]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/ext4/inode.c
ext4: delayed allocation ENOSPC handling
[mv-sheeva.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45                                               loff_t new_size)
46 {
47         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48                                                    new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58         int ea_blocks = EXT4_I(inode)->i_file_acl ?
59                 (inode->i_sb->s_blocksize >> 9) : 0;
60
61         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74                         struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76         int err;
77
78         might_sleep();
79
80         BUFFER_TRACE(bh, "enter");
81
82         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83                   "data mode %lx\n",
84                   bh, is_metadata, inode->i_mode,
85                   test_opt(inode->i_sb, DATA_FLAGS));
86
87         /* Never use the revoke function if we are doing full data
88          * journaling: there is no need to, and a V1 superblock won't
89          * support it.  Otherwise, only skip the revoke on un-journaled
90          * data blocks. */
91
92         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93             (!is_metadata && !ext4_should_journal_data(inode))) {
94                 if (bh) {
95                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
96                         return ext4_journal_forget(handle, bh);
97                 }
98                 return 0;
99         }
100
101         /*
102          * data!=journal && (is_metadata || should_journal_data(inode))
103          */
104         BUFFER_TRACE(bh, "call ext4_journal_revoke");
105         err = ext4_journal_revoke(handle, blocknr, bh);
106         if (err)
107                 ext4_abort(inode->i_sb, __func__,
108                            "error %d when attempting revoke", err);
109         BUFFER_TRACE(bh, "exit");
110         return err;
111 }
112
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119         ext4_lblk_t needed;
120
121         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123         /* Give ourselves just enough room to cope with inodes in which
124          * i_blocks is corrupt: we've seen disk corruptions in the past
125          * which resulted in random data in an inode which looked enough
126          * like a regular file for ext4 to try to delete it.  Things
127          * will go a bit crazy if that happens, but at least we should
128          * try not to panic the whole kernel. */
129         if (needed < 2)
130                 needed = 2;
131
132         /* But we need to bound the transaction so we don't overflow the
133          * journal. */
134         if (needed > EXT4_MAX_TRANS_DATA)
135                 needed = EXT4_MAX_TRANS_DATA;
136
137         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152         handle_t *result;
153
154         result = ext4_journal_start(inode, blocks_for_truncate(inode));
155         if (!IS_ERR(result))
156                 return result;
157
158         ext4_std_error(inode->i_sb, PTR_ERR(result));
159         return result;
160 }
161
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171                 return 0;
172         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173                 return 0;
174         return 1;
175 }
176
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184         jbd_debug(2, "restarting handle %p\n", handle);
185         return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193         handle_t *handle;
194
195         if (ext4_should_order_data(inode))
196                 ext4_begin_ordered_truncate(inode, 0);
197         truncate_inode_pages(&inode->i_data, 0);
198
199         if (is_bad_inode(inode))
200                 goto no_delete;
201
202         handle = start_transaction(inode);
203         if (IS_ERR(handle)) {
204                 /*
205                  * If we're going to skip the normal cleanup, we still need to
206                  * make sure that the in-core orphan linked list is properly
207                  * cleaned up.
208                  */
209                 ext4_orphan_del(NULL, inode);
210                 goto no_delete;
211         }
212
213         if (IS_SYNC(inode))
214                 handle->h_sync = 1;
215         inode->i_size = 0;
216         if (inode->i_blocks)
217                 ext4_truncate(inode);
218         /*
219          * Kill off the orphan record which ext4_truncate created.
220          * AKPM: I think this can be inside the above `if'.
221          * Note that ext4_orphan_del() has to be able to cope with the
222          * deletion of a non-existent orphan - this is because we don't
223          * know if ext4_truncate() actually created an orphan record.
224          * (Well, we could do this if we need to, but heck - it works)
225          */
226         ext4_orphan_del(handle, inode);
227         EXT4_I(inode)->i_dtime  = get_seconds();
228
229         /*
230          * One subtle ordering requirement: if anything has gone wrong
231          * (transaction abort, IO errors, whatever), then we can still
232          * do these next steps (the fs will already have been marked as
233          * having errors), but we can't free the inode if the mark_dirty
234          * fails.
235          */
236         if (ext4_mark_inode_dirty(handle, inode))
237                 /* If that failed, just do the required in-core inode clear. */
238                 clear_inode(inode);
239         else
240                 ext4_free_inode(handle, inode);
241         ext4_journal_stop(handle);
242         return;
243 no_delete:
244         clear_inode(inode);     /* We must guarantee clearing of inode... */
245 }
246
247 typedef struct {
248         __le32  *p;
249         __le32  key;
250         struct buffer_head *bh;
251 } Indirect;
252
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
254 {
255         p->key = *(p->p = v);
256         p->bh = bh;
257 }
258
259 /**
260  *      ext4_block_to_path - parse the block number into array of offsets
261  *      @inode: inode in question (we are only interested in its superblock)
262  *      @i_block: block number to be parsed
263  *      @offsets: array to store the offsets in
264  *      @boundary: set this non-zero if the referred-to block is likely to be
265  *             followed (on disk) by an indirect block.
266  *
267  *      To store the locations of file's data ext4 uses a data structure common
268  *      for UNIX filesystems - tree of pointers anchored in the inode, with
269  *      data blocks at leaves and indirect blocks in intermediate nodes.
270  *      This function translates the block number into path in that tree -
271  *      return value is the path length and @offsets[n] is the offset of
272  *      pointer to (n+1)th node in the nth one. If @block is out of range
273  *      (negative or too large) warning is printed and zero returned.
274  *
275  *      Note: function doesn't find node addresses, so no IO is needed. All
276  *      we need to know is the capacity of indirect blocks (taken from the
277  *      inode->i_sb).
278  */
279
280 /*
281  * Portability note: the last comparison (check that we fit into triple
282  * indirect block) is spelled differently, because otherwise on an
283  * architecture with 32-bit longs and 8Kb pages we might get into trouble
284  * if our filesystem had 8Kb blocks. We might use long long, but that would
285  * kill us on x86. Oh, well, at least the sign propagation does not matter -
286  * i_block would have to be negative in the very beginning, so we would not
287  * get there at all.
288  */
289
290 static int ext4_block_to_path(struct inode *inode,
291                         ext4_lblk_t i_block,
292                         ext4_lblk_t offsets[4], int *boundary)
293 {
294         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
295         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
296         const long direct_blocks = EXT4_NDIR_BLOCKS,
297                 indirect_blocks = ptrs,
298                 double_blocks = (1 << (ptrs_bits * 2));
299         int n = 0;
300         int final = 0;
301
302         if (i_block < 0) {
303                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304         } else if (i_block < direct_blocks) {
305                 offsets[n++] = i_block;
306                 final = direct_blocks;
307         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
308                 offsets[n++] = EXT4_IND_BLOCK;
309                 offsets[n++] = i_block;
310                 final = ptrs;
311         } else if ((i_block -= indirect_blocks) < double_blocks) {
312                 offsets[n++] = EXT4_DIND_BLOCK;
313                 offsets[n++] = i_block >> ptrs_bits;
314                 offsets[n++] = i_block & (ptrs - 1);
315                 final = ptrs;
316         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317                 offsets[n++] = EXT4_TIND_BLOCK;
318                 offsets[n++] = i_block >> (ptrs_bits * 2);
319                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320                 offsets[n++] = i_block & (ptrs - 1);
321                 final = ptrs;
322         } else {
323                 ext4_warning(inode->i_sb, "ext4_block_to_path",
324                                 "block %lu > max",
325                                 i_block + direct_blocks +
326                                 indirect_blocks + double_blocks);
327         }
328         if (boundary)
329                 *boundary = final - 1 - (i_block & (ptrs - 1));
330         return n;
331 }
332
333 /**
334  *      ext4_get_branch - read the chain of indirect blocks leading to data
335  *      @inode: inode in question
336  *      @depth: depth of the chain (1 - direct pointer, etc.)
337  *      @offsets: offsets of pointers in inode/indirect blocks
338  *      @chain: place to store the result
339  *      @err: here we store the error value
340  *
341  *      Function fills the array of triples <key, p, bh> and returns %NULL
342  *      if everything went OK or the pointer to the last filled triple
343  *      (incomplete one) otherwise. Upon the return chain[i].key contains
344  *      the number of (i+1)-th block in the chain (as it is stored in memory,
345  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
346  *      number (it points into struct inode for i==0 and into the bh->b_data
347  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348  *      block for i>0 and NULL for i==0. In other words, it holds the block
349  *      numbers of the chain, addresses they were taken from (and where we can
350  *      verify that chain did not change) and buffer_heads hosting these
351  *      numbers.
352  *
353  *      Function stops when it stumbles upon zero pointer (absent block)
354  *              (pointer to last triple returned, *@err == 0)
355  *      or when it gets an IO error reading an indirect block
356  *              (ditto, *@err == -EIO)
357  *      or when it reads all @depth-1 indirect blocks successfully and finds
358  *      the whole chain, all way to the data (returns %NULL, *err == 0).
359  *
360  *      Need to be called with
361  *      down_read(&EXT4_I(inode)->i_data_sem)
362  */
363 static Indirect *ext4_get_branch(struct inode *inode, int depth,
364                                  ext4_lblk_t  *offsets,
365                                  Indirect chain[4], int *err)
366 {
367         struct super_block *sb = inode->i_sb;
368         Indirect *p = chain;
369         struct buffer_head *bh;
370
371         *err = 0;
372         /* i_data is not going away, no lock needed */
373         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374         if (!p->key)
375                 goto no_block;
376         while (--depth) {
377                 bh = sb_bread(sb, le32_to_cpu(p->key));
378                 if (!bh)
379                         goto failure;
380                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381                 /* Reader: end */
382                 if (!p->key)
383                         goto no_block;
384         }
385         return NULL;
386
387 failure:
388         *err = -EIO;
389 no_block:
390         return p;
391 }
392
393 /**
394  *      ext4_find_near - find a place for allocation with sufficient locality
395  *      @inode: owner
396  *      @ind: descriptor of indirect block.
397  *
398  *      This function returns the preferred place for block allocation.
399  *      It is used when heuristic for sequential allocation fails.
400  *      Rules are:
401  *        + if there is a block to the left of our position - allocate near it.
402  *        + if pointer will live in indirect block - allocate near that block.
403  *        + if pointer will live in inode - allocate in the same
404  *          cylinder group.
405  *
406  * In the latter case we colour the starting block by the callers PID to
407  * prevent it from clashing with concurrent allocations for a different inode
408  * in the same block group.   The PID is used here so that functionally related
409  * files will be close-by on-disk.
410  *
411  *      Caller must make sure that @ind is valid and will stay that way.
412  */
413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
414 {
415         struct ext4_inode_info *ei = EXT4_I(inode);
416         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
417         __le32 *p;
418         ext4_fsblk_t bg_start;
419         ext4_fsblk_t last_block;
420         ext4_grpblk_t colour;
421
422         /* Try to find previous block */
423         for (p = ind->p - 1; p >= start; p--) {
424                 if (*p)
425                         return le32_to_cpu(*p);
426         }
427
428         /* No such thing, so let's try location of indirect block */
429         if (ind->bh)
430                 return ind->bh->b_blocknr;
431
432         /*
433          * It is going to be referred to from the inode itself? OK, just put it
434          * into the same cylinder group then.
435          */
436         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
438
439         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
440                 colour = (current->pid % 16) *
441                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442         else
443                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444         return bg_start + colour;
445 }
446
447 /**
448  *      ext4_find_goal - find a preferred place for allocation.
449  *      @inode: owner
450  *      @block:  block we want
451  *      @partial: pointer to the last triple within a chain
452  *
453  *      Normally this function find the preferred place for block allocation,
454  *      returns it.
455  */
456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457                 Indirect *partial)
458 {
459         struct ext4_block_alloc_info *block_i;
460
461         block_i =  EXT4_I(inode)->i_block_alloc_info;
462
463         /*
464          * try the heuristic for sequential allocation,
465          * failing that at least try to get decent locality.
466          */
467         if (block_i && (block == block_i->last_alloc_logical_block + 1)
468                 && (block_i->last_alloc_physical_block != 0)) {
469                 return block_i->last_alloc_physical_block + 1;
470         }
471
472         return ext4_find_near(inode, partial);
473 }
474
475 /**
476  *      ext4_blks_to_allocate: Look up the block map and count the number
477  *      of direct blocks need to be allocated for the given branch.
478  *
479  *      @branch: chain of indirect blocks
480  *      @k: number of blocks need for indirect blocks
481  *      @blks: number of data blocks to be mapped.
482  *      @blocks_to_boundary:  the offset in the indirect block
483  *
484  *      return the total number of blocks to be allocate, including the
485  *      direct and indirect blocks.
486  */
487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488                 int blocks_to_boundary)
489 {
490         unsigned long count = 0;
491
492         /*
493          * Simple case, [t,d]Indirect block(s) has not allocated yet
494          * then it's clear blocks on that path have not allocated
495          */
496         if (k > 0) {
497                 /* right now we don't handle cross boundary allocation */
498                 if (blks < blocks_to_boundary + 1)
499                         count += blks;
500                 else
501                         count += blocks_to_boundary + 1;
502                 return count;
503         }
504
505         count++;
506         while (count < blks && count <= blocks_to_boundary &&
507                 le32_to_cpu(*(branch[0].p + count)) == 0) {
508                 count++;
509         }
510         return count;
511 }
512
513 /**
514  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
515  *      @indirect_blks: the number of blocks need to allocate for indirect
516  *                      blocks
517  *
518  *      @new_blocks: on return it will store the new block numbers for
519  *      the indirect blocks(if needed) and the first direct block,
520  *      @blks:  on return it will store the total number of allocated
521  *              direct blocks
522  */
523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
525                                 int indirect_blks, int blks,
526                                 ext4_fsblk_t new_blocks[4], int *err)
527 {
528         int target, i;
529         unsigned long count = 0, blk_allocated = 0;
530         int index = 0;
531         ext4_fsblk_t current_block = 0;
532         int ret = 0;
533
534         /*
535          * Here we try to allocate the requested multiple blocks at once,
536          * on a best-effort basis.
537          * To build a branch, we should allocate blocks for
538          * the indirect blocks(if not allocated yet), and at least
539          * the first direct block of this branch.  That's the
540          * minimum number of blocks need to allocate(required)
541          */
542         /* first we try to allocate the indirect blocks */
543         target = indirect_blks;
544         while (target > 0) {
545                 count = target;
546                 /* allocating blocks for indirect blocks and direct blocks */
547                 current_block = ext4_new_meta_blocks(handle, inode,
548                                                         goal, &count, err);
549                 if (*err)
550                         goto failed_out;
551
552                 target -= count;
553                 /* allocate blocks for indirect blocks */
554                 while (index < indirect_blks && count) {
555                         new_blocks[index++] = current_block++;
556                         count--;
557                 }
558                 if (count > 0) {
559                         /*
560                          * save the new block number
561                          * for the first direct block
562                          */
563                         new_blocks[index] = current_block;
564                         printk(KERN_INFO "%s returned more blocks than "
565                                                 "requested\n", __func__);
566                         WARN_ON(1);
567                         break;
568                 }
569         }
570
571         target = blks - count ;
572         blk_allocated = count;
573         if (!target)
574                 goto allocated;
575         /* Now allocate data blocks */
576         count = target;
577         /* allocating blocks for data blocks */
578         current_block = ext4_new_blocks(handle, inode, iblock,
579                                                 goal, &count, err);
580         if (*err && (target == blks)) {
581                 /*
582                  * if the allocation failed and we didn't allocate
583                  * any blocks before
584                  */
585                 goto failed_out;
586         }
587         if (!*err) {
588                 if (target == blks) {
589                 /*
590                  * save the new block number
591                  * for the first direct block
592                  */
593                         new_blocks[index] = current_block;
594                 }
595                 blk_allocated += count;
596         }
597 allocated:
598         /* total number of blocks allocated for direct blocks */
599         ret = blk_allocated;
600         *err = 0;
601         return ret;
602 failed_out:
603         for (i = 0; i <index; i++)
604                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605         return ret;
606 }
607
608 /**
609  *      ext4_alloc_branch - allocate and set up a chain of blocks.
610  *      @inode: owner
611  *      @indirect_blks: number of allocated indirect blocks
612  *      @blks: number of allocated direct blocks
613  *      @offsets: offsets (in the blocks) to store the pointers to next.
614  *      @branch: place to store the chain in.
615  *
616  *      This function allocates blocks, zeroes out all but the last one,
617  *      links them into chain and (if we are synchronous) writes them to disk.
618  *      In other words, it prepares a branch that can be spliced onto the
619  *      inode. It stores the information about that chain in the branch[], in
620  *      the same format as ext4_get_branch() would do. We are calling it after
621  *      we had read the existing part of chain and partial points to the last
622  *      triple of that (one with zero ->key). Upon the exit we have the same
623  *      picture as after the successful ext4_get_block(), except that in one
624  *      place chain is disconnected - *branch->p is still zero (we did not
625  *      set the last link), but branch->key contains the number that should
626  *      be placed into *branch->p to fill that gap.
627  *
628  *      If allocation fails we free all blocks we've allocated (and forget
629  *      their buffer_heads) and return the error value the from failed
630  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631  *      as described above and return 0.
