inode);
1208                 /*
1209                  * If truncate failed early the inode might still be
1210                  * on the orphan list; we need to make sure the inode
1211                  * is removed from the orphan list in that case.
1212                  */
1213                 if (inode->i_nlink)
1214                         ext4_orphan_del(NULL, inode);
1215         }
1216
1217         return ret ? ret : copied;
1218 }
1219
1220 /*
1221  * Reserve a metadata for a single block located at lblock
1222  */
1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224 {
1225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226         struct ext4_inode_info *ei = EXT4_I(inode);
1227         unsigned int md_needed;
1228         ext4_lblk_t save_last_lblock;
1229         int save_len;
1230
1231         /*
1232          * recalculate the amount of metadata blocks to reserve
1233          * in order to allocate nrblocks
1234          * worse case is one extent per block
1235          */
1236         spin_lock(&ei->i_block_reservation_lock);
1237         /*
1238          * ext4_calc_metadata_amount() has side effects, which we have
1239          * to be prepared undo if we fail to claim space.
1240          */
1241         save_len = ei->i_da_metadata_calc_len;
1242         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243         md_needed = EXT4_NUM_B2C(sbi,
1244                                  ext4_calc_metadata_amount(inode, lblock));
1245         trace_ext4_da_reserve_space(inode, md_needed);
1246
1247         /*
1248          * We do still charge estimated metadata to the sb though;
1249          * we cannot afford to run out of free blocks.
1250          */
1251         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252                 ei->i_da_metadata_calc_len = save_len;
1253                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254                 spin_unlock(&ei->i_block_reservation_lock);
1255                 return -ENOSPC;
1256         }
1257         ei->i_reserved_meta_blocks += md_needed;
1258         spin_unlock(&ei->i_block_reservation_lock);
1259
1260         return 0;       /* success */
1261 }
1262
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         unsigned int md_needed;
1271         int ret;
1272         ext4_lblk_t save_last_lblock;
1273         int save_len;
1274
1275         /*
1276          * We will charge metadata quota at writeout time; this saves
1277          * us from metadata over-estimation, though we may go over by
1278          * a small amount in the end.  Here we just reserve for data.
1279          */
1280         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281         if (ret)
1282                 return ret;
1283
1284         /*
1285          * recalculate the amount of metadata blocks to reserve
1286          * in order to allocate nrblocks
1287          * worse case is one extent per block
1288          */
1289         spin_lock(&ei->i_block_reservation_lock);
1290         /*
1291          * ext4_calc_metadata_amount() has side effects, which we have
1292          * to be prepared undo if we fail to claim space.
1293          */
1294         save_len = ei->i_da_metadata_calc_len;
1295         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296         md_needed = EXT4_NUM_B2C(sbi,
1297                                  ext4_calc_metadata_amount(inode, lblock));
1298         trace_ext4_da_reserve_space(inode, md_needed);
1299
1300         /*
1301          * We do still charge estimated metadata to the sb though;
1302          * we cannot afford to run out of free blocks.
1303          */
1304         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305                 ei->i_da_metadata_calc_len = save_len;
1306                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307                 spin_unlock(&ei->i_block_reservation_lock);
1308                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309                 return -ENOSPC;
1310         }
1311         ei->i_reserved_data_blocks++;
1312         ei->i_reserved_meta_blocks += md_needed;
1313         spin_unlock(&ei->i_block_reservation_lock);
1314
1315         return 0;       /* success */
1316 }
1317
1318 static void ext4_da_release_space(struct inode *inode, int to_free)
1319 {
1320         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321         struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323         if (!to_free)
1324                 return;         /* Nothing to release, exit */
1325
1326         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328         trace_ext4_da_release_space(inode, to_free);
1329         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330                 /*
1331                  * if there aren't enough reserved blocks, then the
1332                  * counter is messed up somewhere.  Since this
1333                  * function is called from invalidate page, it's
1334                  * harmless to return without any action.
1335                  */
1336                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337                          "ino %lu, to_free %d with only %d reserved "
1338                          "data blocks", inode->i_ino, to_free,
1339                          ei->i_reserved_data_blocks);
1340                 WARN_ON(1);
1341                 to_free = ei->i_reserved_data_blocks;
1342         }
1343         ei->i_reserved_data_blocks -= to_free;
1344
1345         if (ei->i_reserved_data_blocks == 0) {
1346                 /*
1347                  * We can release all of the reserved metadata blocks
1348                  * only when we have written all of the delayed
1349                  * allocation blocks.
1350                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1351                  * i_reserved_data_blocks, etc. refer to number of clusters.
1352                  */
1353                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354                                    ei->i_reserved_meta_blocks);
1355                 ei->i_reserved_meta_blocks = 0;
1356                 ei->i_da_metadata_calc_len = 0;
1357         }
1358
1359         /* update fs dirty data blocks counter */
1360         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365 }
1366
1367 static void ext4_da_page_release_reservation(struct page *page,
1368                                              unsigned int offset,
1369                                              unsigned int length)
1370 {
1371         int to_release = 0;
1372         struct buffer_head *head, *bh;
1373         unsigned int curr_off = 0;
1374         struct inode *inode = page->mapping->host;
1375         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376         unsigned int stop = offset + length;
1377         int num_clusters;
1378         ext4_fsblk_t lblk;
1379
1380         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382         head = page_buffers(page);
1383         bh = head;
1384         do {
1385                 unsigned int next_off = curr_off + bh->b_size;
1386
1387                 if (next_off > stop)
1388                         break;
1389
1390                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391                         to_release++;
1392                         clear_buffer_delay(bh);
1393                 }
1394                 curr_off = next_off;
1395         } while ((bh = bh->b_this_page) != head);
1396
1397         if (to_release) {
1398                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399                 ext4_es_remove_extent(inode, lblk, to_release);
1400         }
1401
1402         /* If we have released all the blocks belonging to a cluster, then we
1403          * need to release the reserved space for that cluster. */
1404         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405         while (num_clusters > 0) {
1406                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407                         ((num_clusters - 1) << sbi->s_cluster_bits);
1408                 if (sbi->s_cluster_ratio == 1 ||
1409                     !ext4_find_delalloc_cluster(inode, lblk))
1410                         ext4_da_release_space(inode, 1);
1411
1412                 num_clusters--;
1413         }
1414 }
1415
1416 /*
1417  * Delayed allocation stuff
1418  */
1419
1420 struct mpage_da_data {
1421         struct inode *inode;
1422         struct writeback_control *wbc;
1423
1424         pgoff_t first_page;     /* The first page to write */
1425         pgoff_t next_page;      /* Current page to examine */
1426         pgoff_t last_page;      /* Last page to examine */
1427         /*
1428          * Extent to map - this can be after first_page because that can be
1429          * fully mapped. We somewhat abuse m_flags to store whether the extent
1430          * is delalloc or unwritten.
1431          */
1432         struct ext4_map_blocks map;
1433         struct ext4_io_submit io_submit;        /* IO submission data */
1434 };
1435
1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437                                        bool invalidate)
1438 {
1439         int nr_pages, i;
1440         pgoff_t index, end;
1441         struct pagevec pvec;
1442         struct inode *inode = mpd->inode;
1443         struct address_space *mapping = inode->i_mapping;
1444
1445         /* This is necessary when next_page == 0. */
1446         if (mpd->first_page >= mpd->next_page)
1447                 return;
1448
1449         index = mpd->first_page;
1450         end   = mpd->next_page - 1;
1451         if (invalidate) {
1452                 ext4_lblk_t start, last;
1453                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455                 ext4_es_remove_extent(inode, start, last - start + 1);
1456         }
1457
1458         pagevec_init(&pvec, 0);
1459         while (index <= end) {
1460                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461                 if (nr_pages == 0)
1462                         break;
1463                 for (i = 0; i < nr_pages; i++) {
1464                         struct page *page = pvec.pages[i];
1465                         if (page->index > end)
1466                                 break;
1467                         BUG_ON(!PageLocked(page));
1468                         BUG_ON(PageWriteback(page));
1469                         if (invalidate) {
1470                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471                                 ClearPageUptodate(page);
1472                         }
1473                         unlock_page(page);
1474                 }
1475                 index = pvec.pages[nr_pages - 1]->index + 1;
1476                 pagevec_release(&pvec);
1477         }
1478 }
1479
1480 static void ext4_print_free_blocks(struct inode *inode)
1481 {
1482         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483         struct super_block *sb = inode->i_sb;
1484         struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487                EXT4_C2B(EXT4_SB(inode->i_sb),
1488                         ext4_count_free_clusters(sb)));
1489         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491                (long long) EXT4_C2B(EXT4_SB(sb),
1492                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494                (long long) EXT4_C2B(EXT4_SB(sb),
1495                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498                  ei->i_reserved_data_blocks);
1499         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500                ei->i_reserved_meta_blocks);
1501         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502                ei->i_allocated_meta_blocks);
1503         return;
1504 }
1505
1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510
1511 /*
1512  * This function is grabs code from the very beginning of
1513  * ext4_map_blocks, but assumes that the caller is from delayed write
1514  * time. This function looks up the requested blocks and sets the
1515  * buffer delay bit under the protection of i_data_sem.
1516  */
1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518                               struct ext4_map_blocks *map,
1519                               struct buffer_head *bh)
1520 {
1521         struct extent_status es;
1522         int retval;
1523         sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525         struct ext4_map_blocks orig_map;
1526
1527         memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529
1530         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531                 invalid_block = ~0;
1532
1533         map->m_flags = 0;
1534         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535                   "logical block %lu\n", inode->i_ino, map->m_len,
1536                   (unsigned long) map->m_lblk);
1537
1538         /* Lookup extent status tree firstly */
1539         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540                 ext4_es_lru_add(inode);
1541                 if (ext4_es_is_hole(&es)) {
1542                         retval = 0;
1543                         down_read((&EXT4_I(inode)->i_data_sem));
1544                         goto add_delayed;
1545                 }
1546
1547                 /*
1548                  * Delayed extent could be allocated by fallocate.
1549                  * So we need to check it.
1550                  */
1551                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552                         map_bh(bh, inode->i_sb, invalid_block);
1553                         set_buffer_new(bh);
1554                         set_buffer_delay(bh);
1555                         return 0;
1556                 }
1557
1558                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559                 retval = es.es_len - (iblock - es.es_lblk);
1560                 if (retval > map->m_len)
1561                         retval = map->m_len;
1562                 map->m_len = retval;
1563                 if (ext4_es_is_written(&es))
1564                         map->m_flags |= EXT4_MAP_MAPPED;
1565                 else if (ext4_es_is_unwritten(&es))
1566                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1567                 else
1568                         BUG_ON(1);
1569
1570 #ifdef ES_AGGRESSIVE_TEST
1571                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573                 return retval;
1574         }
1575
1576         /*
1577          * Try to see if we can get the block without requesting a new
1578          * file system block.
1579          */
1580         down_read((&EXT4_I(inode)->i_data_sem));
1581         if (ext4_has_inline_data(inode)) {
1582                 /*
1583                  * We will soon create blocks for this page, and let
1584                  * us pretend as if the blocks aren't allocated yet.
1585                  * In case of clusters, we have to handle the work
1586                  * of mapping from cluster so that the reserved space
1587                  * is calculated properly.
1588                  */
1589                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1591                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592                 retval = 0;
1593         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594                 retval = ext4_ext_map_blocks(NULL, inode, map,
1595                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596         else
1597                 retval = ext4_ind_map_blocks(NULL, inode, map,
1598                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600 add_delayed:
1601         if (retval == 0) {
1602                 int ret;
1603                 /*
1604                  * XXX: __block_prepare_write() unmaps passed block,
1605                  * is it OK?
1606                  */
1607                 /*
1608                  * If the block was allocated from previously allocated cluster,
1609                  * then we don't need to reserve it again. However we still need
1610                  * to reserve metadata for every block we're going to write.
1611                  */
1612                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613                         ret = ext4_da_reserve_space(inode, iblock);
1614                         if (ret) {
1615                                 /* not enough space to reserve */
1616                                 retval = ret;
1617                                 goto out_unlock;
1618                         }
1619                 } else {
1620                         ret = ext4_da_reserve_metadata(inode, iblock);
1621                         if (ret) {
1622                                 /* not enough space to reserve */
1623                                 retval = ret;
1624                                 goto out_unlock;
1625                         }
1626                 }
1627
1628                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629                                             ~0, EXTENT_STATUS_DELAYED);
1630                 if (ret) {
1631                         retval = ret;
1632                         goto out_unlock;
1633                 }
1634
1635                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636                  * and it should not appear on the bh->b_state.
1637                  */
1638                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640                 map_bh(bh, inode->i_sb, invalid_block);
1641                 set_buffer_new(bh);
1642                 set_buffer_delay(bh);
1643         } else if (retval > 0) {
1644                 int ret;
1645                 unsigned int status;
1646
1647                 if (unlikely(retval != map->m_len)) {
1648                         ext4_warning(inode->i_sb,
1649                                      "ES len assertion failed for inode "
1650                                      "%lu: retval %d != map->m_len %d",
1651                                      inode->i_ino, retval, map->m_len);
1652                         WARN_ON(1);
1653                 }
1654
1655                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658                                             map->m_pblk, status);
1659                 if (ret != 0)
1660                         retval = ret;
1661         }
1662
1663 out_unlock:
1664         up_read((&EXT4_I(inode)->i_data_sem));
1665
1666         return retval;
1667 }
1668
1669 /*
1670  * This is a special get_blocks_t callback which is used by
1671  * ext4_da_write_begin().  It will either return mapped block or
1672  * reserve space for a single block.
1673  *
1674  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675  * We also have b_blocknr = -1 and b_bdev initialized properly
1676  *
1677  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679  * initialized properly.
1680  */
1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682                            struct buffer_head *bh, int create)
1683 {
1684         struct ext4_map_blocks map;
1685         int ret = 0;
1686
1687         BUG_ON(create == 0);
1688         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690         map.m_lblk = iblock;
1691         map.m_len = 1;
1692
1693         /*
1694          * first, we need to know whether the block is allocated already
1695          * preallocated blocks are unmapped but should treated
1696          * the same as allocated blocks.
1697          */
1698         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699         if (ret <= 0)
1700                 return ret;
1701
1702         map_bh(bh, inode->i_sb, map.m_pblk);
1703         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705         if (buffer_unwritten(bh)) {
1706                 /* A delayed write to unwritten bh should be marked
1707                  * new and mapped.  Mapped ensures that we don't do
1708                  * get_block multiple times when we write to the same
1709                  * offset and new ensures that we do proper zero out
1710                  * for partial write.
1711                  */
1712                 set_buffer_new(bh);
1713                 set_buffer_mapped(bh);
1714         }
1715         return 0;
1716 }
1717
1718 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720         get_bh(bh);
1721         return 0;
1722 }
1723
1724 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 {
1726         put_bh(bh);
1727         return 0;
1728 }
1729
1730 static int __ext4_journalled_writepage(struct page *page,
1731                                        unsigned int len)
1732 {
1733         struct address_space *mapping = page->mapping;
1734         struct inode *inode = mapping->host;
1735         struct buffer_head *page_bufs = NULL;
1736         handle_t *handle = NULL;
1737         int ret = 0, err = 0;
1738         int inline_data = ext4_has_inline_data(inode);
1739         struct buffer_head *inode_bh = NULL;
1740
1741         ClearPageChecked(page);
1742
1743         if (inline_data) {
1744                 BUG_ON(page->index != 0);
1745                 BUG_ON(len > ext4_get_max_inline_size(inode));
1746                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747                 if (inode_bh == NULL)
1748                         goto out;
1749         } else {
1750                 page_bufs = page_buffers(page);
1751                 if (!page_bufs) {
1752                         BUG();
1753                         goto out;
1754                 }
1755                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756                                        NULL, bget_one);
1757         }
1758         /* As soon as we unlock the page, it can go away, but we have
1759          * references to buffers so we are safe */
1760         unlock_page(page);
1761
1762         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763                                     ext4_writepage_trans_blocks(inode));
1764         if (IS_ERR(handle)) {
1765                 ret = PTR_ERR(handle);
1766                 goto out;
1767         }
1768
1769         BUG_ON(!ext4_handle_valid(handle));
1770
1771         if (inline_data) {
1772                 ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776         } else {
1777                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778                                              do_journal_get_write_access);
1779
1780                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781                                              write_end_fn);
1782         }
1783         if (ret == 0)
1784                 ret = err;
1785         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786         err = ext4_journal_stop(handle);
1787         if (!ret)
1788                 ret = err;
1789
1790         if (!ext4_has_inline_data(inode))
1791                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792                                        NULL, bput_one);
1793         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794 out:
1795         brelse(inode_bh);
1796         return ret;
1797 }
1798
1799 /*
1800  * Note that we don't need to start a transaction unless we're journaling data
1801  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802  * need to file the inode to the transaction's list in ordered mode because if
1803  * we are writing back data added by write(), the inode is already there and if
1804  * we are writing back data modified via mmap(), no one guarantees in which
1805  * transaction the data will hit the disk. In case we are journaling data, we
1806  * cannot start transaction directly because transaction start ranks above page
1807  * lock so we have to do some magic.
