]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: quota macros cleanup
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * The ext4 forget function must perform a revoke if we are freeing data
75  * which has been journaled.  Metadata (eg. indirect blocks) must be
76  * revoked in all cases.
77  *
78  * "bh" may be NULL: a metadata block may have been freed from memory
79  * but there may still be a record of it in the journal, and that record
80  * still needs to be revoked.
81  *
82  * If the handle isn't valid we're not journaling, but we still need to
83  * call into ext4_journal_revoke() to put the buffer head.
84  */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86                 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88         int err;
89
90         might_sleep();
91
92         BUFFER_TRACE(bh, "enter");
93
94         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95                   "data mode %x\n",
96                   bh, is_metadata, inode->i_mode,
97                   test_opt(inode->i_sb, DATA_FLAGS));
98
99         /* Never use the revoke function if we are doing full data
100          * journaling: there is no need to, and a V1 superblock won't
101          * support it.  Otherwise, only skip the revoke on un-journaled
102          * data blocks. */
103
104         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105             (!is_metadata && !ext4_should_journal_data(inode))) {
106                 if (bh) {
107                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
108                         return ext4_journal_forget(handle, bh);
109                 }
110                 return 0;
111         }
112
113         /*
114          * data!=journal && (is_metadata || should_journal_data(inode))
115          */
116         BUFFER_TRACE(bh, "call ext4_journal_revoke");
117         err = ext4_journal_revoke(handle, blocknr, bh);
118         if (err)
119                 ext4_abort(inode->i_sb, __func__,
120                            "error %d when attempting revoke", err);
121         BUFFER_TRACE(bh, "exit");
122         return err;
123 }
124
125 /*
126  * Work out how many blocks we need to proceed with the next chunk of a
127  * truncate transaction.
128  */
129 static unsigned long blocks_for_truncate(struct inode *inode)
130 {
131         ext4_lblk_t needed;
132
133         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134
135         /* Give ourselves just enough room to cope with inodes in which
136          * i_blocks is corrupt: we've seen disk corruptions in the past
137          * which resulted in random data in an inode which looked enough
138          * like a regular file for ext4 to try to delete it.  Things
139          * will go a bit crazy if that happens, but at least we should
140          * try not to panic the whole kernel. */
141         if (needed < 2)
142                 needed = 2;
143
144         /* But we need to bound the transaction so we don't overflow the
145          * journal. */
146         if (needed > EXT4_MAX_TRANS_DATA)
147                 needed = EXT4_MAX_TRANS_DATA;
148
149         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 }
151
152 /*
153  * Truncate transactions can be complex and absolutely huge.  So we need to
154  * be able to restart the transaction at a conventient checkpoint to make
155  * sure we don't overflow the journal.
156  *
157  * start_transaction gets us a new handle for a truncate transaction,
158  * and extend_transaction tries to extend the existing one a bit.  If
159  * extend fails, we need to propagate the failure up and restart the
160  * transaction in the top-level truncate loop. --sct
161  */
162 static handle_t *start_transaction(struct inode *inode)
163 {
164         handle_t *result;
165
166         result = ext4_journal_start(inode, blocks_for_truncate(inode));
167         if (!IS_ERR(result))
168                 return result;
169
170         ext4_std_error(inode->i_sb, PTR_ERR(result));
171         return result;
172 }
173
174 /*
175  * Try to extend this transaction for the purposes of truncation.
176  *
177  * Returns 0 if we managed to create more room.  If we can't create more
178  * room, and the transaction must be restarted we return 1.
179  */
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 {
182         if (!ext4_handle_valid(handle))
183                 return 0;
184         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185                 return 0;
186         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187                 return 0;
188         return 1;
189 }
190
191 /*
192  * Restart the transaction associated with *handle.  This does a commit,
193  * so before we call here everything must be consistently dirtied against
194  * this transaction.
195  */
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197                                  int nblocks)
198 {
199         int ret;
200
201         /*
202          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203          * moment, get_block can be called only for blocks inside i_size since
204          * page cache has been already dropped and writes are blocked by
205          * i_mutex. So we can safely drop the i_data_sem here.
206          */
207         BUG_ON(EXT4_JOURNAL(inode) == NULL);
208         jbd_debug(2, "restarting handle %p\n", handle);
209         up_write(&EXT4_I(inode)->i_data_sem);
210         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211         down_write(&EXT4_I(inode)->i_data_sem);
212         ext4_discard_preallocations(inode);
213
214         return ret;
215 }
216
217 /*
218  * Called at the last iput() if i_nlink is zero.
219  */
220 void ext4_delete_inode(struct inode *inode)
221 {
222         handle_t *handle;
223         int err;
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233         if (IS_ERR(handle)) {
234                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
235                 /*
236                  * If we're going to skip the normal cleanup, we still need to
237                  * make sure that the in-core orphan linked list is properly
238                  * cleaned up.
239                  */
240                 ext4_orphan_del(NULL, inode);
241                 goto no_delete;
242         }
243
244         if (IS_SYNC(inode))
245                 ext4_handle_sync(handle);
246         inode->i_size = 0;
247         err = ext4_mark_inode_dirty(handle, inode);
248         if (err) {
249                 ext4_warning(inode->i_sb, __func__,
250                              "couldn't mark inode dirty (err %d)", err);
251                 goto stop_handle;
252         }
253         if (inode->i_blocks)
254                 ext4_truncate(inode);
255
256         /*
257          * ext4_ext_truncate() doesn't reserve any slop when it
258          * restarts journal transactions; therefore there may not be
259          * enough credits left in the handle to remove the inode from
260          * the orphan list and set the dtime field.
261          */
262         if (!ext4_handle_has_enough_credits(handle, 3)) {
263                 err = ext4_journal_extend(handle, 3);
264                 if (err > 0)
265                         err = ext4_journal_restart(handle, 3);
266                 if (err != 0) {
267                         ext4_warning(inode->i_sb, __func__,
268                                      "couldn't extend journal (err %d)", err);
269                 stop_handle:
270                         ext4_journal_stop(handle);
271                         goto no_delete;
272                 }
273         }
274
275         /*
276          * Kill off the orphan record which ext4_truncate created.
277          * AKPM: I think this can be inside the above `if'.
278          * Note that ext4_orphan_del() has to be able to cope with the
279          * deletion of a non-existent orphan - this is because we don't
280          * know if ext4_truncate() actually created an orphan record.
281          * (Well, we could do this if we need to, but heck - it works)
282          */
283         ext4_orphan_del(handle, inode);
284         EXT4_I(inode)->i_dtime  = get_seconds();
285
286         /*
287          * One subtle ordering requirement: if anything has gone wrong
288          * (transaction abort, IO errors, whatever), then we can still
289          * do these next steps (the fs will already have been marked as
290          * having errors), but we can't free the inode if the mark_dirty
291          * fails.
292          */
293         if (ext4_mark_inode_dirty(handle, inode))
294                 /* If that failed, just do the required in-core inode clear. */
295                 clear_inode(inode);
296         else
297                 ext4_free_inode(handle, inode);
298         ext4_journal_stop(handle);
299         return;
300 no_delete:
301         clear_inode(inode);     /* We must guarantee clearing of inode... */
302 }
303
304 typedef struct {
305         __le32  *p;
306         __le32  key;
307         struct buffer_head *bh;
308 } Indirect;
309
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
311 {
312         p->key = *(p->p = v);
313         p->bh = bh;
314 }
315
316 /**
317  *      ext4_block_to_path - parse the block number into array of offsets
318  *      @inode: inode in question (we are only interested in its superblock)
319  *      @i_block: block number to be parsed
320  *      @offsets: array to store the offsets in
321  *      @boundary: set this non-zero if the referred-to block is likely to be
322  *             followed (on disk) by an indirect block.
323  *
324  *      To store the locations of file's data ext4 uses a data structure common
325  *      for UNIX filesystems - tree of pointers anchored in the inode, with
326  *      data blocks at leaves and indirect blocks in intermediate nodes.
327  *      This function translates the block number into path in that tree -
328  *      return value is the path length and @offsets[n] is the offset of
329  *      pointer to (n+1)th node in the nth one. If @block is out of range
330  *      (negative or too large) warning is printed and zero returned.
331  *
332  *      Note: function doesn't find node addresses, so no IO is needed. All
333  *      we need to know is the capacity of indirect blocks (taken from the
334  *      inode->i_sb).
335  */
336
337 /*
338  * Portability note: the last comparison (check that we fit into triple
339  * indirect block) is spelled differently, because otherwise on an
340  * architecture with 32-bit longs and 8Kb pages we might get into trouble
341  * if our filesystem had 8Kb blocks. We might use long long, but that would
342  * kill us on x86. Oh, well, at least the sign propagation does not matter -
343  * i_block would have to be negative in the very beginning, so we would not
344  * get there at all.
345  */
346
347 static int ext4_block_to_path(struct inode *inode,
348                               ext4_lblk_t i_block,
349                               ext4_lblk_t offsets[4], int *boundary)
350 {
351         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353         const long direct_blocks = EXT4_NDIR_BLOCKS,
354                 indirect_blocks = ptrs,
355                 double_blocks = (1 << (ptrs_bits * 2));
356         int n = 0;
357         int final = 0;
358
359         if (i_block < direct_blocks) {
360                 offsets[n++] = i_block;
361                 final = direct_blocks;
362         } else if ((i_block -= direct_blocks) < indirect_blocks) {
363                 offsets[n++] = EXT4_IND_BLOCK;
364                 offsets[n++] = i_block;
365                 final = ptrs;
366         } else if ((i_block -= indirect_blocks) < double_blocks) {
367                 offsets[n++] = EXT4_DIND_BLOCK;
368                 offsets[n++] = i_block >> ptrs_bits;
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372                 offsets[n++] = EXT4_TIND_BLOCK;
373                 offsets[n++] = i_block >> (ptrs_bits * 2);
374                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375                 offsets[n++] = i_block & (ptrs - 1);
376                 final = ptrs;
377         } else {
378                 ext4_warning(inode->i_sb, "ext4_block_to_path",
379                              "block %lu > max in inode %lu",
380                              i_block + direct_blocks +
381                              indirect_blocks + double_blocks, inode->i_ino);
382         }
383         if (boundary)
384                 *boundary = final - 1 - (i_block & (ptrs - 1));
385         return n;
386 }
387
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389                                  __le32 *p, unsigned int max)
390 {
391         __le32 *bref = p;
392         unsigned int blk;
393
394         while (bref < p+max) {
395                 blk = le32_to_cpu(*bref++);
396                 if (blk &&
397                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398                                                     blk, 1))) {
399                         ext4_error(inode->i_sb, function,
400                                    "invalid block reference %u "
401                                    "in inode #%lu", blk, inode->i_ino);
402                         return -EIO;
403                 }
404         }
405         return 0;
406 }
407
408
409 #define ext4_check_indirect_blockref(inode, bh)                         \
410         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
411                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412
413 #define ext4_check_inode_blockref(inode)                                \
414         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
415                               EXT4_NDIR_BLOCKS)
416
417 /**
418  *      ext4_get_branch - read the chain of indirect blocks leading to data
419  *      @inode: inode in question
420  *      @depth: depth of the chain (1 - direct pointer, etc.)
421  *      @offsets: offsets of pointers in inode/indirect blocks
422  *      @chain: place to store the result
423  *      @err: here we store the error value
424  *
425  *      Function fills the array of triples <key, p, bh> and returns %NULL
426  *      if everything went OK or the pointer to the last filled triple
427  *      (incomplete one) otherwise. Upon the return chain[i].key contains
428  *      the number of (i+1)-th block in the chain (as it is stored in memory,
429  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
430  *      number (it points into struct inode for i==0 and into the bh->b_data
431  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432  *      block for i>0 and NULL for i==0. In other words, it holds the block
433  *      numbers of the chain, addresses they were taken from (and where we can
434  *      verify that chain did not change) and buffer_heads hosting these
435  *      numbers.
436  *
437  *      Function stops when it stumbles upon zero pointer (absent block)
438  *              (pointer to last triple returned, *@err == 0)
439  *      or when it gets an IO error reading an indirect block
440  *              (ditto, *@err == -EIO)
441  *      or when it reads all @depth-1 indirect blocks successfully and finds
442  *      the whole chain, all way to the data (returns %NULL, *err == 0).
443  *
444  *      Need to be called with
445  *      down_read(&EXT4_I(inode)->i_data_sem)
446  */
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448                                  ext4_lblk_t  *offsets,
449                                  Indirect chain[4], int *err)
450 {
451         struct super_block *sb = inode->i_sb;
452         Indirect *p = chain;
453         struct buffer_head *bh;
454
455         *err = 0;
456         /* i_data is not going away, no lock needed */
457         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458         if (!p->key)
459                 goto no_block;
460         while (--depth) {
461                 bh = sb_getblk(sb, le32_to_cpu(p->key));
462                 if (unlikely(!bh))
463                         goto failure;
464
465                 if (!bh_uptodate_or_lock(bh)) {
466                         if (bh_submit_read(bh) < 0) {
467                                 put_bh(bh);
468                                 goto failure;
469                         }
470                         /* validate block references */
471                         if (ext4_check_indirect_blockref(inode, bh)) {
472                                 put_bh(bh);
473                                 goto failure;
474                         }
475                 }
476
477                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478                 /* Reader: end */
479                 if (!p->key)
480                         goto no_block;
481         }
482         return NULL;
483
484 failure:
485         *err = -EIO;
486 no_block:
487         return p;
488 }
489
490 /**
491  *      ext4_find_near - find a place for allocation with sufficient locality
492  *      @inode: owner
493  *      @ind: descriptor of indirect block.
494  *
495  *      This function returns the preferred place for block allocation.
496  *      It is used when heuristic for sequential allocation fails.
497  *      Rules are:
498  *        + if there is a block to the left of our position - allocate near it.
499  *        + if pointer will live in indirect block - allocate near that block.
500  *        + if pointer will live in inode - allocate in the same
501  *          cylinder group.
502  *
503  * In the latter case we colour the starting block by the callers PID to
504  * prevent it from clashing with concurrent allocations for a different inode
505  * in the same block group.   The PID is used here so that functionally related
506  * files will be close-by on-disk.
507  *
508  *      Caller must make sure that @ind is valid and will stay that way.
509  */
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
511 {
512         struct ext4_inode_info *ei = EXT4_I(inode);
513         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514         __le32 *p;
515         ext4_fsblk_t bg_start;
516         ext4_fsblk_t last_block;
517         ext4_grpblk_t colour;
518         ext4_group_t block_group;
519         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
520
521         /* Try to find previous block */
522         for (p = ind->p - 1; p >= start; p--) {
523                 if (*p)
524                         return le32_to_cpu(*p);
525         }
526
527         /* No such thing, so let's try location of indirect block */
528         if (ind->bh)
529                 return ind->bh->b_blocknr;
530
531         /*
532          * It is going to be referred to from the inode itself? OK, just put it
533          * into the same cylinder group then.
534          */
535         block_group = ei->i_block_group;
536         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537                 block_group &= ~(flex_size-1);
538                 if (S_ISREG(inode->i_mode))
539                         block_group++;
540         }
541         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543
544         /*
545          * If we are doing delayed allocation, we don't need take
546          * colour into account.
547          */
548         if (test_opt(inode->i_sb, DELALLOC))
549                 return bg_start;
550
551         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552                 colour = (current->pid % 16) *
553                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554         else
555                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556         return bg_start + colour;
557 }
558
559 /**
560  *      ext4_find_goal - find a preferred place for allocation.
561  *      @inode: owner
562  *      @block:  block we want
563  *      @partial: pointer to the last triple within a chain
564  *
565  *      Normally this function find the preferred place for block allocation,
566  *      returns it.
567  *      Because this is only used for non-extent files, we limit the block nr
568  *      to 32 bits.
569  */
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571                                    Indirect *partial)
572 {
573         ext4_fsblk_t goal;
574
575         /*
576          * XXX need to get goal block from mballoc's data structures
577          */
578
579         goal = ext4_find_near(inode, partial);
580         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581         return goal;
582 }
583
584 /**
585  *      ext4_blks_to_allocate: Look up the block map and count the number
586  *      of direct blocks need to be allocated for the given branch.
587  *
588  *      @branch: chain of indirect blocks
589  *      @k: number of blocks need for indirect blocks
590  *      @blks: number of data blocks to be mapped.
591  *      @blocks_to_boundary:  the offset in the indirect block
592  *
593  *      return the total number of blocks to be allocate, including the
594  *      direct and indirect blocks.
595  */
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597                                  int blocks_to_boundary)
598 {
599         unsigned int count = 0;
600
601         /*
602          * Simple case, [t,d]Indirect block(s) has not allocated yet
603          * then it's clear blocks on that path have not allocated
604          */
605         if (k > 0) {
606                 /* right now we don't handle cross boundary allocation */
607                 if (blks < blocks_to_boundary + 1)
608                         count += blks;
609                 else
610                         count += blocks_to_boundary + 1;
611                 return count;
612         }
613
614         count++;
615         while (count < blks && count <= blocks_to_boundary &&
616                 le32_to_cpu(*(branch[0].p + count)) == 0) {
617                 count++;
618         }
619         return count;
620 }
621
622 /**
623  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
624  *      @indirect_blks: the number of blocks need to allocate for indirect
625  *                      blocks
626  *
627  *      @new_blocks: on return it will store the new block numbers for
628  *      the indirect blocks(if needed) and the first direct block,
629  *      @blks:  on return it will store the total number of allocated
630  *              direct blocks
631  */
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633                              ext4_lblk_t iblock, ext4_fsblk_t goal,
634                              int indirect_blks, int blks,
635                              ext4_fsblk_t new_blocks[4], int *err)
636 {
637         struct ext4_allocation_request ar;
638         int target, i;
639         unsigned long count = 0, blk_allocated = 0;
640         int index = 0;
641         ext4_fsblk_t current_block = 0;
642         int ret = 0;
643
644         /*
645          * Here we try to allocate the requested multiple blocks at once,
646          * on a best-effort basis.
647          * To build a branch, we should allocate blocks for
648          * the indirect blocks(if not allocated yet), and at least
649          * the first direct block of this branch.  That's the
650          * minimum number of blocks need to allocate(required)
651          */
652         /* first we try to allocate the indirect blocks */
653         target = indirect_blks;
654         while (target > 0) {
655                 count = target;
656                 /* allocating blocks for indirect blocks and direct blocks */
657                 current_block = ext4_new_meta_blocks(handle, inode,
658                                                         goal, &count, err);
659                 if (*err)
660                         goto failed_out;
661
662                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
663
664                 target -= count;
665                 /* allocate blocks for indirect blocks */
666                 while (index < indirect_blks && count) {
667                         new_blocks[index++] = current_block++;
668                         count--;
669                 }
670                 if (count > 0) {
671                         /*
672                          * save the new block number
673                          * for the first direct block
674                          */
675                         new_blocks[index] = current_block;
676                         printk(KERN_INFO "%s returned more blocks than "
677                                                 "requested\n", __func__);
678                         WARN_ON(1);
679                         break;
680                 }
681         }
682
683         target = blks - count ;
684         blk_allocated = count;
685         if (!target)
686                 goto allocated;
687         /* Now allocate data blocks */
688         memset(&ar, 0, sizeof(ar));
689         ar.inode = inode;
690         ar.goal = goal;
691         ar.len = target;
692         ar.logical = iblock;
693         if (S_ISREG(inode->i_mode))
694                 /* enable in-core preallocation only for regular files */
695                 ar.flags = EXT4_MB_HINT_DATA;
696
697         current_block = ext4_mb_new_blocks(handle, &ar, err);
698         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
699
700         if (*err && (target == blks)) {
701                 /*
702                  * if the allocation failed and we didn't allocate
703                  * any blocks before
704                  */
705                 goto failed_out;
706         }
707         if (!*err) {
708                 if (target == blks) {
709                         /*
710                          * save the new block number
711                          * for the first direct block
712                          */
713                         new_blocks[index] = current_block;
714                 }
715                 blk_allocated += ar.len;
716         }
717 allocated:
718         /* total number of blocks allocated for direct blocks */
719         ret = blk_allocated;
720         *err = 0;
721         return ret;
722 failed_out:
723         for (i = 0; i < index; i++)
724                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725         return ret;
726 }
727
728 /**
729  *      ext4_alloc_branch - allocate and set up a chain of blocks.
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @offsets: offsets (in the blocks) to store the pointers to next.
734  *      @branch: place to store the chain in.
735  *
736  *      This function allocates blocks, zeroes out all but the last one,
737  *      links them into chain and (if we are synchronous) writes them to disk.