632  */
633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634                                 ext4_lblk_t iblock, int indirect_blks,
635                                 int *blks, ext4_fsblk_t goal,
636                                 ext4_lblk_t *offsets, Indirect *branch)
637 {
638         int blocksize = inode->i_sb->s_blocksize;
639         int i, n = 0;
640         int err = 0;
641         struct buffer_head *bh;
642         int num;
643         ext4_fsblk_t new_blocks[4];
644         ext4_fsblk_t current_block;
645
646         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647                                 *blks, new_blocks, &err);
648         if (err)
649                 return err;
650
651         branch[0].key = cpu_to_le32(new_blocks[0]);
652         /*
653          * metadata blocks and data blocks are allocated.
654          */
655         for (n = 1; n <= indirect_blks;  n++) {
656                 /*
657                  * Get buffer_head for parent block, zero it out
658                  * and set the pointer to new one, then send
659                  * parent to disk.
660                  */
661                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
662                 branch[n].bh = bh;
663                 lock_buffer(bh);
664                 BUFFER_TRACE(bh, "call get_create_access");
665                 err = ext4_journal_get_create_access(handle, bh);
666                 if (err) {
667                         unlock_buffer(bh);
668                         brelse(bh);
669                         goto failed;
670                 }
671
672                 memset(bh->b_data, 0, blocksize);
673                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
674                 branch[n].key = cpu_to_le32(new_blocks[n]);
675                 *branch[n].p = branch[n].key;
676                 if ( n == indirect_blks) {
677                         current_block = new_blocks[n];
678                         /*
679                          * End of chain, update the last new metablock of
680                          * the chain to point to the new allocated
681                          * data blocks numbers
682                          */
683                         for (i=1; i < num; i++)
684                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
685                 }
686                 BUFFER_TRACE(bh, "marking uptodate");
687                 set_buffer_uptodate(bh);
688                 unlock_buffer(bh);
689
690                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
691                 err = ext4_journal_dirty_metadata(handle, bh);
692                 if (err)
693                         goto failed;
694         }
695         *blks = num;
696         return err;
697 failed:
698         /* Allocation failed, free what we already allocated */
699         for (i = 1; i <= n ; i++) {
700                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701                 ext4_journal_forget(handle, branch[i].bh);
702         }
703         for (i = 0; i <indirect_blks; i++)
704                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705
706         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
707
708         return err;
709 }
710
711 /**
712  * ext4_splice_branch - splice the allocated branch onto inode.
713  * @inode: owner
714  * @block: (logical) number of block we are adding
715  * @chain: chain of indirect blocks (with a missing link - see
716  *      ext4_alloc_branch)
717  * @where: location of missing link
718  * @num:   number of indirect blocks we are adding
719  * @blks:  number of direct blocks we are adding
720  *
721  * This function fills the missing link and does all housekeeping needed in
722  * inode (->i_blocks, etc.). In case of success we end up with the full
723  * chain to new block and return 0.
724  */
725 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
726                         ext4_lblk_t block, Indirect *where, int num, int blks)
727 {
728         int i;
729         int err = 0;
730         struct ext4_block_alloc_info *block_i;
731         ext4_fsblk_t current_block;
732
733         block_i = EXT4_I(inode)->i_block_alloc_info;
734         /*
735          * If we're splicing into a [td]indirect block (as opposed to the
736          * inode) then we need to get write access to the [td]indirect block
737          * before the splice.
738          */
739         if (where->bh) {
740                 BUFFER_TRACE(where->bh, "get_write_access");
741                 err = ext4_journal_get_write_access(handle, where->bh);
742                 if (err)
743                         goto err_out;
744         }
745         /* That's it */
746
747         *where->p = where->key;
748
749         /*
750          * Update the host buffer_head or inode to point to more just allocated
751          * direct blocks blocks
752          */
753         if (num == 0 && blks > 1) {
754                 current_block = le32_to_cpu(where->key) + 1;
755                 for (i = 1; i < blks; i++)
756                         *(where->p + i ) = cpu_to_le32(current_block++);
757         }
758
759         /*
760          * update the most recently allocated logical & physical block
761          * in i_block_alloc_info, to assist find the proper goal block for next
762          * allocation
763          */
764         if (block_i) {
765                 block_i->last_alloc_logical_block = block + blks - 1;
766                 block_i->last_alloc_physical_block =
767                                 le32_to_cpu(where[num].key) + blks - 1;
768         }
769
770         /* We are done with atomic stuff, now do the rest of housekeeping */
771
772         inode->i_ctime = ext4_current_time(inode);
773         ext4_mark_inode_dirty(handle, inode);
774
775         /* had we spliced it onto indirect block? */
776         if (where->bh) {
777                 /*
778                  * If we spliced it onto an indirect block, we haven't
779                  * altered the inode.  Note however that if it is being spliced
780                  * onto an indirect block at the very end of the file (the
781                  * file is growing) then we *will* alter the inode to reflect
782                  * the new i_size.  But that is not done here - it is done in
783                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
784                  */
785                 jbd_debug(5, "splicing indirect only\n");
786                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
787                 err = ext4_journal_dirty_metadata(handle, where->bh);
788                 if (err)
789                         goto err_out;
790         } else {
791                 /*
792                  * OK, we spliced it into the inode itself on a direct block.
793                  * Inode was dirtied above.
794                  */
795                 jbd_debug(5, "splicing direct\n");
796         }
797         return err;
798
799 err_out:
800         for (i = 1; i <= num; i++) {
801                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802                 ext4_journal_forget(handle, where[i].bh);
803                 ext4_free_blocks(handle, inode,
804                                         le32_to_cpu(where[i-1].key), 1, 0);
805         }
806         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
807
808         return err;
809 }
810
811 /*
812  * Allocation strategy is simple: if we have to allocate something, we will
813  * have to go the whole way to leaf. So let's do it before attaching anything
814  * to tree, set linkage between the newborn blocks, write them if sync is
815  * required, recheck the path, free and repeat if check fails, otherwise
816  * set the last missing link (that will protect us from any truncate-generated
817  * removals - all blocks on the path are immune now) and possibly force the
818  * write on the parent block.
819  * That has a nice additional property: no special recovery from the failed
820  * allocations is needed - we simply release blocks and do not touch anything
821  * reachable from inode.
822  *
823  * `handle' can be NULL if create == 0.
824  *
825  * return > 0, # of blocks mapped or allocated.
826  * return = 0, if plain lookup failed.
827  * return < 0, error case.
828  *
829  *
830  * Need to be called with
831  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
833  */
834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
835                 ext4_lblk_t iblock, unsigned long maxblocks,
836                 struct buffer_head *bh_result,
837                 int create, int extend_disksize)
838 {
839         int err = -EIO;
840         ext4_lblk_t offsets[4];
841         Indirect chain[4];
842         Indirect *partial;
843         ext4_fsblk_t goal;
844         int indirect_blks;
845         int blocks_to_boundary = 0;
846         int depth;
847         struct ext4_inode_info *ei = EXT4_I(inode);
848         int count = 0;
849         ext4_fsblk_t first_block = 0;
850
851
852         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
853         J_ASSERT(handle != NULL || create == 0);
854         depth = ext4_block_to_path(inode, iblock, offsets,
855                                         &blocks_to_boundary);
856
857         if (depth == 0)
858                 goto out;
859
860         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
861
862         /* Simplest case - block found, no allocation needed */
863         if (!partial) {
864                 first_block = le32_to_cpu(chain[depth - 1].key);
865                 clear_buffer_new(bh_result);
866                 count++;
867                 /*map more blocks*/
868                 while (count < maxblocks && count <= blocks_to_boundary) {
869                         ext4_fsblk_t blk;
870
871                         blk = le32_to_cpu(*(chain[depth-1].p + count));
872
873                         if (blk == first_block + count)
874                                 count++;
875                         else
876                                 break;
877                 }
878                 goto got_it;
879         }
880
881         /* Next simple case - plain lookup or failed read of indirect block */
882         if (!create || err == -EIO)
883                 goto cleanup;
884
885         /*
886          * Okay, we need to do block allocation.  Lazily initialize the block
887          * allocation info here if necessary
888         */
889         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
890                 ext4_init_block_alloc_info(inode);
891
892         goal = ext4_find_goal(inode, iblock, partial);
893
894         /* the number of blocks need to allocate for [d,t]indirect blocks */
895         indirect_blks = (chain + depth) - partial - 1;
896
897         /*
898          * Next look up the indirect map to count the totoal number of
899          * direct blocks to allocate for this branch.
900          */
901         count = ext4_blks_to_allocate(partial, indirect_blks,
902                                         maxblocks, blocks_to_boundary);
903         /*
904          * Block out ext4_truncate while we alter the tree
905          */
906         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
907                                         &count, goal,
908                                         offsets + (partial - chain), partial);
909
910         /*
911          * The ext4_splice_branch call will free and forget any buffers
912          * on the new chain if there is a failure, but that risks using
913          * up transaction credits, especially for bitmaps where the
914          * credits cannot be returned.  Can we handle this somehow?  We
915          * may need to return -EAGAIN upwards in the worst case.  --sct
916          */
917         if (!err)
918                 err = ext4_splice_branch(handle, inode, iblock,
919                                         partial, indirect_blks, count);
920         /*
921          * i_disksize growing is protected by i_data_sem.  Don't forget to
922          * protect it if you're about to implement concurrent
923          * ext4_get_block() -bzzz
924         */
925         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
926                 ei->i_disksize = inode->i_size;
927         if (err)
928                 goto cleanup;
929
930         set_buffer_new(bh_result);
931 got_it:
932         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
933         if (count > blocks_to_boundary)
934                 set_buffer_boundary(bh_result);
935         err = count;
936         /* Clean up and exit */
937         partial = chain + depth - 1;    /* the whole chain */
938 cleanup:
939         while (partial > chain) {
940                 BUFFER_TRACE(partial->bh, "call brelse");
941                 brelse(partial->bh);
942                 partial--;
943         }
944         BUFFER_TRACE(bh_result, "returned");
945 out:
946         return err;
947 }
948
949 /* Maximum number of blocks we map for direct IO at once. */
950 #define DIO_MAX_BLOCKS 4096
951 /*
952  * Number of credits we need for writing DIO_MAX_BLOCKS:
953  * We need sb + group descriptor + bitmap + inode -> 4
954  * For B blocks with A block pointers per block we need:
955  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
956  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
957  */
958 #define DIO_CREDITS 25
959
960
961 /*
962  *
963  *
964  * ext4_ext4 get_block() wrapper function
965  * It will do a look up first, and returns if the blocks already mapped.
966  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
967  * and store the allocated blocks in the result buffer head and mark it
968  * mapped.
969  *
970  * If file type is extents based, it will call ext4_ext_get_blocks(),
971  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
972  * based files
973  *
974  * On success, it returns the number of blocks being mapped or allocate.
975  * if create==0 and the blocks are pre-allocated and uninitialized block,
976  * the result buffer head is unmapped. If the create ==1, it will make sure
977  * the buffer head is mapped.
978  *
979  * It returns 0 if plain look up failed (blocks have not been allocated), in
980  * that casem, buffer head is unmapped
981  *
982  * It returns the error in case of allocation failure.
983  */
984 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
985                         unsigned long max_blocks, struct buffer_head *bh,
986                         int create, int extend_disksize, int flag)
987 {
988         int retval;
989
990         clear_buffer_mapped(bh);
991
992         /*
993          * Try to see if we can get  the block without requesting
994          * for new file system block.
995          */
996         down_read((&EXT4_I(inode)->i_data_sem));
997         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
998                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
999                                 bh, 0, 0);
1000         } else {
1001                 retval = ext4_get_blocks_handle(handle,
1002                                 inode, block, max_blocks, bh, 0, 0);
1003         }
1004         up_read((&EXT4_I(inode)->i_data_sem));
1005
1006         /* If it is only a block(s) look up */
1007         if (!create)
1008                 return retval;
1009
1010         /*
1011          * Returns if the blocks have already allocated
1012          *
1013          * Note that if blocks have been preallocated
1014          * ext4_ext_get_block() returns th create = 0
1015          * with buffer head unmapped.
1016          */
1017         if (retval > 0 && buffer_mapped(bh))
1018                 return retval;
1019
1020         /*
1021          * New blocks allocate and/or writing to uninitialized extent
1022          * will possibly result in updating i_data, so we take
1023          * the write lock of i_data_sem, and call get_blocks()
1024          * with create == 1 flag.
1025          */
1026         down_write((&EXT4_I(inode)->i_data_sem));
1027
1028         /*
1029          * if the caller is from delayed allocation writeout path
1030          * we have already reserved fs blocks for allocation
1031          * let the underlying get_block() function know to
1032          * avoid double accounting
1033          */
1034         if (flag)
1035                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1036         /*
1037          * We need to check for EXT4 here because migrate
1038          * could have changed the inode type in between
1039          */
1040         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1041                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1042                                 bh, create, extend_disksize);
1043         } else {
1044                 retval = ext4_get_blocks_handle(handle, inode, block,
1045                                 max_blocks, bh, create, extend_disksize);
1046
1047                 if (retval > 0 && buffer_new(bh)) {
1048                         /*
1049                          * We allocated new blocks which will result in
1050                          * i_data's format changing.  Force the migrate
1051                          * to fail by clearing migrate flags
1052                          */
1053                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1054                                                         ~EXT4_EXT_MIGRATE;
1055                 }
1056         }
1057
1058         if (flag) {
1059                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1060                 /*
1061                  * Update reserved blocks/metadata blocks
1062                  * after successful block allocation
1063                  * which were deferred till now
1064                  */
1065                 if ((retval > 0) && buffer_delay(bh))
1066                         ext4_da_release_space(inode, retval, 0);
1067         }
1068
1069         up_write((&EXT4_I(inode)->i_data_sem));
1070         return retval;
1071 }
1072
1073 static int ext4_get_block(struct inode *inode, sector_t iblock,
1074                         struct buffer_head *bh_result, int create)
1075 {
1076         handle_t *handle = ext4_journal_current_handle();
1077         int ret = 0, started = 0;
1078         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1079
1080         if (create && !handle) {
1081                 /* Direct IO write... */
1082                 if (max_blocks > DIO_MAX_BLOCKS)
1083                         max_blocks = DIO_MAX_BLOCKS;
1084                 handle = ext4_journal_start(inode, DIO_CREDITS +
1085                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1086                 if (IS_ERR(handle)) {
1087                         ret = PTR_ERR(handle);
1088                         goto out;
1089                 }
1090                 started = 1;
1091         }
1092
1093         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1094                                         max_blocks, bh_result, create, 0, 0);
1095         if (ret > 0) {
1096                 bh_result->b_size = (ret << inode->i_blkbits);
1097                 ret = 0;
1098         }
1099         if (started)
1100                 ext4_journal_stop(handle);
1101 out:
1102         return ret;
1103 }
1104
1105 /*
1106  * `handle' can be NULL if create is zero
1107  */
1108 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1109                                 ext4_lblk_t block, int create, int *errp)
1110 {
1111         struct buffer_head dummy;
1112         int fatal = 0, err;
1113
1114         J_ASSERT(handle != NULL || create == 0);
1115
1116         dummy.b_state = 0;
1117         dummy.b_blocknr = -1000;
1118         buffer_trace_init(&dummy.b_history);
1119         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1120                                         &dummy, create, 1, 0);
1121         /*
1122          * ext4_get_blocks_handle() returns number of blocks
1123          * mapped. 0 in case of a HOLE.
1124          */
1125         if (err > 0) {
1126                 if (err > 1)
1127                         WARN_ON(1);
1128                 err = 0;
1129         }
1130         *errp = err;
1131         if (!err && buffer_mapped(&dummy)) {
1132                 struct buffer_head *bh;
1133                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1134                 if (!bh) {
1135                         *errp = -EIO;
1136                         goto err;
1137                 }
1138                 if (buffer_new(&dummy)) {
1139                         J_ASSERT(create != 0);
1140                         J_ASSERT(handle != NULL);
1141
1142                         /*
1143                          * Now that we do not always journal data, we should
1144                          * keep in mind whether this should always journal the
1145                          * new buffer as metadata.  For now, regular file
1146                          * writes use ext4_get_block instead, so it's not a
1147                          * problem.
1148                          */
1149                         lock_buffer(bh);
1150                         BUFFER_TRACE(bh, "call get_create_access");
1151                         fatal = ext4_journal_get_create_access(handle, bh);
1152                         if (!fatal && !buffer_uptodate(bh)) {
1153                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1154                                 set_buffer_uptodate(bh);
1155                         }
1156                         unlock_buffer(bh);
1157                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1158                         err = ext4_journal_dirty_metadata(handle, bh);
1159                         if (!fatal)
1160                                 fatal = err;
1161                 } else {
1162                         BUFFER_TRACE(bh, "not a new buffer");
1163                 }
1164                 if (fatal) {
1165                         *errp = fatal;
1166                         brelse(bh);
1167                         bh = NULL;
1168                 }
1169                 return bh;
1170         }
1171 err:
1172         return NULL;
1173 }
1174
1175 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1176                                ext4_lblk_t block, int create, int *err)
1177 {
1178         struct buffer_head * bh;
1179
1180         bh = ext4_getblk(handle, inode, block, create, err);
1181         if (!bh)
1182                 return bh;
1183         if (buffer_uptodate(bh))
1184                 return bh;
1185         ll_rw_block(READ_META, 1, &bh);
1186         wait_on_buffer(bh);
1187         if (buffer_uptodate(bh))
1188                 return bh;
1189         put_bh(bh);
1190         *err = -EIO;
1191         return NULL;
1192 }
1193
1194 static int walk_page_buffers(   handle_t *handle,
1195                                 struct buffer_head *head,
1196                                 unsigned from,
1197                                 unsigned to,
1198                                 int *partial,
1199                                 int (*fn)(      handle_t *handle,
1200                                                 struct buffer_head *bh))
1201 {
1202         struct buffer_head *bh;
1203         unsigned block_start, block_end;
1204         unsigned blocksize = head->b_size;
1205         int err, ret = 0;
1206         struct buffer_head *next;
1207
1208         for (   bh = head, block_start = 0;
1209                 ret == 0 && (bh != head || !block_start);
1210                 block_start = block_end, bh = next)
1211         {
1212                 next = bh->b_this_page;
1213                 block_end = block_start + blocksize;
1214                 if (block_end <= from || block_start >= to) {
1215                         if (partial && !buffer_uptodate(bh))
1216                                 *partial = 1;
1217                         continue;
1218                 }
1219                 err = (*fn)(handle, bh);
1220                 if (!ret)
1221                         ret = err;
1222         }
1223         return ret;
1224 }
1225
1226 /*
1227  * To preserve ordering, it is essential that the hole instantiation and
1228  * the data write be encapsulated in a single transaction.  We cannot
1229  * close off a transaction and start a new one between the ext4_get_block()
1230  * and the commit_write().  So doing the jbd2_journal_start at the start of
1231  * prepare_write() is the right place.