1808  *
1809  * This function can get called via...
1810  *   - ext4_writepages after taking page lock (have journal handle)
1811  *   - journal_submit_inode_data_buffers (no journal handle)
1812  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813  *   - grab_page_cache when doing write_begin (have journal handle)
1814  *
1815  * We don't do any block allocation in this function. If we have page with
1816  * multiple blocks we need to write those buffer_heads that are mapped. This
1817  * is important for mmaped based write. So if we do with blocksize 1K
1818  * truncate(f, 1024);
1819  * a = mmap(f, 0, 4096);
1820  * a[0] = 'a';
1821  * truncate(f, 4096);
1822  * we have in the page first buffer_head mapped via page_mkwrite call back
1823  * but other buffer_heads would be unmapped but dirty (dirty done via the
1824  * do_wp_page). So writepage should write the first block. If we modify
1825  * the mmap area beyond 1024 we will again get a page_fault and the
1826  * page_mkwrite callback will do the block allocation and mark the
1827  * buffer_heads mapped.
1828  *
1829  * We redirty the page if we have any buffer_heads that is either delay or
1830  * unwritten in the page.
1831  *
1832  * We can get recursively called as show below.
1833  *
1834  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835  *              ext4_writepage()
1836  *
1837  * But since we don't do any block allocation we should not deadlock.
1838  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839  */
1840 static int ext4_writepage(struct page *page,
1841                           struct writeback_control *wbc)
1842 {
1843         int ret = 0;
1844         loff_t size;
1845         unsigned int len;
1846         struct buffer_head *page_bufs = NULL;
1847         struct inode *inode = page->mapping->host;
1848         struct ext4_io_submit io_submit;
1849
1850         trace_ext4_writepage(page);
1851         size = i_size_read(inode);
1852         if (page->index == size >> PAGE_CACHE_SHIFT)
1853                 len = size & ~PAGE_CACHE_MASK;
1854         else
1855                 len = PAGE_CACHE_SIZE;
1856
1857         page_bufs = page_buffers(page);
1858         /*
1859          * We cannot do block allocation or other extent handling in this
1860          * function. If there are buffers needing that, we have to redirty
1861          * the page. But we may reach here when we do a journal commit via
1862          * journal_submit_inode_data_buffers() and in that case we must write
1863          * allocated buffers to achieve data=ordered mode guarantees.
1864          */
1865         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866                                    ext4_bh_delay_or_unwritten)) {
1867                 redirty_page_for_writepage(wbc, page);
1868                 if (current->flags & PF_MEMALLOC) {
1869                         /*
1870                          * For memory cleaning there's no point in writing only
1871                          * some buffers. So just bail out. Warn if we came here
1872                          * from direct reclaim.
1873                          */
1874                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875                                                         == PF_MEMALLOC);
1876                         unlock_page(page);
1877                         return 0;
1878                 }
1879         }
1880
1881         if (PageChecked(page) && ext4_should_journal_data(inode))
1882                 /*
1883                  * It's mmapped pagecache.  Add buffers and journal it.  There
1884                  * doesn't seem much point in redirtying the page here.
1885                  */
1886                 return __ext4_journalled_writepage(page, len);
1887
1888         ext4_io_submit_init(&io_submit, wbc);
1889         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890         if (!io_submit.io_end) {
1891                 redirty_page_for_writepage(wbc, page);
1892                 unlock_page(page);
1893                 return -ENOMEM;
1894         }
1895         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896         ext4_io_submit(&io_submit);
1897         /* Drop io_end reference we got from init */
1898         ext4_put_io_end_defer(io_submit.io_end);
1899         return ret;
1900 }
1901
1902 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903 {
1904         int len;
1905         loff_t size = i_size_read(mpd->inode);
1906         int err;
1907
1908         BUG_ON(page->index != mpd->first_page);
1909         if (page->index == size >> PAGE_CACHE_SHIFT)
1910                 len = size & ~PAGE_CACHE_MASK;
1911         else
1912                 len = PAGE_CACHE_SIZE;
1913         clear_page_dirty_for_io(page);
1914         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915         if (!err)
1916                 mpd->wbc->nr_to_write--;
1917         mpd->first_page++;
1918
1919         return err;
1920 }
1921
1922 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924 /*
1925  * mballoc gives us at most this number of blocks...
1926  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927  * The rest of mballoc seems to handle chunks up to full group size.
1928  */
1929 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931 /*
1932  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933  *
1934  * @mpd - extent of blocks
1935  * @lblk - logical number of the block in the file
1936  * @bh - buffer head we want to add to the extent
1937  *
1938  * The function is used to collect contig. blocks in the same state. If the
1939  * buffer doesn't require mapping for writeback and we haven't started the
1940  * extent of buffers to map yet, the function returns 'true' immediately - the
1941  * caller can write the buffer right away. Otherwise the function returns true
1942  * if the block has been added to the extent, false if the block couldn't be
1943  * added.
1944  */
1945 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946                                    struct buffer_head *bh)
1947 {
1948         struct ext4_map_blocks *map = &mpd->map;
1949
1950         /* Buffer that doesn't need mapping for writeback? */
1951         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953                 /* So far no extent to map => we write the buffer right away */
1954                 if (map->m_len == 0)
1955                         return true;
1956                 return false;
1957         }
1958
1959         /* First block in the extent? */
1960         if (map->m_len == 0) {
1961                 map->m_lblk = lblk;
1962                 map->m_len = 1;
1963                 map->m_flags = bh->b_state & BH_FLAGS;
1964                 return true;
1965         }
1966
1967         /* Don't go larger than mballoc is willing to allocate */
1968         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969                 return false;
1970
1971         /* Can we merge the block to our big extent? */
1972         if (lblk == map->m_lblk + map->m_len &&
1973             (bh->b_state & BH_FLAGS) == map->m_flags) {
1974                 map->m_len++;
1975                 return true;
1976         }
1977         return false;
1978 }
1979
1980 /*
1981  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982  *
1983  * @mpd - extent of blocks for mapping
1984  * @head - the first buffer in the page
1985  * @bh - buffer we should start processing from
1986  * @lblk - logical number of the block in the file corresponding to @bh
1987  *
1988  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989  * the page for IO if all buffers in this page were mapped and there's no
1990  * accumulated extent of buffers to map or add buffers in the page to the
1991  * extent of buffers to map. The function returns 1 if the caller can continue
1992  * by processing the next page, 0 if it should stop adding buffers to the
1993  * extent to map because we cannot extend it anymore. It can also return value
1994  * < 0 in case of error during IO submission.
1995  */
1996 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997                                    struct buffer_head *head,
1998                                    struct buffer_head *bh,
1999                                    ext4_lblk_t lblk)
2000 {
2001         struct inode *inode = mpd->inode;
2002         int err;
2003         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004                                                         >> inode->i_blkbits;
2005
2006         do {
2007                 BUG_ON(buffer_locked(bh));
2008
2009                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010                         /* Found extent to map? */
2011                         if (mpd->map.m_len)
2012                                 return 0;
2013                         /* Everything mapped so far and we hit EOF */
2014                         break;
2015                 }
2016         } while (lblk++, (bh = bh->b_this_page) != head);
2017         /* So far everything mapped? Submit the page for IO. */
2018         if (mpd->map.m_len == 0) {
2019                 err = mpage_submit_page(mpd, head->b_page);
2020                 if (err < 0)
2021                         return err;
2022         }
2023         return lblk < blocks;
2024 }
2025
2026 /*
2027  * mpage_map_buffers - update buffers corresponding to changed extent and
2028  *                     submit fully mapped pages for IO
2029  *
2030  * @mpd - description of extent to map, on return next extent to map
2031  *
2032  * Scan buffers corresponding to changed extent (we expect corresponding pages
2033  * to be already locked) and update buffer state according to new extent state.
2034  * We map delalloc buffers to their physical location, clear unwritten bits,
2035  * and mark buffers as uninit when we perform writes to unwritten extents
2036  * and do extent conversion after IO is finished. If the last page is not fully
2037  * mapped, we update @map to the next extent in the last page that needs
2038  * mapping. Otherwise we submit the page for IO.
2039  */
2040 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041 {
2042         struct pagevec pvec;
2043         int nr_pages, i;
2044         struct inode *inode = mpd->inode;
2045         struct buffer_head *head, *bh;
2046         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047         pgoff_t start, end;
2048         ext4_lblk_t lblk;
2049         sector_t pblock;
2050         int err;
2051
2052         start = mpd->map.m_lblk >> bpp_bits;
2053         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054         lblk = start << bpp_bits;
2055         pblock = mpd->map.m_pblk;
2056
2057         pagevec_init(&pvec, 0);
2058         while (start <= end) {
2059                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060                                           PAGEVEC_SIZE);
2061                 if (nr_pages == 0)
2062                         break;
2063                 for (i = 0; i < nr_pages; i++) {
2064                         struct page *page = pvec.pages[i];
2065
2066                         if (page->index > end)
2067                                 break;
2068                         /* Up to 'end' pages must be contiguous */
2069                         BUG_ON(page->index != start);
2070                         bh = head = page_buffers(page);
2071                         do {
2072                                 if (lblk < mpd->map.m_lblk)
2073                                         continue;
2074                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075                                         /*
2076                                          * Buffer after end of mapped extent.
2077                                          * Find next buffer in the page to map.
2078                                          */
2079                                         mpd->map.m_len = 0;
2080                                         mpd->map.m_flags = 0;
2081                                         /*
2082                                          * FIXME: If dioread_nolock supports
2083                                          * blocksize < pagesize, we need to make
2084                                          * sure we add size mapped so far to
2085                                          * io_end->size as the following call
2086                                          * can submit the page for IO.
2087                                          */
2088                                         err = mpage_process_page_bufs(mpd, head,
2089                                                                       bh, lblk);
2090                                         pagevec_release(&pvec);
2091                                         if (err > 0)
2092                                                 err = 0;
2093                                         return err;
2094                                 }
2095                                 if (buffer_delay(bh)) {
2096                                         clear_buffer_delay(bh);
2097                                         bh->b_blocknr = pblock++;
2098                                 }
2099                                 clear_buffer_unwritten(bh);
2100                         } while (lblk++, (bh = bh->b_this_page) != head);
2101
2102                         /*
2103                          * FIXME: This is going to break if dioread_nolock
2104                          * supports blocksize < pagesize as we will try to
2105                          * convert potentially unmapped parts of inode.
2106                          */
2107                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108                         /* Page fully mapped - let IO run! */
2109                         err = mpage_submit_page(mpd, page);
2110                         if (err < 0) {
2111                                 pagevec_release(&pvec);
2112                                 return err;
2113                         }
2114                         start++;
2115                 }
2116                 pagevec_release(&pvec);
2117         }
2118         /* Extent fully mapped and matches with page boundary. We are done. */
2119         mpd->map.m_len = 0;
2120         mpd->map.m_flags = 0;
2121         return 0;
2122 }
2123
2124 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125 {
2126         struct inode *inode = mpd->inode;
2127         struct ext4_map_blocks *map = &mpd->map;
2128         int get_blocks_flags;
2129         int err, dioread_nolock;
2130
2131         trace_ext4_da_write_pages_extent(inode, map);
2132         /*
2133          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134          * to convert an unwritten extent to be initialized (in the case
2135          * where we have written into one or more preallocated blocks).  It is
2136          * possible that we're going to need more metadata blocks than
2137          * previously reserved. However we must not fail because we're in
2138          * writeback and there is nothing we can do about it so it might result
2139          * in data loss.  So use reserved blocks to allocate metadata if
2140          * possible.
2141          *
2142          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143          * in question are delalloc blocks.  This affects functions in many
2144          * different parts of the allocation call path.  This flag exists
2145          * primarily because we don't want to change *many* call functions, so
2146          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147          * once the inode's allocation semaphore is taken.
2148          */
2149         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151         dioread_nolock = ext4_should_dioread_nolock(inode);
2152         if (dioread_nolock)
2153                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2154         if (map->m_flags & (1 << BH_Delay))
2155                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2156
2157         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2158         if (err < 0)
2159                 return err;
2160         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2161                 if (!mpd->io_submit.io_end->handle &&
2162                     ext4_handle_valid(handle)) {
2163                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2164                         handle->h_rsv_handle = NULL;
2165                 }
2166                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2167         }
2168
2169         BUG_ON(map->m_len == 0);
2170         if (map->m_flags & EXT4_MAP_NEW) {
2171                 struct block_device *bdev = inode->i_sb->s_bdev;
2172                 int i;
2173
2174                 for (i = 0; i < map->m_len; i++)
2175                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2176         }
2177         return 0;
2178 }
2179
2180 /*
2181  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2182  *                               mpd->len and submit pages underlying it for IO
2183  *
2184  * @handle - handle for journal operations
2185  * @mpd - extent to map
2186  * @give_up_on_write - we set this to true iff there is a fatal error and there
2187  *                     is no hope of writing the data. The caller should discard
2188  *                     dirty pages to avoid infinite loops.
2189  *
2190  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2191  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2192  * them to initialized or split the described range from larger unwritten
2193  * extent. Note that we need not map all the described range since allocation
2194  * can return less blocks or the range is covered by more unwritten extents. We
2195  * cannot map more because we are limited by reserved transaction credits. On
2196  * the other hand we always make sure that the last touched page is fully
2197  * mapped so that it can be written out (and thus forward progress is
2198  * guaranteed). After mapping we submit all mapped pages for IO.
2199  */
2200 static int mpage_map_and_submit_extent(handle_t *handle,
2201                                        struct mpage_da_data *mpd,
2202                                        bool *give_up_on_write)
2203 {
2204         struct inode *inode = mpd->inode;
2205         struct ext4_map_blocks *map = &mpd->map;
2206         int err;
2207         loff_t disksize;
2208
2209         mpd->io_submit.io_end->offset =
2210                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2211         do {
2212                 err = mpage_map_one_extent(handle, mpd);
2213                 if (err < 0) {
2214                         struct super_block *sb = inode->i_sb;
2215
2216                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2217                                 goto invalidate_dirty_pages;
2218                         /*
2219                          * Let the uper layers retry transient errors.
2220                          * In the case of ENOSPC, if ext4_count_free_blocks()
2221                          * is non-zero, a commit should free up blocks.
2222                          */
2223                         if ((err == -ENOMEM) ||
2224                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2225                                 return err;
2226                         ext4_msg(sb, KERN_CRIT,
2227                                  "Delayed block allocation failed for "
2228                                  "inode %lu at logical offset %llu with"
2229                                  " max blocks %u with error %d",
2230                                  inode->i_ino,
2231                                  (unsigned long long)map->m_lblk,
2232                                  (unsigned)map->m_len, -err);
2233                         ext4_msg(sb, KERN_CRIT,
2234                                  "This should not happen!! Data will "
2235                                  "be lost\n");
2236                         if (err == -ENOSPC)
2237                                 ext4_print_free_blocks(inode);
2238                 invalidate_dirty_pages:
2239                         *give_up_on_write = true;
2240                         return err;
2241                 }
2242                 /*
2243                  * Update buffer state, submit mapped pages, and get us new
2244                  * extent to map
2245                  */
2246                 err = mpage_map_and_submit_buffers(mpd);
2247                 if (err < 0)
2248                         return err;
2249         } while (map->m_len);
2250
2251         /*
2252          * Update on-disk size after IO is submitted.  Races with
2253          * truncate are avoided by checking i_size under i_data_sem.