738  *      In other words, it prepares a branch that can be spliced onto the
739  *      inode. It stores the information about that chain in the branch[], in
740  *      the same format as ext4_get_branch() would do. We are calling it after
741  *      we had read the existing part of chain and partial points to the last
742  *      triple of that (one with zero ->key). Upon the exit we have the same
743  *      picture as after the successful ext4_get_block(), except that in one
744  *      place chain is disconnected - *branch->p is still zero (we did not
745  *      set the last link), but branch->key contains the number that should
746  *      be placed into *branch->p to fill that gap.
747  *
748  *      If allocation fails we free all blocks we've allocated (and forget
749  *      their buffer_heads) and return the error value the from failed
750  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *      as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754                              ext4_lblk_t iblock, int indirect_blks,
755                              int *blks, ext4_fsblk_t goal,
756                              ext4_lblk_t *offsets, Indirect *branch)
757 {
758         int blocksize = inode->i_sb->s_blocksize;
759         int i, n = 0;
760         int err = 0;
761         struct buffer_head *bh;
762         int num;
763         ext4_fsblk_t new_blocks[4];
764         ext4_fsblk_t current_block;
765
766         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767                                 *blks, new_blocks, &err);
768         if (err)
769                 return err;
770
771         branch[0].key = cpu_to_le32(new_blocks[0]);
772         /*
773          * metadata blocks and data blocks are allocated.
774          */
775         for (n = 1; n <= indirect_blks;  n++) {
776                 /*
777                  * Get buffer_head for parent block, zero it out
778                  * and set the pointer to new one, then send
779                  * parent to disk.
780                  */
781                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782                 branch[n].bh = bh;
783                 lock_buffer(bh);
784                 BUFFER_TRACE(bh, "call get_create_access");
785                 err = ext4_journal_get_create_access(handle, bh);
786                 if (err) {
787                         /* Don't brelse(bh) here; it's done in
788                          * ext4_journal_forget() below */
789                         unlock_buffer(bh);
790                         goto failed;
791                 }
792
793                 memset(bh->b_data, 0, blocksize);
794                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795                 branch[n].key = cpu_to_le32(new_blocks[n]);
796                 *branch[n].p = branch[n].key;
797                 if (n == indirect_blks) {
798                         current_block = new_blocks[n];
799                         /*
800                          * End of chain, update the last new metablock of
801                          * the chain to point to the new allocated
802                          * data blocks numbers
803                          */
804                         for (i = 1; i < num; i++)
805                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
806                 }
807                 BUFFER_TRACE(bh, "marking uptodate");
808                 set_buffer_uptodate(bh);
809                 unlock_buffer(bh);
810
811                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812                 err = ext4_handle_dirty_metadata(handle, inode, bh);
813                 if (err)
814                         goto failed;
815         }
816         *blks = num;
817         return err;
818 failed:
819         /* Allocation failed, free what we already allocated */
820         for (i = 1; i <= n ; i++) {
821                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822                 ext4_journal_forget(handle, branch[i].bh);
823         }
824         for (i = 0; i < indirect_blks; i++)
825                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
826
827         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
828
829         return err;
830 }
831
832 /**
833  * ext4_splice_branch - splice the allocated branch onto inode.
834  * @inode: owner
835  * @block: (logical) number of block we are adding
836  * @chain: chain of indirect blocks (with a missing link - see
837  *      ext4_alloc_branch)
838  * @where: location of missing link
839  * @num:   number of indirect blocks we are adding
840  * @blks:  number of direct blocks we are adding
841  *
842  * This function fills the missing link and does all housekeeping needed in
843  * inode (->i_blocks, etc.). In case of success we end up with the full
844  * chain to new block and return 0.
845  */
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847                               ext4_lblk_t block, Indirect *where, int num,
848                               int blks)
849 {
850         int i;
851         int err = 0;
852         ext4_fsblk_t current_block;
853
854         /*
855          * If we're splicing into a [td]indirect block (as opposed to the
856          * inode) then we need to get write access to the [td]indirect block
857          * before the splice.
858          */
859         if (where->bh) {
860                 BUFFER_TRACE(where->bh, "get_write_access");
861                 err = ext4_journal_get_write_access(handle, where->bh);
862                 if (err)
863                         goto err_out;
864         }
865         /* That's it */
866
867         *where->p = where->key;
868
869         /*
870          * Update the host buffer_head or inode to point to more just allocated
871          * direct blocks blocks
872          */
873         if (num == 0 && blks > 1) {
874                 current_block = le32_to_cpu(where->key) + 1;
875                 for (i = 1; i < blks; i++)
876                         *(where->p + i) = cpu_to_le32(current_block++);
877         }
878
879         /* We are done with atomic stuff, now do the rest of housekeeping */
880         /* had we spliced it onto indirect block? */
881         if (where->bh) {
882                 /*
883                  * If we spliced it onto an indirect block, we haven't
884                  * altered the inode.  Note however that if it is being spliced
885                  * onto an indirect block at the very end of the file (the
886                  * file is growing) then we *will* alter the inode to reflect
887                  * the new i_size.  But that is not done here - it is done in
888                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
889                  */
890                 jbd_debug(5, "splicing indirect only\n");
891                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893                 if (err)
894                         goto err_out;
895         } else {
896                 /*
897                  * OK, we spliced it into the inode itself on a direct block.
898                  */
899                 ext4_mark_inode_dirty(handle, inode);
900                 jbd_debug(5, "splicing direct\n");
901         }
902         return err;
903
904 err_out:
905         for (i = 1; i <= num; i++) {
906                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907                 ext4_journal_forget(handle, where[i].bh);
908                 ext4_free_blocks(handle, inode,
909                                         le32_to_cpu(where[i-1].key), 1, 0);
910         }
911         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
912
913         return err;
914 }
915
916 /*
917  * The ext4_ind_get_blocks() function handles non-extents inodes
918  * (i.e., using the traditional indirect/double-indirect i_blocks
919  * scheme) for ext4_get_blocks().
920  *
921  * Allocation strategy is simple: if we have to allocate something, we will
922  * have to go the whole way to leaf. So let's do it before attaching anything
923  * to tree, set linkage between the newborn blocks, write them if sync is
924  * required, recheck the path, free and repeat if check fails, otherwise
925  * set the last missing link (that will protect us from any truncate-generated
926  * removals - all blocks on the path are immune now) and possibly force the
927  * write on the parent block.
928  * That has a nice additional property: no special recovery from the failed
929  * allocations is needed - we simply release blocks and do not touch anything
930  * reachable from inode.
931  *
932  * `handle' can be NULL if create == 0.
933  *
934  * return > 0, # of blocks mapped or allocated.
935  * return = 0, if plain lookup failed.
936  * return < 0, error case.
937  *
938  * The ext4_ind_get_blocks() function should be called with
939  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942  * blocks.
943  */
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945                                ext4_lblk_t iblock, unsigned int maxblocks,
946                                struct buffer_head *bh_result,
947                                int flags)
948 {
949         int err = -EIO;
950         ext4_lblk_t offsets[4];
951         Indirect chain[4];
952         Indirect *partial;
953         ext4_fsblk_t goal;
954         int indirect_blks;
955         int blocks_to_boundary = 0;
956         int depth;
957         int count = 0;
958         ext4_fsblk_t first_block = 0;
959
960         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962         depth = ext4_block_to_path(inode, iblock, offsets,
963                                    &blocks_to_boundary);
964
965         if (depth == 0)
966                 goto out;
967
968         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
969
970         /* Simplest case - block found, no allocation needed */
971         if (!partial) {
972                 first_block = le32_to_cpu(chain[depth - 1].key);
973                 clear_buffer_new(bh_result);
974                 count++;
975                 /*map more blocks*/
976                 while (count < maxblocks && count <= blocks_to_boundary) {
977                         ext4_fsblk_t blk;
978
979                         blk = le32_to_cpu(*(chain[depth-1].p + count));
980
981                         if (blk == first_block + count)
982                                 count++;
983                         else
984                                 break;
985                 }
986                 goto got_it;
987         }
988
989         /* Next simple case - plain lookup or failed read of indirect block */
990         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991                 goto cleanup;
992
993         /*
994          * Okay, we need to do block allocation.
995         */
996         goal = ext4_find_goal(inode, iblock, partial);
997
998         /* the number of blocks need to allocate for [d,t]indirect blocks */
999         indirect_blks = (chain + depth) - partial - 1;
1000
1001         /*
1002          * Next look up the indirect map to count the totoal number of
1003          * direct blocks to allocate for this branch.
1004          */
1005         count = ext4_blks_to_allocate(partial, indirect_blks,
1006                                         maxblocks, blocks_to_boundary);
1007         /*
1008          * Block out ext4_truncate while we alter the tree
1009          */
1010         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011                                 &count, goal,
1012                                 offsets + (partial - chain), partial);
1013
1014         /*
1015          * The ext4_splice_branch call will free and forget any buffers
1016          * on the new chain if there is a failure, but that risks using
1017          * up transaction credits, especially for bitmaps where the
1018          * credits cannot be returned.  Can we handle this somehow?  We
1019          * may need to return -EAGAIN upwards in the worst case.  --sct
1020          */
1021         if (!err)
1022                 err = ext4_splice_branch(handle, inode, iblock,
1023                                          partial, indirect_blks, count);
1024         if (err)
1025                 goto cleanup;
1026
1027         set_buffer_new(bh_result);
1028 got_it:
1029         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1030         if (count > blocks_to_boundary)
1031                 set_buffer_boundary(bh_result);
1032         err = count;
1033         /* Clean up and exit */
1034         partial = chain + depth - 1;    /* the whole chain */
1035 cleanup:
1036         while (partial > chain) {
1037                 BUFFER_TRACE(partial->bh, "call brelse");
1038                 brelse(partial->bh);
1039                 partial--;
1040         }
1041         BUFFER_TRACE(bh_result, "returned");
1042 out:
1043         return err;
1044 }
1045
1046 qsize_t ext4_get_reserved_space(struct inode *inode)
1047 {
1048         unsigned long long total;
1049
1050         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1051         total = EXT4_I(inode)->i_reserved_data_blocks +
1052                 EXT4_I(inode)->i_reserved_meta_blocks;
1053         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1054
1055         return (total << inode->i_blkbits);
1056 }
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate @blocks for non extent file based file
1060  */
1061 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1062 {
1063         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1064         int ind_blks, dind_blks, tind_blks;
1065
1066         /* number of new indirect blocks needed */
1067         ind_blks = (blocks + icap - 1) / icap;
1068
1069         dind_blks = (ind_blks + icap - 1) / icap;
1070
1071         tind_blks = 1;
1072
1073         return ind_blks + dind_blks + tind_blks;
1074 }
1075
1076 /*
1077  * Calculate the number of metadata blocks need to reserve
1078  * to allocate given number of blocks
1079  */
1080 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1081 {
1082         if (!blocks)
1083                 return 0;
1084
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1086                 return ext4_ext_calc_metadata_amount(inode, blocks);
1087
1088         return ext4_indirect_calc_metadata_amount(inode, blocks);
1089 }
1090
1091 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1092 {
1093         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094         int total, mdb, mdb_free;
1095
1096         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1097         /* recalculate the number of metablocks still need to be reserved */
1098         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1099         mdb = ext4_calc_metadata_amount(inode, total);
1100
1101         /* figure out how many metablocks to release */
1102         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1103         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1104
1105         if (mdb_free) {
1106                 /* Account for allocated meta_blocks */
1107                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1108
1109                 /* update fs dirty blocks counter */
1110                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1112                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1113         }
1114
1115         /* update per-inode reservations */
1116         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1117         EXT4_I(inode)->i_reserved_data_blocks -= used;
1118         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119
1120         /*
1121          * free those over-booking quota for metadata blocks
1122          */
1123         if (mdb_free)
1124                 vfs_dq_release_reservation_block(inode, mdb_free);
1125
1126         /*
1127          * If we have done all the pending block allocations and if
1128          * there aren't any writers on the inode, we can discard the
1129          * inode's preallocations.
1130          */
1131         if (!total && (atomic_read(&inode->i_writecount) == 0))
1132                 ext4_discard_preallocations(inode);
1133 }
1134
1135 static int check_block_validity(struct inode *inode, const char *msg,
1136                                 sector_t logical, sector_t phys, int len)
1137 {
1138         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1139                 ext4_error(inode->i_sb, msg,
1140                            "inode #%lu logical block %llu mapped to %llu "
1141                            "(size %d)", inode->i_ino,
1142                            (unsigned long long) logical,
1143                            (unsigned long long) phys, len);
1144                 return -EIO;
1145         }
1146         return 0;
1147 }
1148
1149 /*
1150  * Return the number of contiguous dirty pages in a given inode
1151  * starting at page frame idx.
1152  */
1153 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1154                                     unsigned int max_pages)
1155 {
1156         struct address_space *mapping = inode->i_mapping;
1157         pgoff_t index;
1158         struct pagevec pvec;
1159         pgoff_t num = 0;
1160         int i, nr_pages, done = 0;
1161
1162         if (max_pages == 0)
1163                 return 0;
1164         pagevec_init(&pvec, 0);
1165         while (!done) {
1166                 index = idx;
1167                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1168                                               PAGECACHE_TAG_DIRTY,
1169                                               (pgoff_t)PAGEVEC_SIZE);
1170                 if (nr_pages == 0)
1171                         break;
1172                 for (i = 0; i < nr_pages; i++) {
1173                         struct page *page = pvec.pages[i];
1174                         struct buffer_head *bh, *head;
1175
1176                         lock_page(page);
1177                         if (unlikely(page->mapping != mapping) ||
1178                             !PageDirty(page) ||
1179                             PageWriteback(page) ||
1180                             page->index != idx) {
1181                                 done = 1;
1182                                 unlock_page(page);
1183                                 break;
1184                         }
1185                         if (page_has_buffers(page)) {
1186                                 bh = head = page_buffers(page);
1187                                 do {
1188                                         if (!buffer_delay(bh) &&
1189                                             !buffer_unwritten(bh))
1190                                                 done = 1;
1191                                         bh = bh->b_this_page;
1192                                 } while (!done && (bh != head));
1193                         }
1194                         unlock_page(page);
1195                         if (done)
1196                                 break;
1197                         idx++;
1198                         num++;
1199                         if (num >= max_pages)
1200                                 break;
1201                 }
1202                 pagevec_release(&pvec);
1203         }
1204         return num;
1205 }
1206
1207 /*
1208  * The ext4_get_blocks() function tries to look up the requested blocks,
1209  * and returns if the blocks are already mapped.
1210  *
1211  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1212  * and store the allocated blocks in the result buffer head and mark it
1213  * mapped.
1214  *
1215  * If file type is extents based, it will call ext4_ext_get_blocks(),
1216  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1217  * based files
1218  *
1219  * On success, it returns the number of blocks being mapped or allocate.
1220  * if create==0 and the blocks are pre-allocated and uninitialized block,
1221  * the result buffer head is unmapped. If the create ==1, it will make sure
1222  * the buffer head is mapped.
1223  *
1224  * It returns 0 if plain look up failed (blocks have not been allocated), in
1225  * that casem, buffer head is unmapped
1226  *
1227  * It returns the error in case of allocation failure.
1228  */
1229 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1230                     unsigned int max_blocks, struct buffer_head *bh,
1231                     int flags)
1232 {
1233         int retval;
1234
1235         clear_buffer_mapped(bh);
1236         clear_buffer_unwritten(bh);
1237
1238         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1239                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1240                   (unsigned long)block);
1241         /*
1242          * Try to see if we can get the block without requesting a new
1243          * file system block.
1244          */
1245         down_read((&EXT4_I(inode)->i_data_sem));
1246         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1247                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1248                                 bh, 0);
1249         } else {
1250                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1251                                              bh, 0);
1252         }
1253         up_read((&EXT4_I(inode)->i_data_sem));
1254
1255         if (retval > 0 && buffer_mapped(bh)) {
1256                 int ret = check_block_validity(inode, "file system corruption",
1257                                                block, bh->b_blocknr, retval);
1258                 if (ret != 0)
1259                         return ret;
1260         }
1261
1262         /* If it is only a block(s) look up */
1263         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264                 return retval;
1265
1266         /*
1267          * Returns if the blocks have already allocated
1268          *
1269          * Note that if blocks have been preallocated
1270          * ext4_ext_get_block() returns th create = 0
1271          * with buffer head unmapped.
1272          */
1273         if (retval > 0 && buffer_mapped(bh))
1274                 return retval;
1275
1276         /*
1277          * When we call get_blocks without the create flag, the
1278          * BH_Unwritten flag could have gotten set if the blocks
1279          * requested were part of a uninitialized extent.  We need to
1280          * clear this flag now that we are committed to convert all or
1281          * part of the uninitialized extent to be an initialized
1282          * extent.  This is because we need to avoid the combination
1283          * of BH_Unwritten and BH_Mapped flags being simultaneously
1284          * set on the buffer_head.
1285          */
1286         clear_buffer_unwritten(bh);
1287
1288         /*
1289          * New blocks allocate and/or writing to uninitialized extent
1290          * will possibly result in updating i_data, so we take
1291          * the write lock of i_data_sem, and call get_blocks()
1292          * with create == 1 flag.
1293          */
1294         down_write((&EXT4_I(inode)->i_data_sem));
1295
1296         /*
1297          * if the caller is from delayed allocation writeout path
1298          * we have already reserved fs blocks for allocation
1299          * let the underlying get_block() function know to
1300          * avoid double accounting
1301          */
1302         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304         /*
1305          * We need to check for EXT4 here because migrate
1306          * could have changed the inode type in between
1307          */
1308         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1309                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1310                                               bh, flags);
1311         } else {
1312                 retval = ext4_ind_get_blocks(handle, inode, block,
1313                                              max_blocks, bh, flags);
1314
1315                 if (retval > 0 && buffer_new(bh)) {
1316                         /*
1317                          * We allocated new blocks which will result in
1318                          * i_data's format changing.  Force the migrate
1319                          * to fail by clearing migrate flags
1320                          */
1321                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1322                 }
1323         }
1324
1325         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1327
1328         /*
1329          * Update reserved blocks/metadata blocks after successful
1330          * block allocation which had been deferred till now.
1331          */
1332         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1333                 ext4_da_update_reserve_space(inode, retval);
1334
1335         up_write((&EXT4_I(inode)->i_data_sem));
1336         if (retval > 0 && buffer_mapped(bh)) {
1337                 int ret = check_block_validity(inode, "file system "
1338                                                "corruption after allocation",
1339                                                block, bh->b_blocknr, retval);
1340                 if (ret != 0)
1341                         return ret;
1342         }
1343         return retval;
1344 }
1345
1346 /* Maximum number of blocks we map for direct IO at once. */
1347 #define DIO_MAX_BLOCKS 4096
1348
1349 int ext4_get_block(struct inode *inode, sector_t iblock,
1350                    struct buffer_head *bh_result, int create)
1351 {
1352         handle_t *handle = ext4_journal_current_handle();
1353         int ret = 0, started = 0;
1354         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1355         int dio_credits;
1356
1357         if (create && !handle) {
1358                 /* Direct IO write... */
1359                 if (max_blocks > DIO_MAX_BLOCKS)
1360                         max_blocks = DIO_MAX_BLOCKS;
1361                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362                 handle = ext4_journal_start(inode, dio_credits);
1363                 if (IS_ERR(handle)) {
1364                         ret = PTR_ERR(handle);
1365                         goto out;
1366                 }
1367                 started = 1;
1368         }
1369
1370         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1371                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1372         if (ret > 0) {
1373                 bh_result->b_size = (ret << inode->i_blkbits);
1374                 ret = 0;
1375         }
1376         if (started)
1377                 ext4_journal_stop(handle);
1378 out:
1379         return ret;
1380 }
1381
1382 /*
1383  * `handle' can be NULL if create is zero
1384  */
1385 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1386                                 ext4_lblk_t block, int create, int *errp)
1387 {
1388         struct buffer_head dummy;
1389         int fatal = 0, err;
1390         int flags = 0;
1391
1392         J_ASSERT(handle != NULL || create == 0);
1393
1394         dummy.b_state = 0;
1395         dummy.b_blocknr = -1000;
1396         buffer_trace_init(&dummy.b_history);
1397         if (create)
1398                 flags |= EXT4_GET_BLOCKS_CREATE;
1399         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1400         /*
1401          * ext4_get_blocks() returns number of blocks mapped. 0 in
1402          * case of a HOLE.
1403          */
1404         if (err > 0) {
1405                 if (err > 1)
1406                         WARN_ON(1);
1407                 err = 0;
1408         }
1409         *errp = err;
1410         if (!err && buffer_mapped(&dummy)) {
1411                 struct buffer_head *bh;
1412                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413                 if (!bh) {
1414                         *errp = -EIO;
1415                         goto err;
1416                 }
1417                 if (buffer_new(&dummy)) {
1418                         J_ASSERT(create != 0);
1419                         J_ASSERT(handle != NULL);
1420
1421                         /*
1422                          * Now that we do not always journal data, we should
1423                          * keep in mind whether this should always journal the
1424                          * new buffer as metadata.  For now, regular file
1425                          * writes use ext4_get_block instead, so it's not a
1426                          * problem.