1232  *
1233  * Also, this function can nest inside ext4_writepage() ->
1234  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1235  * has generated enough buffer credits to do the whole page.  So we won't
1236  * block on the journal in that case, which is good, because the caller may
1237  * be PF_MEMALLOC.
1238  *
1239  * By accident, ext4 can be reentered when a transaction is open via
1240  * quota file writes.  If we were to commit the transaction while thus
1241  * reentered, there can be a deadlock - we would be holding a quota
1242  * lock, and the commit would never complete if another thread had a
1243  * transaction open and was blocking on the quota lock - a ranking
1244  * violation.
1245  *
1246  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1247  * will _not_ run commit under these circumstances because handle->h_ref
1248  * is elevated.  We'll still have enough credits for the tiny quotafile
1249  * write.
1250  */
1251 static int do_journal_get_write_access(handle_t *handle,
1252                                         struct buffer_head *bh)
1253 {
1254         if (!buffer_mapped(bh) || buffer_freed(bh))
1255                 return 0;
1256         return ext4_journal_get_write_access(handle, bh);
1257 }
1258
1259 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1260                                 loff_t pos, unsigned len, unsigned flags,
1261                                 struct page **pagep, void **fsdata)
1262 {
1263         struct inode *inode = mapping->host;
1264         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1265         handle_t *handle;
1266         int retries = 0;
1267         struct page *page;
1268         pgoff_t index;
1269         unsigned from, to;
1270
1271         index = pos >> PAGE_CACHE_SHIFT;
1272         from = pos & (PAGE_CACHE_SIZE - 1);
1273         to = from + len;
1274
1275 retry:
1276         handle = ext4_journal_start(inode, needed_blocks);
1277         if (IS_ERR(handle)) {
1278                 ret = PTR_ERR(handle);
1279                 goto out;
1280         }
1281
1282         page = __grab_cache_page(mapping, index);
1283         if (!page) {
1284                 ext4_journal_stop(handle);
1285                 ret = -ENOMEM;
1286                 goto out;
1287         }
1288         *pagep = page;
1289
1290         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1291                                                         ext4_get_block);
1292
1293         if (!ret && ext4_should_journal_data(inode)) {
1294                 ret = walk_page_buffers(handle, page_buffers(page),
1295                                 from, to, NULL, do_journal_get_write_access);
1296         }
1297
1298         if (ret) {
1299                 unlock_page(page);
1300                 ext4_journal_stop(handle);
1301                 page_cache_release(page);
1302         }
1303
1304         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1305                 goto retry;
1306 out:
1307         return ret;
1308 }
1309
1310 /* For write_end() in data=journal mode */
1311 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1312 {
1313         if (!buffer_mapped(bh) || buffer_freed(bh))
1314                 return 0;
1315         set_buffer_uptodate(bh);
1316         return ext4_journal_dirty_metadata(handle, bh);
1317 }
1318
1319 /*
1320  * We need to pick up the new inode size which generic_commit_write gave us
1321  * `file' can be NULL - eg, when called from page_symlink().
1322  *
1323  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1324  * buffers are managed internally.
1325  */
1326 static int ext4_ordered_write_end(struct file *file,
1327                                 struct address_space *mapping,
1328                                 loff_t pos, unsigned len, unsigned copied,
1329                                 struct page *page, void *fsdata)
1330 {
1331         handle_t *handle = ext4_journal_current_handle();
1332         struct inode *inode = mapping->host;
1333         unsigned from, to;
1334         int ret = 0, ret2;
1335
1336         from = pos & (PAGE_CACHE_SIZE - 1);
1337         to = from + len;
1338
1339         ret = ext4_jbd2_file_inode(handle, inode);
1340
1341         if (ret == 0) {
1342                 /*
1343                  * generic_write_end() will run mark_inode_dirty() if i_size
1344                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1345                  * into that.
1346                  */
1347                 loff_t new_i_size;
1348
1349                 new_i_size = pos + copied;
1350                 if (new_i_size > EXT4_I(inode)->i_disksize)
1351                         EXT4_I(inode)->i_disksize = new_i_size;
1352                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1353                                                         page, fsdata);
1354                 copied = ret2;
1355                 if (ret2 < 0)
1356                         ret = ret2;
1357         }
1358         ret2 = ext4_journal_stop(handle);
1359         if (!ret)
1360                 ret = ret2;
1361
1362         return ret ? ret : copied;
1363 }
1364
1365 static int ext4_writeback_write_end(struct file *file,
1366                                 struct address_space *mapping,
1367                                 loff_t pos, unsigned len, unsigned copied,
1368                                 struct page *page, void *fsdata)
1369 {
1370         handle_t *handle = ext4_journal_current_handle();
1371         struct inode *inode = mapping->host;
1372         int ret = 0, ret2;
1373         loff_t new_i_size;
1374
1375         new_i_size = pos + copied;
1376         if (new_i_size > EXT4_I(inode)->i_disksize)
1377                 EXT4_I(inode)->i_disksize = new_i_size;
1378
1379         ret2 = generic_write_end(file, mapping, pos, len, copied,
1380                                                         page, fsdata);
1381         copied = ret2;
1382         if (ret2 < 0)
1383                 ret = ret2;
1384
1385         ret2 = ext4_journal_stop(handle);
1386         if (!ret)
1387                 ret = ret2;
1388
1389         return ret ? ret : copied;
1390 }
1391
1392 static int ext4_journalled_write_end(struct file *file,
1393                                 struct address_space *mapping,
1394                                 loff_t pos, unsigned len, unsigned copied,
1395                                 struct page *page, void *fsdata)
1396 {
1397         handle_t *handle = ext4_journal_current_handle();
1398         struct inode *inode = mapping->host;
1399         int ret = 0, ret2;
1400         int partial = 0;
1401         unsigned from, to;
1402
1403         from = pos & (PAGE_CACHE_SIZE - 1);
1404         to = from + len;
1405
1406         if (copied < len) {
1407                 if (!PageUptodate(page))
1408                         copied = 0;
1409                 page_zero_new_buffers(page, from+copied, to);
1410         }
1411
1412         ret = walk_page_buffers(handle, page_buffers(page), from,
1413                                 to, &partial, write_end_fn);
1414         if (!partial)
1415                 SetPageUptodate(page);
1416         if (pos+copied > inode->i_size)
1417                 i_size_write(inode, pos+copied);
1418         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1419         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1420                 EXT4_I(inode)->i_disksize = inode->i_size;
1421                 ret2 = ext4_mark_inode_dirty(handle, inode);
1422                 if (!ret)
1423                         ret = ret2;
1424         }
1425
1426         unlock_page(page);
1427         ret2 = ext4_journal_stop(handle);
1428         if (!ret)
1429                 ret = ret2;
1430         page_cache_release(page);
1431
1432         return ret ? ret : copied;
1433 }
1434 /*
1435  * Calculate the number of metadata blocks need to reserve
1436  * to allocate @blocks for non extent file based file
1437  */
1438 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1439 {
1440         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1441         int ind_blks, dind_blks, tind_blks;
1442
1443         /* number of new indirect blocks needed */
1444         ind_blks = (blocks + icap - 1) / icap;
1445
1446         dind_blks = (ind_blks + icap - 1) / icap;
1447
1448         tind_blks = 1;
1449
1450         return ind_blks + dind_blks + tind_blks;
1451 }
1452
1453 /*
1454  * Calculate the number of metadata blocks need to reserve
1455  * to allocate given number of blocks
1456  */
1457 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1458 {
1459         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1460                 return ext4_ext_calc_metadata_amount(inode, blocks);
1461
1462         return ext4_indirect_calc_metadata_amount(inode, blocks);
1463 }
1464
1465 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1466 {
1467        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1468        unsigned long md_needed, mdblocks, total = 0;
1469
1470         /*
1471          * recalculate the amount of metadata blocks to reserve
1472          * in order to allocate nrblocks
1473          * worse case is one extent per block
1474          */
1475         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1476         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1477         mdblocks = ext4_calc_metadata_amount(inode, total);
1478         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1479
1480         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1481         total = md_needed + nrblocks;
1482
1483         if (ext4_has_free_blocks(sbi, total) < total) {
1484                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1485                 return -ENOSPC;
1486         }
1487
1488         /* reduce fs free blocks counter */
1489         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1490
1491         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1492         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1493
1494         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1495         return 0;       /* success */
1496 }
1497
1498 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1499 {
1500         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1501         int total, mdb, mdb_free, release;
1502
1503         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1504         /* recalculate the number of metablocks still need to be reserved */
1505         total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1506         mdb = ext4_calc_metadata_amount(inode, total);
1507
1508         /* figure out how many metablocks to release */
1509         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1510         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1511
1512         /* Account for allocated meta_blocks */
1513         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1514
1515         release = to_free + mdb_free;
1516
1517         /* update fs free blocks counter for truncate case */
1518         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1519
1520         /* update per-inode reservations */
1521         BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1522         EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1523
1524         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1525         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1526         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1527         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1528 }
1529
1530 static void ext4_da_page_release_reservation(struct page *page,
1531                                                 unsigned long offset)
1532 {
1533         int to_release = 0;
1534         struct buffer_head *head, *bh;
1535         unsigned int curr_off = 0;
1536
1537         head = page_buffers(page);
1538         bh = head;
1539         do {
1540                 unsigned int next_off = curr_off + bh->b_size;
1541
1542                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1543                         to_release++;
1544                         clear_buffer_delay(bh);
1545                 }
1546                 curr_off = next_off;
1547         } while ((bh = bh->b_this_page) != head);
1548         ext4_da_release_space(page->mapping->host, 0, to_release);
1549 }
1550
1551 /*
1552  * Delayed allocation stuff
1553  */
1554
1555 struct mpage_da_data {
1556         struct inode *inode;
1557         struct buffer_head lbh;                 /* extent of blocks */
1558         unsigned long first_page, next_page;    /* extent of pages */
1559         get_block_t *get_block;
1560         struct writeback_control *wbc;
1561 };
1562
1563 /*
1564  * mpage_da_submit_io - walks through extent of pages and try to write
1565  * them with __mpage_writepage()
1566  *
1567  * @mpd->inode: inode
1568  * @mpd->first_page: first page of the extent
1569  * @mpd->next_page: page after the last page of the extent
1570  * @mpd->get_block: the filesystem's block mapper function
1571  *
1572  * By the time mpage_da_submit_io() is called we expect all blocks
1573  * to be allocated. this may be wrong if allocation failed.
1574  *
1575  * As pages are already locked by write_cache_pages(), we can't use it
1576  */
1577 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1578 {
1579         struct address_space *mapping = mpd->inode->i_mapping;
1580         struct mpage_data mpd_pp = {
1581                 .bio = NULL,
1582                 .last_block_in_bio = 0,
1583                 .get_block = mpd->get_block,
1584                 .use_writepage = 1,
1585         };
1586         int ret = 0, err, nr_pages, i;
1587         unsigned long index, end;
1588         struct pagevec pvec;
1589
1590         BUG_ON(mpd->next_page <= mpd->first_page);
1591
1592         pagevec_init(&pvec, 0);
1593         index = mpd->first_page;
1594         end = mpd->next_page - 1;
1595
1596         while (index <= end) {
1597                 /* XXX: optimize tail */
1598                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1599                 if (nr_pages == 0)
1600                         break;
1601                 for (i = 0; i < nr_pages; i++) {
1602                         struct page *page = pvec.pages[i];
1603
1604                         index = page->index;
1605                         if (index > end)
1606                                 break;
1607                         index++;
1608
1609                         err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1610
1611                         /*
1612                          * In error case, we have to continue because
1613                          * remaining pages are still locked
1614                          * XXX: unlock and re-dirty them?
1615                          */
1616                         if (ret == 0)
1617                                 ret = err;
1618                 }
1619                 pagevec_release(&pvec);
1620         }
1621         if (mpd_pp.bio)
1622                 mpage_bio_submit(WRITE, mpd_pp.bio);
1623
1624         return ret;
1625 }
1626
1627 /*
1628  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1629  *
1630  * @mpd->inode - inode to walk through
1631  * @exbh->b_blocknr - first block on a disk
1632  * @exbh->b_size - amount of space in bytes
1633  * @logical - first logical block to start assignment with
1634  *
1635  * the function goes through all passed space and put actual disk
1636  * block numbers into buffer heads, dropping BH_Delay
1637  */
1638 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1639                                  struct buffer_head *exbh)
1640 {
1641         struct inode *inode = mpd->inode;
1642         struct address_space *mapping = inode->i_mapping;
1643         int blocks = exbh->b_size >> inode->i_blkbits;
1644         sector_t pblock = exbh->b_blocknr, cur_logical;
1645         struct buffer_head *head, *bh;
1646         unsigned long index, end;
1647         struct pagevec pvec;
1648         int nr_pages, i;
1649
1650         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1651         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1652         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1653
1654         pagevec_init(&pvec, 0);
1655
1656         while (index <= end) {
1657                 /* XXX: optimize tail */
1658                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1659                 if (nr_pages == 0)
1660                         break;
1661                 for (i = 0; i < nr_pages; i++) {
1662                         struct page *page = pvec.pages[i];
1663
1664                         index = page->index;
1665                         if (index > end)
1666                                 break;
1667                         index++;
1668
1669                         BUG_ON(!PageLocked(page));
1670                         BUG_ON(PageWriteback(page));
1671                         BUG_ON(!page_has_buffers(page));
1672
1673                         bh = page_buffers(page);
1674                         head = bh;
1675
1676                         /* skip blocks out of the range */
1677                         do {
1678                                 if (cur_logical >= logical)
1679                                         break;
1680                                 cur_logical++;
1681                         } while ((bh = bh->b_this_page) != head);
1682
1683                         do {
1684                                 if (cur_logical >= logical + blocks)
1685                                         break;
1686
1687                                 if (buffer_delay(bh)) {
1688                                         bh->b_blocknr = pblock;
1689                                         clear_buffer_delay(bh);
1690                                 } else if (buffer_mapped(bh)) {
1691                                         BUG_ON(bh->b_blocknr != pblock);
1692                                 }
1693
1694                                 cur_logical++;
1695                                 pblock++;
1696                         } while ((bh = bh->b_this_page) != head);
1697                 }
1698                 pagevec_release(&pvec);
1699         }
1700 }
1701
1702
1703 /*
1704  * __unmap_underlying_blocks - just a helper function to unmap
1705  * set of blocks described by @bh
1706  */
1707 static inline void __unmap_underlying_blocks(struct inode *inode,
1708                                              struct buffer_head *bh)
1709 {
1710         struct block_device *bdev = inode->i_sb->s_bdev;
1711         int blocks, i;
1712
1713         blocks = bh->b_size >> inode->i_blkbits;
1714         for (i = 0; i < blocks; i++)
1715                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1716 }
1717
1718 /*
1719  * mpage_da_map_blocks - go through given space
1720  *
1721  * @mpd->lbh - bh describing space
1722  * @mpd->get_block - the filesystem's block mapper function
1723  *
1724  * The function skips space we know is already mapped to disk blocks.
1725  *
1726  * The function ignores errors ->get_block() returns, thus real
1727  * error handling is postponed to __mpage_writepage()
1728  */
1729 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1730 {
1731         struct buffer_head *lbh = &mpd->lbh;
1732         int err = 0, remain = lbh->b_size;
1733         sector_t next = lbh->b_blocknr;
1734         struct buffer_head new;
1735
1736         /*
1737          * We consider only non-mapped and non-allocated blocks
1738          */
1739         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1740                 return;
1741
1742         while (remain) {
1743                 new.b_state = lbh->b_state;
1744                 new.b_blocknr = 0;
1745                 new.b_size = remain;
1746                 err = mpd->get_block(mpd->inode, next, &new, 1);
1747                 if (err) {
1748                         /*
1749                          * Rather than implement own error handling
1750                          * here, we just leave remaining blocks
1751                          * unallocated and try again with ->writepage()
1752                          */
1753                         break;
1754                 }
1755                 BUG_ON(new.b_size == 0);
1756
1757                 if (buffer_new(&new))
1758                         __unmap_underlying_blocks(mpd->inode, &new);
1759
1760                 /*
1761                  * If blocks are delayed marked, we need to
1762                  * put actual blocknr and drop delayed bit
1763                  */
1764                 if (buffer_delay(lbh))
1765                         mpage_put_bnr_to_bhs(mpd, next, &new);
1766
1767                         /* go for the remaining blocks */
1768                         next += new.b_size >> mpd->inode->i_blkbits;
1769                         remain -= new.b_size;
1770                 }
1771 }
1772
1773 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1774
1775 /*
1776  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1777  *
1778  * @mpd->lbh - extent of blocks
1779  * @logical - logical number of the block in the file
1780  * @bh - bh of the block (used to access block's state)
1781  *
1782  * the function is used to collect contig. blocks in same state
1783  */
1784 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1785                                    sector_t logical, struct buffer_head *bh)
1786 {
1787         struct buffer_head *lbh = &mpd->lbh;
1788         sector_t next;
1789
1790         next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1791
1792         /*
1793          * First block in the extent
1794          */
1795         if (lbh->b_size == 0) {
1796                 lbh->b_blocknr = logical;
1797                 lbh->b_size = bh->b_size;
1798                 lbh->b_state = bh->b_state & BH_FLAGS;
1799                 return;
1800         }
1801
1802         /*
1803          * Can we merge the block to our big extent?