2254          */
2255         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2256         if (disksize > EXT4_I(inode)->i_disksize) {
2257                 int err2;
2258                 loff_t i_size;
2259
2260                 down_write(&EXT4_I(inode)->i_data_sem);
2261                 i_size = i_size_read(inode);
2262                 if (disksize > i_size)
2263                         disksize = i_size;
2264                 if (disksize > EXT4_I(inode)->i_disksize)
2265                         EXT4_I(inode)->i_disksize = disksize;
2266                 err2 = ext4_mark_inode_dirty(handle, inode);
2267                 up_write(&EXT4_I(inode)->i_data_sem);
2268                 if (err2)
2269                         ext4_error(inode->i_sb,
2270                                    "Failed to mark inode %lu dirty",
2271                                    inode->i_ino);
2272                 if (!err)
2273                         err = err2;
2274         }
2275         return err;
2276 }
2277
2278 /*
2279  * Calculate the total number of credits to reserve for one writepages
2280  * iteration. This is called from ext4_writepages(). We map an extent of
2281  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2282  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2283  * bpp - 1 blocks in bpp different extents.
2284  */
2285 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2286 {
2287         int bpp = ext4_journal_blocks_per_page(inode);
2288
2289         return ext4_meta_trans_blocks(inode,
2290                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2291 }
2292
2293 /*
2294  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2295  *                               and underlying extent to map
2296  *
2297  * @mpd - where to look for pages
2298  *
2299  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2300  * IO immediately. When we find a page which isn't mapped we start accumulating
2301  * extent of buffers underlying these pages that needs mapping (formed by
2302  * either delayed or unwritten buffers). We also lock the pages containing
2303  * these buffers. The extent found is returned in @mpd structure (starting at
2304  * mpd->lblk with length mpd->len blocks).
2305  *
2306  * Note that this function can attach bios to one io_end structure which are
2307  * neither logically nor physically contiguous. Although it may seem as an
2308  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2309  * case as we need to track IO to all buffers underlying a page in one io_end.
2310  */
2311 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2312 {
2313         struct address_space *mapping = mpd->inode->i_mapping;
2314         struct pagevec pvec;
2315         unsigned int nr_pages;
2316         long left = mpd->wbc->nr_to_write;
2317         pgoff_t index = mpd->first_page;
2318         pgoff_t end = mpd->last_page;
2319         int tag;
2320         int i, err = 0;
2321         int blkbits = mpd->inode->i_blkbits;
2322         ext4_lblk_t lblk;
2323         struct buffer_head *head;
2324
2325         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2326                 tag = PAGECACHE_TAG_TOWRITE;
2327         else
2328                 tag = PAGECACHE_TAG_DIRTY;
2329
2330         pagevec_init(&pvec, 0);
2331         mpd->map.m_len = 0;
2332         mpd->next_page = index;
2333         while (index <= end) {
2334                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2335                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2336                 if (nr_pages == 0)
2337                         goto out;
2338
2339                 for (i = 0; i < nr_pages; i++) {
2340                         struct page *page = pvec.pages[i];
2341
2342                         /*
2343                          * At this point, the page may be truncated or
2344                          * invalidated (changing page->mapping to NULL), or
2345                          * even swizzled back from swapper_space to tmpfs file
2346                          * mapping. However, page->index will not change
2347                          * because we have a reference on the page.
2348                          */
2349                         if (page->index > end)
2350                                 goto out;
2351
2352                         /*
2353                          * Accumulated enough dirty pages? This doesn't apply
2354                          * to WB_SYNC_ALL mode. For integrity sync we have to
2355                          * keep going because someone may be concurrently
2356                          * dirtying pages, and we might have synced a lot of
2357                          * newly appeared dirty pages, but have not synced all
2358                          * of the old dirty pages.
2359                          */
2360                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2361                                 goto out;
2362
2363                         /* If we can't merge this page, we are done. */
2364                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2365                                 goto out;
2366
2367                         lock_page(page);
2368                         /*
2369                          * If the page is no longer dirty, or its mapping no
2370                          * longer corresponds to inode we are writing (which
2371                          * means it has been truncated or invalidated), or the
2372                          * page is already under writeback and we are not doing
2373                          * a data integrity writeback, skip the page
2374                          */
2375                         if (!PageDirty(page) ||
2376                             (PageWriteback(page) &&
2377                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2378                             unlikely(page->mapping != mapping)) {
2379                                 unlock_page(page);
2380                                 continue;
2381                         }
2382
2383                         wait_on_page_writeback(page);
2384                         BUG_ON(PageWriteback(page));
2385
2386                         if (mpd->map.m_len == 0)
2387                                 mpd->first_page = page->index;
2388                         mpd->next_page = page->index + 1;
2389                         /* Add all dirty buffers to mpd */
2390                         lblk = ((ext4_lblk_t)page->index) <<
2391                                 (PAGE_CACHE_SHIFT - blkbits);
2392                         head = page_buffers(page);
2393                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2394                         if (err <= 0)
2395                                 goto out;
2396                         err = 0;
2397                         left--;
2398                 }
2399                 pagevec_release(&pvec);
2400                 cond_resched();
2401         }
2402         return 0;
2403 out:
2404         pagevec_release(&pvec);
2405         return err;
2406 }
2407
2408 static int __writepage(struct page *page, struct writeback_control *wbc,
2409                        void *data)
2410 {
2411         struct address_space *mapping = data;
2412         int ret = ext4_writepage(page, wbc);
2413         mapping_set_error(mapping, ret);
2414         return ret;
2415 }
2416
2417 static int ext4_writepages(struct address_space *mapping,
2418                            struct writeback_control *wbc)
2419 {
2420         pgoff_t writeback_index = 0;
2421         long nr_to_write = wbc->nr_to_write;
2422         int range_whole = 0;
2423         int cycled = 1;
2424         handle_t *handle = NULL;
2425         struct mpage_da_data mpd;
2426         struct inode *inode = mapping->host;
2427         int needed_blocks, rsv_blocks = 0, ret = 0;
2428         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2429         bool done;
2430         struct blk_plug plug;
2431         bool give_up_on_write = false;
2432
2433         trace_ext4_writepages(inode, wbc);
2434
2435         /*
2436          * No pages to write? This is mainly a kludge to avoid starting
2437          * a transaction for special inodes like journal inode on last iput()
2438          * because that could violate lock ordering on umount
2439          */
2440         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2441                 goto out_writepages;
2442
2443         if (ext4_should_journal_data(inode)) {
2444                 struct blk_plug plug;
2445
2446                 blk_start_plug(&plug);
2447                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2448                 blk_finish_plug(&plug);
2449                 goto out_writepages;
2450         }
2451
2452         /*
2453          * If the filesystem has aborted, it is read-only, so return
2454          * right away instead of dumping stack traces later on that
2455          * will obscure the real source of the problem.  We test
2456          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2457          * the latter could be true if the filesystem is mounted
2458          * read-only, and in that case, ext4_writepages should
2459          * *never* be called, so if that ever happens, we would want
2460          * the stack trace.
2461          */
2462         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2463                 ret = -EROFS;
2464                 goto out_writepages;
2465         }
2466
2467         if (ext4_should_dioread_nolock(inode)) {
2468                 /*
2469                  * We may need to convert up to one extent per block in
2470                  * the page and we may dirty the inode.
2471                  */
2472                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2473         }
2474
2475         /*
2476          * If we have inline data and arrive here, it means that
2477          * we will soon create the block for the 1st page, so
2478          * we'd better clear the inline data here.
2479          */
2480         if (ext4_has_inline_data(inode)) {
2481                 /* Just inode will be modified... */
2482                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2483                 if (IS_ERR(handle)) {
2484                         ret = PTR_ERR(handle);
2485                         goto out_writepages;
2486                 }
2487                 BUG_ON(ext4_test_inode_state(inode,
2488                                 EXT4_STATE_MAY_INLINE_DATA));
2489                 ext4_destroy_inline_data(handle, inode);
2490                 ext4_journal_stop(handle);
2491         }
2492
2493         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2494                 range_whole = 1;
2495
2496         if (wbc->range_cyclic) {
2497                 writeback_index = mapping->writeback_index;
2498                 if (writeback_index)
2499                         cycled = 0;
2500                 mpd.first_page = writeback_index;
2501                 mpd.last_page = -1;
2502         } else {
2503                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2504                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2505         }
2506
2507         mpd.inode = inode;
2508         mpd.wbc = wbc;
2509         ext4_io_submit_init(&mpd.io_submit, wbc);
2510 retry:
2511         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2512                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2513         done = false;
2514         blk_start_plug(&plug);
2515         while (!done && mpd.first_page <= mpd.last_page) {
2516                 /* For each extent of pages we use new io_end */
2517                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2518                 if (!mpd.io_submit.io_end) {
2519                         ret = -ENOMEM;
2520                         break;
2521                 }
2522
2523                 /*
2524                  * We have two constraints: We find one extent to map and we
2525                  * must always write out whole page (makes a difference when
2526                  * blocksize < pagesize) so that we don't block on IO when we
2527                  * try to write out the rest of the page. Journalled mode is
2528                  * not supported by delalloc.
2529                  */
2530                 BUG_ON(ext4_should_journal_data(inode));
2531                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2532
2533                 /* start a new transaction */
2534                 handle = ext4_journal_start_with_reserve(inode,
2535                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2536                 if (IS_ERR(handle)) {
2537                         ret = PTR_ERR(handle);
2538                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2539                                "%ld pages, ino %lu; err %d", __func__,
2540                                 wbc->nr_to_write, inode->i_ino, ret);
2541                         /* Release allocated io_end */
2542                         ext4_put_io_end(mpd.io_submit.io_end);
2543                         break;
2544                 }
2545
2546                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2547                 ret = mpage_prepare_extent_to_map(&mpd);
2548                 if (!ret) {
2549                         if (mpd.map.m_len)
2550                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2551                                         &give_up_on_write);
2552                         else {
2553                                 /*
2554                                  * We scanned the whole range (or exhausted
2555                                  * nr_to_write), submitted what was mapped and
2556                                  * didn't find anything needing mapping. We are
2557                                  * done.
2558                                  */
2559                                 done = true;
2560                         }
2561                 }
2562                 ext4_journal_stop(handle);
2563                 /* Submit prepared bio */
2564                 ext4_io_submit(&mpd.io_submit);
2565                 /* Unlock pages we didn't use */
2566                 mpage_release_unused_pages(&mpd, give_up_on_write);
2567                 /* Drop our io_end reference we got from init */
2568                 ext4_put_io_end(mpd.io_submit.io_end);
2569
2570                 if (ret == -ENOSPC && sbi->s_journal) {
2571                         /*
2572                          * Commit the transaction which would
2573                          * free blocks released in the transaction
2574                          * and try again
2575                          */
2576                         jbd2_journal_force_commit_nested(sbi->s_journal);
2577                         ret = 0;
2578                         continue;
2579                 }
2580                 /* Fatal error - ENOMEM, EIO... */
2581                 if (ret)
2582                         break;
2583         }
2584         blk_finish_plug(&plug);
2585         if (!ret && !cycled && wbc->nr_to_write > 0) {
2586                 cycled = 1;
2587                 mpd.last_page = writeback_index - 1;
2588                 mpd.first_page = 0;
2589                 goto retry;
2590         }
2591
2592         /* Update index */
2593         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2594                 /*
2595                  * Set the writeback_index so that range_cyclic
2596                  * mode will write it back later
2597                  */
2598                 mapping->writeback_index = mpd.first_page;
2599
2600 out_writepages:
2601         trace_ext4_writepages_result(inode, wbc, ret,
2602                                      nr_to_write - wbc->nr_to_write);
2603         return ret;
2604 }
2605
2606 static int ext4_nonda_switch(struct super_block *sb)
2607 {
2608         s64 free_clusters, dirty_clusters;
2609         struct ext4_sb_info *sbi = EXT4_SB(sb);
2610
2611         /*
2612          * switch to non delalloc mode if we are running low
2613          * on free block. The free block accounting via percpu
2614          * counters can get slightly wrong with percpu_counter_batch getting
2615          * accumulated on each CPU without updating global counters
2616          * Delalloc need an accurate free block accounting. So switch
2617          * to non delalloc when we are near to error range.
2618          */
2619         free_clusters =
2620                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2621         dirty_clusters =
2622                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2623         /*
2624          * Start pushing delalloc when 1/2 of free blocks are dirty.
2625          */
2626         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2627                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2628
2629         if (2 * free_clusters < 3 * dirty_clusters ||
2630             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2631                 /*
2632                  * free block count is less than 150% of dirty blocks
2633                  * or free blocks is less than watermark
2634                  */
2635                 return 1;
2636         }
2637         return 0;
2638 }
2639
2640 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2641                                loff_t pos, unsigned len, unsigned flags,
2642                                struct page **pagep, void **fsdata)
2643 {
2644         int ret, retries = 0;
2645         struct page *page;
2646         pgoff_t index;
2647         struct inode *inode = mapping->host;
2648         handle_t *handle;
2649
2650         index = pos >> PAGE_CACHE_SHIFT;
2651
2652         if (ext4_nonda_switch(inode->i_sb)) {
2653                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2654                 return ext4_write_begin(file, mapping, pos,
2655                                         len, flags, pagep, fsdata);
2656         }
2657         *fsdata = (void *)0;
2658         trace_ext4_da_write_begin(inode, pos, len, flags);
2659
2660         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2661                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2662                                                       pos, len, flags,
2663                                                       pagep, fsdata);
2664                 if (ret < 0)
2665                         return ret;
2666                 if (ret == 1)
2667                         return 0;
2668         }
2669
2670         /*
2671          * grab_cache_page_write_begin() can take a long time if the
2672          * system is thrashing due to memory pressure, or if the page
2673          * is being written back.  So grab it first before we start
2674          * the transaction handle.  This also allows us to allocate
2675          * the page (if needed) without using GFP_NOFS.
2676          */
2677 retry_grab:
2678         page = grab_cache_page_write_begin(mapping, index, flags);
2679         if (!page)
2680                 return -ENOMEM;
2681         unlock_page(page);
2682
2683         /*
2684          * With delayed allocation, we don't log the i_disksize update
2685          * if there is delayed block allocation. But we still need
2686          * to journalling the i_disksize update if writes to the end
2687          * of file which has an already mapped buffer.
2688          */
2689 retry_journal:
2690         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2691         if (IS_ERR(handle)) {
2692                 page_cache_release(page);
2693                 return PTR_ERR(handle);
2694         }
2695
2696         lock_page(page);
2697         if (page->mapping != mapping) {
2698                 /* The page got truncated from under us */
2699                 unlock_page(page);
2700                 page_cache_release(page);
2701                 ext4_journal_stop(handle);
2702                 goto retry_grab;
2703         }
2704         /* In case writeback began while the page was unlocked */
2705         wait_for_stable_page(page);
2706
2707         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2708         if (ret < 0) {
2709                 unlock_page(page);
2710                 ext4_journal_stop(handle);
2711                 /*
2712                  * block_write_begin may have instantiated a few blocks
2713                  * outside i_size.  Trim these off again. Don't need
2714                  * i_size_read because we hold i_mutex.