1427                          */
1428                         lock_buffer(bh);
1429                         BUFFER_TRACE(bh, "call get_create_access");
1430                         fatal = ext4_journal_get_create_access(handle, bh);
1431                         if (!fatal && !buffer_uptodate(bh)) {
1432                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433                                 set_buffer_uptodate(bh);
1434                         }
1435                         unlock_buffer(bh);
1436                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1438                         if (!fatal)
1439                                 fatal = err;
1440                 } else {
1441                         BUFFER_TRACE(bh, "not a new buffer");
1442                 }
1443                 if (fatal) {
1444                         *errp = fatal;
1445                         brelse(bh);
1446                         bh = NULL;
1447                 }
1448                 return bh;
1449         }
1450 err:
1451         return NULL;
1452 }
1453
1454 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1455                                ext4_lblk_t block, int create, int *err)
1456 {
1457         struct buffer_head *bh;
1458
1459         bh = ext4_getblk(handle, inode, block, create, err);
1460         if (!bh)
1461                 return bh;
1462         if (buffer_uptodate(bh))
1463                 return bh;
1464         ll_rw_block(READ_META, 1, &bh);
1465         wait_on_buffer(bh);
1466         if (buffer_uptodate(bh))
1467                 return bh;
1468         put_bh(bh);
1469         *err = -EIO;
1470         return NULL;
1471 }
1472
1473 static int walk_page_buffers(handle_t *handle,
1474                              struct buffer_head *head,
1475                              unsigned from,
1476                              unsigned to,
1477                              int *partial,
1478                              int (*fn)(handle_t *handle,
1479                                        struct buffer_head *bh))
1480 {
1481         struct buffer_head *bh;
1482         unsigned block_start, block_end;
1483         unsigned blocksize = head->b_size;
1484         int err, ret = 0;
1485         struct buffer_head *next;
1486
1487         for (bh = head, block_start = 0;
1488              ret == 0 && (bh != head || !block_start);
1489              block_start = block_end, bh = next) {
1490                 next = bh->b_this_page;
1491                 block_end = block_start + blocksize;
1492                 if (block_end <= from || block_start >= to) {
1493                         if (partial && !buffer_uptodate(bh))
1494                                 *partial = 1;
1495                         continue;
1496                 }
1497                 err = (*fn)(handle, bh);
1498                 if (!ret)
1499                         ret = err;
1500         }
1501         return ret;
1502 }
1503
1504 /*
1505  * To preserve ordering, it is essential that the hole instantiation and
1506  * the data write be encapsulated in a single transaction.  We cannot
1507  * close off a transaction and start a new one between the ext4_get_block()
1508  * and the commit_write().  So doing the jbd2_journal_start at the start of
1509  * prepare_write() is the right place.
1510  *
1511  * Also, this function can nest inside ext4_writepage() ->
1512  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1513  * has generated enough buffer credits to do the whole page.  So we won't
1514  * block on the journal in that case, which is good, because the caller may
1515  * be PF_MEMALLOC.
1516  *
1517  * By accident, ext4 can be reentered when a transaction is open via
1518  * quota file writes.  If we were to commit the transaction while thus
1519  * reentered, there can be a deadlock - we would be holding a quota
1520  * lock, and the commit would never complete if another thread had a
1521  * transaction open and was blocking on the quota lock - a ranking
1522  * violation.
1523  *
1524  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1525  * will _not_ run commit under these circumstances because handle->h_ref
1526  * is elevated.  We'll still have enough credits for the tiny quotafile
1527  * write.
1528  */
1529 static int do_journal_get_write_access(handle_t *handle,
1530                                        struct buffer_head *bh)
1531 {
1532         if (!buffer_mapped(bh) || buffer_freed(bh))
1533                 return 0;
1534         return ext4_journal_get_write_access(handle, bh);
1535 }
1536
1537 /*
1538  * Truncate blocks that were not used by write. We have to truncate the
1539  * pagecache as well so that corresponding buffers get properly unmapped.
1540  */
1541 static void ext4_truncate_failed_write(struct inode *inode)
1542 {
1543         truncate_inode_pages(inode->i_mapping, inode->i_size);
1544         ext4_truncate(inode);
1545 }
1546
1547 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1548                             loff_t pos, unsigned len, unsigned flags,
1549                             struct page **pagep, void **fsdata)
1550 {
1551         struct inode *inode = mapping->host;
1552         int ret, needed_blocks;
1553         handle_t *handle;
1554         int retries = 0;
1555         struct page *page;
1556         pgoff_t index;
1557         unsigned from, to;
1558
1559         trace_ext4_write_begin(inode, pos, len, flags);
1560         /*
1561          * Reserve one block more for addition to orphan list in case
1562          * we allocate blocks but write fails for some reason
1563          */
1564         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1565         index = pos >> PAGE_CACHE_SHIFT;
1566         from = pos & (PAGE_CACHE_SIZE - 1);
1567         to = from + len;
1568
1569 retry:
1570         handle = ext4_journal_start(inode, needed_blocks);
1571         if (IS_ERR(handle)) {
1572                 ret = PTR_ERR(handle);
1573                 goto out;
1574         }
1575
1576         /* We cannot recurse into the filesystem as the transaction is already
1577          * started */
1578         flags |= AOP_FLAG_NOFS;
1579
1580         page = grab_cache_page_write_begin(mapping, index, flags);
1581         if (!page) {
1582                 ext4_journal_stop(handle);
1583                 ret = -ENOMEM;
1584                 goto out;
1585         }
1586         *pagep = page;
1587
1588         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1589                                 ext4_get_block);
1590
1591         if (!ret && ext4_should_journal_data(inode)) {
1592                 ret = walk_page_buffers(handle, page_buffers(page),
1593                                 from, to, NULL, do_journal_get_write_access);
1594         }
1595
1596         if (ret) {
1597                 unlock_page(page);
1598                 page_cache_release(page);
1599                 /*
1600                  * block_write_begin may have instantiated a few blocks
1601                  * outside i_size.  Trim these off again. Don't need
1602                  * i_size_read because we hold i_mutex.
1603                  *
1604                  * Add inode to orphan list in case we crash before
1605                  * truncate finishes
1606                  */
1607                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1608                         ext4_orphan_add(handle, inode);
1609
1610                 ext4_journal_stop(handle);
1611                 if (pos + len > inode->i_size) {
1612                         ext4_truncate_failed_write(inode);
1613                         /*
1614                          * If truncate failed early the inode might
1615                          * still be on the orphan list; we need to
1616                          * make sure the inode is removed from the
1617                          * orphan list in that case.
1618                          */
1619                         if (inode->i_nlink)
1620                                 ext4_orphan_del(NULL, inode);
1621                 }
1622         }
1623
1624         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1625                 goto retry;
1626 out:
1627         return ret;
1628 }
1629
1630 /* For write_end() in data=journal mode */
1631 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1632 {
1633         if (!buffer_mapped(bh) || buffer_freed(bh))
1634                 return 0;
1635         set_buffer_uptodate(bh);
1636         return ext4_handle_dirty_metadata(handle, NULL, bh);
1637 }
1638
1639 static int ext4_generic_write_end(struct file *file,
1640                                   struct address_space *mapping,
1641                                   loff_t pos, unsigned len, unsigned copied,
1642                                   struct page *page, void *fsdata)
1643 {
1644         int i_size_changed = 0;
1645         struct inode *inode = mapping->host;
1646         handle_t *handle = ext4_journal_current_handle();
1647
1648         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1649
1650         /*
1651          * No need to use i_size_read() here, the i_size
1652          * cannot change under us because we hold i_mutex.
1653          *
1654          * But it's important to update i_size while still holding page lock:
1655          * page writeout could otherwise come in and zero beyond i_size.
1656          */
1657         if (pos + copied > inode->i_size) {
1658                 i_size_write(inode, pos + copied);
1659                 i_size_changed = 1;
1660         }
1661
1662         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1663                 /* We need to mark inode dirty even if
1664                  * new_i_size is less that inode->i_size
1665                  * bu greater than i_disksize.(hint delalloc)
1666                  */
1667                 ext4_update_i_disksize(inode, (pos + copied));
1668                 i_size_changed = 1;
1669         }
1670         unlock_page(page);
1671         page_cache_release(page);
1672
1673         /*
1674          * Don't mark the inode dirty under page lock. First, it unnecessarily
1675          * makes the holding time of page lock longer. Second, it forces lock
1676          * ordering of page lock and transaction start for journaling
1677          * filesystems.
1678          */
1679         if (i_size_changed)
1680                 ext4_mark_inode_dirty(handle, inode);
1681
1682         return copied;
1683 }
1684
1685 /*
1686  * We need to pick up the new inode size which generic_commit_write gave us
1687  * `file' can be NULL - eg, when called from page_symlink().
1688  *
1689  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1690  * buffers are managed internally.
1691  */
1692 static int ext4_ordered_write_end(struct file *file,
1693                                   struct address_space *mapping,
1694                                   loff_t pos, unsigned len, unsigned copied,
1695                                   struct page *page, void *fsdata)
1696 {
1697         handle_t *handle = ext4_journal_current_handle();
1698         struct inode *inode = mapping->host;
1699         int ret = 0, ret2;
1700
1701         trace_ext4_ordered_write_end(inode, pos, len, copied);
1702         ret = ext4_jbd2_file_inode(handle, inode);
1703
1704         if (ret == 0) {
1705                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1706                                                         page, fsdata);
1707                 copied = ret2;
1708                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1709                         /* if we have allocated more blocks and copied
1710                          * less. We will have blocks allocated outside
1711                          * inode->i_size. So truncate them
1712                          */
1713                         ext4_orphan_add(handle, inode);
1714                 if (ret2 < 0)
1715                         ret = ret2;
1716         }
1717         ret2 = ext4_journal_stop(handle);
1718         if (!ret)
1719                 ret = ret2;
1720
1721         if (pos + len > inode->i_size) {
1722                 ext4_truncate_failed_write(inode);
1723                 /*
1724                  * If truncate failed early the inode might still be
1725                  * on the orphan list; we need to make sure the inode
1726                  * is removed from the orphan list in that case.
1727                  */
1728                 if (inode->i_nlink)
1729                         ext4_orphan_del(NULL, inode);
1730         }
1731
1732
1733         return ret ? ret : copied;
1734 }
1735
1736 static int ext4_writeback_write_end(struct file *file,
1737                                     struct address_space *mapping,
1738                                     loff_t pos, unsigned len, unsigned copied,
1739                                     struct page *page, void *fsdata)
1740 {
1741         handle_t *handle = ext4_journal_current_handle();
1742         struct inode *inode = mapping->host;
1743         int ret = 0, ret2;
1744
1745         trace_ext4_writeback_write_end(inode, pos, len, copied);
1746         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1747                                                         page, fsdata);
1748         copied = ret2;
1749         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1750                 /* if we have allocated more blocks and copied
1751                  * less. We will have blocks allocated outside
1752                  * inode->i_size. So truncate them
1753                  */
1754                 ext4_orphan_add(handle, inode);
1755
1756         if (ret2 < 0)
1757                 ret = ret2;
1758
1759         ret2 = ext4_journal_stop(handle);
1760         if (!ret)
1761                 ret = ret2;
1762
1763         if (pos + len > inode->i_size) {
1764                 ext4_truncate_failed_write(inode);
1765                 /*
1766                  * If truncate failed early the inode might still be
1767                  * on the orphan list; we need to make sure the inode
1768                  * is removed from the orphan list in that case.
1769                  */
1770                 if (inode->i_nlink)
1771                         ext4_orphan_del(NULL, inode);
1772         }
1773
1774         return ret ? ret : copied;
1775 }
1776
1777 static int ext4_journalled_write_end(struct file *file,
1778                                      struct address_space *mapping,
1779                                      loff_t pos, unsigned len, unsigned copied,
1780                                      struct page *page, void *fsdata)
1781 {
1782         handle_t *handle = ext4_journal_current_handle();
1783         struct inode *inode = mapping->host;
1784         int ret = 0, ret2;
1785         int partial = 0;
1786         unsigned from, to;
1787         loff_t new_i_size;
1788
1789         trace_ext4_journalled_write_end(inode, pos, len, copied);
1790         from = pos & (PAGE_CACHE_SIZE - 1);
1791         to = from + len;
1792
1793         if (copied < len) {
1794                 if (!PageUptodate(page))
1795                         copied = 0;
1796                 page_zero_new_buffers(page, from+copied, to);
1797         }
1798
1799         ret = walk_page_buffers(handle, page_buffers(page), from,
1800                                 to, &partial, write_end_fn);
1801         if (!partial)
1802                 SetPageUptodate(page);
1803         new_i_size = pos + copied;
1804         if (new_i_size > inode->i_size)
1805                 i_size_write(inode, pos+copied);
1806         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1807         if (new_i_size > EXT4_I(inode)->i_disksize) {
1808                 ext4_update_i_disksize(inode, new_i_size);
1809                 ret2 = ext4_mark_inode_dirty(handle, inode);
1810                 if (!ret)
1811                         ret = ret2;
1812         }
1813
1814         unlock_page(page);
1815         page_cache_release(page);
1816         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1817                 /* if we have allocated more blocks and copied
1818                  * less. We will have blocks allocated outside
1819                  * inode->i_size. So truncate them
1820                  */
1821                 ext4_orphan_add(handle, inode);
1822
1823         ret2 = ext4_journal_stop(handle);
1824         if (!ret)
1825                 ret = ret2;
1826         if (pos + len > inode->i_size) {
1827                 ext4_truncate_failed_write(inode);
1828                 /*
1829                  * If truncate failed early the inode might still be
1830                  * on the orphan list; we need to make sure the inode
1831                  * is removed from the orphan list in that case.
1832                  */
1833                 if (inode->i_nlink)
1834                         ext4_orphan_del(NULL, inode);
1835         }
1836
1837         return ret ? ret : copied;
1838 }
1839
1840 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1841 {
1842         int retries = 0;
1843         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844         unsigned long md_needed, mdblocks, total = 0;
1845
1846         /*
1847          * recalculate the amount of metadata blocks to reserve
1848          * in order to allocate nrblocks
1849          * worse case is one extent per block
1850          */
1851 repeat:
1852         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1853         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1854         mdblocks = ext4_calc_metadata_amount(inode, total);
1855         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1856
1857         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1858         total = md_needed + nrblocks;
1859
1860         /*
1861          * Make quota reservation here to prevent quota overflow
1862          * later. Real quota accounting is done at pages writeout
1863          * time.
1864          */
1865         if (vfs_dq_reserve_block(inode, total)) {
1866                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1867                 return -EDQUOT;
1868         }
1869
1870         if (ext4_claim_free_blocks(sbi, total)) {
1871                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1872                 vfs_dq_release_reservation_block(inode, total);
1873                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1874                         yield();
1875                         goto repeat;
1876                 }
1877                 return -ENOSPC;
1878         }
1879         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1880         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1881
1882         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1883         return 0;       /* success */
1884 }
1885
1886 static void ext4_da_release_space(struct inode *inode, int to_free)
1887 {
1888         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1889         int total, mdb, mdb_free, release;
1890
1891         if (!to_free)
1892                 return;         /* Nothing to release, exit */
1893
1894         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1895
1896         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1897                 /*
1898                  * if there is no reserved blocks, but we try to free some
1899                  * then the counter is messed up somewhere.
1900                  * but since this function is called from invalidate
1901                  * page, it's harmless to return without any action
1902                  */
1903                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1904                             "blocks for inode %lu, but there is no reserved "
1905                             "data blocks\n", to_free, inode->i_ino);
1906                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1907                 return;
1908         }
1909
1910         /* recalculate the number of metablocks still need to be reserved */
1911         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1912         mdb = ext4_calc_metadata_amount(inode, total);
1913
1914         /* figure out how many metablocks to release */
1915         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1916         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1917
1918         release = to_free + mdb_free;
1919
1920         /* update fs dirty blocks counter for truncate case */
1921         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1922
1923         /* update per-inode reservations */
1924         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1925         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1926
1927         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1928         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1929         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1930
1931         vfs_dq_release_reservation_block(inode, release);
1932 }
1933
1934 static void ext4_da_page_release_reservation(struct page *page,
1935                                              unsigned long offset)
1936 {
1937         int to_release = 0;
1938         struct buffer_head *head, *bh;
1939         unsigned int curr_off = 0;
1940
1941         head = page_buffers(page);
1942         bh = head;
1943         do {
1944                 unsigned int next_off = curr_off + bh->b_size;
1945
1946                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1947                         to_release++;
1948                         clear_buffer_delay(bh);
1949                 }
1950                 curr_off = next_off;
1951         } while ((bh = bh->b_this_page) != head);
1952         ext4_da_release_space(page->mapping->host, to_release);
1953 }
1954
1955 /*
1956  * Delayed allocation stuff
1957  */
1958
1959 /*
1960  * mpage_da_submit_io - walks through extent of pages and try to write
1961  * them with writepage() call back
1962  *
1963  * @mpd->inode: inode
1964  * @mpd->first_page: first page of the extent
1965  * @mpd->next_page: page after the last page of the extent
1966  *
1967  * By the time mpage_da_submit_io() is called we expect all blocks
1968  * to be allocated. this may be wrong if allocation failed.
1969  *
1970  * As pages are already locked by write_cache_pages(), we can't use it
1971  */
1972 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1973 {
1974         long pages_skipped;
1975         struct pagevec pvec;
1976         unsigned long index, end;
1977         int ret = 0, err, nr_pages, i;
1978         struct inode *inode = mpd->inode;
1979         struct address_space *mapping = inode->i_mapping;
1980
1981         BUG_ON(mpd->next_page <= mpd->first_page);
1982         /*
1983          * We need to start from the first_page to the next_page - 1
1984          * to make sure we also write the mapped dirty buffer_heads.
1985          * If we look at mpd->b_blocknr we would only be looking
1986          * at the currently mapped buffer_heads.
1987          */
1988         index = mpd->first_page;
1989         end = mpd->next_page - 1;
1990
1991         pagevec_init(&pvec, 0);
1992         while (index <= end) {
1993                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1994                 if (nr_pages == 0)
1995                         break;
1996                 for (i = 0; i < nr_pages; i++) {
1997                         struct page *page = pvec.pages[i];
1998
1999                         index = page->index;
2000                         if (index > end)
2001                                 break;
2002                         index++;
2003
2004                         BUG_ON(!PageLocked(page));
2005                         BUG_ON(PageWriteback(page));
2006
2007                         pages_skipped = mpd->wbc->pages_skipped;
2008                         err = mapping->a_ops->writepage(page, mpd->wbc);
2009                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2010                                 /*
2011                                  * have successfully written the page
2012                                  * without skipping the same
2013                                  */
2014                                 mpd->pages_written++;
2015                         /*
2016                          * In error case, we have to continue because
2017                          * remaining pages are still locked
2018                          * XXX: unlock and re-dirty them?