1804          */
1805         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1806                 lbh->b_size += bh->b_size;
1807                 return;
1808         }
1809
1810         /*
1811          * We couldn't merge the block to our extent, so we
1812          * need to flush current  extent and start new one
1813          */
1814         mpage_da_map_blocks(mpd);
1815
1816         /*
1817          * Now start a new extent
1818          */
1819         lbh->b_size = bh->b_size;
1820         lbh->b_state = bh->b_state & BH_FLAGS;
1821         lbh->b_blocknr = logical;
1822 }
1823
1824 /*
1825  * __mpage_da_writepage - finds extent of pages and blocks
1826  *
1827  * @page: page to consider
1828  * @wbc: not used, we just follow rules
1829  * @data: context
1830  *
1831  * The function finds extents of pages and scan them for all blocks.
1832  */
1833 static int __mpage_da_writepage(struct page *page,
1834                                 struct writeback_control *wbc, void *data)
1835 {
1836         struct mpage_da_data *mpd = data;
1837         struct inode *inode = mpd->inode;
1838         struct buffer_head *bh, *head, fake;
1839         sector_t logical;
1840
1841         /*
1842          * Can we merge this page to current extent?
1843          */
1844         if (mpd->next_page != page->index) {
1845                 /*
1846                  * Nope, we can't. So, we map non-allocated blocks
1847                  * and start IO on them using __mpage_writepage()
1848                  */
1849                 if (mpd->next_page != mpd->first_page) {
1850                         mpage_da_map_blocks(mpd);
1851                         mpage_da_submit_io(mpd);
1852                 }
1853
1854                 /*
1855                  * Start next extent of pages ...
1856                  */
1857                 mpd->first_page = page->index;
1858
1859                 /*
1860                  * ... and blocks
1861                  */
1862                 mpd->lbh.b_size = 0;
1863                 mpd->lbh.b_state = 0;
1864                 mpd->lbh.b_blocknr = 0;
1865         }
1866
1867         mpd->next_page = page->index + 1;
1868         logical = (sector_t) page->index <<
1869                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870
1871         if (!page_has_buffers(page)) {
1872                 /*
1873                  * There is no attached buffer heads yet (mmap?)
1874                  * we treat the page asfull of dirty blocks
1875                  */
1876                 bh = &fake;
1877                 bh->b_size = PAGE_CACHE_SIZE;
1878                 bh->b_state = 0;
1879                 set_buffer_dirty(bh);
1880                 set_buffer_uptodate(bh);
1881                 mpage_add_bh_to_extent(mpd, logical, bh);
1882         } else {
1883                 /*
1884                  * Page with regular buffer heads, just add all dirty ones
1885                  */
1886                 head = page_buffers(page);
1887                 bh = head;
1888                 do {
1889                         BUG_ON(buffer_locked(bh));
1890                         if (buffer_dirty(bh))
1891                                 mpage_add_bh_to_extent(mpd, logical, bh);
1892                         logical++;
1893                 } while ((bh = bh->b_this_page) != head);
1894         }
1895
1896         return 0;
1897 }
1898
1899 /*
1900  * mpage_da_writepages - walk the list of dirty pages of the given
1901  * address space, allocates non-allocated blocks, maps newly-allocated
1902  * blocks to existing bhs and issue IO them
1903  *
1904  * @mapping: address space structure to write
1905  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1906  * @get_block: the filesystem's block mapper function.
1907  *
1908  * This is a library function, which implements the writepages()
1909  * address_space_operation.
1910  *
1911  * In order to avoid duplication of logic that deals with partial pages,
1912  * multiple bio per page, etc, we find non-allocated blocks, allocate
1913  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1914  *
1915  * It's important that we call __mpage_writepage() only once for each
1916  * involved page, otherwise we'd have to implement more complicated logic
1917  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1918  *
1919  * See comments to mpage_writepages()
1920  */
1921 static int mpage_da_writepages(struct address_space *mapping,
1922                                struct writeback_control *wbc,
1923                                get_block_t get_block)
1924 {
1925         struct mpage_da_data mpd;
1926         int ret;
1927
1928         if (!get_block)
1929                 return generic_writepages(mapping, wbc);
1930
1931         mpd.wbc = wbc;
1932         mpd.inode = mapping->host;
1933         mpd.lbh.b_size = 0;
1934         mpd.lbh.b_state = 0;
1935         mpd.lbh.b_blocknr = 0;
1936         mpd.first_page = 0;
1937         mpd.next_page = 0;
1938         mpd.get_block = get_block;
1939
1940         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1941
1942         /*
1943          * Handle last extent of pages
1944          */
1945         if (mpd.next_page != mpd.first_page) {
1946                 mpage_da_map_blocks(&mpd);
1947                 mpage_da_submit_io(&mpd);
1948         }
1949
1950         return ret;
1951 }
1952
1953 /*
1954  * this is a special callback for ->write_begin() only
1955  * it's intention is to return mapped block or reserve space
1956  */
1957 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1958                                   struct buffer_head *bh_result, int create)
1959 {
1960         int ret = 0;
1961
1962         BUG_ON(create == 0);
1963         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1964
1965         /*
1966          * first, we need to know whether the block is allocated already
1967          * preallocated blocks are unmapped but should treated
1968          * the same as allocated blocks.
1969          */
1970         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
1971         if ((ret == 0) && !buffer_delay(bh_result)) {
1972                 /* the block isn't (pre)allocated yet, let's reserve space */
1973                 /*
1974                  * XXX: __block_prepare_write() unmaps passed block,
1975                  * is it OK?
1976                  */
1977                 ret = ext4_da_reserve_space(inode, 1);
1978                 if (ret)
1979                         /* not enough space to reserve */
1980                         return ret;
1981
1982                 map_bh(bh_result, inode->i_sb, 0);
1983                 set_buffer_new(bh_result);
1984                 set_buffer_delay(bh_result);
1985         } else if (ret > 0) {
1986                 bh_result->b_size = (ret << inode->i_blkbits);
1987                 ret = 0;
1988         }
1989
1990         return ret;
1991 }
1992 #define         EXT4_DELALLOC_RSVED     1
1993 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1994                                    struct buffer_head *bh_result, int create)
1995 {
1996         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1997         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1998         loff_t disksize = EXT4_I(inode)->i_disksize;
1999         handle_t *handle = NULL;
2000
2001         if (create) {
2002                 handle = ext4_journal_start(inode, needed_blocks);
2003                 if (IS_ERR(handle)) {
2004                         ret = PTR_ERR(handle);
2005                         goto out;
2006                 }
2007         }
2008
2009         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2010                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2011         if (ret > 0) {
2012                 bh_result->b_size = (ret << inode->i_blkbits);
2013
2014                 /*
2015                  * Update on-disk size along with block allocation
2016                  * we don't use 'extend_disksize' as size may change
2017                  * within already allocated block -bzzz
2018                  */
2019                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2020                 if (disksize > i_size_read(inode))
2021                         disksize = i_size_read(inode);
2022                 if (disksize > EXT4_I(inode)->i_disksize) {
2023                         /*
2024                          * XXX: replace with spinlock if seen contended -bzzz
2025                          */
2026                         down_write(&EXT4_I(inode)->i_data_sem);
2027                         if (disksize > EXT4_I(inode)->i_disksize)
2028                                 EXT4_I(inode)->i_disksize = disksize;
2029                         up_write(&EXT4_I(inode)->i_data_sem);
2030
2031                         if (EXT4_I(inode)->i_disksize == disksize) {
2032                                 if (handle == NULL)
2033                                         handle = ext4_journal_start(inode, 1);
2034                                 if (!IS_ERR(handle))
2035                                         ext4_mark_inode_dirty(handle, inode);
2036                         }
2037                 }
2038
2039                 ret = 0;
2040         }
2041
2042 out:
2043         if (handle && !IS_ERR(handle))
2044                 ext4_journal_stop(handle);
2045
2046         return ret;
2047 }
2048 /* FIXME!! only support data=writeback mode */
2049 static int ext4_da_writepage(struct page *page,
2050                                 struct writeback_control *wbc)
2051 {
2052         struct inode *inode = page->mapping->host;
2053         handle_t *handle = NULL;
2054         int ret = 0;
2055         int err;
2056
2057         if (ext4_journal_current_handle())
2058                 goto out_fail;
2059
2060         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2061         if (IS_ERR(handle)) {
2062                 ret = PTR_ERR(handle);
2063                 goto out_fail;
2064         }
2065
2066         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2067                 ret = nobh_writepage(page, ext4_get_block, wbc);
2068         else
2069                 ret = block_write_full_page(page, ext4_get_block, wbc);
2070
2071         if (!ret && inode->i_size > EXT4_I(inode)->i_disksize) {
2072                 EXT4_I(inode)->i_disksize = inode->i_size;
2073                 ext4_mark_inode_dirty(handle, inode);
2074         }
2075
2076         err = ext4_journal_stop(handle);
2077         if (!ret)
2078                 ret = err;
2079         return ret;
2080
2081 out_fail:
2082         redirty_page_for_writepage(wbc, page);
2083         unlock_page(page);
2084         return ret;
2085 }
2086
2087 static int ext4_da_writepages(struct address_space *mapping,
2088                                 struct writeback_control *wbc)
2089 {
2090         return mpage_da_writepages(mapping, wbc, ext4_da_get_block_write);
2091 }
2092
2093 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2094                                 loff_t pos, unsigned len, unsigned flags,
2095                                 struct page **pagep, void **fsdata)
2096 {
2097         int ret, retries = 0;
2098         struct page *page;
2099         pgoff_t index;
2100         unsigned from, to;
2101         struct inode *inode = mapping->host;
2102         handle_t *handle;
2103
2104         index = pos >> PAGE_CACHE_SHIFT;
2105         from = pos & (PAGE_CACHE_SIZE - 1);
2106         to = from + len;
2107
2108 retry:
2109         /*
2110          * With delayed allocation, we don't log the i_disksize update
2111          * if there is delayed block allocation. But we still need
2112          * to journalling the i_disksize update if writes to the end
2113          * of file which has an already mapped buffer.
2114          */
2115         handle = ext4_journal_start(inode, 1);
2116         if (IS_ERR(handle)) {
2117                 ret = PTR_ERR(handle);
2118                 goto out;
2119         }
2120
2121         page = __grab_cache_page(mapping, index);
2122         if (!page)
2123                 return -ENOMEM;
2124         *pagep = page;
2125
2126         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2127                                                         ext4_da_get_block_prep);
2128         if (ret < 0) {
2129                 unlock_page(page);
2130                 ext4_journal_stop(handle);
2131                 page_cache_release(page);
2132         }
2133
2134         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2135                 goto retry;
2136 out:
2137         return ret;
2138 }
2139
2140 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2141 {
2142         return !buffer_mapped(bh) || buffer_delay(bh);
2143 }
2144
2145 static int ext4_da_write_end(struct file *file,
2146                                 struct address_space *mapping,
2147                                 loff_t pos, unsigned len, unsigned copied,
2148                                 struct page *page, void *fsdata)
2149 {
2150         struct inode *inode = mapping->host;
2151         int ret = 0, ret2;
2152         handle_t *handle = ext4_journal_current_handle();
2153         loff_t new_i_size;
2154
2155         /*
2156          * generic_write_end() will run mark_inode_dirty() if i_size
2157          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2158          * into that.
2159          */
2160
2161         new_i_size = pos + copied;
2162         if (new_i_size > EXT4_I(inode)->i_disksize)
2163                 if (!walk_page_buffers(NULL, page_buffers(page),
2164                                        0, len, NULL, ext4_bh_unmapped_or_delay)){
2165                         /*
2166                          * Updating i_disksize when extending file without
2167                          * needing block allocation
2168                          */
2169                         if (ext4_should_order_data(inode))
2170                                 ret = ext4_jbd2_file_inode(handle, inode);
2171
2172                         EXT4_I(inode)->i_disksize = new_i_size;
2173                 }
2174         ret2 = generic_write_end(file, mapping, pos, len, copied,
2175                                                         page, fsdata);
2176         copied = ret2;
2177         if (ret2 < 0)
2178                 ret = ret2;
2179         ret2 = ext4_journal_stop(handle);
2180         if (!ret)
2181                 ret = ret2;
2182
2183         return ret ? ret : copied;
2184 }
2185
2186 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2187 {
2188         /*
2189          * Drop reserved blocks
2190          */
2191         BUG_ON(!PageLocked(page));
2192         if (!page_has_buffers(page))
2193                 goto out;
2194
2195         ext4_da_page_release_reservation(page, offset);
2196
2197 out:
2198         ext4_invalidatepage(page, offset);
2199
2200         return;
2201 }
2202
2203
2204 /*
2205  * bmap() is special.  It gets used by applications such as lilo and by
2206  * the swapper to find the on-disk block of a specific piece of data.
2207  *
2208  * Naturally, this is dangerous if the block concerned is still in the
2209  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2210  * filesystem and enables swap, then they may get a nasty shock when the
2211  * data getting swapped to that swapfile suddenly gets overwritten by
2212  * the original zero's written out previously to the journal and
2213  * awaiting writeback in the kernel's buffer cache.
2214  *
2215  * So, if we see any bmap calls here on a modified, data-journaled file,
2216  * take extra steps to flush any blocks which might be in the cache.
2217  */
2218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2219 {
2220         struct inode *inode = mapping->host;
2221         journal_t *journal;
2222         int err;
2223
2224         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2225                         test_opt(inode->i_sb, DELALLOC)) {
2226                 /*
2227                  * With delalloc we want to sync the file
2228                  * so that we can make sure we allocate
2229                  * blocks for file
2230                  */
2231                 filemap_write_and_wait(mapping);
2232         }
2233
2234         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2235                 /*
2236                  * This is a REALLY heavyweight approach, but the use of
2237                  * bmap on dirty files is expected to be extremely rare:
2238                  * only if we run lilo or swapon on a freshly made file
2239                  * do we expect this to happen.
2240                  *
2241                  * (bmap requires CAP_SYS_RAWIO so this does not
2242                  * represent an unprivileged user DOS attack --- we'd be
2243                  * in trouble if mortal users could trigger this path at
2244                  * will.)
2245                  *
2246                  * NB. EXT4_STATE_JDATA is not set on files other than
2247                  * regular files.  If somebody wants to bmap a directory
2248                  * or symlink and gets confused because the buffer
2249                  * hasn't yet been flushed to disk, they deserve
2250                  * everything they get.
2251                  */
2252
2253                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2254                 journal = EXT4_JOURNAL(inode);
2255                 jbd2_journal_lock_updates(journal);
2256                 err = jbd2_journal_flush(journal);
2257                 jbd2_journal_unlock_updates(journal);
2258
2259                 if (err)
2260                         return 0;
2261         }
2262
2263         return generic_block_bmap(mapping,block,ext4_get_block);
2264 }
2265
2266 static int bget_one(handle_t *handle, struct buffer_head *bh)
2267 {
2268         get_bh(bh);
2269         return 0;
2270 }
2271
2272 static int bput_one(handle_t *handle, struct buffer_head *bh)
2273 {
2274         put_bh(bh);
2275         return 0;
2276 }
2277
2278 /*
2279  * Note that we don't need to start a transaction unless we're journaling data
2280  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2281  * need to file the inode to the transaction's list in ordered mode because if
2282  * we are writing back data added by write(), the inode is already there and if
2283  * we are writing back data modified via mmap(), noone guarantees in which
2284  * transaction the data will hit the disk. In case we are journaling data, we
2285  * cannot start transaction directly because transaction start ranks above page
2286  * lock so we have to do some magic.
2287  *
2288  * In all journaling modes block_write_full_page() will start the I/O.
2289  *
2290  * Problem:
2291  *
2292  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2293  *              ext4_writepage()
2294  *
2295  * Similar for:
2296  *
2297  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2298  *
2299  * Same applies to ext4_get_block().  We will deadlock on various things like
2300  * lock_journal and i_data_sem
2301  *
2302  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2303  * allocations fail.
2304  *
2305  * 16May01: If we're reentered then journal_current_handle() will be
2306  *          non-zero. We simply *return*.
2307  *
2308  * 1 July 2001: @@@ FIXME:
2309  *   In journalled data mode, a data buffer may be metadata against the
2310  *   current transaction.  But the same file is part of a shared mapping
2311  *   and someone does a writepage() on it.