2715                  */
2716                 if (pos + len > inode->i_size)
2717                         ext4_truncate_failed_write(inode);
2718
2719                 if (ret == -ENOSPC &&
2720                     ext4_should_retry_alloc(inode->i_sb, &retries))
2721                         goto retry_journal;
2722
2723                 page_cache_release(page);
2724                 return ret;
2725         }
2726
2727         *pagep = page;
2728         return ret;
2729 }
2730
2731 /*
2732  * Check if we should update i_disksize
2733  * when write to the end of file but not require block allocation
2734  */
2735 static int ext4_da_should_update_i_disksize(struct page *page,
2736                                             unsigned long offset)
2737 {
2738         struct buffer_head *bh;
2739         struct inode *inode = page->mapping->host;
2740         unsigned int idx;
2741         int i;
2742
2743         bh = page_buffers(page);
2744         idx = offset >> inode->i_blkbits;
2745
2746         for (i = 0; i < idx; i++)
2747                 bh = bh->b_this_page;
2748
2749         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2750                 return 0;
2751         return 1;
2752 }
2753
2754 static int ext4_da_write_end(struct file *file,
2755                              struct address_space *mapping,
2756                              loff_t pos, unsigned len, unsigned copied,
2757                              struct page *page, void *fsdata)
2758 {
2759         struct inode *inode = mapping->host;
2760         int ret = 0, ret2;
2761         handle_t *handle = ext4_journal_current_handle();
2762         loff_t new_i_size;
2763         unsigned long start, end;
2764         int write_mode = (int)(unsigned long)fsdata;
2765
2766         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2767                 return ext4_write_end(file, mapping, pos,
2768                                       len, copied, page, fsdata);
2769
2770         trace_ext4_da_write_end(inode, pos, len, copied);
2771         start = pos & (PAGE_CACHE_SIZE - 1);
2772         end = start + copied - 1;
2773
2774         /*
2775          * generic_write_end() will run mark_inode_dirty() if i_size
2776          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2777          * into that.
2778          */
2779         new_i_size = pos + copied;
2780         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2781                 if (ext4_has_inline_data(inode) ||
2782                     ext4_da_should_update_i_disksize(page, end)) {
2783                         down_write(&EXT4_I(inode)->i_data_sem);
2784                         if (new_i_size > EXT4_I(inode)->i_disksize)
2785                                 EXT4_I(inode)->i_disksize = new_i_size;
2786                         up_write(&EXT4_I(inode)->i_data_sem);
2787                         /* We need to mark inode dirty even if
2788                          * new_i_size is less that inode->i_size
2789                          * bu greater than i_disksize.(hint delalloc)
2790                          */
2791                         ext4_mark_inode_dirty(handle, inode);
2792                 }
2793         }
2794
2795         if (write_mode != CONVERT_INLINE_DATA &&
2796             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2797             ext4_has_inline_data(inode))
2798                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2799                                                      page);
2800         else
2801                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2802                                                         page, fsdata);
2803
2804         copied = ret2;
2805         if (ret2 < 0)
2806                 ret = ret2;
2807         ret2 = ext4_journal_stop(handle);
2808         if (!ret)
2809                 ret = ret2;
2810
2811         return ret ? ret : copied;
2812 }
2813
2814 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2815                                    unsigned int length)
2816 {
2817         /*
2818          * Drop reserved blocks
2819          */
2820         BUG_ON(!PageLocked(page));
2821         if (!page_has_buffers(page))
2822                 goto out;
2823
2824         ext4_da_page_release_reservation(page, offset, length);
2825
2826 out:
2827         ext4_invalidatepage(page, offset, length);
2828
2829         return;
2830 }
2831
2832 /*
2833  * Force all delayed allocation blocks to be allocated for a given inode.
2834  */
2835 int ext4_alloc_da_blocks(struct inode *inode)
2836 {
2837         trace_ext4_alloc_da_blocks(inode);
2838
2839         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2840             !EXT4_I(inode)->i_reserved_meta_blocks)
2841                 return 0;
2842
2843         /*
2844          * We do something simple for now.  The filemap_flush() will
2845          * also start triggering a write of the data blocks, which is
2846          * not strictly speaking necessary (and for users of
2847          * laptop_mode, not even desirable).  However, to do otherwise
2848          * would require replicating code paths in:
2849          *
2850          * ext4_writepages() ->
2851          *    write_cache_pages() ---> (via passed in callback function)
2852          *        __mpage_da_writepage() -->
2853          *           mpage_add_bh_to_extent()
2854          *           mpage_da_map_blocks()
2855          *
2856          * The problem is that write_cache_pages(), located in
2857          * mm/page-writeback.c, marks pages clean in preparation for
2858          * doing I/O, which is not desirable if we're not planning on
2859          * doing I/O at all.
2860          *
2861          * We could call write_cache_pages(), and then redirty all of
2862          * the pages by calling redirty_page_for_writepage() but that
2863          * would be ugly in the extreme.  So instead we would need to
2864          * replicate parts of the code in the above functions,
2865          * simplifying them because we wouldn't actually intend to
2866          * write out the pages, but rather only collect contiguous
2867          * logical block extents, call the multi-block allocator, and
2868          * then update the buffer heads with the block allocations.
2869          *
2870          * For now, though, we'll cheat by calling filemap_flush(),
2871          * which will map the blocks, and start the I/O, but not
2872          * actually wait for the I/O to complete.
2873          */
2874         return filemap_flush(inode->i_mapping);
2875 }
2876
2877 /*
2878  * bmap() is special.  It gets used by applications such as lilo and by
2879  * the swapper to find the on-disk block of a specific piece of data.
2880  *
2881  * Naturally, this is dangerous if the block concerned is still in the
2882  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2883  * filesystem and enables swap, then they may get a nasty shock when the
2884  * data getting swapped to that swapfile suddenly gets overwritten by
2885  * the original zero's written out previously to the journal and
2886  * awaiting writeback in the kernel's buffer cache.
2887  *
2888  * So, if we see any bmap calls here on a modified, data-journaled file,
2889  * take extra steps to flush any blocks which might be in the cache.
2890  */
2891 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2892 {
2893         struct inode *inode = mapping->host;
2894         journal_t *journal;
2895         int err;
2896
2897         /*
2898          * We can get here for an inline file via the FIBMAP ioctl
2899          */
2900         if (ext4_has_inline_data(inode))
2901                 return 0;
2902
2903         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2904                         test_opt(inode->i_sb, DELALLOC)) {
2905                 /*
2906                  * With delalloc we want to sync the file
2907                  * so that we can make sure we allocate
2908                  * blocks for file
2909                  */
2910                 filemap_write_and_wait(mapping);
2911         }
2912
2913         if (EXT4_JOURNAL(inode) &&
2914             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2915                 /*
2916                  * This is a REALLY heavyweight approach, but the use of
2917                  * bmap on dirty files is expected to be extremely rare:
2918                  * only if we run lilo or swapon on a freshly made file
2919                  * do we expect this to happen.
2920                  *
2921                  * (bmap requires CAP_SYS_RAWIO so this does not
2922                  * represent an unprivileged user DOS attack --- we'd be
2923                  * in trouble if mortal users could trigger this path at
2924                  * will.)
2925                  *
2926                  * NB. EXT4_STATE_JDATA is not set on files other than
2927                  * regular files.  If somebody wants to bmap a directory
2928                  * or symlink and gets confused because the buffer
2929                  * hasn't yet been flushed to disk, they deserve
2930                  * everything they get.
2931                  */
2932
2933                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2934                 journal = EXT4_JOURNAL(inode);
2935                 jbd2_journal_lock_updates(journal);
2936                 err = jbd2_journal_flush(journal);
2937                 jbd2_journal_unlock_updates(journal);
2938
2939                 if (err)
2940                         return 0;
2941         }
2942
2943         return generic_block_bmap(mapping, block, ext4_get_block);
2944 }
2945
2946 static int ext4_readpage(struct file *file, struct page *page)
2947 {
2948         int ret = -EAGAIN;
2949         struct inode *inode = page->mapping->host;
2950
2951         trace_ext4_readpage(page);
2952
2953         if (ext4_has_inline_data(inode))
2954                 ret = ext4_readpage_inline(inode, page);
2955
2956         if (ret == -EAGAIN)
2957                 return mpage_readpage(page, ext4_get_block);
2958
2959         return ret;
2960 }
2961
2962 static int
2963 ext4_readpages(struct file *file, struct address_space *mapping,
2964                 struct list_head *pages, unsigned nr_pages)
2965 {
2966         struct inode *inode = mapping->host;
2967
2968         /* If the file has inline data, no need to do readpages. */
2969         if (ext4_has_inline_data(inode))
2970                 return 0;
2971
2972         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2973 }
2974
2975 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2976                                 unsigned int length)
2977 {
2978         trace_ext4_invalidatepage(page, offset, length);
2979
2980         /* No journalling happens on data buffers when this function is used */
2981         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2982
2983         block_invalidatepage(page, offset, length);
2984 }
2985
2986 static int __ext4_journalled_invalidatepage(struct page *page,
2987                                             unsigned int offset,
2988                                             unsigned int length)
2989 {
2990         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2991
2992         trace_ext4_journalled_invalidatepage(page, offset, length);
2993
2994         /*
2995          * If it's a full truncate we just forget about the pending dirtying
2996          */
2997         if (offset == 0 && length == PAGE_CACHE_SIZE)
2998                 ClearPageChecked(page);
2999
3000         return jbd2_journal_invalidatepage(journal, page, offset, length);
3001 }
3002
3003 /* Wrapper for aops... */
3004 static void ext4_journalled_invalidatepage(struct page *page,
3005                                            unsigned int offset,
3006                                            unsigned int length)
3007 {
3008         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3009 }
3010
3011 static int ext4_releasepage(struct page *page, gfp_t wait)
3012 {
3013         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3014
3015         trace_ext4_releasepage(page);
3016
3017         /* Page has dirty journalled data -> cannot release */
3018         if (PageChecked(page))
3019                 return 0;
3020         if (journal)
3021                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3022         else
3023                 return try_to_free_buffers(page);
3024 }
3025
3026 /*
3027  * ext4_get_block used when preparing for a DIO write or buffer write.
3028  * We allocate an uinitialized extent if blocks haven't been allocated.
3029  * The extent will be converted to initialized after the IO is complete.
3030  */
3031 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3032                    struct buffer_head *bh_result, int create)
3033 {
3034         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3035                    inode->i_ino, create);
3036         return _ext4_get_block(inode, iblock, bh_result,
3037                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3038 }
3039
3040 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3041                    struct buffer_head *bh_result, int create)
3042 {
3043         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3044                    inode->i_ino, create);
3045         return _ext4_get_block(inode, iblock, bh_result,
3046                                EXT4_GET_BLOCKS_NO_LOCK);
3047 }
3048
3049 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3050                             ssize_t size, void *private)
3051 {
3052         ext4_io_end_t *io_end = iocb->private;
3053
3054         /* if not async direct IO just return */
3055         if (!io_end)
3056                 return;
3057
3058         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3059                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3060                   iocb->private, io_end->inode->i_ino, iocb, offset,
3061                   size);
3062
3063         iocb->private = NULL;
3064         io_end->offset = offset;
3065         io_end->size = size;
3066         ext4_put_io_end(io_end);
3067 }
3068
3069 /*
3070  * For ext4 extent files, ext4 will do direct-io write to holes,
3071  * preallocated extents, and those write extend the file, no need to
3072  * fall back to buffered IO.
3073  *
3074  * For holes, we fallocate those blocks, mark them as unwritten
3075  * If those blocks were preallocated, we mark sure they are split, but
3076  * still keep the range to write as unwritten.
3077  *
3078  * The unwritten extents will be converted to written when DIO is completed.
3079  * For async direct IO, since the IO may still pending when return, we
3080  * set up an end_io call back function, which will do the conversion
3081  * when async direct IO completed.
3082  *
3083  * If the O_DIRECT write will extend the file then add this inode to the
3084  * orphan list.  So recovery will truncate it back to the original size
3085  * if the machine crashes during the write.
3086  *
3087  */
3088 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3089                               struct iov_iter *iter, loff_t offset)
3090 {
3091         struct file *file = iocb->ki_filp;
3092         struct inode *inode = file->f_mapping->host;
3093         ssize_t ret;
3094         size_t count = iov_iter_count(iter);
3095         int overwrite = 0;
3096         get_block_t *get_block_func = NULL;
3097         int dio_flags = 0;
3098         loff_t final_size = offset + count;
3099         ext4_io_end_t *io_end = NULL;
3100
3101         /* Use the old path for reads and writes beyond i_size. */
3102         if (rw != WRITE || final_size > inode->i_size)
3103                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
3104
3105         BUG_ON(iocb->private == NULL);
3106
3107         /*
3108          * Make all waiters for direct IO properly wait also for extent
3109          * conversion. This also disallows race between truncate() and
3110          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111          */
3112         if (rw == WRITE)
3113                 atomic_inc(&inode->i_dio_count);
3114
3115         /* If we do a overwrite dio, i_mutex locking can be released */
3116         overwrite = *((int *)iocb->private);
3117
3118         if (overwrite) {
3119                 down_read(&EXT4_I(inode)->i_data_sem);
3120                 mutex_unlock(&inode->i_mutex);
3121         }
3122
3123         /*
3124          * We could direct write to holes and fallocate.
3125          *
3126          * Allocated blocks to fill the hole are marked as
3127          * unwritten to prevent parallel buffered read to expose
3128          * the stale data before DIO complete the data IO.
3129          *
3130          * As to previously fallocated extents, ext4 get_block will
3131          * just simply mark the buffer mapped but still keep the
3132          * extents unwritten.
3133          *
3134          * For non AIO case, we will convert those unwritten extents
3135          * to written after return back from blockdev_direct_IO.
3136          *
3137          * For async DIO, the conversion needs to be deferred when the
3138          * IO is completed. The ext4 end_io callback function will be
3139          * called to take care of the conversion work.  Here for async
3140          * case, we allocate an io_end structure to hook to the iocb.
3141          */
3142         iocb->private = NULL;
3143         ext4_inode_aio_set(inode, NULL);
3144         if (!is_sync_kiocb(iocb)) {
3145                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3146                 if (!io_end) {
3147                         ret = -ENOMEM;
3148                         goto retake_lock;
3149                 }
3150                 /*
3151                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152                  */
3153                 iocb->private = ext4_get_io_end(io_end);
3154                 /*
3155                  * we save the io structure for current async direct
3156                  * IO, so that later ext4_map_blocks() could flag the
3157                  * io structure whether there is a unwritten extents
3158                  * needs to be converted when IO is completed.
3159                  */
3160                 ext4_inode_aio_set(inode, io_end);
3161         }
3162
3163         if (overwrite) {
3164                 get_block_func = ext4_get_block_write_nolock;
3165         } else {
3166                 get_block_func = ext4_get_block_write;
3167                 dio_flags = DIO_LOCKING;
3168         }
3169         ret = __blockdev_direct_IO(rw, iocb, inode,
3170                                    inode->i_sb->s_bdev, iter,
3171                                    offset,
3172                                    get_block_func,
3173                                    ext4_end_io_dio,
3174                                    NULL,
3175                                    dio_flags);
3176
3177         /*
3178          * Put our reference to io_end. This can free the io_end structure e.g.
3179          * in sync IO case or in case of error. It can even perform extent
3180          * conversion if all bios we submitted finished before we got here.
3181          * Note that in that case iocb->private can be already set to NULL
3182          * here.
3183          */
3184         if (io_end) {
3185                 ext4_inode_aio_set(inode, NULL);
3186                 ext4_put_io_end(io_end);
3187                 /*
3188                  * When no IO was submitted ext4_end_io_dio() was not
3189                  * called so we have to put iocb's reference.