2019                          */
2020                         if (ret == 0)
2021                                 ret = err;
2022                 }
2023                 pagevec_release(&pvec);
2024         }
2025         return ret;
2026 }
2027
2028 /*
2029  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2030  *
2031  * @mpd->inode - inode to walk through
2032  * @exbh->b_blocknr - first block on a disk
2033  * @exbh->b_size - amount of space in bytes
2034  * @logical - first logical block to start assignment with
2035  *
2036  * the function goes through all passed space and put actual disk
2037  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2038  */
2039 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2040                                  struct buffer_head *exbh)
2041 {
2042         struct inode *inode = mpd->inode;
2043         struct address_space *mapping = inode->i_mapping;
2044         int blocks = exbh->b_size >> inode->i_blkbits;
2045         sector_t pblock = exbh->b_blocknr, cur_logical;
2046         struct buffer_head *head, *bh;
2047         pgoff_t index, end;
2048         struct pagevec pvec;
2049         int nr_pages, i;
2050
2051         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2052         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2053         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054
2055         pagevec_init(&pvec, 0);
2056
2057         while (index <= end) {
2058                 /* XXX: optimize tail */
2059                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060                 if (nr_pages == 0)
2061                         break;
2062                 for (i = 0; i < nr_pages; i++) {
2063                         struct page *page = pvec.pages[i];
2064
2065                         index = page->index;
2066                         if (index > end)
2067                                 break;
2068                         index++;
2069
2070                         BUG_ON(!PageLocked(page));
2071                         BUG_ON(PageWriteback(page));
2072                         BUG_ON(!page_has_buffers(page));
2073
2074                         bh = page_buffers(page);
2075                         head = bh;
2076
2077                         /* skip blocks out of the range */
2078                         do {
2079                                 if (cur_logical >= logical)
2080                                         break;
2081                                 cur_logical++;
2082                         } while ((bh = bh->b_this_page) != head);
2083
2084                         do {
2085                                 if (cur_logical >= logical + blocks)
2086                                         break;
2087
2088                                 if (buffer_delay(bh) ||
2089                                                 buffer_unwritten(bh)) {
2090
2091                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2092
2093                                         if (buffer_delay(bh)) {
2094                                                 clear_buffer_delay(bh);
2095                                                 bh->b_blocknr = pblock;
2096                                         } else {
2097                                                 /*
2098                                                  * unwritten already should have
2099                                                  * blocknr assigned. Verify that
2100                                                  */
2101                                                 clear_buffer_unwritten(bh);
2102                                                 BUG_ON(bh->b_blocknr != pblock);
2103                                         }
2104
2105                                 } else if (buffer_mapped(bh))
2106                                         BUG_ON(bh->b_blocknr != pblock);
2107
2108                                 cur_logical++;
2109                                 pblock++;
2110                         } while ((bh = bh->b_this_page) != head);
2111                 }
2112                 pagevec_release(&pvec);
2113         }
2114 }
2115
2116
2117 /*
2118  * __unmap_underlying_blocks - just a helper function to unmap
2119  * set of blocks described by @bh
2120  */
2121 static inline void __unmap_underlying_blocks(struct inode *inode,
2122                                              struct buffer_head *bh)
2123 {
2124         struct block_device *bdev = inode->i_sb->s_bdev;
2125         int blocks, i;
2126
2127         blocks = bh->b_size >> inode->i_blkbits;
2128         for (i = 0; i < blocks; i++)
2129                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2130 }
2131
2132 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2133                                         sector_t logical, long blk_cnt)
2134 {
2135         int nr_pages, i;
2136         pgoff_t index, end;
2137         struct pagevec pvec;
2138         struct inode *inode = mpd->inode;
2139         struct address_space *mapping = inode->i_mapping;
2140
2141         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2142         end   = (logical + blk_cnt - 1) >>
2143                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2144         while (index <= end) {
2145                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2146                 if (nr_pages == 0)
2147                         break;
2148                 for (i = 0; i < nr_pages; i++) {
2149                         struct page *page = pvec.pages[i];
2150                         index = page->index;
2151                         if (index > end)
2152                                 break;
2153                         index++;
2154
2155                         BUG_ON(!PageLocked(page));
2156                         BUG_ON(PageWriteback(page));
2157                         block_invalidatepage(page, 0);
2158                         ClearPageUptodate(page);
2159                         unlock_page(page);
2160                 }
2161         }
2162         return;
2163 }
2164
2165 static void ext4_print_free_blocks(struct inode *inode)
2166 {
2167         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2168         printk(KERN_CRIT "Total free blocks count %lld\n",
2169                ext4_count_free_blocks(inode->i_sb));
2170         printk(KERN_CRIT "Free/Dirty block details\n");
2171         printk(KERN_CRIT "free_blocks=%lld\n",
2172                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2173         printk(KERN_CRIT "dirty_blocks=%lld\n",
2174                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2175         printk(KERN_CRIT "Block reservation details\n");
2176         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2177                EXT4_I(inode)->i_reserved_data_blocks);
2178         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2179                EXT4_I(inode)->i_reserved_meta_blocks);
2180         return;
2181 }
2182
2183 /*
2184  * mpage_da_map_blocks - go through given space
2185  *
2186  * @mpd - bh describing space
2187  *
2188  * The function skips space we know is already mapped to disk blocks.
2189  *
2190  */
2191 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2192 {
2193         int err, blks, get_blocks_flags;
2194         struct buffer_head new;
2195         sector_t next = mpd->b_blocknr;
2196         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2197         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2198         handle_t *handle = NULL;
2199
2200         /*
2201          * We consider only non-mapped and non-allocated blocks
2202          */
2203         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2204                 !(mpd->b_state & (1 << BH_Delay)) &&
2205                 !(mpd->b_state & (1 << BH_Unwritten)))
2206                 return 0;
2207
2208         /*
2209          * If we didn't accumulate anything to write simply return
2210          */
2211         if (!mpd->b_size)
2212                 return 0;
2213
2214         handle = ext4_journal_current_handle();
2215         BUG_ON(!handle);
2216
2217         /*
2218          * Call ext4_get_blocks() to allocate any delayed allocation
2219          * blocks, or to convert an uninitialized extent to be
2220          * initialized (in the case where we have written into
2221          * one or more preallocated blocks).
2222          *
2223          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2224          * indicate that we are on the delayed allocation path.  This
2225          * affects functions in many different parts of the allocation
2226          * call path.  This flag exists primarily because we don't
2227          * want to change *many* call functions, so ext4_get_blocks()
2228          * will set the magic i_delalloc_reserved_flag once the
2229          * inode's allocation semaphore is taken.
2230          *
2231          * If the blocks in questions were delalloc blocks, set
2232          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2233          * variables are updated after the blocks have been allocated.
2234          */
2235         new.b_state = 0;
2236         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2237                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2238         if (mpd->b_state & (1 << BH_Delay))
2239                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2240         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2241                                &new, get_blocks_flags);
2242         if (blks < 0) {
2243                 err = blks;
2244                 /*
2245                  * If get block returns with error we simply
2246                  * return. Later writepage will redirty the page and
2247                  * writepages will find the dirty page again
2248                  */
2249                 if (err == -EAGAIN)
2250                         return 0;
2251
2252                 if (err == -ENOSPC &&
2253                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2254                         mpd->retval = err;
2255                         return 0;
2256                 }
2257
2258                 /*
2259                  * get block failure will cause us to loop in
2260                  * writepages, because a_ops->writepage won't be able
2261                  * to make progress. The page will be redirtied by
2262                  * writepage and writepages will again try to write
2263                  * the same.
2264                  */
2265                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2266                          "delayed block allocation failed for inode %lu at "
2267                          "logical offset %llu with max blocks %zd with "
2268                          "error %d\n", mpd->inode->i_ino,
2269                          (unsigned long long) next,
2270                          mpd->b_size >> mpd->inode->i_blkbits, err);
2271                 printk(KERN_CRIT "This should not happen!!  "
2272                        "Data will be lost\n");
2273                 if (err == -ENOSPC) {
2274                         ext4_print_free_blocks(mpd->inode);
2275                 }
2276                 /* invalidate all the pages */
2277                 ext4_da_block_invalidatepages(mpd, next,
2278                                 mpd->b_size >> mpd->inode->i_blkbits);
2279                 return err;
2280         }
2281         BUG_ON(blks == 0);
2282
2283         new.b_size = (blks << mpd->inode->i_blkbits);
2284
2285         if (buffer_new(&new))
2286                 __unmap_underlying_blocks(mpd->inode, &new);
2287
2288         /*
2289          * If blocks are delayed marked, we need to
2290          * put actual blocknr and drop delayed bit
2291          */
2292         if ((mpd->b_state & (1 << BH_Delay)) ||
2293             (mpd->b_state & (1 << BH_Unwritten)))
2294                 mpage_put_bnr_to_bhs(mpd, next, &new);
2295
2296         if (ext4_should_order_data(mpd->inode)) {
2297                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2298                 if (err)
2299                         return err;
2300         }
2301
2302         /*
2303          * Update on-disk size along with block allocation.
2304          */
2305         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2306         if (disksize > i_size_read(mpd->inode))
2307                 disksize = i_size_read(mpd->inode);
2308         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2309                 ext4_update_i_disksize(mpd->inode, disksize);
2310                 return ext4_mark_inode_dirty(handle, mpd->inode);
2311         }
2312
2313         return 0;
2314 }
2315
2316 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2317                 (1 << BH_Delay) | (1 << BH_Unwritten))
2318
2319 /*
2320  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2321  *
2322  * @mpd->lbh - extent of blocks
2323  * @logical - logical number of the block in the file
2324  * @bh - bh of the block (used to access block's state)
2325  *
2326  * the function is used to collect contig. blocks in same state
2327  */
2328 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2329                                    sector_t logical, size_t b_size,
2330                                    unsigned long b_state)
2331 {
2332         sector_t next;
2333         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2334
2335         /* check if thereserved journal credits might overflow */
2336         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2337                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2338                         /*
2339                          * With non-extent format we are limited by the journal
2340                          * credit available.  Total credit needed to insert
2341                          * nrblocks contiguous blocks is dependent on the
2342                          * nrblocks.  So limit nrblocks.
2343                          */
2344                         goto flush_it;
2345                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2346                                 EXT4_MAX_TRANS_DATA) {
2347                         /*
2348                          * Adding the new buffer_head would make it cross the
2349                          * allowed limit for which we have journal credit
2350                          * reserved. So limit the new bh->b_size
2351                          */
2352                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2353                                                 mpd->inode->i_blkbits;
2354                         /* we will do mpage_da_submit_io in the next loop */
2355                 }
2356         }
2357         /*
2358          * First block in the extent
2359          */
2360         if (mpd->b_size == 0) {
2361                 mpd->b_blocknr = logical;
2362                 mpd->b_size = b_size;
2363                 mpd->b_state = b_state & BH_FLAGS;
2364                 return;
2365         }
2366
2367         next = mpd->b_blocknr + nrblocks;
2368         /*
2369          * Can we merge the block to our big extent?
2370          */
2371         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2372                 mpd->b_size += b_size;
2373                 return;
2374         }
2375
2376 flush_it:
2377         /*
2378          * We couldn't merge the block to our extent, so we
2379          * need to flush current  extent and start new one
2380          */
2381         if (mpage_da_map_blocks(mpd) == 0)
2382                 mpage_da_submit_io(mpd);
2383         mpd->io_done = 1;
2384         return;
2385 }
2386
2387 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2388 {
2389         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2390 }
2391
2392 /*
2393  * __mpage_da_writepage - finds extent of pages and blocks
2394  *
2395  * @page: page to consider
2396  * @wbc: not used, we just follow rules
2397  * @data: context
2398  *
2399  * The function finds extents of pages and scan them for all blocks.
2400  */
2401 static int __mpage_da_writepage(struct page *page,
2402                                 struct writeback_control *wbc, void *data)
2403 {
2404         struct mpage_da_data *mpd = data;
2405         struct inode *inode = mpd->inode;
2406         struct buffer_head *bh, *head;
2407         sector_t logical;
2408
2409         if (mpd->io_done) {
2410                 /*
2411                  * Rest of the page in the page_vec
2412                  * redirty then and skip then. We will
2413                  * try to write them again after
2414                  * starting a new transaction
2415                  */
2416                 redirty_page_for_writepage(wbc, page);
2417                 unlock_page(page);
2418                 return MPAGE_DA_EXTENT_TAIL;
2419         }
2420         /*
2421          * Can we merge this page to current extent?
2422          */
2423         if (mpd->next_page != page->index) {
2424                 /*
2425                  * Nope, we can't. So, we map non-allocated blocks
2426                  * and start IO on them using writepage()
2427                  */
2428                 if (mpd->next_page != mpd->first_page) {
2429                         if (mpage_da_map_blocks(mpd) == 0)
2430                                 mpage_da_submit_io(mpd);
2431                         /*
2432                          * skip rest of the page in the page_vec
2433                          */
2434                         mpd->io_done = 1;
2435                         redirty_page_for_writepage(wbc, page);
2436                         unlock_page(page);
2437                         return MPAGE_DA_EXTENT_TAIL;
2438                 }
2439
2440                 /*
2441                  * Start next extent of pages ...
2442                  */
2443                 mpd->first_page = page->index;
2444
2445                 /*
2446                  * ... and blocks
2447                  */
2448                 mpd->b_size = 0;
2449                 mpd->b_state = 0;
2450                 mpd->b_blocknr = 0;
2451         }
2452
2453         mpd->next_page = page->index + 1;
2454         logical = (sector_t) page->index <<
2455                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2456
2457         if (!page_has_buffers(page)) {
2458                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2459                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2460                 if (mpd->io_done)
2461                         return MPAGE_DA_EXTENT_TAIL;
2462         } else {
2463                 /*
2464                  * Page with regular buffer heads, just add all dirty ones
2465                  */
2466                 head = page_buffers(page);
2467                 bh = head;
2468                 do {
2469                         BUG_ON(buffer_locked(bh));
2470                         /*
2471                          * We need to try to allocate
2472                          * unmapped blocks in the same page.
2473                          * Otherwise we won't make progress
2474                          * with the page in ext4_writepage
2475                          */
2476                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2477                                 mpage_add_bh_to_extent(mpd, logical,
2478                                                        bh->b_size,
2479                                                        bh->b_state);
2480                                 if (mpd->io_done)
2481                                         return MPAGE_DA_EXTENT_TAIL;
2482                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2483                                 /*
2484                                  * mapped dirty buffer. We need to update
2485                                  * the b_state because we look at
2486                                  * b_state in mpage_da_map_blocks. We don't
2487                                  * update b_size because if we find an
2488                                  * unmapped buffer_head later we need to
2489                                  * use the b_state flag of that buffer_head.
2490                                  */
2491                                 if (mpd->b_size == 0)
2492                                         mpd->b_state = bh->b_state & BH_FLAGS;
2493                         }
2494                         logical++;
2495                 } while ((bh = bh->b_this_page) != head);
2496         }
2497
2498         return 0;
2499 }
2500
2501 /*
2502  * This is a special get_blocks_t callback which is used by
2503  * ext4_da_write_begin().  It will either return mapped block or
2504  * reserve space for a single block.
2505  *
2506  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2507  * We also have b_blocknr = -1 and b_bdev initialized properly
2508  *
2509  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2510  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2511  * initialized properly.
2512  */
2513 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2514                                   struct buffer_head *bh_result, int create)
2515 {
2516         int ret = 0;
2517         sector_t invalid_block = ~((sector_t) 0xffff);
2518
2519         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2520                 invalid_block = ~0;
2521
2522         BUG_ON(create == 0);
2523         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2524
2525         /*
2526          * first, we need to know whether the block is allocated already
2527          * preallocated blocks are unmapped but should treated
2528          * the same as allocated blocks.
2529          */
2530         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2531         if ((ret == 0) && !buffer_delay(bh_result)) {
2532                 /* the block isn't (pre)allocated yet, let's reserve space */
2533                 /*
2534                  * XXX: __block_prepare_write() unmaps passed block,
2535                  * is it OK?
2536                  */
2537                 ret = ext4_da_reserve_space(inode, 1);
2538                 if (ret)
2539                         /* not enough space to reserve */
2540                         return ret;
2541
2542                 map_bh(bh_result, inode->i_sb, invalid_block);
2543                 set_buffer_new(bh_result);
2544                 set_buffer_delay(bh_result);
2545         } else if (ret > 0) {
2546                 bh_result->b_size = (ret << inode->i_blkbits);
2547                 if (buffer_unwritten(bh_result)) {
2548                         /* A delayed write to unwritten bh should
2549                          * be marked new and mapped.  Mapped ensures
2550                          * that we don't do get_block multiple times
2551                          * when we write to the same offset and new
2552                          * ensures that we do proper zero out for
2553                          * partial write.
2554                          */
2555                         set_buffer_new(bh_result);
2556                         set_buffer_mapped(bh_result);
2557                 }
2558                 ret = 0;
2559         }
2560
2561         return ret;
2562 }
2563
2564 /*
2565  * This function is used as a standard get_block_t calback function
2566  * when there is no desire to allocate any blocks.  It is used as a
2567  * callback function for block_prepare_write(), nobh_writepage(), and
2568  * block_write_full_page().  These functions should only try to map a
2569  * single block at a time.
2570  *
2571  * Since this function doesn't do block allocations even if the caller
2572  * requests it by passing in create=1, it is critically important that
2573  * any caller checks to make sure that any buffer heads are returned
2574  * by this function are either all already mapped or marked for
2575  * delayed allocation before calling nobh_writepage() or
2576  * block_write_full_page().  Otherwise, b_blocknr could be left
2577  * unitialized, and the page write functions will be taken by
2578  * surprise.
2579  */
2580 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2581                                    struct buffer_head *bh_result, int create)
2582 {
2583         int ret = 0;
2584         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2585
2586         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2587
2588         /*
2589          * we don't want to do block allocation in writepage
2590          * so call get_block_wrap with create = 0
2591          */
2592         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2593         if (ret > 0) {
2594                 bh_result->b_size = (ret << inode->i_blkbits);
2595                 ret = 0;
2596         }
2597         return ret;
2598 }
2599
2600 static int bget_one(handle_t *handle, struct buffer_head *bh)
2601 {
2602         get_bh(bh);
2603         return 0;
2604 }
2605
2606 static int bput_one(handle_t *handle, struct buffer_head *bh)
2607 {
2608         put_bh(bh);
2609         return 0;
2610 }
2611
2612 static int __ext4_journalled_writepage(struct page *page,
2613                                        struct writeback_control *wbc,
2614                                        unsigned int len)
2615 {
2616         struct address_space *mapping = page->mapping;
2617         struct inode *inode = mapping->host;
2618         struct buffer_head *page_bufs;
2619         handle_t *handle = NULL;
2620         int ret = 0;
2621         int err;
2622
2623         page_bufs = page_buffers(page);
2624         BUG_ON(!page_bufs);
2625         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2626         /* As soon as we unlock the page, it can go away, but we have
2627          * references to buffers so we are safe */
2628         unlock_page(page);
2629
2630         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2631         if (IS_ERR(handle)) {
2632                 ret = PTR_ERR(handle);
2633                 goto out;
2634         }
2635
2636         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2637                                 do_journal_get_write_access);
2638
2639         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2640                                 write_end_fn);
2641         if (ret == 0)
2642                 ret = err;
2643         err = ext4_journal_stop(handle);
2644         if (!ret)
2645                 ret = err;
2646
2647         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2648         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2649 out:
2650         return ret;
2651 }
2652
2653 /*
2654  * Note that we don't need to start a transaction unless we're journaling data
2655  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2656  * need to file the inode to the transaction's list in ordered mode because if
2657  * we are writing back data added by write(), the inode is already there and if
2658  * we are writing back data modified via mmap(), noone guarantees in which
2659  * transaction the data will hit the disk. In case we are journaling data, we
2660  * cannot start transaction directly because transaction start ranks above page
2661  * lock so we have to do some magic.
2662  *
2663  * This function can get called via...
2664  *   - ext4_da_writepages after taking page lock (have journal handle)
2665  *   - journal_submit_inode_data_buffers (no journal handle)
2666  *   - shrink_page_list via pdflush (no journal handle)
2667  *   - grab_page_cache when doing write_begin (have journal handle)
2668  *
2669  * We don't do any block allocation in this function. If we have page with
2670  * multiple blocks we need to write those buffer_heads that are mapped. This
2671  * is important for mmaped based write. So if we do with blocksize 1K
2672  * truncate(f, 1024);
2673  * a = mmap(f, 0, 4096);
2674  * a[0] = 'a';
2675  * truncate(f, 4096);
2676  * we have in the page first buffer_head mapped via page_mkwrite call back
2677  * but other bufer_heads would be unmapped but dirty(dirty done via the
2678  * do_wp_page). So writepage should write the first block. If we modify
2679  * the mmap area beyond 1024 we will again get a page_fault and the
2680  * page_mkwrite callback will do the block allocation and mark the
2681  * buffer_heads mapped.
2682  *
2683  * We redirty the page if we have any buffer_heads that is either delay or
2684  * unwritten in the page.
2685  *
2686  * We can get recursively called as show below.
2687  *
2688  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2689  *              ext4_writepage()
2690  *
2691  * But since we don't do any block allocation we should not deadlock.
2692  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2693  */
2694 static int ext4_writepage(struct page *page,
2695                           struct writeback_control *wbc)
2696 {
2697         int ret = 0;
2698         loff_t size;
2699         unsigned int len;
2700         struct buffer_head *page_bufs;
2701         struct inode *inode = page->mapping->host;
2702
2703         trace_ext4_writepage(inode, page);
2704         size = i_size_read(inode);
2705         if (page->index == size >> PAGE_CACHE_SHIFT)
2706                 len = size & ~PAGE_CACHE_MASK;
2707         else
2708                 len = PAGE_CACHE_SIZE;
2709
2710         if (page_has_buffers(page)) {
2711                 page_bufs = page_buffers(page);
2712                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2713                                         ext4_bh_delay_or_unwritten)) {
2714                         /*
2715                          * We don't want to do  block allocation
2716                          * So redirty the page and return
2717                          * We may reach here when we do a journal commit
2718                          * via journal_submit_inode_data_buffers.
2719                          * If we don't have mapping block we just ignore
2720                          * them. We can also reach here via shrink_page_list
2721                          */
2722                         redirty_page_for_writepage(wbc, page);
2723                         unlock_page(page);
2724                         return 0;
2725                 }
2726         } else {
2727                 /*
2728                  * The test for page_has_buffers() is subtle:
2729                  * We know the page is dirty but it lost buffers. That means
2730                  * that at some moment in time after write_begin()/write_end()
2731                  * has been called all buffers have been clean and thus they
2732                  * must have been written at least once. So they are all
2733                  * mapped and we can happily proceed with mapping them
2734                  * and writing the page.