2312  *
2313  *   We will move the buffer onto the async_data list, but *after* it has
2314  *   been dirtied. So there's a small window where we have dirty data on
2315  *   BJ_Metadata.
2316  *
2317  *   Note that this only applies to the last partial page in the file.  The
2318  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2319  *   broken code anyway: it's wrong for msync()).
2320  *
2321  *   It's a rare case: affects the final partial page, for journalled data
2322  *   where the file is subject to bith write() and writepage() in the same
2323  *   transction.  To fix it we'll need a custom block_write_full_page().
2324  *   We'll probably need that anyway for journalling writepage() output.
2325  *
2326  * We don't honour synchronous mounts for writepage().  That would be
2327  * disastrous.  Any write() or metadata operation will sync the fs for
2328  * us.
2329  *
2330  */
2331 static int __ext4_normal_writepage(struct page *page,
2332                                 struct writeback_control *wbc)
2333 {
2334         struct inode *inode = page->mapping->host;
2335
2336         if (test_opt(inode->i_sb, NOBH))
2337                 return nobh_writepage(page, ext4_get_block, wbc);
2338         else
2339                 return block_write_full_page(page, ext4_get_block, wbc);
2340 }
2341
2342
2343 static int ext4_normal_writepage(struct page *page,
2344                                 struct writeback_control *wbc)
2345 {
2346         struct inode *inode = page->mapping->host;
2347         loff_t size = i_size_read(inode);
2348         loff_t len;
2349
2350         J_ASSERT(PageLocked(page));
2351         J_ASSERT(page_has_buffers(page));
2352         if (page->index == size >> PAGE_CACHE_SHIFT)
2353                 len = size & ~PAGE_CACHE_MASK;
2354         else
2355                 len = PAGE_CACHE_SIZE;
2356         BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2357                                  ext4_bh_unmapped_or_delay));
2358
2359         if (!ext4_journal_current_handle())
2360                 return __ext4_normal_writepage(page, wbc);
2361
2362         redirty_page_for_writepage(wbc, page);
2363         unlock_page(page);
2364         return 0;
2365 }
2366
2367 static int __ext4_journalled_writepage(struct page *page,
2368                                 struct writeback_control *wbc)
2369 {
2370         struct address_space *mapping = page->mapping;
2371         struct inode *inode = mapping->host;
2372         struct buffer_head *page_bufs;
2373         handle_t *handle = NULL;
2374         int ret = 0;
2375         int err;
2376
2377         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
2378         if (ret != 0)
2379                 goto out_unlock;
2380
2381         page_bufs = page_buffers(page);
2382         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2383                                                                 bget_one);
2384         /* As soon as we unlock the page, it can go away, but we have
2385          * references to buffers so we are safe */
2386         unlock_page(page);
2387
2388         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2389         if (IS_ERR(handle)) {
2390                 ret = PTR_ERR(handle);
2391                 goto out;
2392         }
2393
2394         ret = walk_page_buffers(handle, page_bufs, 0,
2395                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2396
2397         err = walk_page_buffers(handle, page_bufs, 0,
2398                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2399         if (ret == 0)
2400                 ret = err;
2401         err = ext4_journal_stop(handle);
2402         if (!ret)
2403                 ret = err;
2404
2405         walk_page_buffers(handle, page_bufs, 0,
2406                                 PAGE_CACHE_SIZE, NULL, bput_one);
2407         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2408         goto out;
2409
2410 out_unlock:
2411         unlock_page(page);
2412 out:
2413         return ret;
2414 }
2415
2416 static int ext4_journalled_writepage(struct page *page,
2417                                 struct writeback_control *wbc)
2418 {
2419         struct inode *inode = page->mapping->host;
2420         loff_t size = i_size_read(inode);
2421         loff_t len;
2422
2423         J_ASSERT(PageLocked(page));
2424         J_ASSERT(page_has_buffers(page));
2425         if (page->index == size >> PAGE_CACHE_SHIFT)
2426                 len = size & ~PAGE_CACHE_MASK;
2427         else
2428                 len = PAGE_CACHE_SIZE;
2429         BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2430                                  ext4_bh_unmapped_or_delay));
2431
2432         if (ext4_journal_current_handle())
2433                 goto no_write;
2434
2435         if (PageChecked(page)) {
2436                 /*
2437                  * It's mmapped pagecache.  Add buffers and journal it.  There
2438                  * doesn't seem much point in redirtying the page here.
2439                  */
2440                 ClearPageChecked(page);
2441                 return __ext4_journalled_writepage(page, wbc);
2442         } else {
2443                 /*
2444                  * It may be a page full of checkpoint-mode buffers.  We don't
2445                  * really know unless we go poke around in the buffer_heads.
2446                  * But block_write_full_page will do the right thing.
2447                  */
2448                 return block_write_full_page(page, ext4_get_block, wbc);
2449         }
2450 no_write:
2451         redirty_page_for_writepage(wbc, page);
2452         unlock_page(page);
2453         return 0;
2454 }
2455
2456 static int ext4_readpage(struct file *file, struct page *page)
2457 {
2458         return mpage_readpage(page, ext4_get_block);
2459 }
2460
2461 static int
2462 ext4_readpages(struct file *file, struct address_space *mapping,
2463                 struct list_head *pages, unsigned nr_pages)
2464 {
2465         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2466 }
2467
2468 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2469 {
2470         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2471
2472         /*
2473          * If it's a full truncate we just forget about the pending dirtying
2474          */
2475         if (offset == 0)
2476                 ClearPageChecked(page);
2477
2478         jbd2_journal_invalidatepage(journal, page, offset);
2479 }
2480
2481 static int ext4_releasepage(struct page *page, gfp_t wait)
2482 {
2483         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2484
2485         WARN_ON(PageChecked(page));
2486         if (!page_has_buffers(page))
2487                 return 0;
2488         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2489 }
2490
2491 /*
2492  * If the O_DIRECT write will extend the file then add this inode to the
2493  * orphan list.  So recovery will truncate it back to the original size
2494  * if the machine crashes during the write.
2495  *
2496  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2497  * crashes then stale disk data _may_ be exposed inside the file. But current
2498  * VFS code falls back into buffered path in that case so we are safe.
2499  */
2500 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2501                         const struct iovec *iov, loff_t offset,
2502                         unsigned long nr_segs)
2503 {
2504         struct file *file = iocb->ki_filp;
2505         struct inode *inode = file->f_mapping->host;
2506         struct ext4_inode_info *ei = EXT4_I(inode);
2507         handle_t *handle;
2508         ssize_t ret;
2509         int orphan = 0;
2510         size_t count = iov_length(iov, nr_segs);
2511
2512         if (rw == WRITE) {
2513                 loff_t final_size = offset + count;
2514
2515                 if (final_size > inode->i_size) {
2516                         /* Credits for sb + inode write */
2517                         handle = ext4_journal_start(inode, 2);
2518                         if (IS_ERR(handle)) {
2519                                 ret = PTR_ERR(handle);
2520                                 goto out;
2521                         }
2522                         ret = ext4_orphan_add(handle, inode);
2523                         if (ret) {
2524                                 ext4_journal_stop(handle);
2525                                 goto out;
2526                         }
2527                         orphan = 1;
2528                         ei->i_disksize = inode->i_size;
2529                         ext4_journal_stop(handle);
2530                 }
2531         }
2532
2533         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2534                                  offset, nr_segs,
2535                                  ext4_get_block, NULL);
2536
2537         if (orphan) {
2538                 int err;
2539
2540                 /* Credits for sb + inode write */
2541                 handle = ext4_journal_start(inode, 2);
2542                 if (IS_ERR(handle)) {
2543                         /* This is really bad luck. We've written the data
2544                          * but cannot extend i_size. Bail out and pretend
2545                          * the write failed... */
2546                         ret = PTR_ERR(handle);
2547                         goto out;
2548                 }
2549                 if (inode->i_nlink)
2550                         ext4_orphan_del(handle, inode);
2551                 if (ret > 0) {
2552                         loff_t end = offset + ret;
2553                         if (end > inode->i_size) {
2554                                 ei->i_disksize = end;
2555                                 i_size_write(inode, end);
2556                                 /*
2557                                  * We're going to return a positive `ret'
2558                                  * here due to non-zero-length I/O, so there's
2559                                  * no way of reporting error returns from
2560                                  * ext4_mark_inode_dirty() to userspace.  So
2561                                  * ignore it.
2562                                  */
2563                                 ext4_mark_inode_dirty(handle, inode);
2564                         }
2565                 }
2566                 err = ext4_journal_stop(handle);
2567                 if (ret == 0)
2568                         ret = err;
2569         }
2570 out:
2571         return ret;
2572 }
2573
2574 /*
2575  * Pages can be marked dirty completely asynchronously from ext4's journalling
2576  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2577  * much here because ->set_page_dirty is called under VFS locks.  The page is
2578  * not necessarily locked.
2579  *
2580  * We cannot just dirty the page and leave attached buffers clean, because the
2581  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2582  * or jbddirty because all the journalling code will explode.
2583  *
2584  * So what we do is to mark the page "pending dirty" and next time writepage
2585  * is called, propagate that into the buffers appropriately.
2586  */
2587 static int ext4_journalled_set_page_dirty(struct page *page)
2588 {
2589         SetPageChecked(page);
2590         return __set_page_dirty_nobuffers(page);
2591 }
2592
2593 static const struct address_space_operations ext4_ordered_aops = {
2594         .readpage       = ext4_readpage,
2595         .readpages      = ext4_readpages,
2596         .writepage      = ext4_normal_writepage,
2597         .sync_page      = block_sync_page,
2598         .write_begin    = ext4_write_begin,
2599         .write_end      = ext4_ordered_write_end,
2600         .bmap           = ext4_bmap,
2601         .invalidatepage = ext4_invalidatepage,
2602         .releasepage    = ext4_releasepage,
2603         .direct_IO      = ext4_direct_IO,
2604         .migratepage    = buffer_migrate_page,
2605 };
2606
2607 static const struct address_space_operations ext4_writeback_aops = {
2608         .readpage       = ext4_readpage,
2609         .readpages      = ext4_readpages,
2610         .writepage      = ext4_normal_writepage,
2611         .sync_page      = block_sync_page,
2612         .write_begin    = ext4_write_begin,
2613         .write_end      = ext4_writeback_write_end,
2614         .bmap           = ext4_bmap,
2615         .invalidatepage = ext4_invalidatepage,
2616         .releasepage    = ext4_releasepage,
2617         .direct_IO      = ext4_direct_IO,
2618         .migratepage    = buffer_migrate_page,
2619 };
2620
2621 static const struct address_space_operations ext4_journalled_aops = {
2622         .readpage       = ext4_readpage,
2623         .readpages      = ext4_readpages,
2624         .writepage      = ext4_journalled_writepage,
2625         .sync_page      = block_sync_page,
2626         .write_begin    = ext4_write_begin,
2627         .write_end      = ext4_journalled_write_end,
2628         .set_page_dirty = ext4_journalled_set_page_dirty,
2629         .bmap           = ext4_bmap,
2630         .invalidatepage = ext4_invalidatepage,
2631         .releasepage    = ext4_releasepage,
2632 };
2633
2634 static const struct address_space_operations ext4_da_aops = {
2635         .readpage       = ext4_readpage,
2636         .readpages      = ext4_readpages,
2637         .writepage      = ext4_da_writepage,
2638         .writepages     = ext4_da_writepages,
2639         .sync_page      = block_sync_page,
2640         .write_begin    = ext4_da_write_begin,
2641         .write_end      = ext4_da_write_end,
2642         .bmap           = ext4_bmap,
2643         .invalidatepage = ext4_da_invalidatepage,
2644         .releasepage    = ext4_releasepage,
2645         .direct_IO      = ext4_direct_IO,
2646         .migratepage    = buffer_migrate_page,
2647 };
2648
2649 void ext4_set_aops(struct inode *inode)
2650 {
2651         if (ext4_should_order_data(inode))
2652                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2653         else if (ext4_should_writeback_data(inode) &&
2654                  test_opt(inode->i_sb, DELALLOC))
2655                 inode->i_mapping->a_ops = &ext4_da_aops;
2656         else if (ext4_should_writeback_data(inode))
2657                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2658         else
2659                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2660 }
2661
2662 /*
2663  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2664  * up to the end of the block which corresponds to `from'.
2665  * This required during truncate. We need to physically zero the tail end
2666  * of that block so it doesn't yield old data if the file is later grown.
2667  */
2668 int ext4_block_truncate_page(handle_t *handle,
2669                 struct address_space *mapping, loff_t from)
2670 {
2671         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2672         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2673         unsigned blocksize, length, pos;
2674         ext4_lblk_t iblock;
2675         struct inode *inode = mapping->host;
2676         struct buffer_head *bh;
2677         struct page *page;
2678         int err = 0;
2679
2680         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2681         if (!page)
2682                 return -EINVAL;
2683
2684         blocksize = inode->i_sb->s_blocksize;
2685         length = blocksize - (offset & (blocksize - 1));
2686         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2687
2688         /*
2689          * For "nobh" option,  we can only work if we don't need to
2690          * read-in the page - otherwise we create buffers to do the IO.
2691          */
2692         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2693              ext4_should_writeback_data(inode) && PageUptodate(page)) {
2694                 zero_user(page, offset, length);
2695                 set_page_dirty(page);
2696                 goto unlock;
2697         }
2698
2699         if (!page_has_buffers(page))
2700                 create_empty_buffers(page, blocksize, 0);
2701
2702         /* Find the buffer that contains "offset" */
2703         bh = page_buffers(page);
2704         pos = blocksize;
2705         while (offset >= pos) {
2706                 bh = bh->b_this_page;
2707                 iblock++;
2708                 pos += blocksize;
2709         }
2710
2711         err = 0;
2712         if (buffer_freed(bh)) {
2713                 BUFFER_TRACE(bh, "freed: skip");
2714                 goto unlock;
2715         }
2716
2717         if (!buffer_mapped(bh)) {
2718                 BUFFER_TRACE(bh, "unmapped");
2719                 ext4_get_block(inode, iblock, bh, 0);
2720                 /* unmapped? It's a hole - nothing to do */
2721                 if (!buffer_mapped(bh)) {
2722                         BUFFER_TRACE(bh, "still unmapped");
2723                         goto unlock;
2724                 }
2725         }
2726
2727         /* Ok, it's mapped. Make sure it's up-to-date */
2728         if (PageUptodate(page))
2729                 set_buffer_uptodate(bh);
2730
2731         if (!buffer_uptodate(bh)) {
2732                 err = -EIO;
2733                 ll_rw_block(READ, 1, &bh);
2734                 wait_on_buffer(bh);
2735                 /* Uhhuh. Read error. Complain and punt. */
2736                 if (!buffer_uptodate(bh))
2737                         goto unlock;
2738         }
2739
2740         if (ext4_should_journal_data(inode)) {
2741                 BUFFER_TRACE(bh, "get write access");
2742                 err = ext4_journal_get_write_access(handle, bh);
2743                 if (err)
2744                         goto unlock;
2745         }
2746
2747         zero_user(page, offset, length);
2748
2749         BUFFER_TRACE(bh, "zeroed end of block");
2750
2751         err = 0;
2752         if (ext4_should_journal_data(inode)) {
2753                 err = ext4_journal_dirty_metadata(handle, bh);
2754         } else {
2755                 if (ext4_should_order_data(inode))
2756                         err = ext4_jbd2_file_inode(handle, inode);
2757                 mark_buffer_dirty(bh);
2758         }
2759
2760 unlock:
2761         unlock_page(page);
2762         page_cache_release(page);
2763         return err;
2764 }
2765
2766 /*
2767  * Probably it should be a library function... search for first non-zero word
2768  * or memcmp with zero_page, whatever is better for particular architecture.
2769  * Linus?
2770  */
2771 static inline int all_zeroes(__le32 *p, __le32 *q)
2772 {
2773         while (p < q)
2774                 if (*p++)
2775                         return 0;
2776         return 1;
2777 }
2778
2779 /**
2780  *      ext4_find_shared - find the indirect blocks for partial truncation.
2781  *      @inode:   inode in question
2782  *      @depth:   depth of the affected branch
2783  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2784  *      @chain:   place to store the pointers to partial indirect blocks
2785  *      @top:     place to the (detached) top of branch
2786  *
2787  *      This is a helper function used by ext4_truncate().
2788  *
2789  *      When we do truncate() we may have to clean the ends of several
2790  *      indirect blocks but leave the blocks themselves alive. Block is
2791  *      partially truncated if some data below the new i_size is refered
2792  *      from it (and it is on the path to the first completely truncated
2793  *      data block, indeed).  We have to free the top of that path along
2794  *      with everything to the right of the path. Since no allocation
2795  *      past the truncation point is possible until ext4_truncate()
2796  *      finishes, we may safely do the latter, but top of branch may
2797  *      require special attention - pageout below the truncation point
2798  *      might try to populate it.
2799  *
2800  *      We atomically detach the top of branch from the tree, store the
2801  *      block number of its root in *@top, pointers to buffer_heads of
2802  *      partially truncated blocks - in @chain[].bh and pointers to
2803  *      their last elements that should not be removed - in
2804  *      @chain[].p. Return value is the pointer to last filled element
2805  *      of @chain.
2806  *
2807  *      The work left to caller to do the actual freeing of subtrees:
2808  *              a) free the subtree starting from *@top
2809  *              b) free the subtrees whose roots are stored in
2810  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2811  *              c) free the subtrees growing from the inode past the @chain[0].