3190                  */
3191                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192                         WARN_ON(iocb->private != io_end);
3193                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194                         ext4_put_io_end(io_end);
3195                         iocb->private = NULL;
3196                 }
3197         }
3198         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3200                 int err;
3201                 /*
3202                  * for non AIO case, since the IO is already
3203                  * completed, we could do the conversion right here
3204                  */
3205                 err = ext4_convert_unwritten_extents(NULL, inode,
3206                                                      offset, ret);
3207                 if (err < 0)
3208                         ret = err;
3209                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210         }
3211
3212 retake_lock:
3213         if (rw == WRITE)
3214                 inode_dio_done(inode);
3215         /* take i_mutex locking again if we do a ovewrite dio */
3216         if (overwrite) {
3217                 up_read(&EXT4_I(inode)->i_data_sem);
3218                 mutex_lock(&inode->i_mutex);
3219         }
3220
3221         return ret;
3222 }
3223
3224 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225                               struct iov_iter *iter, loff_t offset)
3226 {
3227         struct file *file = iocb->ki_filp;
3228         struct inode *inode = file->f_mapping->host;
3229         size_t count = iov_iter_count(iter);
3230         ssize_t ret;
3231
3232         /*
3233          * If we are doing data journalling we don't support O_DIRECT
3234          */
3235         if (ext4_should_journal_data(inode))
3236                 return 0;
3237
3238         /* Let buffer I/O handle the inline data case. */
3239         if (ext4_has_inline_data(inode))
3240                 return 0;
3241
3242         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3243         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3245         else
3246                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3247         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3248         return ret;
3249 }
3250
3251 /*
3252  * Pages can be marked dirty completely asynchronously from ext4's journalling
3253  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3254  * much here because ->set_page_dirty is called under VFS locks.  The page is
3255  * not necessarily locked.
3256  *
3257  * We cannot just dirty the page and leave attached buffers clean, because the
3258  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3259  * or jbddirty because all the journalling code will explode.
3260  *
3261  * So what we do is to mark the page "pending dirty" and next time writepage
3262  * is called, propagate that into the buffers appropriately.
3263  */
3264 static int ext4_journalled_set_page_dirty(struct page *page)
3265 {
3266         SetPageChecked(page);
3267         return __set_page_dirty_nobuffers(page);
3268 }
3269
3270 static const struct address_space_operations ext4_aops = {
3271         .readpage               = ext4_readpage,
3272         .readpages              = ext4_readpages,
3273         .writepage              = ext4_writepage,
3274         .writepages             = ext4_writepages,
3275         .write_begin            = ext4_write_begin,
3276         .write_end              = ext4_write_end,
3277         .bmap                   = ext4_bmap,
3278         .invalidatepage         = ext4_invalidatepage,
3279         .releasepage            = ext4_releasepage,
3280         .direct_IO              = ext4_direct_IO,
3281         .migratepage            = buffer_migrate_page,
3282         .is_partially_uptodate  = block_is_partially_uptodate,
3283         .error_remove_page      = generic_error_remove_page,
3284 };
3285
3286 static const struct address_space_operations ext4_journalled_aops = {
3287         .readpage               = ext4_readpage,
3288         .readpages              = ext4_readpages,
3289         .writepage              = ext4_writepage,
3290         .writepages             = ext4_writepages,
3291         .write_begin            = ext4_write_begin,
3292         .write_end              = ext4_journalled_write_end,
3293         .set_page_dirty         = ext4_journalled_set_page_dirty,
3294         .bmap                   = ext4_bmap,
3295         .invalidatepage         = ext4_journalled_invalidatepage,
3296         .releasepage            = ext4_releasepage,
3297         .direct_IO              = ext4_direct_IO,
3298         .is_partially_uptodate  = block_is_partially_uptodate,
3299         .error_remove_page      = generic_error_remove_page,
3300 };
3301
3302 static const struct address_space_operations ext4_da_aops = {
3303         .readpage               = ext4_readpage,
3304         .readpages              = ext4_readpages,
3305         .writepage              = ext4_writepage,
3306         .writepages             = ext4_writepages,
3307         .write_begin            = ext4_da_write_begin,
3308         .write_end              = ext4_da_write_end,
3309         .bmap                   = ext4_bmap,
3310         .invalidatepage         = ext4_da_invalidatepage,
3311         .releasepage            = ext4_releasepage,
3312         .direct_IO              = ext4_direct_IO,
3313         .migratepage            = buffer_migrate_page,
3314         .is_partially_uptodate  = block_is_partially_uptodate,
3315         .error_remove_page      = generic_error_remove_page,
3316 };
3317
3318 void ext4_set_aops(struct inode *inode)
3319 {
3320         switch (ext4_inode_journal_mode(inode)) {
3321         case EXT4_INODE_ORDERED_DATA_MODE:
3322                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3323                 break;
3324         case EXT4_INODE_WRITEBACK_DATA_MODE:
3325                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3326                 break;
3327         case EXT4_INODE_JOURNAL_DATA_MODE:
3328                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3329                 return;
3330         default:
3331                 BUG();
3332         }
3333         if (test_opt(inode->i_sb, DELALLOC))
3334                 inode->i_mapping->a_ops = &ext4_da_aops;
3335         else
3336                 inode->i_mapping->a_ops = &ext4_aops;
3337 }
3338
3339 /*
3340  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3341  * starting from file offset 'from'.  The range to be zero'd must
3342  * be contained with in one block.  If the specified range exceeds
3343  * the end of the block it will be shortened to end of the block
3344  * that cooresponds to 'from'
3345  */
3346 static int ext4_block_zero_page_range(handle_t *handle,
3347                 struct address_space *mapping, loff_t from, loff_t length)
3348 {
3349         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3350         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3351         unsigned blocksize, max, pos;
3352         ext4_lblk_t iblock;
3353         struct inode *inode = mapping->host;
3354         struct buffer_head *bh;
3355         struct page *page;
3356         int err = 0;
3357
3358         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3359                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3360         if (!page)
3361                 return -ENOMEM;
3362
3363         blocksize = inode->i_sb->s_blocksize;
3364         max = blocksize - (offset & (blocksize - 1));
3365
3366         /*
3367          * correct length if it does not fall between
3368          * 'from' and the end of the block
3369          */
3370         if (length > max || length < 0)
3371                 length = max;
3372
3373         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3374
3375         if (!page_has_buffers(page))
3376                 create_empty_buffers(page, blocksize, 0);
3377
3378         /* Find the buffer that contains "offset" */
3379         bh = page_buffers(page);
3380         pos = blocksize;
3381         while (offset >= pos) {
3382                 bh = bh->b_this_page;
3383                 iblock++;
3384                 pos += blocksize;
3385         }
3386         if (buffer_freed(bh)) {
3387                 BUFFER_TRACE(bh, "freed: skip");
3388                 goto unlock;
3389         }
3390         if (!buffer_mapped(bh)) {
3391                 BUFFER_TRACE(bh, "unmapped");
3392                 ext4_get_block(inode, iblock, bh, 0);
3393                 /* unmapped? It's a hole - nothing to do */
3394                 if (!buffer_mapped(bh)) {
3395                         BUFFER_TRACE(bh, "still unmapped");
3396                         goto unlock;
3397                 }
3398         }
3399
3400         /* Ok, it's mapped. Make sure it's up-to-date */
3401         if (PageUptodate(page))
3402                 set_buffer_uptodate(bh);
3403
3404         if (!buffer_uptodate(bh)) {
3405                 err = -EIO;
3406                 ll_rw_block(READ, 1, &bh);
3407                 wait_on_buffer(bh);
3408                 /* Uhhuh. Read error. Complain and punt. */
3409                 if (!buffer_uptodate(bh))
3410                         goto unlock;
3411         }
3412         if (ext4_should_journal_data(inode)) {
3413                 BUFFER_TRACE(bh, "get write access");
3414                 err = ext4_journal_get_write_access(handle, bh);
3415                 if (err)
3416                         goto unlock;
3417         }
3418         zero_user(page, offset, length);
3419         BUFFER_TRACE(bh, "zeroed end of block");
3420
3421         if (ext4_should_journal_data(inode)) {
3422                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3423         } else {
3424                 err = 0;
3425                 mark_buffer_dirty(bh);
3426                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3427                         err = ext4_jbd2_file_inode(handle, inode);
3428         }
3429
3430 unlock:
3431         unlock_page(page);
3432         page_cache_release(page);
3433         return err;
3434 }
3435
3436 /*
3437  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3438  * up to the end of the block which corresponds to `from'.
3439  * This required during truncate. We need to physically zero the tail end
3440  * of that block so it doesn't yield old data if the file is later grown.
3441  */
3442 int ext4_block_truncate_page(handle_t *handle,
3443                 struct address_space *mapping, loff_t from)
3444 {
3445         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446         unsigned length;
3447         unsigned blocksize;
3448         struct inode *inode = mapping->host;
3449
3450         blocksize = inode->i_sb->s_blocksize;
3451         length = blocksize - (offset & (blocksize - 1));
3452
3453         return ext4_block_zero_page_range(handle, mapping, from, length);
3454 }
3455
3456 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3457                              loff_t lstart, loff_t length)
3458 {
3459         struct super_block *sb = inode->i_sb;
3460         struct address_space *mapping = inode->i_mapping;
3461         unsigned partial_start, partial_end;
3462         ext4_fsblk_t start, end;
3463         loff_t byte_end = (lstart + length - 1);
3464         int err = 0;
3465
3466         partial_start = lstart & (sb->s_blocksize - 1);
3467         partial_end = byte_end & (sb->s_blocksize - 1);
3468
3469         start = lstart >> sb->s_blocksize_bits;
3470         end = byte_end >> sb->s_blocksize_bits;
3471
3472         /* Handle partial zero within the single block */
3473         if (start == end &&
3474             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3475                 err = ext4_block_zero_page_range(handle, mapping,
3476                                                  lstart, length);
3477                 return err;
3478         }
3479         /* Handle partial zero out on the start of the range */
3480         if (partial_start) {
3481                 err = ext4_block_zero_page_range(handle, mapping,
3482                                                  lstart, sb->s_blocksize);
3483                 if (err)
3484                         return err;
3485         }
3486         /* Handle partial zero out on the end of the range */
3487         if (partial_end != sb->s_blocksize - 1)
3488                 err = ext4_block_zero_page_range(handle, mapping,
3489                                                  byte_end - partial_end,
3490                                                  partial_end + 1);
3491         return err;
3492 }
3493
3494 int ext4_can_truncate(struct inode *inode)
3495 {
3496         if (S_ISREG(inode->i_mode))
3497                 return 1;
3498         if (S_ISDIR(inode->i_mode))
3499                 return 1;
3500         if (S_ISLNK(inode->i_mode))
3501                 return !ext4_inode_is_fast_symlink(inode);
3502         return 0;
3503 }
3504
3505 /*
3506  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3507  * associated with the given offset and length
3508  *
3509  * @inode:  File inode
3510  * @offset: The offset where the hole will begin
3511  * @len:    The length of the hole
3512  *
3513  * Returns: 0 on success or negative on failure
3514  */
3515
3516 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3517 {
3518         struct super_block *sb = inode->i_sb;
3519         ext4_lblk_t first_block, stop_block;
3520         struct address_space *mapping = inode->i_mapping;
3521         loff_t first_block_offset, last_block_offset;
3522         handle_t *handle;
3523         unsigned int credits;
3524         int ret = 0;
3525
3526         if (!S_ISREG(inode->i_mode))
3527                 return -EOPNOTSUPP;
3528
3529         trace_ext4_punch_hole(inode, offset, length, 0);
3530
3531         /*
3532          * Write out all dirty pages to avoid race conditions
3533          * Then release them.
3534          */
3535         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3536                 ret = filemap_write_and_wait_range(mapping, offset,
3537                                                    offset + length - 1);
3538                 if (ret)
3539                         return ret;
3540         }
3541
3542         mutex_lock(&inode->i_mutex);
3543
3544         /* No need to punch hole beyond i_size */
3545         if (offset >= inode->i_size)
3546                 goto out_mutex;
3547
3548         /*
3549          * If the hole extends beyond i_size, set the hole
3550          * to end after the page that contains i_size
3551          */
3552         if (offset + length > inode->i_size) {
3553                 length = inode->i_size +
3554                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555                    offset;
3556         }
3557
3558         if (offset & (sb->s_blocksize - 1) ||
3559             (offset + length) & (sb->s_blocksize - 1)) {
3560                 /*
3561                  * Attach jinode to inode for jbd2 if we do any zeroing of
3562                  * partial block
3563                  */
3564                 ret = ext4_inode_attach_jinode(inode);
3565                 if (ret < 0)
3566                         goto out_mutex;
3567
3568         }
3569
3570         first_block_offset = round_up(offset, sb->s_blocksize);
3571         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3572
3573         /* Now release the pages and zero block aligned part of pages*/
3574         if (last_block_offset > first_block_offset)
3575                 truncate_pagecache_range(inode, first_block_offset,
3576                                          last_block_offset);
3577
3578         /* Wait all existing dio workers, newcomers will block on i_mutex */
3579         ext4_inode_block_unlocked_dio(inode);
3580         inode_dio_wait(inode);
3581
3582         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583                 credits = ext4_writepage_trans_blocks(inode);
3584         else
3585                 credits = ext4_blocks_for_truncate(inode);
3586         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587         if (IS_ERR(handle)) {
3588                 ret = PTR_ERR(handle);
3589                 ext4_std_error(sb, ret);
3590                 goto out_dio;
3591         }
3592
3593         ret = ext4_zero_partial_blocks(handle, inode, offset,
3594                                        length);
3595         if (ret)
3596                 goto out_stop;
3597
3598         first_block = (offset + sb->s_blocksize - 1) >>
3599                 EXT4_BLOCK_SIZE_BITS(sb);
3600         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602         /* If there are no blocks to remove, return now */
3603         if (first_block >= stop_block)
3604                 goto out_stop;
3605
3606         down_write(&EXT4_I(inode)->i_data_sem);
3607         ext4_discard_preallocations(inode);
3608
3609         ret = ext4_es_remove_extent(inode, first_block,
3610                                     stop_block - first_block);
3611         if (ret) {
3612                 up_write(&EXT4_I(inode)->i_data_sem);
3613                 goto out_stop;
3614         }
3615
3616         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617                 ret = ext4_ext_remove_space(inode, first_block,
3618                                             stop_block - 1);
3619         else
3620                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3621                                             stop_block);
3622
3623         up_write(&EXT4_I(inode)->i_data_sem);
3624         if (IS_SYNC(inode))
3625                 ext4_handle_sync(handle);
3626
3627         /* Now release the pages again to reduce race window */
3628         if (last_block_offset > first_block_offset)
3629                 truncate_pagecache_range(inode, first_block_offset,
3630                                          last_block_offset);
3631
3632         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3633         ext4_mark_inode_dirty(handle, inode);
3634 out_stop:
3635         ext4_journal_stop(handle);
3636 out_dio:
3637         ext4_inode_resume_unlocked_dio(inode);
3638 out_mutex:
3639         mutex_unlock(&inode->i_mutex);
3640         return ret;
3641 }
3642
3643 int ext4_inode_attach_jinode(struct inode *inode)
3644 {
3645         struct ext4_inode_info *ei = EXT4_I(inode);
3646         struct jbd2_inode *jinode;
3647
3648         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3649                 return 0;
3650
3651         jinode = jbd2_alloc_inode(GFP_KERNEL);
3652         spin_lock(&inode->i_lock);
3653         if (!ei->jinode) {
3654                 if (!jinode) {
3655                         spin_unlock(&inode->i_lock);
3656                         return -ENOMEM;
3657                 }
3658                 ei->jinode = jinode;
3659                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3660                 jinode = NULL;
3661         }
3662         spin_unlock(&inode->i_lock);
3663         if (unlikely(jinode != NULL))
3664                 jbd2_free_inode(jinode);
3665         return 0;
3666 }
3667
3668 /*
3669  * ext4_truncate()
3670  *
3671  * We block out ext4_get_block() block instantiations across the entire
3672  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3673  * simultaneously on behalf of the same inode.
3674  *
3675  * As we work through the truncate and commit bits of it to the journal there
3676  * is one core, guiding principle: the file's tree must always be consistent on
3677  * disk.  We must be able to restart the truncate after a crash.
3678  *
3679  * The file's tree may be transiently inconsistent in memory (although it
3680  * probably isn't), but whenever we close off and commit a journal transaction,
3681  * the contents of (the filesystem + the journal) must be consistent and
3682  * restartable.  It's pretty simple, really: bottom up, right to left (although
3683  * left-to-right works OK too).
3684  *
3685  * Note that at recovery time, journal replay occurs *before* the restart of
3686  * truncate against the orphan inode list.