2735                  *
2736                  * Try to initialize the buffer_heads and check whether
2737                  * all are mapped and non delay. We don't want to
2738                  * do block allocation here.
2739                  */
2740                 ret = block_prepare_write(page, 0, len,
2741                                           noalloc_get_block_write);
2742                 if (!ret) {
2743                         page_bufs = page_buffers(page);
2744                         /* check whether all are mapped and non delay */
2745                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2746                                                 ext4_bh_delay_or_unwritten)) {
2747                                 redirty_page_for_writepage(wbc, page);
2748                                 unlock_page(page);
2749                                 return 0;
2750                         }
2751                 } else {
2752                         /*
2753                          * We can't do block allocation here
2754                          * so just redity the page and unlock
2755                          * and return
2756                          */
2757                         redirty_page_for_writepage(wbc, page);
2758                         unlock_page(page);
2759                         return 0;
2760                 }
2761                 /* now mark the buffer_heads as dirty and uptodate */
2762                 block_commit_write(page, 0, len);
2763         }
2764
2765         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2766                 /*
2767                  * It's mmapped pagecache.  Add buffers and journal it.  There
2768                  * doesn't seem much point in redirtying the page here.
2769                  */
2770                 ClearPageChecked(page);
2771                 return __ext4_journalled_writepage(page, wbc, len);
2772         }
2773
2774         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2775                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2776         else
2777                 ret = block_write_full_page(page, noalloc_get_block_write,
2778                                             wbc);
2779
2780         return ret;
2781 }
2782
2783 /*
2784  * This is called via ext4_da_writepages() to
2785  * calulate the total number of credits to reserve to fit
2786  * a single extent allocation into a single transaction,
2787  * ext4_da_writpeages() will loop calling this before
2788  * the block allocation.
2789  */
2790
2791 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2792 {
2793         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2794
2795         /*
2796          * With non-extent format the journal credit needed to
2797          * insert nrblocks contiguous block is dependent on
2798          * number of contiguous block. So we will limit
2799          * number of contiguous block to a sane value
2800          */
2801         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2802             (max_blocks > EXT4_MAX_TRANS_DATA))
2803                 max_blocks = EXT4_MAX_TRANS_DATA;
2804
2805         return ext4_chunk_trans_blocks(inode, max_blocks);
2806 }
2807
2808 static int ext4_da_writepages(struct address_space *mapping,
2809                               struct writeback_control *wbc)
2810 {
2811         pgoff_t index;
2812         int range_whole = 0;
2813         handle_t *handle = NULL;
2814         struct mpage_da_data mpd;
2815         struct inode *inode = mapping->host;
2816         int no_nrwrite_index_update;
2817         int pages_written = 0;
2818         long pages_skipped;
2819         unsigned int max_pages;
2820         int range_cyclic, cycled = 1, io_done = 0;
2821         int needed_blocks, ret = 0;
2822         long desired_nr_to_write, nr_to_writebump = 0;
2823         loff_t range_start = wbc->range_start;
2824         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2825
2826         trace_ext4_da_writepages(inode, wbc);
2827
2828         /*
2829          * No pages to write? This is mainly a kludge to avoid starting
2830          * a transaction for special inodes like journal inode on last iput()
2831          * because that could violate lock ordering on umount
2832          */
2833         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2834                 return 0;
2835
2836         /*
2837          * If the filesystem has aborted, it is read-only, so return
2838          * right away instead of dumping stack traces later on that
2839          * will obscure the real source of the problem.  We test
2840          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2841          * the latter could be true if the filesystem is mounted
2842          * read-only, and in that case, ext4_da_writepages should
2843          * *never* be called, so if that ever happens, we would want
2844          * the stack trace.
2845          */
2846         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2847                 return -EROFS;
2848
2849         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2850                 range_whole = 1;
2851
2852         range_cyclic = wbc->range_cyclic;
2853         if (wbc->range_cyclic) {
2854                 index = mapping->writeback_index;
2855                 if (index)
2856                         cycled = 0;
2857                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2858                 wbc->range_end  = LLONG_MAX;
2859                 wbc->range_cyclic = 0;
2860         } else
2861                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2862
2863         /*
2864          * This works around two forms of stupidity.  The first is in
2865          * the writeback code, which caps the maximum number of pages
2866          * written to be 1024 pages.  This is wrong on multiple
2867          * levels; different architectues have a different page size,
2868          * which changes the maximum amount of data which gets
2869          * written.  Secondly, 4 megabytes is way too small.  XFS
2870          * forces this value to be 16 megabytes by multiplying
2871          * nr_to_write parameter by four, and then relies on its
2872          * allocator to allocate larger extents to make them
2873          * contiguous.  Unfortunately this brings us to the second
2874          * stupidity, which is that ext4's mballoc code only allocates
2875          * at most 2048 blocks.  So we force contiguous writes up to
2876          * the number of dirty blocks in the inode, or
2877          * sbi->max_writeback_mb_bump whichever is smaller.
2878          */
2879         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2880         if (!range_cyclic && range_whole)
2881                 desired_nr_to_write = wbc->nr_to_write * 8;
2882         else
2883                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2884                                                            max_pages);
2885         if (desired_nr_to_write > max_pages)
2886                 desired_nr_to_write = max_pages;
2887
2888         if (wbc->nr_to_write < desired_nr_to_write) {
2889                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2890                 wbc->nr_to_write = desired_nr_to_write;
2891         }
2892
2893         mpd.wbc = wbc;
2894         mpd.inode = mapping->host;
2895
2896         /*
2897          * we don't want write_cache_pages to update
2898          * nr_to_write and writeback_index
2899          */
2900         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2901         wbc->no_nrwrite_index_update = 1;
2902         pages_skipped = wbc->pages_skipped;
2903
2904 retry:
2905         while (!ret && wbc->nr_to_write > 0) {
2906
2907                 /*
2908                  * we  insert one extent at a time. So we need
2909                  * credit needed for single extent allocation.
2910                  * journalled mode is currently not supported
2911                  * by delalloc
2912                  */
2913                 BUG_ON(ext4_should_journal_data(inode));
2914                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2915
2916                 /* start a new transaction*/
2917                 handle = ext4_journal_start(inode, needed_blocks);
2918                 if (IS_ERR(handle)) {
2919                         ret = PTR_ERR(handle);
2920                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2921                                "%ld pages, ino %lu; err %d\n", __func__,
2922                                 wbc->nr_to_write, inode->i_ino, ret);
2923                         goto out_writepages;
2924                 }
2925
2926                 /*
2927                  * Now call __mpage_da_writepage to find the next
2928                  * contiguous region of logical blocks that need
2929                  * blocks to be allocated by ext4.  We don't actually
2930                  * submit the blocks for I/O here, even though
2931                  * write_cache_pages thinks it will, and will set the
2932                  * pages as clean for write before calling
2933                  * __mpage_da_writepage().
2934                  */
2935                 mpd.b_size = 0;
2936                 mpd.b_state = 0;
2937                 mpd.b_blocknr = 0;
2938                 mpd.first_page = 0;
2939                 mpd.next_page = 0;
2940                 mpd.io_done = 0;
2941                 mpd.pages_written = 0;
2942                 mpd.retval = 0;
2943                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2944                                         &mpd);
2945                 /*
2946                  * If we have a contigous extent of pages and we
2947                  * haven't done the I/O yet, map the blocks and submit
2948                  * them for I/O.
2949                  */
2950                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2951                         if (mpage_da_map_blocks(&mpd) == 0)
2952                                 mpage_da_submit_io(&mpd);
2953                         mpd.io_done = 1;
2954                         ret = MPAGE_DA_EXTENT_TAIL;
2955                 }
2956                 trace_ext4_da_write_pages(inode, &mpd);
2957                 wbc->nr_to_write -= mpd.pages_written;
2958
2959                 ext4_journal_stop(handle);
2960
2961                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2962                         /* commit the transaction which would
2963                          * free blocks released in the transaction
2964                          * and try again
2965                          */
2966                         jbd2_journal_force_commit_nested(sbi->s_journal);
2967                         wbc->pages_skipped = pages_skipped;
2968                         ret = 0;
2969                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2970                         /*
2971                          * got one extent now try with
2972                          * rest of the pages
2973                          */
2974                         pages_written += mpd.pages_written;
2975                         wbc->pages_skipped = pages_skipped;
2976                         ret = 0;
2977                         io_done = 1;
2978                 } else if (wbc->nr_to_write)
2979                         /*
2980                          * There is no more writeout needed
2981                          * or we requested for a noblocking writeout
2982                          * and we found the device congested
2983                          */
2984                         break;
2985         }
2986         if (!io_done && !cycled) {
2987                 cycled = 1;
2988                 index = 0;
2989                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2990                 wbc->range_end  = mapping->writeback_index - 1;
2991                 goto retry;
2992         }
2993         if (pages_skipped != wbc->pages_skipped)
2994                 ext4_msg(inode->i_sb, KERN_CRIT,
2995                          "This should not happen leaving %s "
2996                          "with nr_to_write = %ld ret = %d\n",
2997                          __func__, wbc->nr_to_write, ret);
2998
2999         /* Update index */
3000         index += pages_written;
3001         wbc->range_cyclic = range_cyclic;
3002         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3003                 /*
3004                  * set the writeback_index so that range_cyclic
3005                  * mode will write it back later
3006                  */
3007                 mapping->writeback_index = index;
3008
3009 out_writepages:
3010         if (!no_nrwrite_index_update)
3011                 wbc->no_nrwrite_index_update = 0;
3012         if (wbc->nr_to_write > nr_to_writebump)
3013                 wbc->nr_to_write -= nr_to_writebump;
3014         wbc->range_start = range_start;
3015         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3016         return ret;
3017 }
3018
3019 #define FALL_BACK_TO_NONDELALLOC 1
3020 static int ext4_nonda_switch(struct super_block *sb)
3021 {
3022         s64 free_blocks, dirty_blocks;
3023         struct ext4_sb_info *sbi = EXT4_SB(sb);
3024
3025         /*
3026          * switch to non delalloc mode if we are running low
3027          * on free block. The free block accounting via percpu
3028          * counters can get slightly wrong with percpu_counter_batch getting
3029          * accumulated on each CPU without updating global counters
3030          * Delalloc need an accurate free block accounting. So switch
3031          * to non delalloc when we are near to error range.
3032          */
3033         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3034         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3035         if (2 * free_blocks < 3 * dirty_blocks ||
3036                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3037                 /*
3038                  * free block count is less that 150% of dirty blocks
3039                  * or free blocks is less that watermark
3040                  */
3041                 return 1;
3042         }
3043         return 0;
3044 }
3045
3046 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3047                                loff_t pos, unsigned len, unsigned flags,
3048                                struct page **pagep, void **fsdata)
3049 {
3050         int ret, retries = 0;
3051         struct page *page;
3052         pgoff_t index;
3053         unsigned from, to;
3054         struct inode *inode = mapping->host;
3055         handle_t *handle;
3056
3057         index = pos >> PAGE_CACHE_SHIFT;
3058         from = pos & (PAGE_CACHE_SIZE - 1);
3059         to = from + len;
3060
3061         if (ext4_nonda_switch(inode->i_sb)) {
3062                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3063                 return ext4_write_begin(file, mapping, pos,
3064                                         len, flags, pagep, fsdata);
3065         }
3066         *fsdata = (void *)0;
3067         trace_ext4_da_write_begin(inode, pos, len, flags);
3068 retry:
3069         /*
3070          * With delayed allocation, we don't log the i_disksize update
3071          * if there is delayed block allocation. But we still need
3072          * to journalling the i_disksize update if writes to the end
3073          * of file which has an already mapped buffer.
3074          */
3075         handle = ext4_journal_start(inode, 1);
3076         if (IS_ERR(handle)) {
3077                 ret = PTR_ERR(handle);
3078                 goto out;
3079         }
3080         /* We cannot recurse into the filesystem as the transaction is already
3081          * started */
3082         flags |= AOP_FLAG_NOFS;
3083
3084         page = grab_cache_page_write_begin(mapping, index, flags);
3085         if (!page) {
3086                 ext4_journal_stop(handle);
3087                 ret = -ENOMEM;
3088                 goto out;
3089         }
3090         *pagep = page;
3091
3092         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3093                                 ext4_da_get_block_prep);
3094         if (ret < 0) {
3095                 unlock_page(page);
3096                 ext4_journal_stop(handle);
3097                 page_cache_release(page);
3098                 /*
3099                  * block_write_begin may have instantiated a few blocks
3100                  * outside i_size.  Trim these off again. Don't need
3101                  * i_size_read because we hold i_mutex.
3102                  */
3103                 if (pos + len > inode->i_size)
3104                         ext4_truncate_failed_write(inode);
3105         }
3106
3107         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3108                 goto retry;
3109 out:
3110         return ret;
3111 }
3112
3113 /*
3114  * Check if we should update i_disksize
3115  * when write to the end of file but not require block allocation
3116  */
3117 static int ext4_da_should_update_i_disksize(struct page *page,
3118                                             unsigned long offset)
3119 {
3120         struct buffer_head *bh;
3121         struct inode *inode = page->mapping->host;
3122         unsigned int idx;
3123         int i;
3124
3125         bh = page_buffers(page);
3126         idx = offset >> inode->i_blkbits;
3127
3128         for (i = 0; i < idx; i++)
3129                 bh = bh->b_this_page;
3130
3131         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3132                 return 0;
3133         return 1;
3134 }
3135
3136 static int ext4_da_write_end(struct file *file,
3137                              struct address_space *mapping,
3138                              loff_t pos, unsigned len, unsigned copied,
3139                              struct page *page, void *fsdata)
3140 {
3141         struct inode *inode = mapping->host;
3142         int ret = 0, ret2;
3143         handle_t *handle = ext4_journal_current_handle();
3144         loff_t new_i_size;
3145         unsigned long start, end;
3146         int write_mode = (int)(unsigned long)fsdata;
3147
3148         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3149                 if (ext4_should_order_data(inode)) {
3150                         return ext4_ordered_write_end(file, mapping, pos,
3151                                         len, copied, page, fsdata);
3152                 } else if (ext4_should_writeback_data(inode)) {
3153                         return ext4_writeback_write_end(file, mapping, pos,
3154                                         len, copied, page, fsdata);
3155                 } else {
3156                         BUG();
3157                 }
3158         }
3159
3160         trace_ext4_da_write_end(inode, pos, len, copied);
3161         start = pos & (PAGE_CACHE_SIZE - 1);
3162         end = start + copied - 1;
3163
3164         /*
3165          * generic_write_end() will run mark_inode_dirty() if i_size
3166          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3167          * into that.
3168          */
3169
3170         new_i_size = pos + copied;
3171         if (new_i_size > EXT4_I(inode)->i_disksize) {
3172                 if (ext4_da_should_update_i_disksize(page, end)) {
3173                         down_write(&EXT4_I(inode)->i_data_sem);
3174                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3175                                 /*
3176                                  * Updating i_disksize when extending file
3177                                  * without needing block allocation
3178                                  */
3179                                 if (ext4_should_order_data(inode))
3180                                         ret = ext4_jbd2_file_inode(handle,
3181                                                                    inode);
3182
3183                                 EXT4_I(inode)->i_disksize = new_i_size;
3184                         }
3185                         up_write(&EXT4_I(inode)->i_data_sem);
3186                         /* We need to mark inode dirty even if
3187                          * new_i_size is less that inode->i_size
3188                          * bu greater than i_disksize.(hint delalloc)
3189                          */
3190                         ext4_mark_inode_dirty(handle, inode);
3191                 }
3192         }
3193         ret2 = generic_write_end(file, mapping, pos, len, copied,
3194                                                         page, fsdata);
3195         copied = ret2;
3196         if (ret2 < 0)
3197                 ret = ret2;
3198         ret2 = ext4_journal_stop(handle);
3199         if (!ret)
3200                 ret = ret2;
3201
3202         return ret ? ret : copied;
3203 }
3204
3205 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3206 {
3207         /*
3208          * Drop reserved blocks
3209          */
3210         BUG_ON(!PageLocked(page));
3211         if (!page_has_buffers(page))
3212                 goto out;
3213
3214         ext4_da_page_release_reservation(page, offset);
3215
3216 out:
3217         ext4_invalidatepage(page, offset);
3218
3219         return;
3220 }
3221
3222 /*
3223  * Force all delayed allocation blocks to be allocated for a given inode.
3224  */
3225 int ext4_alloc_da_blocks(struct inode *inode)
3226 {
3227         trace_ext4_alloc_da_blocks(inode);
3228
3229         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3230             !EXT4_I(inode)->i_reserved_meta_blocks)
3231                 return 0;
3232
3233         /*
3234          * We do something simple for now.  The filemap_flush() will
3235          * also start triggering a write of the data blocks, which is
3236          * not strictly speaking necessary (and for users of
3237          * laptop_mode, not even desirable).  However, to do otherwise
3238          * would require replicating code paths in:
3239          *
3240          * ext4_da_writepages() ->
3241          *    write_cache_pages() ---> (via passed in callback function)
3242          *        __mpage_da_writepage() -->
3243          *           mpage_add_bh_to_extent()
3244          *           mpage_da_map_blocks()
3245          *
3246          * The problem is that write_cache_pages(), located in
3247          * mm/page-writeback.c, marks pages clean in preparation for
3248          * doing I/O, which is not desirable if we're not planning on
3249          * doing I/O at all.
3250          *
3251          * We could call write_cache_pages(), and then redirty all of
3252          * the pages by calling redirty_page_for_writeback() but that
3253          * would be ugly in the extreme.  So instead we would need to
3254          * replicate parts of the code in the above functions,
3255          * simplifying them becuase we wouldn't actually intend to
3256          * write out the pages, but rather only collect contiguous
3257          * logical block extents, call the multi-block allocator, and
3258          * then update the buffer heads with the block allocations.
3259          *
3260          * For now, though, we'll cheat by calling filemap_flush(),
3261          * which will map the blocks, and start the I/O, but not
3262          * actually wait for the I/O to complete.
3263          */
3264         return filemap_flush(inode->i_mapping);
3265 }
3266
3267 /*
3268  * bmap() is special.  It gets used by applications such as lilo and by
3269  * the swapper to find the on-disk block of a specific piece of data.
3270  *
3271  * Naturally, this is dangerous if the block concerned is still in the
3272  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3273  * filesystem and enables swap, then they may get a nasty shock when the
3274  * data getting swapped to that swapfile suddenly gets overwritten by
3275  * the original zero's written out previously to the journal and
3276  * awaiting writeback in the kernel's buffer cache.
3277  *
3278  * So, if we see any bmap calls here on a modified, data-journaled file,
3279  * take extra steps to flush any blocks which might be in the cache.
3280  */
3281 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3282 {
3283         struct inode *inode = mapping->host;
3284         journal_t *journal;
3285         int err;
3286
3287         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3288                         test_opt(inode->i_sb, DELALLOC)) {
3289                 /*
3290                  * With delalloc we want to sync the file
3291                  * so that we can make sure we allocate
3292                  * blocks for file
3293                  */
3294                 filemap_write_and_wait(mapping);
3295         }
3296
3297         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3298                 /*
3299                  * This is a REALLY heavyweight approach, but the use of
3300                  * bmap on dirty files is expected to be extremely rare:
3301                  * only if we run lilo or swapon on a freshly made file
3302                  * do we expect this to happen.
3303                  *
3304                  * (bmap requires CAP_SYS_RAWIO so this does not
3305                  * represent an unprivileged user DOS attack --- we'd be
3306                  * in trouble if mortal users could trigger this path at
3307                  * will.)
3308                  *
3309                  * NB. EXT4_STATE_JDATA is not set on files other than
3310                  * regular files.  If somebody wants to bmap a directory
3311                  * or symlink and gets confused because the buffer
3312                  * hasn't yet been flushed to disk, they deserve
3313                  * everything they get.