2812  *                      (no partially truncated stuff there).  */
2813
2814 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2815                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2816 {
2817         Indirect *partial, *p;
2818         int k, err;
2819
2820         *top = 0;
2821         /* Make k index the deepest non-null offest + 1 */
2822         for (k = depth; k > 1 && !offsets[k-1]; k--)
2823                 ;
2824         partial = ext4_get_branch(inode, k, offsets, chain, &err);
2825         /* Writer: pointers */
2826         if (!partial)
2827                 partial = chain + k-1;
2828         /*
2829          * If the branch acquired continuation since we've looked at it -
2830          * fine, it should all survive and (new) top doesn't belong to us.
2831          */
2832         if (!partial->key && *partial->p)
2833                 /* Writer: end */
2834                 goto no_top;
2835         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2836                 ;
2837         /*
2838          * OK, we've found the last block that must survive. The rest of our
2839          * branch should be detached before unlocking. However, if that rest
2840          * of branch is all ours and does not grow immediately from the inode
2841          * it's easier to cheat and just decrement partial->p.
2842          */
2843         if (p == chain + k - 1 && p > chain) {
2844                 p->p--;
2845         } else {
2846                 *top = *p->p;
2847                 /* Nope, don't do this in ext4.  Must leave the tree intact */
2848 #if 0
2849                 *p->p = 0;
2850 #endif
2851         }
2852         /* Writer: end */
2853
2854         while(partial > p) {
2855                 brelse(partial->bh);
2856                 partial--;
2857         }
2858 no_top:
2859         return partial;
2860 }
2861
2862 /*
2863  * Zero a number of block pointers in either an inode or an indirect block.
2864  * If we restart the transaction we must again get write access to the
2865  * indirect block for further modification.
2866  *
2867  * We release `count' blocks on disk, but (last - first) may be greater
2868  * than `count' because there can be holes in there.
2869  */
2870 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2871                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2872                 unsigned long count, __le32 *first, __le32 *last)
2873 {
2874         __le32 *p;
2875         if (try_to_extend_transaction(handle, inode)) {
2876                 if (bh) {
2877                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2878                         ext4_journal_dirty_metadata(handle, bh);
2879                 }
2880                 ext4_mark_inode_dirty(handle, inode);
2881                 ext4_journal_test_restart(handle, inode);
2882                 if (bh) {
2883                         BUFFER_TRACE(bh, "retaking write access");
2884                         ext4_journal_get_write_access(handle, bh);
2885                 }
2886         }
2887
2888         /*
2889          * Any buffers which are on the journal will be in memory. We find
2890          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2891          * on them.  We've already detached each block from the file, so
2892          * bforget() in jbd2_journal_forget() should be safe.
2893          *
2894          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2895          */
2896         for (p = first; p < last; p++) {
2897                 u32 nr = le32_to_cpu(*p);
2898                 if (nr) {
2899                         struct buffer_head *tbh;
2900
2901                         *p = 0;
2902                         tbh = sb_find_get_block(inode->i_sb, nr);
2903                         ext4_forget(handle, 0, inode, tbh, nr);
2904                 }
2905         }
2906
2907         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2908 }
2909
2910 /**
2911  * ext4_free_data - free a list of data blocks
2912  * @handle:     handle for this transaction
2913  * @inode:      inode we are dealing with
2914  * @this_bh:    indirect buffer_head which contains *@first and *@last
2915  * @first:      array of block numbers
2916  * @last:       points immediately past the end of array
2917  *
2918  * We are freeing all blocks refered from that array (numbers are stored as
2919  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2920  *
2921  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2922  * blocks are contiguous then releasing them at one time will only affect one
2923  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2924  * actually use a lot of journal space.
2925  *
2926  * @this_bh will be %NULL if @first and @last point into the inode's direct
2927  * block pointers.
2928  */
2929 static void ext4_free_data(handle_t *handle, struct inode *inode,
2930                            struct buffer_head *this_bh,
2931                            __le32 *first, __le32 *last)
2932 {
2933         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2934         unsigned long count = 0;            /* Number of blocks in the run */
2935         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2936                                                corresponding to
2937                                                block_to_free */
2938         ext4_fsblk_t nr;                    /* Current block # */
2939         __le32 *p;                          /* Pointer into inode/ind
2940                                                for current block */
2941         int err;
2942
2943         if (this_bh) {                          /* For indirect block */
2944                 BUFFER_TRACE(this_bh, "get_write_access");
2945                 err = ext4_journal_get_write_access(handle, this_bh);
2946                 /* Important: if we can't update the indirect pointers
2947                  * to the blocks, we can't free them. */
2948                 if (err)
2949                         return;
2950         }
2951
2952         for (p = first; p < last; p++) {
2953                 nr = le32_to_cpu(*p);
2954                 if (nr) {
2955                         /* accumulate blocks to free if they're contiguous */
2956                         if (count == 0) {
2957                                 block_to_free = nr;
2958                                 block_to_free_p = p;
2959                                 count = 1;
2960                         } else if (nr == block_to_free + count) {
2961                                 count++;
2962                         } else {
2963                                 ext4_clear_blocks(handle, inode, this_bh,
2964                                                   block_to_free,
2965                                                   count, block_to_free_p, p);
2966                                 block_to_free = nr;
2967                                 block_to_free_p = p;
2968                                 count = 1;
2969                         }
2970                 }
2971         }
2972
2973         if (count > 0)
2974                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2975                                   count, block_to_free_p, p);
2976
2977         if (this_bh) {
2978                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2979
2980                 /*
2981                  * The buffer head should have an attached journal head at this
2982                  * point. However, if the data is corrupted and an indirect
2983                  * block pointed to itself, it would have been detached when
2984                  * the block was cleared. Check for this instead of OOPSing.
2985                  */
2986                 if (bh2jh(this_bh))
2987                         ext4_journal_dirty_metadata(handle, this_bh);
2988                 else
2989                         ext4_error(inode->i_sb, __func__,
2990                                    "circular indirect block detected, "
2991                                    "inode=%lu, block=%llu",
2992                                    inode->i_ino,
2993                                    (unsigned long long) this_bh->b_blocknr);
2994         }
2995 }
2996
2997 /**
2998  *      ext4_free_branches - free an array of branches
2999  *      @handle: JBD handle for this transaction
3000  *      @inode: inode we are dealing with
3001  *      @parent_bh: the buffer_head which contains *@first and *@last
3002  *      @first: array of block numbers
3003  *      @last:  pointer immediately past the end of array
3004  *      @depth: depth of the branches to free
3005  *
3006  *      We are freeing all blocks refered from these branches (numbers are
3007  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3008  *      appropriately.
3009  */
3010 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3011                                struct buffer_head *parent_bh,
3012                                __le32 *first, __le32 *last, int depth)
3013 {
3014         ext4_fsblk_t nr;
3015         __le32 *p;
3016
3017         if (is_handle_aborted(handle))
3018                 return;
3019
3020         if (depth--) {
3021                 struct buffer_head *bh;
3022                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3023                 p = last;
3024                 while (--p >= first) {
3025                         nr = le32_to_cpu(*p);
3026                         if (!nr)
3027                                 continue;               /* A hole */
3028
3029                         /* Go read the buffer for the next level down */
3030                         bh = sb_bread(inode->i_sb, nr);
3031
3032                         /*
3033                          * A read failure? Report error and clear slot
3034                          * (should be rare).
3035                          */
3036                         if (!bh) {
3037                                 ext4_error(inode->i_sb, "ext4_free_branches",
3038                                            "Read failure, inode=%lu, block=%llu",
3039                                            inode->i_ino, nr);
3040                                 continue;
3041                         }
3042
3043                         /* This zaps the entire block.  Bottom up. */
3044                         BUFFER_TRACE(bh, "free child branches");
3045                         ext4_free_branches(handle, inode, bh,
3046                                            (__le32*)bh->b_data,
3047                                            (__le32*)bh->b_data + addr_per_block,
3048                                            depth);
3049
3050                         /*
3051                          * We've probably journalled the indirect block several
3052                          * times during the truncate.  But it's no longer
3053                          * needed and we now drop it from the transaction via
3054                          * jbd2_journal_revoke().
3055                          *
3056                          * That's easy if it's exclusively part of this
3057                          * transaction.  But if it's part of the committing
3058                          * transaction then jbd2_journal_forget() will simply
3059                          * brelse() it.  That means that if the underlying
3060                          * block is reallocated in ext4_get_block(),
3061                          * unmap_underlying_metadata() will find this block
3062                          * and will try to get rid of it.  damn, damn.
3063                          *
3064                          * If this block has already been committed to the
3065                          * journal, a revoke record will be written.  And
3066                          * revoke records must be emitted *before* clearing
3067                          * this block's bit in the bitmaps.
3068                          */
3069                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3070
3071                         /*
3072                          * Everything below this this pointer has been
3073                          * released.  Now let this top-of-subtree go.
3074                          *
3075                          * We want the freeing of this indirect block to be
3076                          * atomic in the journal with the updating of the
3077                          * bitmap block which owns it.  So make some room in
3078                          * the journal.
3079                          *
3080                          * We zero the parent pointer *after* freeing its
3081                          * pointee in the bitmaps, so if extend_transaction()
3082                          * for some reason fails to put the bitmap changes and
3083                          * the release into the same transaction, recovery
3084                          * will merely complain about releasing a free block,
3085                          * rather than leaking blocks.
3086                          */
3087                         if (is_handle_aborted(handle))
3088                                 return;
3089                         if (try_to_extend_transaction(handle, inode)) {
3090                                 ext4_mark_inode_dirty(handle, inode);
3091                                 ext4_journal_test_restart(handle, inode);
3092                         }
3093
3094                         ext4_free_blocks(handle, inode, nr, 1, 1);
3095
3096                         if (parent_bh) {
3097                                 /*
3098                                  * The block which we have just freed is
3099                                  * pointed to by an indirect block: journal it
3100                                  */
3101                                 BUFFER_TRACE(parent_bh, "get_write_access");
3102                                 if (!ext4_journal_get_write_access(handle,
3103                                                                    parent_bh)){
3104                                         *p = 0;
3105                                         BUFFER_TRACE(parent_bh,
3106                                         "call ext4_journal_dirty_metadata");
3107                                         ext4_journal_dirty_metadata(handle,
3108                                                                     parent_bh);
3109                                 }
3110                         }
3111                 }
3112         } else {
3113                 /* We have reached the bottom of the tree. */
3114                 BUFFER_TRACE(parent_bh, "free data blocks");
3115                 ext4_free_data(handle, inode, parent_bh, first, last);
3116         }
3117 }
3118
3119 int ext4_can_truncate(struct inode *inode)
3120 {
3121         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3122                 return 0;
3123         if (S_ISREG(inode->i_mode))
3124                 return 1;
3125         if (S_ISDIR(inode->i_mode))
3126                 return 1;
3127         if (S_ISLNK(inode->i_mode))
3128                 return !ext4_inode_is_fast_symlink(inode);
3129         return 0;
3130 }
3131
3132 /*
3133  * ext4_truncate()
3134  *
3135  * We block out ext4_get_block() block instantiations across the entire
3136  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3137  * simultaneously on behalf of the same inode.
3138  *
3139  * As we work through the truncate and commmit bits of it to the journal there
3140  * is one core, guiding principle: the file's tree must always be consistent on
3141  * disk.  We must be able to restart the truncate after a crash.
3142  *
3143  * The file's tree may be transiently inconsistent in memory (although it
3144  * probably isn't), but whenever we close off and commit a journal transaction,
3145  * the contents of (the filesystem + the journal) must be consistent and
3146  * restartable.  It's pretty simple, really: bottom up, right to left (although
3147  * left-to-right works OK too).
3148  *
3149  * Note that at recovery time, journal replay occurs *before* the restart of
3150  * truncate against the orphan inode list.
3151  *
3152  * The committed inode has the new, desired i_size (which is the same as
3153  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3154  * that this inode's truncate did not complete and it will again call
3155  * ext4_truncate() to have another go.  So there will be instantiated blocks
3156  * to the right of the truncation point in a crashed ext4 filesystem.  But
3157  * that's fine - as long as they are linked from the inode, the post-crash
3158  * ext4_truncate() run will find them and release them.
3159  */
3160 void ext4_truncate(struct inode *inode)
3161 {
3162         handle_t *handle;
3163         struct ext4_inode_info *ei = EXT4_I(inode);
3164         __le32 *i_data = ei->i_data;
3165         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3166         struct address_space *mapping = inode->i_mapping;
3167         ext4_lblk_t offsets[4];
3168         Indirect chain[4];
3169         Indirect *partial;
3170         __le32 nr = 0;
3171         int n;
3172         ext4_lblk_t last_block;
3173         unsigned blocksize = inode->i_sb->s_blocksize;
3174
3175         if (!ext4_can_truncate(inode))
3176                 return;
3177
3178         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3179                 ext4_ext_truncate(inode);
3180                 return;
3181         }
3182
3183         handle = start_transaction(inode);
3184         if (IS_ERR(handle))
3185                 return;         /* AKPM: return what? */
3186
3187         last_block = (inode->i_size + blocksize-1)
3188                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3189
3190         if (inode->i_size & (blocksize - 1))
3191                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3192                         goto out_stop;
3193
3194         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3195         if (n == 0)
3196                 goto out_stop;  /* error */
3197
3198         /*
3199          * OK.  This truncate is going to happen.  We add the inode to the
3200          * orphan list, so that if this truncate spans multiple transactions,
3201          * and we crash, we will resume the truncate when the filesystem
3202          * recovers.  It also marks the inode dirty, to catch the new size.
3203          *
3204          * Implication: the file must always be in a sane, consistent
3205          * truncatable state while each transaction commits.
3206          */
3207         if (ext4_orphan_add(handle, inode))
3208                 goto out_stop;
3209
3210         /*
3211          * The orphan list entry will now protect us from any crash which
3212          * occurs before the truncate completes, so it is now safe to propagate
3213          * the new, shorter inode size (held for now in i_size) into the
3214          * on-disk inode. We do this via i_disksize, which is the value which
3215          * ext4 *really* writes onto the disk inode.
3216          */
3217         ei->i_disksize = inode->i_size;
3218
3219         /*
3220          * From here we block out all ext4_get_block() callers who want to
3221          * modify the block allocation tree.
3222          */
3223         down_write(&ei->i_data_sem);
3224
3225         if (n == 1) {           /* direct blocks */
3226                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3227                                i_data + EXT4_NDIR_BLOCKS);
3228                 goto do_indirects;
3229         }
3230
3231         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3232         /* Kill the top of shared branch (not detached) */
3233         if (nr) {
3234                 if (partial == chain) {
3235                         /* Shared branch grows from the inode */
3236                         ext4_free_branches(handle, inode, NULL,
3237                                            &nr, &nr+1, (chain+n-1) - partial);
3238                         *partial->p = 0;
3239                         /*
3240                          * We mark the inode dirty prior to restart,
3241                          * and prior to stop.  No need for it here.
3242                          */
3243                 } else {
3244                         /* Shared branch grows from an indirect block */
3245                         BUFFER_TRACE(partial->bh, "get_write_access");
3246                         ext4_free_branches(handle, inode, partial->bh,
3247                                         partial->p,
3248                                         partial->p+1, (chain+n-1) - partial);
3249                 }
3250         }
3251         /* Clear the ends of indirect blocks on the shared branch */
3252         while (partial > chain) {
3253                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3254                                    (__le32*)partial->bh->b_data+addr_per_block,
3255                                    (chain+n-1) - partial);
3256                 BUFFER_TRACE(partial->bh, "call brelse");
3257                 brelse (partial->bh);
3258                 partial--;
3259         }
3260 do_indirects:
3261         /* Kill the remaining (whole) subtrees */
3262         switch (offsets[0]) {
3263         default:
3264                 nr = i_data[EXT4_IND_BLOCK];
3265                 if (nr) {
3266                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3267                         i_data[EXT4_IND_BLOCK] = 0;
3268                 }
3269         case EXT4_IND_BLOCK:
3270                 nr = i_data[EXT4_DIND_BLOCK];
3271                 if (nr) {
3272                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3273                         i_data[EXT4_DIND_BLOCK] = 0;
3274                 }
3275         case EXT4_DIND_BLOCK:
3276                 nr = i_data[EXT4_TIND_BLOCK];
3277                 if (nr) {
3278                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3279                         i_data[EXT4_TIND_BLOCK] = 0;
3280                 }
3281         case EXT4_TIND_BLOCK:
3282                 ;
3283         }
3284
3285         ext4_discard_reservation(inode);
3286
3287         up_write(&ei->i_data_sem);
3288         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3289         ext4_mark_inode_dirty(handle, inode);
3290
3291         /*
3292          * In a multi-transaction truncate, we only make the final transaction
3293          * synchronous
3294          */
3295         if (IS_SYNC(inode))
3296                 handle->h_sync = 1;
3297 out_stop:
3298         /*
3299          * If this was a simple ftruncate(), and the file will remain alive
3300          * then we need to clear up the orphan record which we created above.
3301          * However, if this was a real unlink then we were called by
3302          * ext4_delete_inode(), and we allow that function to clean up the
3303          * orphan info for us.