3687  *
3688  * The committed inode has the new, desired i_size (which is the same as
3689  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3690  * that this inode's truncate did not complete and it will again call
3691  * ext4_truncate() to have another go.  So there will be instantiated blocks
3692  * to the right of the truncation point in a crashed ext4 filesystem.  But
3693  * that's fine - as long as they are linked from the inode, the post-crash
3694  * ext4_truncate() run will find them and release them.
3695  */
3696 void ext4_truncate(struct inode *inode)
3697 {
3698         struct ext4_inode_info *ei = EXT4_I(inode);
3699         unsigned int credits;
3700         handle_t *handle;
3701         struct address_space *mapping = inode->i_mapping;
3702
3703         /*
3704          * There is a possibility that we're either freeing the inode
3705          * or it's a completely new inode. In those cases we might not
3706          * have i_mutex locked because it's not necessary.
3707          */
3708         if (!(inode->i_state & (I_NEW|I_FREEING)))
3709                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3710         trace_ext4_truncate_enter(inode);
3711
3712         if (!ext4_can_truncate(inode))
3713                 return;
3714
3715         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3716
3717         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3718                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3719
3720         if (ext4_has_inline_data(inode)) {
3721                 int has_inline = 1;
3722
3723                 ext4_inline_data_truncate(inode, &has_inline);
3724                 if (has_inline)
3725                         return;
3726         }
3727
3728         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3729         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3730                 if (ext4_inode_attach_jinode(inode) < 0)
3731                         return;
3732         }
3733
3734         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3735                 credits = ext4_writepage_trans_blocks(inode);
3736         else
3737                 credits = ext4_blocks_for_truncate(inode);
3738
3739         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3740         if (IS_ERR(handle)) {
3741                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3742                 return;
3743         }
3744
3745         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3746                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3747
3748         /*
3749          * We add the inode to the orphan list, so that if this
3750          * truncate spans multiple transactions, and we crash, we will
3751          * resume the truncate when the filesystem recovers.  It also
3752          * marks the inode dirty, to catch the new size.
3753          *
3754          * Implication: the file must always be in a sane, consistent
3755          * truncatable state while each transaction commits.
3756          */
3757         if (ext4_orphan_add(handle, inode))
3758                 goto out_stop;
3759
3760         down_write(&EXT4_I(inode)->i_data_sem);
3761
3762         ext4_discard_preallocations(inode);
3763
3764         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3765                 ext4_ext_truncate(handle, inode);
3766         else
3767                 ext4_ind_truncate(handle, inode);
3768
3769         up_write(&ei->i_data_sem);
3770
3771         if (IS_SYNC(inode))
3772                 ext4_handle_sync(handle);
3773
3774 out_stop:
3775         /*
3776          * If this was a simple ftruncate() and the file will remain alive,
3777          * then we need to clear up the orphan record which we created above.
3778          * However, if this was a real unlink then we were called by
3779          * ext4_delete_inode(), and we allow that function to clean up the
3780          * orphan info for us.
3781          */
3782         if (inode->i_nlink)
3783                 ext4_orphan_del(handle, inode);
3784
3785         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3786         ext4_mark_inode_dirty(handle, inode);
3787         ext4_journal_stop(handle);
3788
3789         trace_ext4_truncate_exit(inode);
3790 }
3791
3792 /*
3793  * ext4_get_inode_loc returns with an extra refcount against the inode's
3794  * underlying buffer_head on success. If 'in_mem' is true, we have all
3795  * data in memory that is needed to recreate the on-disk version of this
3796  * inode.
3797  */
3798 static int __ext4_get_inode_loc(struct inode *inode,
3799                                 struct ext4_iloc *iloc, int in_mem)
3800 {
3801         struct ext4_group_desc  *gdp;
3802         struct buffer_head      *bh;
3803         struct super_block      *sb = inode->i_sb;
3804         ext4_fsblk_t            block;
3805         int                     inodes_per_block, inode_offset;
3806
3807         iloc->bh = NULL;
3808         if (!ext4_valid_inum(sb, inode->i_ino))
3809                 return -EIO;
3810
3811         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3812         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3813         if (!gdp)
3814                 return -EIO;
3815
3816         /*
3817          * Figure out the offset within the block group inode table
3818          */
3819         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3820         inode_offset = ((inode->i_ino - 1) %
3821                         EXT4_INODES_PER_GROUP(sb));
3822         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3823         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3824
3825         bh = sb_getblk(sb, block);
3826         if (unlikely(!bh))
3827                 return -ENOMEM;
3828         if (!buffer_uptodate(bh)) {
3829                 lock_buffer(bh);
3830
3831                 /*
3832                  * If the buffer has the write error flag, we have failed
3833                  * to write out another inode in the same block.  In this
3834                  * case, we don't have to read the block because we may
3835                  * read the old inode data successfully.
3836                  */
3837                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3838                         set_buffer_uptodate(bh);
3839
3840                 if (buffer_uptodate(bh)) {
3841                         /* someone brought it uptodate while we waited */
3842                         unlock_buffer(bh);
3843                         goto has_buffer;
3844                 }
3845
3846                 /*
3847                  * If we have all information of the inode in memory and this
3848                  * is the only valid inode in the block, we need not read the
3849                  * block.
3850                  */
3851                 if (in_mem) {
3852                         struct buffer_head *bitmap_bh;
3853                         int i, start;
3854
3855                         start = inode_offset & ~(inodes_per_block - 1);
3856
3857                         /* Is the inode bitmap in cache? */
3858                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3859                         if (unlikely(!bitmap_bh))
3860                                 goto make_io;
3861
3862                         /*
3863                          * If the inode bitmap isn't in cache then the
3864                          * optimisation may end up performing two reads instead
3865                          * of one, so skip it.
3866                          */
3867                         if (!buffer_uptodate(bitmap_bh)) {
3868                                 brelse(bitmap_bh);
3869                                 goto make_io;
3870                         }
3871                         for (i = start; i < start + inodes_per_block; i++) {
3872                                 if (i == inode_offset)
3873                                         continue;
3874                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3875                                         break;
3876                         }
3877                         brelse(bitmap_bh);
3878                         if (i == start + inodes_per_block) {
3879                                 /* all other inodes are free, so skip I/O */
3880                                 memset(bh->b_data, 0, bh->b_size);
3881                                 set_buffer_uptodate(bh);
3882                                 unlock_buffer(bh);
3883                                 goto has_buffer;
3884                         }
3885                 }
3886
3887 make_io:
3888                 /*
3889                  * If we need to do any I/O, try to pre-readahead extra
3890                  * blocks from the inode table.
3891                  */
3892                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3893                         ext4_fsblk_t b, end, table;
3894                         unsigned num;
3895                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3896
3897                         table = ext4_inode_table(sb, gdp);
3898                         /* s_inode_readahead_blks is always a power of 2 */
3899                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3900                         if (table > b)
3901                                 b = table;
3902                         end = b + ra_blks;
3903                         num = EXT4_INODES_PER_GROUP(sb);
3904                         if (ext4_has_group_desc_csum(sb))
3905                                 num -= ext4_itable_unused_count(sb, gdp);
3906                         table += num / inodes_per_block;
3907                         if (end > table)
3908                                 end = table;
3909                         while (b <= end)
3910                                 sb_breadahead(sb, b++);
3911                 }
3912
3913                 /*
3914                  * There are other valid inodes in the buffer, this inode
3915                  * has in-inode xattrs, or we don't have this inode in memory.
3916                  * Read the block from disk.
3917                  */
3918                 trace_ext4_load_inode(inode);
3919                 get_bh(bh);
3920                 bh->b_end_io = end_buffer_read_sync;
3921                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3922                 wait_on_buffer(bh);
3923                 if (!buffer_uptodate(bh)) {
3924                         EXT4_ERROR_INODE_BLOCK(inode, block,
3925                                                "unable to read itable block");
3926                         brelse(bh);
3927                         return -EIO;
3928                 }
3929         }
3930 has_buffer:
3931         iloc->bh = bh;
3932         return 0;
3933 }
3934
3935 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3936 {
3937         /* We have all inode data except xattrs in memory here. */
3938         return __ext4_get_inode_loc(inode, iloc,
3939                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3940 }
3941
3942 void ext4_set_inode_flags(struct inode *inode)
3943 {
3944         unsigned int flags = EXT4_I(inode)->i_flags;
3945         unsigned int new_fl = 0;
3946
3947         if (flags & EXT4_SYNC_FL)
3948                 new_fl |= S_SYNC;
3949         if (flags & EXT4_APPEND_FL)
3950                 new_fl |= S_APPEND;
3951         if (flags & EXT4_IMMUTABLE_FL)
3952                 new_fl |= S_IMMUTABLE;
3953         if (flags & EXT4_NOATIME_FL)
3954                 new_fl |= S_NOATIME;
3955         if (flags & EXT4_DIRSYNC_FL)
3956                 new_fl |= S_DIRSYNC;
3957         inode_set_flags(inode, new_fl,
3958                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3959 }
3960
3961 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3962 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3963 {
3964         unsigned int vfs_fl;
3965         unsigned long old_fl, new_fl;
3966
3967         do {
3968                 vfs_fl = ei->vfs_inode.i_flags;
3969                 old_fl = ei->i_flags;
3970                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3971                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3972                                 EXT4_DIRSYNC_FL);
3973                 if (vfs_fl & S_SYNC)
3974                         new_fl |= EXT4_SYNC_FL;
3975                 if (vfs_fl & S_APPEND)
3976                         new_fl |= EXT4_APPEND_FL;
3977                 if (vfs_fl & S_IMMUTABLE)
3978                         new_fl |= EXT4_IMMUTABLE_FL;
3979                 if (vfs_fl & S_NOATIME)
3980                         new_fl |= EXT4_NOATIME_FL;
3981                 if (vfs_fl & S_DIRSYNC)
3982                         new_fl |= EXT4_DIRSYNC_FL;
3983         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3984 }
3985
3986 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3987                                   struct ext4_inode_info *ei)
3988 {
3989         blkcnt_t i_blocks ;
3990         struct inode *inode = &(ei->vfs_inode);
3991         struct super_block *sb = inode->i_sb;
3992
3993         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3995                 /* we are using combined 48 bit field */
3996                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3997                                         le32_to_cpu(raw_inode->i_blocks_lo);
3998                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3999                         /* i_blocks represent file system block size */
4000                         return i_blocks  << (inode->i_blkbits - 9);
4001                 } else {
4002                         return i_blocks;
4003                 }
4004         } else {
4005                 return le32_to_cpu(raw_inode->i_blocks_lo);
4006         }
4007 }
4008
4009 static inline void ext4_iget_extra_inode(struct inode *inode,
4010                                          struct ext4_inode *raw_inode,
4011                                          struct ext4_inode_info *ei)
4012 {
4013         __le32 *magic = (void *)raw_inode +
4014                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4015         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4016                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4017                 ext4_find_inline_data_nolock(inode);
4018         } else
4019                 EXT4_I(inode)->i_inline_off = 0;
4020 }
4021
4022 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4023 {
4024         struct ext4_iloc iloc;
4025         struct ext4_inode *raw_inode;
4026         struct ext4_inode_info *ei;
4027         struct inode *inode;
4028         journal_t *journal = EXT4_SB(sb)->s_journal;
4029         long ret;
4030         int block;
4031         uid_t i_uid;
4032         gid_t i_gid;
4033
4034         inode = iget_locked(sb, ino);
4035         if (!inode)
4036                 return ERR_PTR(-ENOMEM);
4037         if (!(inode->i_state & I_NEW))
4038                 return inode;
4039
4040         ei = EXT4_I(inode);
4041         iloc.bh = NULL;
4042
4043         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4044         if (ret < 0)
4045                 goto bad_inode;
4046         raw_inode = ext4_raw_inode(&iloc);
4047
4048         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4049                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4050                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4051                     EXT4_INODE_SIZE(inode->i_sb)) {
4052                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4053                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4054                                 EXT4_INODE_SIZE(inode->i_sb));
4055                         ret = -EIO;
4056                         goto bad_inode;
4057                 }
4058         } else
4059                 ei->i_extra_isize = 0;
4060
4061         /* Precompute checksum seed for inode metadata */
4062         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4063                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4064                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4065                 __u32 csum;
4066                 __le32 inum = cpu_to_le32(inode->i_ino);
4067                 __le32 gen = raw_inode->i_generation;
4068                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4069                                    sizeof(inum));
4070                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4071                                               sizeof(gen));
4072         }
4073
4074         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4075                 EXT4_ERROR_INODE(inode, "checksum invalid");
4076                 ret = -EIO;
4077                 goto bad_inode;
4078         }
4079
4080         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4081         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4082         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4083         if (!(test_opt(inode->i_sb, NO_UID32))) {
4084                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4085                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4086         }
4087         i_uid_write(inode, i_uid);
4088         i_gid_write(inode, i_gid);
4089         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4090
4091         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4092         ei->i_inline_off = 0;
4093         ei->i_dir_start_lookup = 0;
4094         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4095         /* We now have enough fields to check if the inode was active or not.
4096          * This is needed because nfsd might try to access dead inodes
4097          * the test is that same one that e2fsck uses
4098          * NeilBrown 1999oct15
4099          */
4100         if (inode->i_nlink == 0) {
4101                 if ((inode->i_mode == 0 ||
4102                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4103                     ino != EXT4_BOOT_LOADER_INO) {
4104                         /* this inode is deleted */
4105                         ret = -ESTALE;
4106                         goto bad_inode;
4107                 }
4108                 /* The only unlinked inodes we let through here have
4109                  * valid i_mode and are being read by the orphan
4110                  * recovery code: that's fine, we're about to complete
4111                  * the process of deleting those.
4112                  * OR it is the EXT4_BOOT_LOADER_INO which is
4113                  * not initialized on a new filesystem. */
4114         }
4115         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4116         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4117         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4118         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4119                 ei->i_file_acl |=
4120                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4121         inode->i_size = ext4_isize(raw_inode);
4122         ei->i_disksize = inode->i_size;
4123 #ifdef CONFIG_QUOTA
4124         ei->i_reserved_quota = 0;
4125 #endif
4126         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4127         ei->i_block_group = iloc.block_group;
4128         ei->i_last_alloc_group = ~0;
4129         /*
4130          * NOTE! The in-memory inode i_data array is in little-endian order
4131          * even on big-endian machines: we do NOT byteswap the block numbers!
4132          */
4133         for (block = 0; block < EXT4_N_BLOCKS; block++)
4134                 ei->i_data[block] = raw_inode->i_block[block];
4135         INIT_LIST_HEAD(&ei->i_orphan);
4136
4137         /*
4138          * Set transaction id's of transactions that have to be committed
4139          * to finish f[data]sync. We set them to currently running transaction
4140          * as we cannot be sure that the inode or some of its metadata isn't
4141          * part of the transaction - the inode could have been reclaimed and
4142          * now it is reread from disk.