3314                  */
3315
3316                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3317                 journal = EXT4_JOURNAL(inode);
3318                 jbd2_journal_lock_updates(journal);
3319                 err = jbd2_journal_flush(journal);
3320                 jbd2_journal_unlock_updates(journal);
3321
3322                 if (err)
3323                         return 0;
3324         }
3325
3326         return generic_block_bmap(mapping, block, ext4_get_block);
3327 }
3328
3329 static int ext4_readpage(struct file *file, struct page *page)
3330 {
3331         return mpage_readpage(page, ext4_get_block);
3332 }
3333
3334 static int
3335 ext4_readpages(struct file *file, struct address_space *mapping,
3336                 struct list_head *pages, unsigned nr_pages)
3337 {
3338         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3339 }
3340
3341 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3342 {
3343         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3344
3345         /*
3346          * If it's a full truncate we just forget about the pending dirtying
3347          */
3348         if (offset == 0)
3349                 ClearPageChecked(page);
3350
3351         if (journal)
3352                 jbd2_journal_invalidatepage(journal, page, offset);
3353         else
3354                 block_invalidatepage(page, offset);
3355 }
3356
3357 static int ext4_releasepage(struct page *page, gfp_t wait)
3358 {
3359         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3360
3361         WARN_ON(PageChecked(page));
3362         if (!page_has_buffers(page))
3363                 return 0;
3364         if (journal)
3365                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3366         else
3367                 return try_to_free_buffers(page);
3368 }
3369
3370 /*
3371  * O_DIRECT for ext3 (or indirect map) based files
3372  *
3373  * If the O_DIRECT write will extend the file then add this inode to the
3374  * orphan list.  So recovery will truncate it back to the original size
3375  * if the machine crashes during the write.
3376  *
3377  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3378  * crashes then stale disk data _may_ be exposed inside the file. But current
3379  * VFS code falls back into buffered path in that case so we are safe.
3380  */
3381 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3382                               const struct iovec *iov, loff_t offset,
3383                               unsigned long nr_segs)
3384 {
3385         struct file *file = iocb->ki_filp;
3386         struct inode *inode = file->f_mapping->host;
3387         struct ext4_inode_info *ei = EXT4_I(inode);
3388         handle_t *handle;
3389         ssize_t ret;
3390         int orphan = 0;
3391         size_t count = iov_length(iov, nr_segs);
3392         int retries = 0;
3393
3394         if (rw == WRITE) {
3395                 loff_t final_size = offset + count;
3396
3397                 if (final_size > inode->i_size) {
3398                         /* Credits for sb + inode write */
3399                         handle = ext4_journal_start(inode, 2);
3400                         if (IS_ERR(handle)) {
3401                                 ret = PTR_ERR(handle);
3402                                 goto out;
3403                         }
3404                         ret = ext4_orphan_add(handle, inode);
3405                         if (ret) {
3406                                 ext4_journal_stop(handle);
3407                                 goto out;
3408                         }
3409                         orphan = 1;
3410                         ei->i_disksize = inode->i_size;
3411                         ext4_journal_stop(handle);
3412                 }
3413         }
3414
3415 retry:
3416         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3417                                  offset, nr_segs,
3418                                  ext4_get_block, NULL);
3419         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3420                 goto retry;
3421
3422         if (orphan) {
3423                 int err;
3424
3425                 /* Credits for sb + inode write */
3426                 handle = ext4_journal_start(inode, 2);
3427                 if (IS_ERR(handle)) {
3428                         /* This is really bad luck. We've written the data
3429                          * but cannot extend i_size. Bail out and pretend
3430                          * the write failed... */
3431                         ret = PTR_ERR(handle);
3432                         goto out;
3433                 }
3434                 if (inode->i_nlink)
3435                         ext4_orphan_del(handle, inode);
3436                 if (ret > 0) {
3437                         loff_t end = offset + ret;
3438                         if (end > inode->i_size) {
3439                                 ei->i_disksize = end;
3440                                 i_size_write(inode, end);
3441                                 /*
3442                                  * We're going to return a positive `ret'
3443                                  * here due to non-zero-length I/O, so there's
3444                                  * no way of reporting error returns from
3445                                  * ext4_mark_inode_dirty() to userspace.  So
3446                                  * ignore it.
3447                                  */
3448                                 ext4_mark_inode_dirty(handle, inode);
3449                         }
3450                 }
3451                 err = ext4_journal_stop(handle);
3452                 if (ret == 0)
3453                         ret = err;
3454         }
3455 out:
3456         return ret;
3457 }
3458
3459 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3460                    struct buffer_head *bh_result, int create)
3461 {
3462         handle_t *handle = NULL;
3463         int ret = 0;
3464         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3465         int dio_credits;
3466
3467         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3468                    inode->i_ino, create);
3469         /*
3470          * DIO VFS code passes create = 0 flag for write to
3471          * the middle of file. It does this to avoid block
3472          * allocation for holes, to prevent expose stale data
3473          * out when there is parallel buffered read (which does
3474          * not hold the i_mutex lock) while direct IO write has
3475          * not completed. DIO request on holes finally falls back
3476          * to buffered IO for this reason.
3477          *
3478          * For ext4 extent based file, since we support fallocate,
3479          * new allocated extent as uninitialized, for holes, we
3480          * could fallocate blocks for holes, thus parallel
3481          * buffered IO read will zero out the page when read on
3482          * a hole while parallel DIO write to the hole has not completed.
3483          *
3484          * when we come here, we know it's a direct IO write to
3485          * to the middle of file (<i_size)
3486          * so it's safe to override the create flag from VFS.
3487          */
3488         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3489
3490         if (max_blocks > DIO_MAX_BLOCKS)
3491                 max_blocks = DIO_MAX_BLOCKS;
3492         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3493         handle = ext4_journal_start(inode, dio_credits);
3494         if (IS_ERR(handle)) {
3495                 ret = PTR_ERR(handle);
3496                 goto out;
3497         }
3498         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3499                               create);
3500         if (ret > 0) {
3501                 bh_result->b_size = (ret << inode->i_blkbits);
3502                 ret = 0;
3503         }
3504         ext4_journal_stop(handle);
3505 out:
3506         return ret;
3507 }
3508
3509 static void ext4_free_io_end(ext4_io_end_t *io)
3510 {
3511         BUG_ON(!io);
3512         iput(io->inode);
3513         kfree(io);
3514 }
3515 static void dump_aio_dio_list(struct inode * inode)
3516 {
3517 #ifdef  EXT4_DEBUG
3518         struct list_head *cur, *before, *after;
3519         ext4_io_end_t *io, *io0, *io1;
3520
3521         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3522                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3523                 return;
3524         }
3525
3526         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3527         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3528                 cur = &io->list;
3529                 before = cur->prev;
3530                 io0 = container_of(before, ext4_io_end_t, list);
3531                 after = cur->next;
3532                 io1 = container_of(after, ext4_io_end_t, list);
3533
3534                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3535                             io, inode->i_ino, io0, io1);
3536         }
3537 #endif
3538 }
3539
3540 /*
3541  * check a range of space and convert unwritten extents to written.
3542  */
3543 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3544 {
3545         struct inode *inode = io->inode;
3546         loff_t offset = io->offset;
3547         size_t size = io->size;
3548         int ret = 0;
3549
3550         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3551                    "list->prev 0x%p\n",
3552                    io, inode->i_ino, io->list.next, io->list.prev);
3553
3554         if (list_empty(&io->list))
3555                 return ret;
3556
3557         if (io->flag != DIO_AIO_UNWRITTEN)
3558                 return ret;
3559
3560         if (offset + size <= i_size_read(inode))
3561                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3562
3563         if (ret < 0) {
3564                 printk(KERN_EMERG "%s: failed to convert unwritten"
3565                         "extents to written extents, error is %d"
3566                         " io is still on inode %lu aio dio list\n",
3567                        __func__, ret, inode->i_ino);
3568                 return ret;
3569         }
3570
3571         /* clear the DIO AIO unwritten flag */
3572         io->flag = 0;
3573         return ret;
3574 }
3575 /*
3576  * work on completed aio dio IO, to convert unwritten extents to extents
3577  */
3578 static void ext4_end_aio_dio_work(struct work_struct *work)
3579 {
3580         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3581         struct inode *inode = io->inode;
3582         int ret = 0;
3583
3584         mutex_lock(&inode->i_mutex);
3585         ret = ext4_end_aio_dio_nolock(io);
3586         if (ret >= 0) {
3587                 if (!list_empty(&io->list))
3588                         list_del_init(&io->list);
3589                 ext4_free_io_end(io);
3590         }
3591         mutex_unlock(&inode->i_mutex);
3592 }
3593 /*
3594  * This function is called from ext4_sync_file().
3595  *
3596  * When AIO DIO IO is completed, the work to convert unwritten
3597  * extents to written is queued on workqueue but may not get immediately
3598  * scheduled. When fsync is called, we need to ensure the
3599  * conversion is complete before fsync returns.
3600  * The inode keeps track of a list of completed AIO from DIO path
3601  * that might needs to do the conversion. This function walks through
3602  * the list and convert the related unwritten extents to written.
3603  */
3604 int flush_aio_dio_completed_IO(struct inode *inode)
3605 {
3606         ext4_io_end_t *io;
3607         int ret = 0;
3608         int ret2 = 0;
3609
3610         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3611                 return ret;
3612
3613         dump_aio_dio_list(inode);
3614         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3615                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3616                                 ext4_io_end_t, list);
3617                 /*
3618                  * Calling ext4_end_aio_dio_nolock() to convert completed
3619                  * IO to written.
3620                  *
3621                  * When ext4_sync_file() is called, run_queue() may already
3622                  * about to flush the work corresponding to this io structure.
3623                  * It will be upset if it founds the io structure related
3624                  * to the work-to-be schedule is freed.
3625                  *
3626                  * Thus we need to keep the io structure still valid here after
3627                  * convertion finished. The io structure has a flag to
3628                  * avoid double converting from both fsync and background work
3629                  * queue work.
3630                  */
3631                 ret = ext4_end_aio_dio_nolock(io);
3632                 if (ret < 0)
3633                         ret2 = ret;
3634                 else
3635                         list_del_init(&io->list);
3636         }
3637         return (ret2 < 0) ? ret2 : 0;
3638 }
3639
3640 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3641 {
3642         ext4_io_end_t *io = NULL;
3643
3644         io = kmalloc(sizeof(*io), GFP_NOFS);
3645
3646         if (io) {
3647                 igrab(inode);
3648                 io->inode = inode;
3649                 io->flag = 0;
3650                 io->offset = 0;
3651                 io->size = 0;
3652                 io->error = 0;
3653                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3654                 INIT_LIST_HEAD(&io->list);
3655         }
3656
3657         return io;
3658 }
3659
3660 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3661                             ssize_t size, void *private)
3662 {
3663         ext4_io_end_t *io_end = iocb->private;
3664         struct workqueue_struct *wq;
3665
3666         /* if not async direct IO or dio with 0 bytes write, just return */
3667         if (!io_end || !size)
3668                 return;
3669
3670         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3671                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3672                   iocb->private, io_end->inode->i_ino, iocb, offset,
3673                   size);
3674
3675         /* if not aio dio with unwritten extents, just free io and return */
3676         if (io_end->flag != DIO_AIO_UNWRITTEN){
3677                 ext4_free_io_end(io_end);
3678                 iocb->private = NULL;
3679                 return;
3680         }
3681
3682         io_end->offset = offset;
3683         io_end->size = size;
3684         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3685
3686         /* queue the work to convert unwritten extents to written */
3687         queue_work(wq, &io_end->work);
3688
3689         /* Add the io_end to per-inode completed aio dio list*/
3690         list_add_tail(&io_end->list,
3691                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3692         iocb->private = NULL;
3693 }
3694 /*
3695  * For ext4 extent files, ext4 will do direct-io write to holes,
3696  * preallocated extents, and those write extend the file, no need to
3697  * fall back to buffered IO.
3698  *
3699  * For holes, we fallocate those blocks, mark them as unintialized
3700  * If those blocks were preallocated, we mark sure they are splited, but
3701  * still keep the range to write as unintialized.
3702  *
3703  * The unwrritten extents will be converted to written when DIO is completed.
3704  * For async direct IO, since the IO may still pending when return, we
3705  * set up an end_io call back function, which will do the convertion
3706  * when async direct IO completed.
3707  *
3708  * If the O_DIRECT write will extend the file then add this inode to the
3709  * orphan list.  So recovery will truncate it back to the original size
3710  * if the machine crashes during the write.
3711  *
3712  */
3713 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3714                               const struct iovec *iov, loff_t offset,
3715                               unsigned long nr_segs)
3716 {
3717         struct file *file = iocb->ki_filp;
3718         struct inode *inode = file->f_mapping->host;
3719         ssize_t ret;
3720         size_t count = iov_length(iov, nr_segs);
3721
3722         loff_t final_size = offset + count;
3723         if (rw == WRITE && final_size <= inode->i_size) {
3724                 /*
3725                  * We could direct write to holes and fallocate.
3726                  *
3727                  * Allocated blocks to fill the hole are marked as uninitialized
3728                  * to prevent paralel buffered read to expose the stale data
3729                  * before DIO complete the data IO.
3730                  *
3731                  * As to previously fallocated extents, ext4 get_block
3732                  * will just simply mark the buffer mapped but still
3733                  * keep the extents uninitialized.
3734                  *
3735                  * for non AIO case, we will convert those unwritten extents
3736                  * to written after return back from blockdev_direct_IO.
3737                  *
3738                  * for async DIO, the conversion needs to be defered when
3739                  * the IO is completed. The ext4 end_io callback function
3740                  * will be called to take care of the conversion work.
3741                  * Here for async case, we allocate an io_end structure to
3742                  * hook to the iocb.
3743                  */
3744                 iocb->private = NULL;
3745                 EXT4_I(inode)->cur_aio_dio = NULL;
3746                 if (!is_sync_kiocb(iocb)) {
3747                         iocb->private = ext4_init_io_end(inode);
3748                         if (!iocb->private)
3749                                 return -ENOMEM;
3750                         /*
3751                          * we save the io structure for current async
3752                          * direct IO, so that later ext4_get_blocks()
3753                          * could flag the io structure whether there
3754                          * is a unwritten extents needs to be converted
3755                          * when IO is completed.
3756                          */
3757                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3758                 }
3759
3760                 ret = blockdev_direct_IO(rw, iocb, inode,
3761                                          inode->i_sb->s_bdev, iov,
3762                                          offset, nr_segs,
3763                                          ext4_get_block_dio_write,
3764                                          ext4_end_io_dio);
3765                 if (iocb->private)
3766                         EXT4_I(inode)->cur_aio_dio = NULL;
3767                 /*
3768                  * The io_end structure takes a reference to the inode,
3769                  * that structure needs to be destroyed and the
3770                  * reference to the inode need to be dropped, when IO is
3771                  * complete, even with 0 byte write, or failed.
3772                  *
3773                  * In the successful AIO DIO case, the io_end structure will be
3774                  * desctroyed and the reference to the inode will be dropped
3775                  * after the end_io call back function is called.
3776                  *
3777                  * In the case there is 0 byte write, or error case, since
3778                  * VFS direct IO won't invoke the end_io call back function,
3779                  * we need to free the end_io structure here.
3780                  */
3781                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3782                         ext4_free_io_end(iocb->private);
3783                         iocb->private = NULL;
3784                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3785                                        EXT4_STATE_DIO_UNWRITTEN)) {
3786                         int err;
3787                         /*
3788                          * for non AIO case, since the IO is already
3789                          * completed, we could do the convertion right here
3790                          */
3791                         err = ext4_convert_unwritten_extents(inode,
3792                                                              offset, ret);
3793                         if (err < 0)
3794                                 ret = err;
3795                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3796                 }
3797                 return ret;
3798         }
3799
3800         /* for write the the end of file case, we fall back to old way */
3801         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3802 }
3803
3804 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3805                               const struct iovec *iov, loff_t offset,
3806                               unsigned long nr_segs)
3807 {
3808         struct file *file = iocb->ki_filp;
3809         struct inode *inode = file->f_mapping->host;
3810
3811         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3812                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3813
3814         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3815 }
3816
3817 /*
3818  * Pages can be marked dirty completely asynchronously from ext4's journalling
3819  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3820  * much here because ->set_page_dirty is called under VFS locks.  The page is
3821  * not necessarily locked.
3822  *
3823  * We cannot just dirty the page and leave attached buffers clean, because the
3824  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3825  * or jbddirty because all the journalling code will explode.
3826  *
3827  * So what we do is to mark the page "pending dirty" and next time writepage
3828  * is called, propagate that into the buffers appropriately.
3829  */
3830 static int ext4_journalled_set_page_dirty(struct page *page)
3831 {
3832         SetPageChecked(page);
3833         return __set_page_dirty_nobuffers(page);
3834 }
3835
3836 static const struct address_space_operations ext4_ordered_aops = {
3837         .readpage               = ext4_readpage,
3838         .readpages              = ext4_readpages,
3839         .writepage              = ext4_writepage,
3840         .sync_page              = block_sync_page,
3841         .write_begin            = ext4_write_begin,
3842         .write_end              = ext4_ordered_write_end,
3843         .bmap                   = ext4_bmap,
3844         .invalidatepage         = ext4_invalidatepage,
3845         .releasepage            = ext4_releasepage,
3846         .direct_IO              = ext4_direct_IO,
3847         .migratepage            = buffer_migrate_page,
3848         .is_partially_uptodate  = block_is_partially_uptodate,
3849         .error_remove_page      = generic_error_remove_page,
3850 };
3851
3852 static const struct address_space_operations ext4_writeback_aops = {
3853         .readpage               = ext4_readpage,
3854         .readpages              = ext4_readpages,
3855         .writepage              = ext4_writepage,
3856         .sync_page              = block_sync_page,
3857         .write_begin            = ext4_write_begin,
3858         .write_end              = ext4_writeback_write_end,
3859         .bmap                   = ext4_bmap,
3860         .invalidatepage         = ext4_invalidatepage,
3861         .releasepage            = ext4_releasepage,
3862         .direct_IO              = ext4_direct_IO,
3863         .migratepage            = buffer_migrate_page,
3864         .is_partially_uptodate  = block_is_partially_uptodate,
3865         .error_remove_page      = generic_error_remove_page,
3866 };
3867
3868 static const struct address_space_operations ext4_journalled_aops = {
3869         .readpage               = ext4_readpage,
3870         .readpages              = ext4_readpages,
3871         .writepage              = ext4_writepage,
3872         .sync_page              = block_sync_page,
3873         .write_begin            = ext4_write_begin,
3874         .write_end              = ext4_journalled_write_end,
3875         .set_page_dirty         = ext4_journalled_set_page_dirty,
3876         .bmap                   = ext4_bmap,
3877         .invalidatepage         = ext4_invalidatepage,
3878         .releasepage            = ext4_releasepage,
3879         .is_partially_uptodate  = block_is_partially_uptodate,
3880         .error_remove_page      = generic_error_remove_page,
3881 };
3882
3883 static const struct address_space_operations ext4_da_aops = {
3884         .readpage               = ext4_readpage,
3885         .readpages              = ext4_readpages,
3886         .writepage              = ext4_writepage,
3887         .writepages             = ext4_da_writepages,
3888         .sync_page              = block_sync_page,
3889         .write_begin            = ext4_da_write_begin,
3890         .write_end              = ext4_da_write_end,
3891         .bmap                   = ext4_bmap,
3892         .invalidatepage         = ext4_da_invalidatepage,
3893         .releasepage            = ext4_releasepage,
3894         .direct_IO              = ext4_direct_IO,
3895         .migratepage            = buffer_migrate_page,
3896         .is_partially_uptodate  = block_is_partially_uptodate,
3897         .error_remove_page      = generic_error_remove_page,
3898 };
3899
3900 void ext4_set_aops(struct inode *inode)
3901 {
3902         if (ext4_should_order_data(inode) &&
3903                 test_opt(inode->i_sb, DELALLOC))
3904                 inode->i_mapping->a_ops = &ext4_da_aops;
3905         else if (ext4_should_order_data(inode))
3906                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3907         else if (ext4_should_writeback_data(inode) &&
3908                  test_opt(inode->i_sb, DELALLOC))
3909                 inode->i_mapping->a_ops = &ext4_da_aops;
3910         else if (ext4_should_writeback_data(inode))
3911                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3912         else
3913                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3914 }
3915
3916 /*
3917  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918  * up to the end of the block which corresponds to `from'.
3919  * This required during truncate. We need to physically zero the tail end
3920  * of that block so it doesn't yield old data if the file is later grown.
3921  */
3922 int ext4_block_truncate_page(handle_t *handle,
3923                 struct address_space *mapping, loff_t from)
3924 {
3925         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3926         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3927         unsigned blocksize, length, pos;
3928         ext4_lblk_t iblock;
3929         struct inode *inode = mapping->host;
3930         struct buffer_head *bh;
3931         struct page *page;
3932         int err = 0;
3933
3934         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3935                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3936         if (!page)
3937                 return -EINVAL;
3938
3939         blocksize = inode->i_sb->s_blocksize;
3940         length = blocksize - (offset & (blocksize - 1));
3941         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3942
3943         /*
3944          * For "nobh" option,  we can only work if we don't need to
3945          * read-in the page - otherwise we create buffers to do the IO.