3304          */
3305         if (inode->i_nlink)
3306                 ext4_orphan_del(handle, inode);
3307
3308         ext4_journal_stop(handle);
3309 }
3310
3311 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3312                 unsigned long ino, struct ext4_iloc *iloc)
3313 {
3314         ext4_group_t block_group;
3315         unsigned long offset;
3316         ext4_fsblk_t block;
3317         struct ext4_group_desc *gdp;
3318
3319         if (!ext4_valid_inum(sb, ino)) {
3320                 /*
3321                  * This error is already checked for in namei.c unless we are
3322                  * looking at an NFS filehandle, in which case no error
3323                  * report is needed
3324                  */
3325                 return 0;
3326         }
3327
3328         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3329         gdp = ext4_get_group_desc(sb, block_group, NULL);
3330         if (!gdp)
3331                 return 0;
3332
3333         /*
3334          * Figure out the offset within the block group inode table
3335          */
3336         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3337                 EXT4_INODE_SIZE(sb);
3338         block = ext4_inode_table(sb, gdp) +
3339                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3340
3341         iloc->block_group = block_group;
3342         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3343         return block;
3344 }
3345
3346 /*
3347  * ext4_get_inode_loc returns with an extra refcount against the inode's
3348  * underlying buffer_head on success. If 'in_mem' is true, we have all
3349  * data in memory that is needed to recreate the on-disk version of this
3350  * inode.
3351  */
3352 static int __ext4_get_inode_loc(struct inode *inode,
3353                                 struct ext4_iloc *iloc, int in_mem)
3354 {
3355         ext4_fsblk_t block;
3356         struct buffer_head *bh;
3357
3358         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3359         if (!block)
3360                 return -EIO;
3361
3362         bh = sb_getblk(inode->i_sb, block);
3363         if (!bh) {
3364                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3365                                 "unable to read inode block - "
3366                                 "inode=%lu, block=%llu",
3367                                  inode->i_ino, block);
3368                 return -EIO;
3369         }
3370         if (!buffer_uptodate(bh)) {
3371                 lock_buffer(bh);
3372                 if (buffer_uptodate(bh)) {
3373                         /* someone brought it uptodate while we waited */
3374                         unlock_buffer(bh);
3375                         goto has_buffer;
3376                 }
3377
3378                 /*
3379                  * If we have all information of the inode in memory and this
3380                  * is the only valid inode in the block, we need not read the
3381                  * block.
3382                  */
3383                 if (in_mem) {
3384                         struct buffer_head *bitmap_bh;
3385                         struct ext4_group_desc *desc;
3386                         int inodes_per_buffer;
3387                         int inode_offset, i;
3388                         ext4_group_t block_group;
3389                         int start;
3390
3391                         block_group = (inode->i_ino - 1) /
3392                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3393                         inodes_per_buffer = bh->b_size /
3394                                 EXT4_INODE_SIZE(inode->i_sb);
3395                         inode_offset = ((inode->i_ino - 1) %
3396                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3397                         start = inode_offset & ~(inodes_per_buffer - 1);
3398
3399                         /* Is the inode bitmap in cache? */
3400                         desc = ext4_get_group_desc(inode->i_sb,
3401                                                 block_group, NULL);
3402                         if (!desc)
3403                                 goto make_io;
3404
3405                         bitmap_bh = sb_getblk(inode->i_sb,
3406                                 ext4_inode_bitmap(inode->i_sb, desc));
3407                         if (!bitmap_bh)
3408                                 goto make_io;
3409
3410                         /*
3411                          * If the inode bitmap isn't in cache then the
3412                          * optimisation may end up performing two reads instead
3413                          * of one, so skip it.
3414                          */
3415                         if (!buffer_uptodate(bitmap_bh)) {
3416                                 brelse(bitmap_bh);
3417                                 goto make_io;
3418                         }
3419                         for (i = start; i < start + inodes_per_buffer; i++) {
3420                                 if (i == inode_offset)
3421                                         continue;
3422                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3423                                         break;
3424                         }
3425                         brelse(bitmap_bh);
3426                         if (i == start + inodes_per_buffer) {
3427                                 /* all other inodes are free, so skip I/O */
3428                                 memset(bh->b_data, 0, bh->b_size);
3429                                 set_buffer_uptodate(bh);
3430                                 unlock_buffer(bh);
3431                                 goto has_buffer;
3432                         }
3433                 }
3434
3435 make_io:
3436                 /*
3437                  * There are other valid inodes in the buffer, this inode
3438                  * has in-inode xattrs, or we don't have this inode in memory.
3439                  * Read the block from disk.
3440                  */
3441                 get_bh(bh);
3442                 bh->b_end_io = end_buffer_read_sync;
3443                 submit_bh(READ_META, bh);
3444                 wait_on_buffer(bh);
3445                 if (!buffer_uptodate(bh)) {
3446                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3447                                         "unable to read inode block - "
3448                                         "inode=%lu, block=%llu",
3449                                         inode->i_ino, block);
3450                         brelse(bh);
3451                         return -EIO;
3452                 }
3453         }
3454 has_buffer:
3455         iloc->bh = bh;
3456         return 0;
3457 }
3458
3459 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3460 {
3461         /* We have all inode data except xattrs in memory here. */
3462         return __ext4_get_inode_loc(inode, iloc,
3463                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3464 }
3465
3466 void ext4_set_inode_flags(struct inode *inode)
3467 {
3468         unsigned int flags = EXT4_I(inode)->i_flags;
3469
3470         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3471         if (flags & EXT4_SYNC_FL)
3472                 inode->i_flags |= S_SYNC;
3473         if (flags & EXT4_APPEND_FL)
3474                 inode->i_flags |= S_APPEND;
3475         if (flags & EXT4_IMMUTABLE_FL)
3476                 inode->i_flags |= S_IMMUTABLE;
3477         if (flags & EXT4_NOATIME_FL)
3478                 inode->i_flags |= S_NOATIME;
3479         if (flags & EXT4_DIRSYNC_FL)
3480                 inode->i_flags |= S_DIRSYNC;
3481 }
3482
3483 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3484 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3485 {
3486         unsigned int flags = ei->vfs_inode.i_flags;
3487
3488         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3489                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3490         if (flags & S_SYNC)
3491                 ei->i_flags |= EXT4_SYNC_FL;
3492         if (flags & S_APPEND)
3493                 ei->i_flags |= EXT4_APPEND_FL;
3494         if (flags & S_IMMUTABLE)
3495                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3496         if (flags & S_NOATIME)
3497                 ei->i_flags |= EXT4_NOATIME_FL;
3498         if (flags & S_DIRSYNC)
3499                 ei->i_flags |= EXT4_DIRSYNC_FL;
3500 }
3501 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3502                                         struct ext4_inode_info *ei)
3503 {
3504         blkcnt_t i_blocks ;
3505         struct inode *inode = &(ei->vfs_inode);
3506         struct super_block *sb = inode->i_sb;
3507
3508         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3509                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3510                 /* we are using combined 48 bit field */
3511                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3512                                         le32_to_cpu(raw_inode->i_blocks_lo);
3513                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3514                         /* i_blocks represent file system block size */
3515                         return i_blocks  << (inode->i_blkbits - 9);
3516                 } else {
3517                         return i_blocks;
3518                 }
3519         } else {
3520                 return le32_to_cpu(raw_inode->i_blocks_lo);
3521         }
3522 }
3523
3524 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3525 {
3526         struct ext4_iloc iloc;
3527         struct ext4_inode *raw_inode;
3528         struct ext4_inode_info *ei;
3529         struct buffer_head *bh;
3530         struct inode *inode;
3531         long ret;
3532         int block;
3533
3534         inode = iget_locked(sb, ino);
3535         if (!inode)
3536                 return ERR_PTR(-ENOMEM);
3537         if (!(inode->i_state & I_NEW))
3538                 return inode;
3539
3540         ei = EXT4_I(inode);
3541 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3542         ei->i_acl = EXT4_ACL_NOT_CACHED;
3543         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3544 #endif
3545         ei->i_block_alloc_info = NULL;
3546
3547         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3548         if (ret < 0)
3549                 goto bad_inode;
3550         bh = iloc.bh;
3551         raw_inode = ext4_raw_inode(&iloc);
3552         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3553         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3554         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3555         if(!(test_opt (inode->i_sb, NO_UID32))) {
3556                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3557                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3558         }
3559         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3560
3561         ei->i_state = 0;
3562         ei->i_dir_start_lookup = 0;
3563         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3564         /* We now have enough fields to check if the inode was active or not.
3565          * This is needed because nfsd might try to access dead inodes
3566          * the test is that same one that e2fsck uses
3567          * NeilBrown 1999oct15
3568          */
3569         if (inode->i_nlink == 0) {
3570                 if (inode->i_mode == 0 ||
3571                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3572                         /* this inode is deleted */
3573                         brelse (bh);
3574                         ret = -ESTALE;
3575                         goto bad_inode;
3576                 }
3577                 /* The only unlinked inodes we let through here have
3578                  * valid i_mode and are being read by the orphan
3579                  * recovery code: that's fine, we're about to complete
3580                  * the process of deleting those. */
3581         }
3582         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3583         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3584         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3585         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3586             cpu_to_le32(EXT4_OS_HURD)) {
3587                 ei->i_file_acl |=
3588                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3589         }
3590         inode->i_size = ext4_isize(raw_inode);
3591         ei->i_disksize = inode->i_size;
3592         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3593         ei->i_block_group = iloc.block_group;
3594         /*
3595          * NOTE! The in-memory inode i_data array is in little-endian order
3596          * even on big-endian machines: we do NOT byteswap the block numbers!
3597          */
3598         for (block = 0; block < EXT4_N_BLOCKS; block++)
3599                 ei->i_data[block] = raw_inode->i_block[block];
3600         INIT_LIST_HEAD(&ei->i_orphan);
3601
3602         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3603                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3604                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3605                     EXT4_INODE_SIZE(inode->i_sb)) {
3606                         brelse (bh);
3607                         ret = -EIO;
3608                         goto bad_inode;
3609                 }
3610                 if (ei->i_extra_isize == 0) {
3611                         /* The extra space is currently unused. Use it. */
3612                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3613                                             EXT4_GOOD_OLD_INODE_SIZE;
3614                 } else {
3615                         __le32 *magic = (void *)raw_inode +
3616                                         EXT4_GOOD_OLD_INODE_SIZE +
3617                                         ei->i_extra_isize;
3618                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3619                                  ei->i_state |= EXT4_STATE_XATTR;
3620                 }
3621         } else
3622                 ei->i_extra_isize = 0;
3623
3624         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3625         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3626         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3627         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3628
3629         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3630         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3631                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3632                         inode->i_version |=
3633                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3634         }
3635
3636         if (S_ISREG(inode->i_mode)) {
3637                 inode->i_op = &ext4_file_inode_operations;
3638                 inode->i_fop = &ext4_file_operations;
3639                 ext4_set_aops(inode);
3640         } else if (S_ISDIR(inode->i_mode)) {
3641                 inode->i_op = &ext4_dir_inode_operations;
3642                 inode->i_fop = &ext4_dir_operations;
3643         } else if (S_ISLNK(inode->i_mode)) {
3644                 if (ext4_inode_is_fast_symlink(inode))
3645                         inode->i_op = &ext4_fast_symlink_inode_operations;
3646                 else {
3647                         inode->i_op = &ext4_symlink_inode_operations;
3648                         ext4_set_aops(inode);
3649                 }
3650         } else {
3651                 inode->i_op = &ext4_special_inode_operations;
3652                 if (raw_inode->i_block[0])
3653                         init_special_inode(inode, inode->i_mode,
3654                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3655                 else
3656                         init_special_inode(inode, inode->i_mode,
3657                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3658         }
3659         brelse (iloc.bh);
3660         ext4_set_inode_flags(inode);
3661         unlock_new_inode(inode);
3662         return inode;
3663
3664 bad_inode:
3665         iget_failed(inode);
3666         return ERR_PTR(ret);
3667 }
3668
3669 static int ext4_inode_blocks_set(handle_t *handle,
3670                                 struct ext4_inode *raw_inode,
3671                                 struct ext4_inode_info *ei)
3672 {
3673         struct inode *inode = &(ei->vfs_inode);
3674         u64 i_blocks = inode->i_blocks;
3675         struct super_block *sb = inode->i_sb;
3676         int err = 0;
3677
3678         if (i_blocks <= ~0U) {
3679                 /*
3680                  * i_blocks can be represnted in a 32 bit variable
3681                  * as multiple of 512 bytes
3682                  */
3683                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3684                 raw_inode->i_blocks_high = 0;
3685                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3686         } else if (i_blocks <= 0xffffffffffffULL) {
3687                 /*
3688                  * i_blocks can be represented in a 48 bit variable
3689                  * as multiple of 512 bytes
3690                  */
3691                 err = ext4_update_rocompat_feature(handle, sb,
3692                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3693                 if (err)
3694                         goto  err_out;
3695                 /* i_block is stored in the split  48 bit fields */
3696                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3697                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3698                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3699         } else {
3700                 /*
3701                  * i_blocks should be represented in a 48 bit variable
3702                  * as multiple of  file system block size
3703                  */
3704                 err = ext4_update_rocompat_feature(handle, sb,
3705                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3706                 if (err)
3707                         goto  err_out;
3708                 ei->i_flags |= EXT4_HUGE_FILE_FL;
3709                 /* i_block is stored in file system block size */
3710                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3711                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3712                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3713         }
3714 err_out:
3715         return err;
3716 }
3717
3718 /*
3719  * Post the struct inode info into an on-disk inode location in the
3720  * buffer-cache.  This gobbles the caller's reference to the
3721  * buffer_head in the inode location struct.
3722  *
3723  * The caller must have write access to iloc->bh.
3724  */
3725 static int ext4_do_update_inode(handle_t *handle,
3726                                 struct inode *inode,
3727                                 struct ext4_iloc *iloc)
3728 {
3729         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3730         struct ext4_inode_info *ei = EXT4_I(inode);
3731         struct buffer_head *bh = iloc->bh;
3732         int err = 0, rc, block;
3733
3734         /* For fields not not tracking in the in-memory inode,
3735          * initialise them to zero for new inodes. */
3736         if (ei->i_state & EXT4_STATE_NEW)
3737                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3738
3739         ext4_get_inode_flags(ei);
3740         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3741         if(!(test_opt(inode->i_sb, NO_UID32))) {
3742                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3743                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3744 /*
3745  * Fix up interoperability with old kernels. Otherwise, old inodes get
3746  * re-used with the upper 16 bits of the uid/gid intact
3747  */
3748                 if(!ei->i_dtime) {
3749                         raw_inode->i_uid_high =
3750                                 cpu_to_le16(high_16_bits(inode->i_uid));
3751                         raw_inode->i_gid_high =
3752                                 cpu_to_le16(high_16_bits(inode->i_gid));
3753                 } else {
3754                         raw_inode->i_uid_high = 0;
3755                         raw_inode->i_gid_high = 0;
3756                 }
3757         } else {
3758                 raw_inode->i_uid_low =
3759                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3760                 raw_inode->i_gid_low =
3761                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3762                 raw_inode->i_uid_high = 0;
3763                 raw_inode->i_gid_high = 0;
3764         }
3765         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3766
3767         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3768         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3769         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3770         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3771
3772         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3773                 goto out_brelse;
3774         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3775         /* clear the migrate flag in the raw_inode */
3776         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3777         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3778             cpu_to_le32(EXT4_OS_HURD))
3779                 raw_inode->i_file_acl_high =
3780                         cpu_to_le16(ei->i_file_acl >> 32);
3781         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3782         ext4_isize_set(raw_inode, ei->i_disksize);
3783         if (ei->i_disksize > 0x7fffffffULL) {
3784                 struct super_block *sb = inode->i_sb;
3785                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3786                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3787                                 EXT4_SB(sb)->s_es->s_rev_level ==
3788                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3789                         /* If this is the first large file
3790                          * created, add a flag to the superblock.
3791                          */
3792                         err = ext4_journal_get_write_access(handle,
3793                                         EXT4_SB(sb)->s_sbh);
3794                         if (err)
3795                                 goto out_brelse;
3796                         ext4_update_dynamic_rev(sb);
3797                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3798                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3799                         sb->s_dirt = 1;
3800                         handle->h_sync = 1;
3801                         err = ext4_journal_dirty_metadata(handle,
3802                                         EXT4_SB(sb)->s_sbh);
3803                 }
3804         }
3805         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3806         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3807                 if (old_valid_dev(inode->i_rdev)) {
3808                         raw_inode->i_block[0] =
3809                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3810                         raw_inode->i_block[1] = 0;
3811                 } else {
3812                         raw_inode->i_block[0] = 0;
3813                         raw_inode->i_block[1] =
3814                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3815                         raw_inode->i_block[2] = 0;
3816                 }
3817         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3818                 raw_inode->i_block[block] = ei->i_data[block];
3819
3820         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3821         if (ei->i_extra_isize) {
3822                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3823                         raw_inode->i_version_hi =
3824                         cpu_to_le32(inode->i_version >> 32);
3825                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3826         }
3827
3828
3829         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3830         rc = ext4_journal_dirty_metadata(handle, bh);
3831         if (!err)
3832                 err = rc;
3833         ei->i_state &= ~EXT4_STATE_NEW;
3834
3835 out_brelse:
3836         brelse (bh);
3837         ext4_std_error(inode->i_sb, err);
3838         return err;
3839 }
3840
3841 /*
3842  * ext4_write_inode()
3843  *
3844  * We are called from a few places:
3845  *
3846  * - Within generic_file_write() for O_SYNC files.
3847  *   Here, there will be no transaction running. We wait for any running
3848  *   trasnaction to commit.
3849  *
3850  * - Within sys_sync(), kupdate and such.