4143          */
4144         if (journal) {
4145                 transaction_t *transaction;
4146                 tid_t tid;
4147
4148                 read_lock(&journal->j_state_lock);
4149                 if (journal->j_running_transaction)
4150                         transaction = journal->j_running_transaction;
4151                 else
4152                         transaction = journal->j_committing_transaction;
4153                 if (transaction)
4154                         tid = transaction->t_tid;
4155                 else
4156                         tid = journal->j_commit_sequence;
4157                 read_unlock(&journal->j_state_lock);
4158                 ei->i_sync_tid = tid;
4159                 ei->i_datasync_tid = tid;
4160         }
4161
4162         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4163                 if (ei->i_extra_isize == 0) {
4164                         /* The extra space is currently unused. Use it. */
4165                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4166                                             EXT4_GOOD_OLD_INODE_SIZE;
4167                 } else {
4168                         ext4_iget_extra_inode(inode, raw_inode, ei);
4169                 }
4170         }
4171
4172         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4173         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4174         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4175         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4176
4177         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4178                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4179                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4180                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4181                                 inode->i_version |=
4182                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4183                 }
4184         }
4185
4186         ret = 0;
4187         if (ei->i_file_acl &&
4188             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4189                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4190                                  ei->i_file_acl);
4191                 ret = -EIO;
4192                 goto bad_inode;
4193         } else if (!ext4_has_inline_data(inode)) {
4194                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4195                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4196                             (S_ISLNK(inode->i_mode) &&
4197                              !ext4_inode_is_fast_symlink(inode))))
4198                                 /* Validate extent which is part of inode */
4199                                 ret = ext4_ext_check_inode(inode);
4200                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4201                            (S_ISLNK(inode->i_mode) &&
4202                             !ext4_inode_is_fast_symlink(inode))) {
4203                         /* Validate block references which are part of inode */
4204                         ret = ext4_ind_check_inode(inode);
4205                 }
4206         }
4207         if (ret)
4208                 goto bad_inode;
4209
4210         if (S_ISREG(inode->i_mode)) {
4211                 inode->i_op = &ext4_file_inode_operations;
4212                 inode->i_fop = &ext4_file_operations;
4213                 ext4_set_aops(inode);
4214         } else if (S_ISDIR(inode->i_mode)) {
4215                 inode->i_op = &ext4_dir_inode_operations;
4216                 inode->i_fop = &ext4_dir_operations;
4217         } else if (S_ISLNK(inode->i_mode)) {
4218                 if (ext4_inode_is_fast_symlink(inode)) {
4219                         inode->i_op = &ext4_fast_symlink_inode_operations;
4220                         nd_terminate_link(ei->i_data, inode->i_size,
4221                                 sizeof(ei->i_data) - 1);
4222                 } else {
4223                         inode->i_op = &ext4_symlink_inode_operations;
4224                         ext4_set_aops(inode);
4225                 }
4226         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4227               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4228                 inode->i_op = &ext4_special_inode_operations;
4229                 if (raw_inode->i_block[0])
4230                         init_special_inode(inode, inode->i_mode,
4231                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4232                 else
4233                         init_special_inode(inode, inode->i_mode,
4234                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4235         } else if (ino == EXT4_BOOT_LOADER_INO) {
4236                 make_bad_inode(inode);
4237         } else {
4238                 ret = -EIO;
4239                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4240                 goto bad_inode;
4241         }
4242         brelse(iloc.bh);
4243         ext4_set_inode_flags(inode);
4244         unlock_new_inode(inode);
4245         return inode;
4246
4247 bad_inode:
4248         brelse(iloc.bh);
4249         iget_failed(inode);
4250         return ERR_PTR(ret);
4251 }
4252
4253 static int ext4_inode_blocks_set(handle_t *handle,
4254                                 struct ext4_inode *raw_inode,
4255                                 struct ext4_inode_info *ei)
4256 {
4257         struct inode *inode = &(ei->vfs_inode);
4258         u64 i_blocks = inode->i_blocks;
4259         struct super_block *sb = inode->i_sb;
4260
4261         if (i_blocks <= ~0U) {
4262                 /*
4263                  * i_blocks can be represented in a 32 bit variable
4264                  * as multiple of 512 bytes
4265                  */
4266                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4267                 raw_inode->i_blocks_high = 0;
4268                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4269                 return 0;
4270         }
4271         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4272                 return -EFBIG;
4273
4274         if (i_blocks <= 0xffffffffffffULL) {
4275                 /*
4276                  * i_blocks can be represented in a 48 bit variable
4277                  * as multiple of 512 bytes
4278                  */
4279                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4280                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4281                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4282         } else {
4283                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4284                 /* i_block is stored in file system block size */
4285                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4286                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4287                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4288         }
4289         return 0;
4290 }
4291
4292 /*
4293  * Post the struct inode info into an on-disk inode location in the
4294  * buffer-cache.  This gobbles the caller's reference to the
4295  * buffer_head in the inode location struct.
4296  *
4297  * The caller must have write access to iloc->bh.
4298  */
4299 static int ext4_do_update_inode(handle_t *handle,
4300                                 struct inode *inode,
4301                                 struct ext4_iloc *iloc)
4302 {
4303         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4304         struct ext4_inode_info *ei = EXT4_I(inode);
4305         struct buffer_head *bh = iloc->bh;
4306         int err = 0, rc, block;
4307         int need_datasync = 0;
4308         uid_t i_uid;
4309         gid_t i_gid;
4310
4311         /* For fields not not tracking in the in-memory inode,
4312          * initialise them to zero for new inodes. */
4313         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4314                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4315
4316         ext4_get_inode_flags(ei);
4317         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4318         i_uid = i_uid_read(inode);
4319         i_gid = i_gid_read(inode);
4320         if (!(test_opt(inode->i_sb, NO_UID32))) {
4321                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4322                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4323 /*
4324  * Fix up interoperability with old kernels. Otherwise, old inodes get
4325  * re-used with the upper 16 bits of the uid/gid intact
4326  */
4327                 if (!ei->i_dtime) {
4328                         raw_inode->i_uid_high =
4329                                 cpu_to_le16(high_16_bits(i_uid));
4330                         raw_inode->i_gid_high =
4331                                 cpu_to_le16(high_16_bits(i_gid));
4332                 } else {
4333                         raw_inode->i_uid_high = 0;
4334                         raw_inode->i_gid_high = 0;
4335                 }
4336         } else {
4337                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4338                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4339                 raw_inode->i_uid_high = 0;
4340                 raw_inode->i_gid_high = 0;
4341         }
4342         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4343
4344         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4345         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4346         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4347         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4348
4349         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4350                 goto out_brelse;
4351         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4352         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4353         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4354                 raw_inode->i_file_acl_high =
4355                         cpu_to_le16(ei->i_file_acl >> 32);
4356         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4357         if (ei->i_disksize != ext4_isize(raw_inode)) {
4358                 ext4_isize_set(raw_inode, ei->i_disksize);
4359                 need_datasync = 1;
4360         }
4361         if (ei->i_disksize > 0x7fffffffULL) {
4362                 struct super_block *sb = inode->i_sb;
4363                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4364                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4365                                 EXT4_SB(sb)->s_es->s_rev_level ==
4366                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4367                         /* If this is the first large file
4368                          * created, add a flag to the superblock.
4369                          */
4370                         err = ext4_journal_get_write_access(handle,
4371                                         EXT4_SB(sb)->s_sbh);
4372                         if (err)
4373                                 goto out_brelse;
4374                         ext4_update_dynamic_rev(sb);
4375                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4376                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4377                         ext4_handle_sync(handle);
4378                         err = ext4_handle_dirty_super(handle, sb);
4379                 }
4380         }
4381         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4382         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4383                 if (old_valid_dev(inode->i_rdev)) {
4384                         raw_inode->i_block[0] =
4385                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4386                         raw_inode->i_block[1] = 0;
4387                 } else {
4388                         raw_inode->i_block[0] = 0;
4389                         raw_inode->i_block[1] =
4390                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4391                         raw_inode->i_block[2] = 0;
4392                 }
4393         } else if (!ext4_has_inline_data(inode)) {
4394                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4395                         raw_inode->i_block[block] = ei->i_data[block];
4396         }
4397
4398         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4399                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4400                 if (ei->i_extra_isize) {
4401                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4402                                 raw_inode->i_version_hi =
4403                                         cpu_to_le32(inode->i_version >> 32);
4404                         raw_inode->i_extra_isize =
4405                                 cpu_to_le16(ei->i_extra_isize);
4406                 }
4407         }
4408
4409         ext4_inode_csum_set(inode, raw_inode, ei);
4410
4411         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4412         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4413         if (!err)
4414                 err = rc;
4415         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4416
4417         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4418 out_brelse:
4419         brelse(bh);
4420         ext4_std_error(inode->i_sb, err);
4421         return err;
4422 }
4423
4424 /*
4425  * ext4_write_inode()
4426  *
4427  * We are called from a few places:
4428  *
4429  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4430  *   Here, there will be no transaction running. We wait for any running
4431  *   transaction to commit.
4432  *
4433  * - Within flush work (sys_sync(), kupdate and such).
4434  *   We wait on commit, if told to.
4435  *
4436  * - Within iput_final() -> write_inode_now()
4437  *   We wait on commit, if told to.
4438  *
4439  * In all cases it is actually safe for us to return without doing anything,
4440  * because the inode has been copied into a raw inode buffer in
4441  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4442  * writeback.
4443  *
4444  * Note that we are absolutely dependent upon all inode dirtiers doing the
4445  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4446  * which we are interested.
4447  *
4448  * It would be a bug for them to not do this.  The code:
4449  *
4450  *      mark_inode_dirty(inode)
4451  *      stuff();
4452  *      inode->i_size = expr;
4453  *
4454  * is in error because write_inode() could occur while `stuff()' is running,
4455  * and the new i_size will be lost.  Plus the inode will no longer be on the
4456  * superblock's dirty inode list.
4457  */
4458 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4459 {
4460         int err;
4461
4462         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4463                 return 0;
4464
4465         if (EXT4_SB(inode->i_sb)->s_journal) {
4466                 if (ext4_journal_current_handle()) {
4467                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4468                         dump_stack();
4469                         return -EIO;
4470                 }
4471
4472                 /*
4473                  * No need to force transaction in WB_SYNC_NONE mode. Also
4474                  * ext4_sync_fs() will force the commit after everything is
4475                  * written.
4476                  */
4477                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4478                         return 0;
4479
4480                 err = ext4_force_commit(inode->i_sb);
4481         } else {
4482                 struct ext4_iloc iloc;
4483
4484                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4485                 if (err)
4486                         return err;
4487                 /*
4488                  * sync(2) will flush the whole buffer cache. No need to do
4489                  * it here separately for each inode.
4490                  */
4491                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4492                         sync_dirty_buffer(iloc.bh);
4493                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4494                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4495                                          "IO error syncing inode");
4496                         err = -EIO;
4497                 }
4498                 brelse(iloc.bh);
4499         }
4500         return err;
4501 }
4502
4503 /*
4504  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4505  * buffers that are attached to a page stradding i_size and are undergoing
4506  * commit. In that case we have to wait for commit to finish and try again.
4507  */
4508 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4509 {
4510         struct page *page;
4511         unsigned offset;
4512         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4513         tid_t commit_tid = 0;
4514         int ret;
4515
4516         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4517         /*
4518          * All buffers in the last page remain valid? Then there's nothing to
4519          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4520          * blocksize case
4521          */
4522         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4523                 return;
4524         while (1) {
4525                 page = find_lock_page(inode->i_mapping,
4526                                       inode->i_size >> PAGE_CACHE_SHIFT);
4527                 if (!page)
4528                         return;
4529                 ret = __ext4_journalled_invalidatepage(page, offset,
4530                                                 PAGE_CACHE_SIZE - offset);
4531                 unlock_page(page);
4532                 page_cache_release(page);
4533                 if (ret != -EBUSY)
4534                         return;
4535                 commit_tid = 0;
4536                 read_lock(&journal->j_state_lock);
4537                 if (journal->j_committing_transaction)
4538                         commit_tid = journal->j_committing_transaction->t_tid;
4539                 read_unlock(&journal->j_state_lock);
4540                 if (commit_tid)
4541                         jbd2_log_wait_commit(journal, commit_tid);
4542         }
4543 }
4544
4545 /*
4546  * ext4_setattr()
4547  *
4548  * Called from notify_change.
4549  *
4550  * We want to trap VFS attempts to truncate the file as soon as
4551  * possible.  In particular, we want to make sure that when the VFS
4552  * shrinks i_size, we put the inode on the orphan list and modify
4553  * i_disksize immediately, so that during the subsequent flushing of
4554  * dirty pages and freeing of disk blocks, we can guarantee that any
4555  * commit will leave the blocks being flushed in an unused state on
4556  * disk.  (On recovery, the inode will get truncated and the blocks will
4557  * be freed, so we have a strong guarantee that no future commit will
4558  * leave these blocks visible to the user.)
4559  *
4560  * Another thing we have to assure is that if we are in ordered mode
4561  * and inode is still attached to the committing transaction, we must
4562  * we start writeout of all the dirty pages which are being truncated.
4563  * This way we are sure that all the data written in the previous
4564  * transaction are already on disk (truncate waits for pages under
4565  * writeback).
4566  *
4567  * Called with inode->i_mutex down.
4568  */
4569 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4570 {
4571         struct inode *inode = dentry->d_inode;
4572         int error, rc = 0;
4573         int orphan = 0;
4574         const unsigned int ia_valid = attr->ia_valid;
4575
4576         error = inode_change_ok(inode, attr);
4577         if (error)
4578                 return error;
4579
4580         if (is_quota_modification(inode, attr))
4581                 dquot_initialize(inode);
4582         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4583             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4584                 handle_t *handle;
4585
4586                 /* (user+group)*(old+new) structure, inode write (sb,
4587                  * inode block, ? - but truncate inode update has it) */
4588                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4589                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4590                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4591                 if (IS_ERR(handle)) {
4592                         error = PTR_ERR(handle);
4593                         goto err_out;
4594                 }
4595                 error = dquot_transfer(inode, attr);
4596                 if (error) {
4597                         ext4_journal_stop(handle);
4598                         return error;
4599                 }
4600                 /* Update corresponding info in inode so that everything is in
4601                  * one transaction */
4602                 if (attr->ia_valid & ATTR_UID)
4603                         inode->i_uid = attr->ia_uid;
4604                 if (attr->ia_valid & ATTR_GID)
4605                         inode->i_gid = attr->ia_gid;
4606                 error = ext4_mark_inode_dirty(handle, inode);
4607                 ext4_journal_stop(handle);
4608         }
4609
4610         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4611                 handle_t *handle;
4612
4613                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4614                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4615
4616                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4617                                 return -EFBIG;
4618                 }
4619
4620                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4621                         inode_inc_iversion(inode);
4622
4623                 if (S_ISREG(inode->i_mode) &&
4624                     (attr->ia_size < inode->i_size)) {
4625                         if (ext4_should_order_data(inode)) {
4626                                 error = ext4_begin_ordered_truncate(inode,
4627                                                             attr->ia_size);
4628                                 if (error)
4629                                         goto err_out;
4630                         }
4631                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4632                         if (IS_ERR(handle)) {
4633                                 error = PTR_ERR(handle);
4634                                 goto err_out;
4635                         }
4636                         if (ext4_handle_valid(handle)) {
4637                                 error = ext4_orphan_add(handle, inode);
4638                                 orphan = 1;
4639                         }
4640                         down_write(&EXT4_I(inode)->i_data_sem);
4641                         EXT4_I(inode)->i_disksize = attr->ia_size;
4642                         rc = ext4_mark_inode_dirty(handle, inode);
4643                         if (!error)
4644                                 error = rc;
4645                         /*
4646                          * We have to update i_size under i_data_sem together
4647                          * with i_disksize to avoid races with writeback code
4648                          * running ext4_wb_update_i_disksize().
4649                          */
4650                         if (!error)
4651                                 i_size_write(inode, attr->ia_size);
4652                         up_write(&EXT4_I(inode)->i_data_sem);
4653                         ext4_journal_stop(handle);
4654                         if (error) {
4655                                 ext4_orphan_del(NULL, inode);
4656                                 goto err_out;
4657                         }
4658                 } else
4659                         i_size_write(inode, attr->ia_size);
4660
4661                 /*
4662                  * Blocks are going to be removed from the inode. Wait
4663                  * for dio in flight.  Temporarily disable
4664                  * dioread_nolock to prevent livelock.
4665                  */
4666                 if (orphan) {
4667                         if (!ext4_should_journal_data(inode)) {
4668                                 ext4_inode_block_unlocked_dio(inode);
4669                                 inode_dio_wait(inode);
4670                                 ext4_inode_resume_unlocked_dio(inode);
4671                         } else
4672                                 ext4_wait_for_tail_page_commit(inode);
4673                 }
4674                 /*
4675                  * Truncate pagecache after we've waited for commit
4676                  * in data=journal mode to make pages freeable.
4677                  */
4678                         truncate_pagecache(inode, inode->i_size);
4679         }
4680         /*
4681          * We want to call ext4_truncate() even if attr->ia_size ==
4682          * inode->i_size for cases like truncation of fallocated space
4683          */
4684         if (attr->ia_valid & ATTR_SIZE)
4685                 ext4_truncate(inode);
4686
4687         if (!rc) {
4688                 setattr_copy(inode, attr);
4689                 mark_inode_dirty(inode);
4690         }
4691
4692         /*
4693          * If the call to ext4_truncate failed to get a transaction handle at
4694          * all, we need to clean up the in-core orphan list manually.