3946          */
3947         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3948              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3949                 zero_user(page, offset, length);
3950                 set_page_dirty(page);
3951                 goto unlock;
3952         }
3953
3954         if (!page_has_buffers(page))
3955                 create_empty_buffers(page, blocksize, 0);
3956
3957         /* Find the buffer that contains "offset" */
3958         bh = page_buffers(page);
3959         pos = blocksize;
3960         while (offset >= pos) {
3961                 bh = bh->b_this_page;
3962                 iblock++;
3963                 pos += blocksize;
3964         }
3965
3966         err = 0;
3967         if (buffer_freed(bh)) {
3968                 BUFFER_TRACE(bh, "freed: skip");
3969                 goto unlock;
3970         }
3971
3972         if (!buffer_mapped(bh)) {
3973                 BUFFER_TRACE(bh, "unmapped");
3974                 ext4_get_block(inode, iblock, bh, 0);
3975                 /* unmapped? It's a hole - nothing to do */
3976                 if (!buffer_mapped(bh)) {
3977                         BUFFER_TRACE(bh, "still unmapped");
3978                         goto unlock;
3979                 }
3980         }
3981
3982         /* Ok, it's mapped. Make sure it's up-to-date */
3983         if (PageUptodate(page))
3984                 set_buffer_uptodate(bh);
3985
3986         if (!buffer_uptodate(bh)) {
3987                 err = -EIO;
3988                 ll_rw_block(READ, 1, &bh);
3989                 wait_on_buffer(bh);
3990                 /* Uhhuh. Read error. Complain and punt. */
3991                 if (!buffer_uptodate(bh))
3992                         goto unlock;
3993         }
3994
3995         if (ext4_should_journal_data(inode)) {
3996                 BUFFER_TRACE(bh, "get write access");
3997                 err = ext4_journal_get_write_access(handle, bh);
3998                 if (err)
3999                         goto unlock;
4000         }
4001
4002         zero_user(page, offset, length);
4003
4004         BUFFER_TRACE(bh, "zeroed end of block");
4005
4006         err = 0;
4007         if (ext4_should_journal_data(inode)) {
4008                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4009         } else {
4010                 if (ext4_should_order_data(inode))
4011                         err = ext4_jbd2_file_inode(handle, inode);
4012                 mark_buffer_dirty(bh);
4013         }
4014
4015 unlock:
4016         unlock_page(page);
4017         page_cache_release(page);
4018         return err;
4019 }
4020
4021 /*
4022  * Probably it should be a library function... search for first non-zero word
4023  * or memcmp with zero_page, whatever is better for particular architecture.
4024  * Linus?
4025  */
4026 static inline int all_zeroes(__le32 *p, __le32 *q)
4027 {
4028         while (p < q)
4029                 if (*p++)
4030                         return 0;
4031         return 1;
4032 }
4033
4034 /**
4035  *      ext4_find_shared - find the indirect blocks for partial truncation.
4036  *      @inode:   inode in question
4037  *      @depth:   depth of the affected branch
4038  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4039  *      @chain:   place to store the pointers to partial indirect blocks
4040  *      @top:     place to the (detached) top of branch
4041  *
4042  *      This is a helper function used by ext4_truncate().
4043  *
4044  *      When we do truncate() we may have to clean the ends of several
4045  *      indirect blocks but leave the blocks themselves alive. Block is
4046  *      partially truncated if some data below the new i_size is refered
4047  *      from it (and it is on the path to the first completely truncated
4048  *      data block, indeed).  We have to free the top of that path along
4049  *      with everything to the right of the path. Since no allocation
4050  *      past the truncation point is possible until ext4_truncate()
4051  *      finishes, we may safely do the latter, but top of branch may
4052  *      require special attention - pageout below the truncation point
4053  *      might try to populate it.
4054  *
4055  *      We atomically detach the top of branch from the tree, store the
4056  *      block number of its root in *@top, pointers to buffer_heads of
4057  *      partially truncated blocks - in @chain[].bh and pointers to
4058  *      their last elements that should not be removed - in
4059  *      @chain[].p. Return value is the pointer to last filled element
4060  *      of @chain.
4061  *
4062  *      The work left to caller to do the actual freeing of subtrees:
4063  *              a) free the subtree starting from *@top
4064  *              b) free the subtrees whose roots are stored in
4065  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4066  *              c) free the subtrees growing from the inode past the @chain[0].
4067  *                      (no partially truncated stuff there).  */
4068
4069 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4070                                   ext4_lblk_t offsets[4], Indirect chain[4],
4071                                   __le32 *top)
4072 {
4073         Indirect *partial, *p;
4074         int k, err;
4075
4076         *top = 0;
4077         /* Make k index the deepest non-null offest + 1 */
4078         for (k = depth; k > 1 && !offsets[k-1]; k--)
4079                 ;
4080         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4081         /* Writer: pointers */
4082         if (!partial)
4083                 partial = chain + k-1;
4084         /*
4085          * If the branch acquired continuation since we've looked at it -
4086          * fine, it should all survive and (new) top doesn't belong to us.
4087          */
4088         if (!partial->key && *partial->p)
4089                 /* Writer: end */
4090                 goto no_top;
4091         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4092                 ;
4093         /*
4094          * OK, we've found the last block that must survive. The rest of our
4095          * branch should be detached before unlocking. However, if that rest
4096          * of branch is all ours and does not grow immediately from the inode
4097          * it's easier to cheat and just decrement partial->p.
4098          */
4099         if (p == chain + k - 1 && p > chain) {
4100                 p->p--;
4101         } else {
4102                 *top = *p->p;
4103                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4104 #if 0
4105                 *p->p = 0;
4106 #endif
4107         }
4108         /* Writer: end */
4109
4110         while (partial > p) {
4111                 brelse(partial->bh);
4112                 partial--;
4113         }
4114 no_top:
4115         return partial;
4116 }
4117
4118 /*
4119  * Zero a number of block pointers in either an inode or an indirect block.
4120  * If we restart the transaction we must again get write access to the
4121  * indirect block for further modification.
4122  *
4123  * We release `count' blocks on disk, but (last - first) may be greater
4124  * than `count' because there can be holes in there.
4125  */
4126 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4127                               struct buffer_head *bh,
4128                               ext4_fsblk_t block_to_free,
4129                               unsigned long count, __le32 *first,
4130                               __le32 *last)
4131 {
4132         __le32 *p;
4133         int     is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4134
4135         if (try_to_extend_transaction(handle, inode)) {
4136                 if (bh) {
4137                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4138                         ext4_handle_dirty_metadata(handle, inode, bh);
4139                 }
4140                 ext4_mark_inode_dirty(handle, inode);
4141                 ext4_truncate_restart_trans(handle, inode,
4142                                             blocks_for_truncate(inode));
4143                 if (bh) {
4144                         BUFFER_TRACE(bh, "retaking write access");
4145                         ext4_journal_get_write_access(handle, bh);
4146                 }
4147         }
4148
4149         /*
4150          * Any buffers which are on the journal will be in memory. We
4151          * find them on the hash table so jbd2_journal_revoke() will
4152          * run jbd2_journal_forget() on them.  We've already detached
4153          * each block from the file, so bforget() in
4154          * jbd2_journal_forget() should be safe.
4155          *
4156          * AKPM: turn on bforget in jbd2_journal_forget()!!!
4157          */
4158         for (p = first; p < last; p++) {
4159                 u32 nr = le32_to_cpu(*p);
4160                 if (nr) {
4161                         struct buffer_head *tbh;
4162
4163                         *p = 0;
4164                         tbh = sb_find_get_block(inode->i_sb, nr);
4165                         ext4_forget(handle, is_metadata, inode, tbh, nr);
4166                 }
4167         }
4168
4169         ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4170 }
4171
4172 /**
4173  * ext4_free_data - free a list of data blocks
4174  * @handle:     handle for this transaction
4175  * @inode:      inode we are dealing with
4176  * @this_bh:    indirect buffer_head which contains *@first and *@last
4177  * @first:      array of block numbers
4178  * @last:       points immediately past the end of array
4179  *
4180  * We are freeing all blocks refered from that array (numbers are stored as
4181  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4182  *
4183  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4184  * blocks are contiguous then releasing them at one time will only affect one
4185  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4186  * actually use a lot of journal space.
4187  *
4188  * @this_bh will be %NULL if @first and @last point into the inode's direct
4189  * block pointers.
4190  */
4191 static void ext4_free_data(handle_t *handle, struct inode *inode,
4192                            struct buffer_head *this_bh,
4193                            __le32 *first, __le32 *last)
4194 {
4195         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4196         unsigned long count = 0;            /* Number of blocks in the run */
4197         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4198                                                corresponding to
4199                                                block_to_free */
4200         ext4_fsblk_t nr;                    /* Current block # */
4201         __le32 *p;                          /* Pointer into inode/ind
4202                                                for current block */
4203         int err;
4204
4205         if (this_bh) {                          /* For indirect block */
4206                 BUFFER_TRACE(this_bh, "get_write_access");
4207                 err = ext4_journal_get_write_access(handle, this_bh);
4208                 /* Important: if we can't update the indirect pointers
4209                  * to the blocks, we can't free them. */
4210                 if (err)
4211                         return;
4212         }
4213
4214         for (p = first; p < last; p++) {
4215                 nr = le32_to_cpu(*p);
4216                 if (nr) {
4217                         /* accumulate blocks to free if they're contiguous */
4218                         if (count == 0) {
4219                                 block_to_free = nr;
4220                                 block_to_free_p = p;
4221                                 count = 1;
4222                         } else if (nr == block_to_free + count) {
4223                                 count++;
4224                         } else {
4225                                 ext4_clear_blocks(handle, inode, this_bh,
4226                                                   block_to_free,
4227                                                   count, block_to_free_p, p);
4228                                 block_to_free = nr;
4229                                 block_to_free_p = p;
4230                                 count = 1;
4231                         }
4232                 }
4233         }
4234
4235         if (count > 0)
4236                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4237                                   count, block_to_free_p, p);
4238
4239         if (this_bh) {
4240                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4241
4242                 /*
4243                  * The buffer head should have an attached journal head at this
4244                  * point. However, if the data is corrupted and an indirect
4245                  * block pointed to itself, it would have been detached when
4246                  * the block was cleared. Check for this instead of OOPSing.
4247                  */
4248                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4249                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4250                 else
4251                         ext4_error(inode->i_sb, __func__,
4252                                    "circular indirect block detected, "
4253                                    "inode=%lu, block=%llu",
4254                                    inode->i_ino,
4255                                    (unsigned long long) this_bh->b_blocknr);
4256         }
4257 }
4258
4259 /**
4260  *      ext4_free_branches - free an array of branches
4261  *      @handle: JBD handle for this transaction
4262  *      @inode: inode we are dealing with
4263  *      @parent_bh: the buffer_head which contains *@first and *@last
4264  *      @first: array of block numbers
4265  *      @last:  pointer immediately past the end of array
4266  *      @depth: depth of the branches to free
4267  *
4268  *      We are freeing all blocks refered from these branches (numbers are
4269  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4270  *      appropriately.
4271  */
4272 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4273                                struct buffer_head *parent_bh,
4274                                __le32 *first, __le32 *last, int depth)
4275 {
4276         ext4_fsblk_t nr;
4277         __le32 *p;
4278
4279         if (ext4_handle_is_aborted(handle))
4280                 return;
4281
4282         if (depth--) {
4283                 struct buffer_head *bh;
4284                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4285                 p = last;
4286                 while (--p >= first) {
4287                         nr = le32_to_cpu(*p);
4288                         if (!nr)
4289                                 continue;               /* A hole */
4290
4291                         /* Go read the buffer for the next level down */
4292                         bh = sb_bread(inode->i_sb, nr);
4293
4294                         /*
4295                          * A read failure? Report error and clear slot
4296                          * (should be rare).
4297                          */
4298                         if (!bh) {
4299                                 ext4_error(inode->i_sb, "ext4_free_branches",
4300                                            "Read failure, inode=%lu, block=%llu",
4301                                            inode->i_ino, nr);
4302                                 continue;
4303                         }
4304
4305                         /* This zaps the entire block.  Bottom up. */
4306                         BUFFER_TRACE(bh, "free child branches");
4307                         ext4_free_branches(handle, inode, bh,
4308                                         (__le32 *) bh->b_data,
4309                                         (__le32 *) bh->b_data + addr_per_block,
4310                                         depth);
4311
4312                         /*
4313                          * We've probably journalled the indirect block several
4314                          * times during the truncate.  But it's no longer
4315                          * needed and we now drop it from the transaction via
4316                          * jbd2_journal_revoke().
4317                          *
4318                          * That's easy if it's exclusively part of this
4319                          * transaction.  But if it's part of the committing
4320                          * transaction then jbd2_journal_forget() will simply
4321                          * brelse() it.  That means that if the underlying
4322                          * block is reallocated in ext4_get_block(),
4323                          * unmap_underlying_metadata() will find this block
4324                          * and will try to get rid of it.  damn, damn.
4325                          *
4326                          * If this block has already been committed to the
4327                          * journal, a revoke record will be written.  And
4328                          * revoke records must be emitted *before* clearing
4329                          * this block's bit in the bitmaps.
4330                          */
4331                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4332
4333                         /*
4334                          * Everything below this this pointer has been
4335                          * released.  Now let this top-of-subtree go.
4336                          *
4337                          * We want the freeing of this indirect block to be
4338                          * atomic in the journal with the updating of the
4339                          * bitmap block which owns it.  So make some room in
4340                          * the journal.
4341                          *
4342                          * We zero the parent pointer *after* freeing its
4343                          * pointee in the bitmaps, so if extend_transaction()
4344                          * for some reason fails to put the bitmap changes and
4345                          * the release into the same transaction, recovery
4346                          * will merely complain about releasing a free block,
4347                          * rather than leaking blocks.
4348                          */
4349                         if (ext4_handle_is_aborted(handle))
4350                                 return;
4351                         if (try_to_extend_transaction(handle, inode)) {
4352                                 ext4_mark_inode_dirty(handle, inode);
4353                                 ext4_truncate_restart_trans(handle, inode,
4354                                             blocks_for_truncate(inode));
4355                         }
4356
4357                         ext4_free_blocks(handle, inode, nr, 1, 1);
4358
4359                         if (parent_bh) {
4360                                 /*
4361                                  * The block which we have just freed is
4362                                  * pointed to by an indirect block: journal it
4363                                  */
4364                                 BUFFER_TRACE(parent_bh, "get_write_access");
4365                                 if (!ext4_journal_get_write_access(handle,
4366                                                                    parent_bh)){
4367                                         *p = 0;
4368                                         BUFFER_TRACE(parent_bh,
4369                                         "call ext4_handle_dirty_metadata");
4370                                         ext4_handle_dirty_metadata(handle,
4371                                                                    inode,
4372                                                                    parent_bh);
4373                                 }
4374                         }
4375                 }
4376         } else {
4377                 /* We have reached the bottom of the tree. */
4378                 BUFFER_TRACE(parent_bh, "free data blocks");
4379                 ext4_free_data(handle, inode, parent_bh, first, last);
4380         }
4381 }
4382
4383 int ext4_can_truncate(struct inode *inode)
4384 {
4385         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4386                 return 0;
4387         if (S_ISREG(inode->i_mode))
4388                 return 1;
4389         if (S_ISDIR(inode->i_mode))
4390                 return 1;
4391         if (S_ISLNK(inode->i_mode))
4392                 return !ext4_inode_is_fast_symlink(inode);
4393         return 0;
4394 }
4395
4396 /*
4397  * ext4_truncate()
4398  *
4399  * We block out ext4_get_block() block instantiations across the entire
4400  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4401  * simultaneously on behalf of the same inode.
4402  *
4403  * As we work through the truncate and commmit bits of it to the journal there
4404  * is one core, guiding principle: the file's tree must always be consistent on
4405  * disk.  We must be able to restart the truncate after a crash.
4406  *
4407  * The file's tree may be transiently inconsistent in memory (although it
4408  * probably isn't), but whenever we close off and commit a journal transaction,
4409  * the contents of (the filesystem + the journal) must be consistent and
4410  * restartable.  It's pretty simple, really: bottom up, right to left (although
4411  * left-to-right works OK too).
4412  *
4413  * Note that at recovery time, journal replay occurs *before* the restart of
4414  * truncate against the orphan inode list.
4415  *
4416  * The committed inode has the new, desired i_size (which is the same as
4417  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4418  * that this inode's truncate did not complete and it will again call
4419  * ext4_truncate() to have another go.  So there will be instantiated blocks
4420  * to the right of the truncation point in a crashed ext4 filesystem.  But
4421  * that's fine - as long as they are linked from the inode, the post-crash
4422  * ext4_truncate() run will find them and release them.
4423  */
4424 void ext4_truncate(struct inode *inode)
4425 {
4426         handle_t *handle;
4427         struct ext4_inode_info *ei = EXT4_I(inode);
4428         __le32 *i_data = ei->i_data;
4429         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4430         struct address_space *mapping = inode->i_mapping;
4431         ext4_lblk_t offsets[4];
4432         Indirect chain[4];
4433         Indirect *partial;
4434         __le32 nr = 0;
4435         int n;
4436         ext4_lblk_t last_block;
4437         unsigned blocksize = inode->i_sb->s_blocksize;
4438
4439         if (!ext4_can_truncate(inode))
4440                 return;
4441
4442         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4443                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4444
4445         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4446                 ext4_ext_truncate(inode);
4447                 return;
4448         }
4449
4450         handle = start_transaction(inode);
4451         if (IS_ERR(handle))
4452                 return;         /* AKPM: return what? */
4453
4454         last_block = (inode->i_size + blocksize-1)
4455                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4456
4457         if (inode->i_size & (blocksize - 1))
4458                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4459                         goto out_stop;
4460
4461         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4462         if (n == 0)
4463                 goto out_stop;  /* error */
4464
4465         /*
4466          * OK.  This truncate is going to happen.  We add the inode to the
4467          * orphan list, so that if this truncate spans multiple transactions,
4468          * and we crash, we will resume the truncate when the filesystem
4469          * recovers.  It also marks the inode dirty, to catch the new size.
4470          *
4471          * Implication: the file must always be in a sane, consistent
4472          * truncatable state while each transaction commits.
4473          */
4474         if (ext4_orphan_add(handle, inode))
4475                 goto out_stop;
4476
4477         /*
4478          * From here we block out all ext4_get_block() callers who want to
4479          * modify the block allocation tree.
4480          */
4481         down_write(&ei->i_data_sem);
4482
4483         ext4_discard_preallocations(inode);
4484
4485         /*
4486          * The orphan list entry will now protect us from any crash which
4487          * occurs before the truncate completes, so it is now safe to propagate
4488          * the new, shorter inode size (held for now in i_size) into the
4489          * on-disk inode. We do this via i_disksize, which is the value which
4490          * ext4 *really* writes onto the disk inode.
4491          */
4492         ei->i_disksize = inode->i_size;
4493
4494         if (n == 1) {           /* direct blocks */
4495                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4496                                i_data + EXT4_NDIR_BLOCKS);
4497                 goto do_indirects;
4498         }
4499
4500         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4501         /* Kill the top of shared branch (not detached) */
4502         if (nr) {
4503                 if (partial == chain) {
4504                         /* Shared branch grows from the inode */
4505                         ext4_free_branches(handle, inode, NULL,
4506                                            &nr, &nr+1, (chain+n-1) - partial);
4507                         *partial->p = 0;
4508                         /*
4509                          * We mark the inode dirty prior to restart,
4510                          * and prior to stop.  No need for it here.
4511                          */
4512                 } else {
4513                         /* Shared branch grows from an indirect block */
4514                         BUFFER_TRACE(partial->bh, "get_write_access");
4515                         ext4_free_branches(handle, inode, partial->bh,
4516                                         partial->p,
4517                                         partial->p+1, (chain+n-1) - partial);
4518                 }
4519         }
4520         /* Clear the ends of indirect blocks on the shared branch */
4521         while (partial > chain) {
4522                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4523                                    (__le32*)partial->bh->b_data+addr_per_block,
4524                                    (chain+n-1) - partial);
4525                 BUFFER_TRACE(partial->bh, "call brelse");
4526                 brelse(partial->bh);
4527                 partial--;
4528         }
4529 do_indirects:
4530         /* Kill the remaining (whole) subtrees */
4531         switch (offsets[0]) {
4532         default:
4533                 nr = i_data[EXT4_IND_BLOCK];
4534                 if (nr) {
4535                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4536                         i_data[EXT4_IND_BLOCK] = 0;
4537                 }
4538         case EXT4_IND_BLOCK:
4539                 nr = i_data[EXT4_DIND_BLOCK];
4540                 if (nr) {
4541                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4542                         i_data[EXT4_DIND_BLOCK] = 0;
4543                 }
4544         case EXT4_DIND_BLOCK:
4545                 nr = i_data[EXT4_TIND_BLOCK];
4546                 if (nr) {
4547                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4548                         i_data[EXT4_TIND_BLOCK] = 0;
4549                 }
4550         case EXT4_TIND_BLOCK:
4551                 ;
4552         }
4553
4554         up_write(&ei->i_data_sem);
4555         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4556         ext4_mark_inode_dirty(handle, inode);
4557
4558         /*
4559          * In a multi-transaction truncate, we only make the final transaction
4560          * synchronous
4561          */
4562         if (IS_SYNC(inode))
4563                 ext4_handle_sync(handle);
4564 out_stop:
4565         /*
4566          * If this was a simple ftruncate(), and the file will remain alive
4567          * then we need to clear up the orphan record which we created above.