3851  *   We wait on commit, if tol to.
3852  *
3853  * - Within prune_icache() (PF_MEMALLOC == true)
3854  *   Here we simply return.  We can't afford to block kswapd on the
3855  *   journal commit.
3856  *
3857  * In all cases it is actually safe for us to return without doing anything,
3858  * because the inode has been copied into a raw inode buffer in
3859  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3860  * knfsd.
3861  *
3862  * Note that we are absolutely dependent upon all inode dirtiers doing the
3863  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3864  * which we are interested.
3865  *
3866  * It would be a bug for them to not do this.  The code:
3867  *
3868  *      mark_inode_dirty(inode)
3869  *      stuff();
3870  *      inode->i_size = expr;
3871  *
3872  * is in error because a kswapd-driven write_inode() could occur while
3873  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3874  * will no longer be on the superblock's dirty inode list.
3875  */
3876 int ext4_write_inode(struct inode *inode, int wait)
3877 {
3878         if (current->flags & PF_MEMALLOC)
3879                 return 0;
3880
3881         if (ext4_journal_current_handle()) {
3882                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3883                 dump_stack();
3884                 return -EIO;
3885         }
3886
3887         if (!wait)
3888                 return 0;
3889
3890         return ext4_force_commit(inode->i_sb);
3891 }
3892
3893 /*
3894  * ext4_setattr()
3895  *
3896  * Called from notify_change.
3897  *
3898  * We want to trap VFS attempts to truncate the file as soon as
3899  * possible.  In particular, we want to make sure that when the VFS
3900  * shrinks i_size, we put the inode on the orphan list and modify
3901  * i_disksize immediately, so that during the subsequent flushing of
3902  * dirty pages and freeing of disk blocks, we can guarantee that any
3903  * commit will leave the blocks being flushed in an unused state on
3904  * disk.  (On recovery, the inode will get truncated and the blocks will
3905  * be freed, so we have a strong guarantee that no future commit will
3906  * leave these blocks visible to the user.)
3907  *
3908  * Another thing we have to assure is that if we are in ordered mode
3909  * and inode is still attached to the committing transaction, we must
3910  * we start writeout of all the dirty pages which are being truncated.
3911  * This way we are sure that all the data written in the previous
3912  * transaction are already on disk (truncate waits for pages under
3913  * writeback).
3914  *
3915  * Called with inode->i_mutex down.
3916  */
3917 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3918 {
3919         struct inode *inode = dentry->d_inode;
3920         int error, rc = 0;
3921         const unsigned int ia_valid = attr->ia_valid;
3922
3923         error = inode_change_ok(inode, attr);
3924         if (error)
3925                 return error;
3926
3927         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3928                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3929                 handle_t *handle;
3930
3931                 /* (user+group)*(old+new) structure, inode write (sb,
3932                  * inode block, ? - but truncate inode update has it) */
3933                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3934                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3935                 if (IS_ERR(handle)) {
3936                         error = PTR_ERR(handle);
3937                         goto err_out;
3938                 }
3939                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3940                 if (error) {
3941                         ext4_journal_stop(handle);
3942                         return error;
3943                 }
3944                 /* Update corresponding info in inode so that everything is in
3945                  * one transaction */
3946                 if (attr->ia_valid & ATTR_UID)
3947                         inode->i_uid = attr->ia_uid;
3948                 if (attr->ia_valid & ATTR_GID)
3949                         inode->i_gid = attr->ia_gid;
3950                 error = ext4_mark_inode_dirty(handle, inode);
3951                 ext4_journal_stop(handle);
3952         }
3953
3954         if (attr->ia_valid & ATTR_SIZE) {
3955                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3956                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3957
3958                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3959                                 error = -EFBIG;
3960                                 goto err_out;
3961                         }
3962                 }
3963         }
3964
3965         if (S_ISREG(inode->i_mode) &&
3966             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3967                 handle_t *handle;
3968
3969                 handle = ext4_journal_start(inode, 3);
3970                 if (IS_ERR(handle)) {
3971                         error = PTR_ERR(handle);
3972                         goto err_out;
3973                 }
3974
3975                 error = ext4_orphan_add(handle, inode);
3976                 EXT4_I(inode)->i_disksize = attr->ia_size;
3977                 rc = ext4_mark_inode_dirty(handle, inode);
3978                 if (!error)
3979                         error = rc;
3980                 ext4_journal_stop(handle);
3981
3982                 if (ext4_should_order_data(inode)) {
3983                         error = ext4_begin_ordered_truncate(inode,
3984                                                             attr->ia_size);
3985                         if (error) {
3986                                 /* Do as much error cleanup as possible */
3987                                 handle = ext4_journal_start(inode, 3);
3988                                 if (IS_ERR(handle)) {
3989                                         ext4_orphan_del(NULL, inode);
3990                                         goto err_out;
3991                                 }
3992                                 ext4_orphan_del(handle, inode);
3993                                 ext4_journal_stop(handle);
3994                                 goto err_out;
3995                         }
3996                 }
3997         }
3998
3999         rc = inode_setattr(inode, attr);
4000
4001         /* If inode_setattr's call to ext4_truncate failed to get a
4002          * transaction handle at all, we need to clean up the in-core
4003          * orphan list manually. */
4004         if (inode->i_nlink)
4005                 ext4_orphan_del(NULL, inode);
4006
4007         if (!rc && (ia_valid & ATTR_MODE))
4008                 rc = ext4_acl_chmod(inode);
4009
4010 err_out:
4011         ext4_std_error(inode->i_sb, error);
4012         if (!error)
4013                 error = rc;
4014         return error;
4015 }
4016
4017
4018 /*
4019  * How many blocks doth make a writepage()?
4020  *
4021  * With N blocks per page, it may be:
4022  * N data blocks
4023  * 2 indirect block
4024  * 2 dindirect
4025  * 1 tindirect
4026  * N+5 bitmap blocks (from the above)
4027  * N+5 group descriptor summary blocks
4028  * 1 inode block
4029  * 1 superblock.
4030  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4031  *
4032  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4033  *
4034  * With ordered or writeback data it's the same, less the N data blocks.
4035  *
4036  * If the inode's direct blocks can hold an integral number of pages then a
4037  * page cannot straddle two indirect blocks, and we can only touch one indirect
4038  * and dindirect block, and the "5" above becomes "3".
4039  *
4040  * This still overestimates under most circumstances.  If we were to pass the
4041  * start and end offsets in here as well we could do block_to_path() on each
4042  * block and work out the exact number of indirects which are touched.  Pah.
4043  */
4044
4045 int ext4_writepage_trans_blocks(struct inode *inode)
4046 {
4047         int bpp = ext4_journal_blocks_per_page(inode);
4048         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4049         int ret;
4050
4051         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4052                 return ext4_ext_writepage_trans_blocks(inode, bpp);
4053
4054         if (ext4_should_journal_data(inode))
4055                 ret = 3 * (bpp + indirects) + 2;
4056         else
4057                 ret = 2 * (bpp + indirects) + 2;
4058
4059 #ifdef CONFIG_QUOTA
4060         /* We know that structure was already allocated during DQUOT_INIT so
4061          * we will be updating only the data blocks + inodes */
4062         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4063 #endif
4064
4065         return ret;
4066 }
4067
4068 /*
4069  * The caller must have previously called ext4_reserve_inode_write().
4070  * Give this, we know that the caller already has write access to iloc->bh.
4071  */
4072 int ext4_mark_iloc_dirty(handle_t *handle,
4073                 struct inode *inode, struct ext4_iloc *iloc)
4074 {
4075         int err = 0;
4076
4077         if (test_opt(inode->i_sb, I_VERSION))
4078                 inode_inc_iversion(inode);
4079
4080         /* the do_update_inode consumes one bh->b_count */
4081         get_bh(iloc->bh);
4082
4083         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4084         err = ext4_do_update_inode(handle, inode, iloc);
4085         put_bh(iloc->bh);
4086         return err;
4087 }
4088
4089 /*
4090  * On success, We end up with an outstanding reference count against
4091  * iloc->bh.  This _must_ be cleaned up later.
4092  */
4093
4094 int
4095 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4096                          struct ext4_iloc *iloc)
4097 {
4098         int err = 0;
4099         if (handle) {
4100                 err = ext4_get_inode_loc(inode, iloc);
4101                 if (!err) {
4102                         BUFFER_TRACE(iloc->bh, "get_write_access");
4103                         err = ext4_journal_get_write_access(handle, iloc->bh);
4104                         if (err) {
4105                                 brelse(iloc->bh);
4106                                 iloc->bh = NULL;
4107                         }
4108                 }
4109         }
4110         ext4_std_error(inode->i_sb, err);
4111         return err;
4112 }
4113
4114 /*
4115  * Expand an inode by new_extra_isize bytes.
4116  * Returns 0 on success or negative error number on failure.
4117  */
4118 static int ext4_expand_extra_isize(struct inode *inode,
4119                                    unsigned int new_extra_isize,
4120                                    struct ext4_iloc iloc,
4121                                    handle_t *handle)
4122 {
4123         struct ext4_inode *raw_inode;
4124         struct ext4_xattr_ibody_header *header;
4125         struct ext4_xattr_entry *entry;
4126
4127         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4128                 return 0;
4129
4130         raw_inode = ext4_raw_inode(&iloc);
4131
4132         header = IHDR(inode, raw_inode);
4133         entry = IFIRST(header);
4134
4135         /* No extended attributes present */
4136         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4137                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4138                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4139                         new_extra_isize);
4140                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4141                 return 0;
4142         }
4143
4144         /* try to expand with EAs present */
4145         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4146                                           raw_inode, handle);
4147 }
4148
4149 /*
4150  * What we do here is to mark the in-core inode as clean with respect to inode
4151  * dirtiness (it may still be data-dirty).
4152  * This means that the in-core inode may be reaped by prune_icache
4153  * without having to perform any I/O.  This is a very good thing,
4154  * because *any* task may call prune_icache - even ones which
4155  * have a transaction open against a different journal.
4156  *
4157  * Is this cheating?  Not really.  Sure, we haven't written the
4158  * inode out, but prune_icache isn't a user-visible syncing function.
4159  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4160  * we start and wait on commits.
4161  *
4162  * Is this efficient/effective?  Well, we're being nice to the system
4163  * by cleaning up our inodes proactively so they can be reaped
4164  * without I/O.  But we are potentially leaving up to five seconds'
4165  * worth of inodes floating about which prune_icache wants us to
4166  * write out.  One way to fix that would be to get prune_icache()
4167  * to do a write_super() to free up some memory.  It has the desired
4168  * effect.
4169  */
4170 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4171 {
4172         struct ext4_iloc iloc;
4173         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4174         static unsigned int mnt_count;
4175         int err, ret;
4176
4177         might_sleep();
4178         err = ext4_reserve_inode_write(handle, inode, &iloc);
4179         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4180             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4181                 /*
4182                  * We need extra buffer credits since we may write into EA block
4183                  * with this same handle. If journal_extend fails, then it will
4184                  * only result in a minor loss of functionality for that inode.
4185                  * If this is felt to be critical, then e2fsck should be run to
4186                  * force a large enough s_min_extra_isize.
4187                  */
4188                 if ((jbd2_journal_extend(handle,
4189                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4190                         ret = ext4_expand_extra_isize(inode,
4191                                                       sbi->s_want_extra_isize,
4192                                                       iloc, handle);
4193                         if (ret) {
4194                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4195                                 if (mnt_count !=
4196                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4197                                         ext4_warning(inode->i_sb, __func__,
4198                                         "Unable to expand inode %lu. Delete"
4199                                         " some EAs or run e2fsck.",
4200                                         inode->i_ino);
4201                                         mnt_count =
4202                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4203                                 }
4204                         }
4205                 }
4206         }
4207         if (!err)
4208                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4209         return err;
4210 }
4211
4212 /*
4213  * ext4_dirty_inode() is called from __mark_inode_dirty()
4214  *
4215  * We're really interested in the case where a file is being extended.
4216  * i_size has been changed by generic_commit_write() and we thus need
4217  * to include the updated inode in the current transaction.
4218  *
4219  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4220  * are allocated to the file.
4221  *
4222  * If the inode is marked synchronous, we don't honour that here - doing
4223  * so would cause a commit on atime updates, which we don't bother doing.
4224  * We handle synchronous inodes at the highest possible level.
4225  */
4226 void ext4_dirty_inode(struct inode *inode)
4227 {
4228         handle_t *current_handle = ext4_journal_current_handle();
4229         handle_t *handle;
4230
4231         handle = ext4_journal_start(inode, 2);
4232         if (IS_ERR(handle))
4233                 goto out;
4234         if (current_handle &&
4235                 current_handle->h_transaction != handle->h_transaction) {
4236                 /* This task has a transaction open against a different fs */
4237                 printk(KERN_EMERG "%s: transactions do not match!\n",
4238                        __func__);
4239         } else {
4240                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4241                                 current_handle);
4242                 ext4_mark_inode_dirty(handle, inode);
4243         }
4244         ext4_journal_stop(handle);
4245 out:
4246         return;
4247 }
4248
4249 #if 0
4250 /*
4251  * Bind an inode's backing buffer_head into this transaction, to prevent
4252  * it from being flushed to disk early.  Unlike
4253  * ext4_reserve_inode_write, this leaves behind no bh reference and
4254  * returns no iloc structure, so the caller needs to repeat the iloc
4255  * lookup to mark the inode dirty later.
4256  */
4257 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4258 {
4259         struct ext4_iloc iloc;
4260
4261         int err = 0;
4262         if (handle) {
4263                 err = ext4_get_inode_loc(inode, &iloc);
4264                 if (!err) {
4265                         BUFFER_TRACE(iloc.bh, "get_write_access");
4266                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4267                         if (!err)
4268                                 err = ext4_journal_dirty_metadata(handle,
4269                                                                   iloc.bh);
4270                         brelse(iloc.bh);
4271                 }
4272         }
4273         ext4_std_error(inode->i_sb, err);
4274         return err;
4275 }
4276 #endif
4277
4278 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4279 {
4280         journal_t *journal;
4281         handle_t *handle;
4282         int err;
4283
4284         /*
4285          * We have to be very careful here: changing a data block's
4286          * journaling status dynamically is dangerous.  If we write a
4287          * data block to the journal, change the status and then delete
4288          * that block, we risk forgetting to revoke the old log record
4289          * from the journal and so a subsequent replay can corrupt data.
4290          * So, first we make sure that the journal is empty and that
4291          * nobody is changing anything.
4292          */
4293
4294         journal = EXT4_JOURNAL(inode);
4295         if (is_journal_aborted(journal))
4296                 return -EROFS;
4297
4298         jbd2_journal_lock_updates(journal);
4299         jbd2_journal_flush(journal);
4300
4301         /*
4302          * OK, there are no updates running now, and all cached data is
4303          * synced to disk.  We are now in a completely consistent state
4304          * which doesn't have anything in the journal, and we know that
4305          * no filesystem updates are running, so it is safe to modify
4306          * the inode's in-core data-journaling state flag now.
4307          */
4308
4309         if (val)
4310                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4311         else
4312                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4313         ext4_set_aops(inode);
4314
4315         jbd2_journal_unlock_updates(journal);
4316
4317         /* Finally we can mark the inode as dirty. */
4318
4319         handle = ext4_journal_start(inode, 1);
4320         if (IS_ERR(handle))
4321                 return PTR_ERR(handle);
4322
4323         err = ext4_mark_inode_dirty(handle, inode);
4324         handle->h_sync = 1;
4325         ext4_journal_stop(handle);
4326         ext4_std_error(inode->i_sb, err);
4327
4328         return err;
4329 }
4330
4331 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4332 {
4333         return !buffer_mapped(bh);
4334 }
4335
4336 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4337 {
4338         loff_t size;
4339         unsigned long len;
4340         int ret = -EINVAL;
4341         struct file *file = vma->vm_file;
4342         struct inode *inode = file->f_path.dentry->d_inode;
4343         struct address_space *mapping = inode->i_mapping;
4344
4345         /*
4346          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4347          * get i_mutex because we are already holding mmap_sem.
4348          */
4349         down_read(&inode->i_alloc_sem);
4350         size = i_size_read(inode);
4351         if (page->mapping != mapping || size <= page_offset(page)
4352             || !PageUptodate(page)) {
4353                 /* page got truncated from under us? */
4354                 goto out_unlock;
4355         }
4356         ret = 0;
4357         if (PageMappedToDisk(page))
4358                 goto out_unlock;
4359
4360         if (page->index == size >> PAGE_CACHE_SHIFT)
4361                 len = size & ~PAGE_CACHE_MASK;
4362         else
4363                 len = PAGE_CACHE_SIZE;
4364
4365         if (page_has_buffers(page)) {
4366                 /* return if we have all the buffers mapped */
4367                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4368                                        ext4_bh_unmapped))
4369                         goto out_unlock;
4370         }
4371         /*
4372          * OK, we need to fill the hole... Do write_begin write_end
4373          * to do block allocation/reservation.We are not holding
4374          * inode.i__mutex here. That allow * parallel write_begin,
4375          * write_end call. lock_page prevent this from happening
4376          * on the same page though
4377          */
4378         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4379                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4380         if (ret < 0)
4381                 goto out_unlock;
4382         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4383                         len, len, page, NULL);
4384         if (ret < 0)
4385                 goto out_unlock;
4386         ret = 0;
4387 out_unlock:
4388         up_read(&inode->i_alloc_sem);
4389         return ret;
4390 }