4695          */
4696         if (orphan && inode->i_nlink)
4697                 ext4_orphan_del(NULL, inode);
4698
4699         if (!rc && (ia_valid & ATTR_MODE))
4700                 rc = posix_acl_chmod(inode, inode->i_mode);
4701
4702 err_out:
4703         ext4_std_error(inode->i_sb, error);
4704         if (!error)
4705                 error = rc;
4706         return error;
4707 }
4708
4709 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4710                  struct kstat *stat)
4711 {
4712         struct inode *inode;
4713         unsigned long long delalloc_blocks;
4714
4715         inode = dentry->d_inode;
4716         generic_fillattr(inode, stat);
4717
4718         /*
4719          * If there is inline data in the inode, the inode will normally not
4720          * have data blocks allocated (it may have an external xattr block).
4721          * Report at least one sector for such files, so tools like tar, rsync,
4722          * others doen't incorrectly think the file is completely sparse.
4723          */
4724         if (unlikely(ext4_has_inline_data(inode)))
4725                 stat->blocks += (stat->size + 511) >> 9;
4726
4727         /*
4728          * We can't update i_blocks if the block allocation is delayed
4729          * otherwise in the case of system crash before the real block
4730          * allocation is done, we will have i_blocks inconsistent with
4731          * on-disk file blocks.
4732          * We always keep i_blocks updated together with real
4733          * allocation. But to not confuse with user, stat
4734          * will return the blocks that include the delayed allocation
4735          * blocks for this file.
4736          */
4737         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4738                                    EXT4_I(inode)->i_reserved_data_blocks);
4739         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4740         return 0;
4741 }
4742
4743 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4744                                    int pextents)
4745 {
4746         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4747                 return ext4_ind_trans_blocks(inode, lblocks);
4748         return ext4_ext_index_trans_blocks(inode, pextents);
4749 }
4750
4751 /*
4752  * Account for index blocks, block groups bitmaps and block group
4753  * descriptor blocks if modify datablocks and index blocks
4754  * worse case, the indexs blocks spread over different block groups
4755  *
4756  * If datablocks are discontiguous, they are possible to spread over
4757  * different block groups too. If they are contiguous, with flexbg,
4758  * they could still across block group boundary.
4759  *
4760  * Also account for superblock, inode, quota and xattr blocks
4761  */
4762 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4763                                   int pextents)
4764 {
4765         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4766         int gdpblocks;
4767         int idxblocks;
4768         int ret = 0;
4769
4770         /*
4771          * How many index blocks need to touch to map @lblocks logical blocks
4772          * to @pextents physical extents?
4773          */
4774         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4775
4776         ret = idxblocks;
4777
4778         /*
4779          * Now let's see how many group bitmaps and group descriptors need
4780          * to account
4781          */
4782         groups = idxblocks + pextents;
4783         gdpblocks = groups;
4784         if (groups > ngroups)
4785                 groups = ngroups;
4786         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4787                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4788
4789         /* bitmaps and block group descriptor blocks */
4790         ret += groups + gdpblocks;
4791
4792         /* Blocks for super block, inode, quota and xattr blocks */
4793         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4794
4795         return ret;
4796 }
4797
4798 /*
4799  * Calculate the total number of credits to reserve to fit
4800  * the modification of a single pages into a single transaction,
4801  * which may include multiple chunks of block allocations.
4802  *
4803  * This could be called via ext4_write_begin()
4804  *
4805  * We need to consider the worse case, when
4806  * one new block per extent.
4807  */
4808 int ext4_writepage_trans_blocks(struct inode *inode)
4809 {
4810         int bpp = ext4_journal_blocks_per_page(inode);
4811         int ret;
4812
4813         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4814
4815         /* Account for data blocks for journalled mode */
4816         if (ext4_should_journal_data(inode))
4817                 ret += bpp;
4818         return ret;
4819 }
4820
4821 /*
4822  * Calculate the journal credits for a chunk of data modification.
4823  *
4824  * This is called from DIO, fallocate or whoever calling
4825  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4826  *
4827  * journal buffers for data blocks are not included here, as DIO
4828  * and fallocate do no need to journal data buffers.
4829  */
4830 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4831 {
4832         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4833 }
4834
4835 /*
4836  * The caller must have previously called ext4_reserve_inode_write().
4837  * Give this, we know that the caller already has write access to iloc->bh.
4838  */
4839 int ext4_mark_iloc_dirty(handle_t *handle,
4840                          struct inode *inode, struct ext4_iloc *iloc)
4841 {
4842         int err = 0;
4843
4844         if (IS_I_VERSION(inode))
4845                 inode_inc_iversion(inode);
4846
4847         /* the do_update_inode consumes one bh->b_count */
4848         get_bh(iloc->bh);
4849
4850         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4851         err = ext4_do_update_inode(handle, inode, iloc);
4852         put_bh(iloc->bh);
4853         return err;
4854 }
4855
4856 /*
4857  * On success, We end up with an outstanding reference count against
4858  * iloc->bh.  This _must_ be cleaned up later.
4859  */
4860
4861 int
4862 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4863                          struct ext4_iloc *iloc)
4864 {
4865         int err;
4866
4867         err = ext4_get_inode_loc(inode, iloc);
4868         if (!err) {
4869                 BUFFER_TRACE(iloc->bh, "get_write_access");
4870                 err = ext4_journal_get_write_access(handle, iloc->bh);
4871                 if (err) {
4872                         brelse(iloc->bh);
4873                         iloc->bh = NULL;
4874                 }
4875         }
4876         ext4_std_error(inode->i_sb, err);
4877         return err;
4878 }
4879
4880 /*
4881  * Expand an inode by new_extra_isize bytes.
4882  * Returns 0 on success or negative error number on failure.
4883  */
4884 static int ext4_expand_extra_isize(struct inode *inode,
4885                                    unsigned int new_extra_isize,
4886                                    struct ext4_iloc iloc,
4887                                    handle_t *handle)
4888 {
4889         struct ext4_inode *raw_inode;
4890         struct ext4_xattr_ibody_header *header;
4891
4892         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4893                 return 0;
4894
4895         raw_inode = ext4_raw_inode(&iloc);
4896
4897         header = IHDR(inode, raw_inode);
4898
4899         /* No extended attributes present */
4900         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4901             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4902                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4903                         new_extra_isize);
4904                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4905                 return 0;
4906         }
4907
4908         /* try to expand with EAs present */
4909         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4910                                           raw_inode, handle);
4911 }
4912
4913 /*
4914  * What we do here is to mark the in-core inode as clean with respect to inode
4915  * dirtiness (it may still be data-dirty).
4916  * This means that the in-core inode may be reaped by prune_icache
4917  * without having to perform any I/O.  This is a very good thing,
4918  * because *any* task may call prune_icache - even ones which
4919  * have a transaction open against a different journal.
4920  *
4921  * Is this cheating?  Not really.  Sure, we haven't written the
4922  * inode out, but prune_icache isn't a user-visible syncing function.
4923  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4924  * we start and wait on commits.
4925  */
4926 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4927 {
4928         struct ext4_iloc iloc;
4929         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4930         static unsigned int mnt_count;
4931         int err, ret;
4932
4933         might_sleep();
4934         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4935         err = ext4_reserve_inode_write(handle, inode, &iloc);
4936         if (ext4_handle_valid(handle) &&
4937             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4938             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4939                 /*
4940                  * We need extra buffer credits since we may write into EA block
4941                  * with this same handle. If journal_extend fails, then it will
4942                  * only result in a minor loss of functionality for that inode.
4943                  * If this is felt to be critical, then e2fsck should be run to
4944                  * force a large enough s_min_extra_isize.
4945                  */
4946                 if ((jbd2_journal_extend(handle,
4947                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4948                         ret = ext4_expand_extra_isize(inode,
4949                                                       sbi->s_want_extra_isize,
4950                                                       iloc, handle);
4951                         if (ret) {
4952                                 ext4_set_inode_state(inode,
4953                                                      EXT4_STATE_NO_EXPAND);
4954                                 if (mnt_count !=
4955                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4956                                         ext4_warning(inode->i_sb,
4957                                         "Unable to expand inode %lu. Delete"
4958                                         " some EAs or run e2fsck.",
4959                                         inode->i_ino);
4960                                         mnt_count =
4961                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4962                                 }
4963                         }
4964                 }
4965         }
4966         if (!err)
4967                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4968         return err;
4969 }
4970
4971 /*
4972  * ext4_dirty_inode() is called from __mark_inode_dirty()
4973  *
4974  * We're really interested in the case where a file is being extended.
4975  * i_size has been changed by generic_commit_write() and we thus need
4976  * to include the updated inode in the current transaction.
4977  *
4978  * Also, dquot_alloc_block() will always dirty the inode when blocks
4979  * are allocated to the file.
4980  *
4981  * If the inode is marked synchronous, we don't honour that here - doing
4982  * so would cause a commit on atime updates, which we don't bother doing.
4983  * We handle synchronous inodes at the highest possible level.
4984  */
4985 void ext4_dirty_inode(struct inode *inode, int flags)
4986 {
4987         handle_t *handle;
4988
4989         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4990         if (IS_ERR(handle))
4991                 goto out;
4992
4993         ext4_mark_inode_dirty(handle, inode);
4994
4995         ext4_journal_stop(handle);
4996 out:
4997         return;
4998 }
4999
5000 #if 0
5001 /*
5002  * Bind an inode's backing buffer_head into this transaction, to prevent
5003  * it from being flushed to disk early.  Unlike
5004  * ext4_reserve_inode_write, this leaves behind no bh reference and
5005  * returns no iloc structure, so the caller needs to repeat the iloc
5006  * lookup to mark the inode dirty later.
5007  */
5008 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5009 {
5010         struct ext4_iloc iloc;
5011
5012         int err = 0;
5013         if (handle) {
5014                 err = ext4_get_inode_loc(inode, &iloc);
5015                 if (!err) {
5016                         BUFFER_TRACE(iloc.bh, "get_write_access");
5017                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5018                         if (!err)
5019                                 err = ext4_handle_dirty_metadata(handle,
5020                                                                  NULL,
5021                                                                  iloc.bh);
5022                         brelse(iloc.bh);
5023                 }
5024         }
5025         ext4_std_error(inode->i_sb, err);
5026         return err;
5027 }
5028 #endif
5029
5030 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5031 {
5032         journal_t *journal;
5033         handle_t *handle;
5034         int err;
5035
5036         /*
5037          * We have to be very careful here: changing a data block's
5038          * journaling status dynamically is dangerous.  If we write a
5039          * data block to the journal, change the status and then delete
5040          * that block, we risk forgetting to revoke the old log record
5041          * from the journal and so a subsequent replay can corrupt data.
5042          * So, first we make sure that the journal is empty and that
5043          * nobody is changing anything.
5044          */
5045
5046         journal = EXT4_JOURNAL(inode);
5047         if (!journal)
5048                 return 0;
5049         if (is_journal_aborted(journal))
5050                 return -EROFS;
5051         /* We have to allocate physical blocks for delalloc blocks
5052          * before flushing journal. otherwise delalloc blocks can not
5053          * be allocated any more. even more truncate on delalloc blocks
5054          * could trigger BUG by flushing delalloc blocks in journal.
5055          * There is no delalloc block in non-journal data mode.
5056          */
5057         if (val && test_opt(inode->i_sb, DELALLOC)) {
5058                 err = ext4_alloc_da_blocks(inode);
5059                 if (err < 0)
5060                         return err;
5061         }
5062
5063         /* Wait for all existing dio workers */
5064         ext4_inode_block_unlocked_dio(inode);
5065         inode_dio_wait(inode);
5066
5067         jbd2_journal_lock_updates(journal);
5068
5069         /*
5070          * OK, there are no updates running now, and all cached data is
5071          * synced to disk.  We are now in a completely consistent state
5072          * which doesn't have anything in the journal, and we know that
5073          * no filesystem updates are running, so it is safe to modify
5074          * the inode's in-core data-journaling state flag now.
5075          */
5076
5077         if (val)
5078                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5079         else {
5080                 jbd2_journal_flush(journal);
5081                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5082         }
5083         ext4_set_aops(inode);
5084
5085         jbd2_journal_unlock_updates(journal);
5086         ext4_inode_resume_unlocked_dio(inode);
5087
5088         /* Finally we can mark the inode as dirty. */
5089
5090         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5091         if (IS_ERR(handle))
5092                 return PTR_ERR(handle);
5093
5094         err = ext4_mark_inode_dirty(handle, inode);
5095         ext4_handle_sync(handle);
5096         ext4_journal_stop(handle);
5097         ext4_std_error(inode->i_sb, err);
5098
5099         return err;
5100 }
5101
5102 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5103 {
5104         return !buffer_mapped(bh);
5105 }
5106
5107 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5108 {
5109         struct page *page = vmf->page;
5110         loff_t size;
5111         unsigned long len;
5112         int ret;
5113         struct file *file = vma->vm_file;
5114         struct inode *inode = file_inode(file);
5115         struct address_space *mapping = inode->i_mapping;
5116         handle_t *handle;
5117         get_block_t *get_block;
5118         int retries = 0;
5119
5120         sb_start_pagefault(inode->i_sb);
5121         file_update_time(vma->vm_file);
5122         /* Delalloc case is easy... */
5123         if (test_opt(inode->i_sb, DELALLOC) &&
5124             !ext4_should_journal_data(inode) &&
5125             !ext4_nonda_switch(inode->i_sb)) {
5126                 do {
5127                         ret = __block_page_mkwrite(vma, vmf,
5128                                                    ext4_da_get_block_prep);
5129                 } while (ret == -ENOSPC &&
5130                        ext4_should_retry_alloc(inode->i_sb, &retries));
5131                 goto out_ret;
5132         }
5133
5134         lock_page(page);
5135         size = i_size_read(inode);
5136         /* Page got truncated from under us? */
5137         if (page->mapping != mapping || page_offset(page) > size) {
5138                 unlock_page(page);
5139                 ret = VM_FAULT_NOPAGE;
5140                 goto out;
5141         }
5142
5143         if (page->index == size >> PAGE_CACHE_SHIFT)
5144                 len = size & ~PAGE_CACHE_MASK;
5145         else
5146                 len = PAGE_CACHE_SIZE;
5147         /*
5148          * Return if we have all the buffers mapped. This avoids the need to do
5149          * journal_start/journal_stop which can block and take a long time
5150          */
5151         if (page_has_buffers(page)) {
5152                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5153                                             0, len, NULL,
5154                                             ext4_bh_unmapped)) {
5155                         /* Wait so that we don't change page under IO */
5156                         wait_for_stable_page(page);
5157                         ret = VM_FAULT_LOCKED;
5158                         goto out;
5159                 }
5160         }
5161         unlock_page(page);
5162         /* OK, we need to fill the hole... */
5163         if (ext4_should_dioread_nolock(inode))
5164                 get_block = ext4_get_block_write;
5165         else
5166                 get_block = ext4_get_block;
5167 retry_alloc:
5168         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5169                                     ext4_writepage_trans_blocks(inode));
5170         if (IS_ERR(handle)) {
5171                 ret = VM_FAULT_SIGBUS;
5172                 goto out;
5173         }
5174         ret = __block_page_mkwrite(vma, vmf, get_block);
5175         if (!ret && ext4_should_journal_data(inode)) {
5176                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5177                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5178                         unlock_page(page);
5179                         ret = VM_FAULT_SIGBUS;
5180                         ext4_journal_stop(handle);
5181                         goto out;
5182                 }
5183                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5184         }
5185         ext4_journal_stop(handle);
5186         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5187                 goto retry_alloc;
5188 out_ret:
5189         ret = block_page_mkwrite_return(ret);
5190 out:
5191         sb_end_pagefault(inode->i_sb);
5192         return ret;
5193 }