4568          * However, if this was a real unlink then we were called by
4569          * ext4_delete_inode(), and we allow that function to clean up the
4570          * orphan info for us.
4571          */
4572         if (inode->i_nlink)
4573                 ext4_orphan_del(handle, inode);
4574
4575         ext4_journal_stop(handle);
4576 }
4577
4578 /*
4579  * ext4_get_inode_loc returns with an extra refcount against the inode's
4580  * underlying buffer_head on success. If 'in_mem' is true, we have all
4581  * data in memory that is needed to recreate the on-disk version of this
4582  * inode.
4583  */
4584 static int __ext4_get_inode_loc(struct inode *inode,
4585                                 struct ext4_iloc *iloc, int in_mem)
4586 {
4587         struct ext4_group_desc  *gdp;
4588         struct buffer_head      *bh;
4589         struct super_block      *sb = inode->i_sb;
4590         ext4_fsblk_t            block;
4591         int                     inodes_per_block, inode_offset;
4592
4593         iloc->bh = NULL;
4594         if (!ext4_valid_inum(sb, inode->i_ino))
4595                 return -EIO;
4596
4597         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4598         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4599         if (!gdp)
4600                 return -EIO;
4601
4602         /*
4603          * Figure out the offset within the block group inode table
4604          */
4605         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4606         inode_offset = ((inode->i_ino - 1) %
4607                         EXT4_INODES_PER_GROUP(sb));
4608         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4609         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4610
4611         bh = sb_getblk(sb, block);
4612         if (!bh) {
4613                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4614                            "inode block - inode=%lu, block=%llu",
4615                            inode->i_ino, block);
4616                 return -EIO;
4617         }
4618         if (!buffer_uptodate(bh)) {
4619                 lock_buffer(bh);
4620
4621                 /*
4622                  * If the buffer has the write error flag, we have failed
4623                  * to write out another inode in the same block.  In this
4624                  * case, we don't have to read the block because we may
4625                  * read the old inode data successfully.
4626                  */
4627                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4628                         set_buffer_uptodate(bh);
4629
4630                 if (buffer_uptodate(bh)) {
4631                         /* someone brought it uptodate while we waited */
4632                         unlock_buffer(bh);
4633                         goto has_buffer;
4634                 }
4635
4636                 /*
4637                  * If we have all information of the inode in memory and this
4638                  * is the only valid inode in the block, we need not read the
4639                  * block.
4640                  */
4641                 if (in_mem) {
4642                         struct buffer_head *bitmap_bh;
4643                         int i, start;
4644
4645                         start = inode_offset & ~(inodes_per_block - 1);
4646
4647                         /* Is the inode bitmap in cache? */
4648                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4649                         if (!bitmap_bh)
4650                                 goto make_io;
4651
4652                         /*
4653                          * If the inode bitmap isn't in cache then the
4654                          * optimisation may end up performing two reads instead
4655                          * of one, so skip it.
4656                          */
4657                         if (!buffer_uptodate(bitmap_bh)) {
4658                                 brelse(bitmap_bh);
4659                                 goto make_io;
4660                         }
4661                         for (i = start; i < start + inodes_per_block; i++) {
4662                                 if (i == inode_offset)
4663                                         continue;
4664                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4665                                         break;
4666                         }
4667                         brelse(bitmap_bh);
4668                         if (i == start + inodes_per_block) {
4669                                 /* all other inodes are free, so skip I/O */
4670                                 memset(bh->b_data, 0, bh->b_size);
4671                                 set_buffer_uptodate(bh);
4672                                 unlock_buffer(bh);
4673                                 goto has_buffer;
4674                         }
4675                 }
4676
4677 make_io:
4678                 /*
4679                  * If we need to do any I/O, try to pre-readahead extra
4680                  * blocks from the inode table.
4681                  */
4682                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4683                         ext4_fsblk_t b, end, table;
4684                         unsigned num;
4685
4686                         table = ext4_inode_table(sb, gdp);
4687                         /* s_inode_readahead_blks is always a power of 2 */
4688                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4689                         if (table > b)
4690                                 b = table;
4691                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4692                         num = EXT4_INODES_PER_GROUP(sb);
4693                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4694                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4695                                 num -= ext4_itable_unused_count(sb, gdp);
4696                         table += num / inodes_per_block;
4697                         if (end > table)
4698                                 end = table;
4699                         while (b <= end)
4700                                 sb_breadahead(sb, b++);
4701                 }
4702
4703                 /*
4704                  * There are other valid inodes in the buffer, this inode
4705                  * has in-inode xattrs, or we don't have this inode in memory.
4706                  * Read the block from disk.
4707                  */
4708                 get_bh(bh);
4709                 bh->b_end_io = end_buffer_read_sync;
4710                 submit_bh(READ_META, bh);
4711                 wait_on_buffer(bh);
4712                 if (!buffer_uptodate(bh)) {
4713                         ext4_error(sb, __func__,
4714                                    "unable to read inode block - inode=%lu, "
4715                                    "block=%llu", inode->i_ino, block);
4716                         brelse(bh);
4717                         return -EIO;
4718                 }
4719         }
4720 has_buffer:
4721         iloc->bh = bh;
4722         return 0;
4723 }
4724
4725 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4726 {
4727         /* We have all inode data except xattrs in memory here. */
4728         return __ext4_get_inode_loc(inode, iloc,
4729                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4730 }
4731
4732 void ext4_set_inode_flags(struct inode *inode)
4733 {
4734         unsigned int flags = EXT4_I(inode)->i_flags;
4735
4736         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4737         if (flags & EXT4_SYNC_FL)
4738                 inode->i_flags |= S_SYNC;
4739         if (flags & EXT4_APPEND_FL)
4740                 inode->i_flags |= S_APPEND;
4741         if (flags & EXT4_IMMUTABLE_FL)
4742                 inode->i_flags |= S_IMMUTABLE;
4743         if (flags & EXT4_NOATIME_FL)
4744                 inode->i_flags |= S_NOATIME;
4745         if (flags & EXT4_DIRSYNC_FL)
4746                 inode->i_flags |= S_DIRSYNC;
4747 }
4748
4749 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4750 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4751 {
4752         unsigned int flags = ei->vfs_inode.i_flags;
4753
4754         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4755                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4756         if (flags & S_SYNC)
4757                 ei->i_flags |= EXT4_SYNC_FL;
4758         if (flags & S_APPEND)
4759                 ei->i_flags |= EXT4_APPEND_FL;
4760         if (flags & S_IMMUTABLE)
4761                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4762         if (flags & S_NOATIME)
4763                 ei->i_flags |= EXT4_NOATIME_FL;
4764         if (flags & S_DIRSYNC)
4765                 ei->i_flags |= EXT4_DIRSYNC_FL;
4766 }
4767
4768 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4769                                   struct ext4_inode_info *ei)
4770 {
4771         blkcnt_t i_blocks ;
4772         struct inode *inode = &(ei->vfs_inode);
4773         struct super_block *sb = inode->i_sb;
4774
4775         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4776                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4777                 /* we are using combined 48 bit field */
4778                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779                                         le32_to_cpu(raw_inode->i_blocks_lo);
4780                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4781                         /* i_blocks represent file system block size */
4782                         return i_blocks  << (inode->i_blkbits - 9);
4783                 } else {
4784                         return i_blocks;
4785                 }
4786         } else {
4787                 return le32_to_cpu(raw_inode->i_blocks_lo);
4788         }
4789 }
4790
4791 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4792 {
4793         struct ext4_iloc iloc;
4794         struct ext4_inode *raw_inode;
4795         struct ext4_inode_info *ei;
4796         struct inode *inode;
4797         long ret;
4798         int block;
4799
4800         inode = iget_locked(sb, ino);
4801         if (!inode)
4802                 return ERR_PTR(-ENOMEM);
4803         if (!(inode->i_state & I_NEW))
4804                 return inode;
4805
4806         ei = EXT4_I(inode);
4807         iloc.bh = 0;
4808
4809         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4810         if (ret < 0)
4811                 goto bad_inode;
4812         raw_inode = ext4_raw_inode(&iloc);
4813         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4814         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4815         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4816         if (!(test_opt(inode->i_sb, NO_UID32))) {
4817                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4818                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4819         }
4820         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4821
4822         ei->i_state = 0;
4823         ei->i_dir_start_lookup = 0;
4824         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4825         /* We now have enough fields to check if the inode was active or not.
4826          * This is needed because nfsd might try to access dead inodes
4827          * the test is that same one that e2fsck uses
4828          * NeilBrown 1999oct15
4829          */
4830         if (inode->i_nlink == 0) {
4831                 if (inode->i_mode == 0 ||
4832                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4833                         /* this inode is deleted */
4834                         ret = -ESTALE;
4835                         goto bad_inode;
4836                 }
4837                 /* The only unlinked inodes we let through here have
4838                  * valid i_mode and are being read by the orphan
4839                  * recovery code: that's fine, we're about to complete
4840                  * the process of deleting those. */
4841         }
4842         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4843         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4844         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4845         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4846                 ei->i_file_acl |=
4847                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4848         inode->i_size = ext4_isize(raw_inode);
4849         ei->i_disksize = inode->i_size;
4850         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4851         ei->i_block_group = iloc.block_group;
4852         ei->i_last_alloc_group = ~0;
4853         /*
4854          * NOTE! The in-memory inode i_data array is in little-endian order
4855          * even on big-endian machines: we do NOT byteswap the block numbers!
4856          */
4857         for (block = 0; block < EXT4_N_BLOCKS; block++)
4858                 ei->i_data[block] = raw_inode->i_block[block];
4859         INIT_LIST_HEAD(&ei->i_orphan);
4860
4861         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4862                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4863                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4864                     EXT4_INODE_SIZE(inode->i_sb)) {
4865                         ret = -EIO;
4866                         goto bad_inode;
4867                 }
4868                 if (ei->i_extra_isize == 0) {
4869                         /* The extra space is currently unused. Use it. */
4870                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4871                                             EXT4_GOOD_OLD_INODE_SIZE;
4872                 } else {
4873                         __le32 *magic = (void *)raw_inode +
4874                                         EXT4_GOOD_OLD_INODE_SIZE +
4875                                         ei->i_extra_isize;
4876                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4877                                 ei->i_state |= EXT4_STATE_XATTR;
4878                 }
4879         } else
4880                 ei->i_extra_isize = 0;
4881
4882         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4883         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4884         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4885         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4886
4887         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4888         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4890                         inode->i_version |=
4891                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4892         }
4893
4894         ret = 0;
4895         if (ei->i_file_acl &&
4896             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4897                 ext4_error(sb, __func__,
4898                            "bad extended attribute block %llu in inode #%lu",
4899                            ei->i_file_acl, inode->i_ino);
4900                 ret = -EIO;
4901                 goto bad_inode;
4902         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4903                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4904                     (S_ISLNK(inode->i_mode) &&
4905                      !ext4_inode_is_fast_symlink(inode)))
4906                         /* Validate extent which is part of inode */
4907                         ret = ext4_ext_check_inode(inode);
4908         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4909                    (S_ISLNK(inode->i_mode) &&
4910                     !ext4_inode_is_fast_symlink(inode))) {
4911                 /* Validate block references which are part of inode */
4912                 ret = ext4_check_inode_blockref(inode);
4913         }
4914         if (ret)
4915                 goto bad_inode;
4916
4917         if (S_ISREG(inode->i_mode)) {
4918                 inode->i_op = &ext4_file_inode_operations;
4919                 inode->i_fop = &ext4_file_operations;
4920                 ext4_set_aops(inode);
4921         } else if (S_ISDIR(inode->i_mode)) {
4922                 inode->i_op = &ext4_dir_inode_operations;
4923                 inode->i_fop = &ext4_dir_operations;
4924         } else if (S_ISLNK(inode->i_mode)) {
4925                 if (ext4_inode_is_fast_symlink(inode)) {
4926                         inode->i_op = &ext4_fast_symlink_inode_operations;
4927                         nd_terminate_link(ei->i_data, inode->i_size,
4928                                 sizeof(ei->i_data) - 1);
4929                 } else {
4930                         inode->i_op = &ext4_symlink_inode_operations;
4931                         ext4_set_aops(inode);
4932                 }
4933         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4934               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4935                 inode->i_op = &ext4_special_inode_operations;
4936                 if (raw_inode->i_block[0])
4937                         init_special_inode(inode, inode->i_mode,
4938                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4939                 else
4940                         init_special_inode(inode, inode->i_mode,
4941                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4942         } else {
4943                 ret = -EIO;
4944                 ext4_error(inode->i_sb, __func__,
4945                            "bogus i_mode (%o) for inode=%lu",
4946                            inode->i_mode, inode->i_ino);
4947                 goto bad_inode;
4948         }
4949         brelse(iloc.bh);
4950         ext4_set_inode_flags(inode);
4951         unlock_new_inode(inode);
4952         return inode;
4953
4954 bad_inode:
4955         brelse(iloc.bh);
4956         iget_failed(inode);
4957         return ERR_PTR(ret);
4958 }
4959
4960 static int ext4_inode_blocks_set(handle_t *handle,
4961                                 struct ext4_inode *raw_inode,
4962                                 struct ext4_inode_info *ei)
4963 {
4964         struct inode *inode = &(ei->vfs_inode);
4965         u64 i_blocks = inode->i_blocks;
4966         struct super_block *sb = inode->i_sb;
4967
4968         if (i_blocks <= ~0U) {
4969                 /*
4970                  * i_blocks can be represnted in a 32 bit variable
4971                  * as multiple of 512 bytes
4972                  */
4973                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4974                 raw_inode->i_blocks_high = 0;
4975                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4976                 return 0;
4977         }
4978         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4979                 return -EFBIG;
4980
4981         if (i_blocks <= 0xffffffffffffULL) {
4982                 /*
4983                  * i_blocks can be represented in a 48 bit variable
4984                  * as multiple of 512 bytes
4985                  */
4986                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4987                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4988                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4989         } else {
4990                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4991                 /* i_block is stored in file system block size */
4992                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4993                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4994                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4995         }
4996         return 0;
4997 }
4998
4999 /*
5000  * Post the struct inode info into an on-disk inode location in the
5001  * buffer-cache.  This gobbles the caller's reference to the
5002  * buffer_head in the inode location struct.
5003  *
5004  * The caller must have write access to iloc->bh.
5005  */
5006 static int ext4_do_update_inode(handle_t *handle,
5007                                 struct inode *inode,
5008                                 struct ext4_iloc *iloc)
5009 {
5010         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5011         struct ext4_inode_info *ei = EXT4_I(inode);
5012         struct buffer_head *bh = iloc->bh;
5013         int err = 0, rc, block;
5014
5015         /* For fields not not tracking in the in-memory inode,
5016          * initialise them to zero for new inodes. */
5017         if (ei->i_state & EXT4_STATE_NEW)
5018                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5019
5020         ext4_get_inode_flags(ei);
5021         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5022         if (!(test_opt(inode->i_sb, NO_UID32))) {
5023                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5024                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5025 /*
5026  * Fix up interoperability with old kernels. Otherwise, old inodes get
5027  * re-used with the upper 16 bits of the uid/gid intact
5028  */
5029                 if (!ei->i_dtime) {
5030                         raw_inode->i_uid_high =
5031                                 cpu_to_le16(high_16_bits(inode->i_uid));
5032                         raw_inode->i_gid_high =
5033                                 cpu_to_le16(high_16_bits(inode->i_gid));
5034                 } else {
5035                         raw_inode->i_uid_high = 0;
5036                         raw_inode->i_gid_high = 0;
5037                 }
5038         } else {
5039                 raw_inode->i_uid_low =
5040                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5041                 raw_inode->i_gid_low =
5042                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5043                 raw_inode->i_uid_high = 0;
5044                 raw_inode->i_gid_high = 0;
5045         }
5046         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5047
5048         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5049         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5050         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5051         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5052
5053         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5054                 goto out_brelse;
5055         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5056         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5057         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5058             cpu_to_le32(EXT4_OS_HURD))
5059                 raw_inode->i_file_acl_high =
5060                         cpu_to_le16(ei->i_file_acl >> 32);
5061         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5062         ext4_isize_set(raw_inode, ei->i_disksize);
5063         if (ei->i_disksize > 0x7fffffffULL) {
5064                 struct super_block *sb = inode->i_sb;
5065                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5066                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5067                                 EXT4_SB(sb)->s_es->s_rev_level ==
5068                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5069                         /* If this is the first large file
5070                          * created, add a flag to the superblock.
5071                          */
5072                         err = ext4_journal_get_write_access(handle,
5073                                         EXT4_SB(sb)->s_sbh);
5074                         if (err)
5075                                 goto out_brelse;
5076                         ext4_update_dynamic_rev(sb);
5077                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5078                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5079                         sb->s_dirt = 1;
5080                         ext4_handle_sync(handle);
5081                         err = ext4_handle_dirty_metadata(handle, inode,
5082                                         EXT4_SB(sb)->s_sbh);
5083                 }
5084         }
5085         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5086         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5087                 if (old_valid_dev(inode->i_rdev)) {
5088                         raw_inode->i_block[0] =
5089                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5090                         raw_inode->i_block[1] = 0;
5091                 } else {
5092                         raw_inode->i_block[0] = 0;
5093                         raw_inode->i_block[1] =
5094                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5095                         raw_inode->i_block[2] = 0;
5096                 }
5097         } else
5098                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5099                         raw_inode->i_block[block] = ei->i_data[block];
5100
5101         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5102         if (ei->i_extra_isize) {
5103                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5104                         raw_inode->i_version_hi =
5105                         cpu_to_le32(inode->i_version >> 32);
5106                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5107         }
5108
5109         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5110         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5111         if (!err)
5112                 err = rc;
5113         ei->i_state &= ~EXT4_STATE_NEW;
5114
5115 out_brelse:
5116         brelse(bh);
5117         ext4_std_error(inode->i_sb, err);
5118         return err;
5119 }
5120
5121 /*
5122  * ext4_write_inode()
5123  *
5124  * We are called from a few places:
5125  *
5126  * - Within generic_file_write() for O_SYNC files.
5127  *   Here, there will be no transaction running. We wait for any running
5128  *   trasnaction to commit.
5129  *
5130  * - Within sys_sync(), kupdate and such.
5131  *   We wait on commit, if tol to.
5132  *
5133  * - Within prune_icache() (PF_MEMALLOC == true)
5134  *   Here we simply return.  We can't afford to block kswapd on the
5135  *   journal commit.
5136  *
5137  * In all cases it is actually safe for us to return without doing anything,
5138  * because the inode has been copied into a raw inode buffer in
5139  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5140  * knfsd.
5141  *
5142  * Note that we are absolutely dependent upon all inode dirtiers doing the
5143  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5144  * which we are interested.
5145  *
5146  * It would be a bug for them to not do this.  The code:
5147  *
5148  *      mark_inode_dirty(inode)
5149  *      stuff();
5150  *      inode->i_size = expr;
5151  *
5152  * is in error because a kswapd-driven write_inode() could occur while
5153  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5154  * will no longer be on the superblock's dirty inode list.
5155  */
5156 int ext4_write_inode(struct inode *inode, int wait)
5157 {
5158         int err;
5159
5160         if (current->flags & PF_MEMALLOC)
5161                 return 0;
5162
5163         if (EXT4_SB(inode->i_sb)->s_journal) {
5164                 if (ext4_journal_current_handle()) {
5165                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5166                         dump_stack();
5167                         return -EIO;
5168                 }
5169
5170                 if (!wait)
5171                         return 0;
5172
5173                 err = ext4_force_commit(inode->i_sb);
5174         } else {
5175                 struct ext4_iloc iloc;
5176
5177                 err = ext4_get_inode_loc(inode, &iloc);
5178                 if (err)
5179                         return err;
5180                 if (wait)
5181                         sync_dirty_buffer(iloc.bh);
5182                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5183                         ext4_error(inode->i_sb, __func__,
5184                                    "IO error syncing inode, "
5185                                    "inode=%lu, block=%llu",
5186                                    inode->i_ino,
5187                                    (unsigned long long)iloc.bh->b_blocknr);
5188                         err = -EIO;
5189                 }
5190         }
5191         return err;
5192 }
5193
5194 /*
5195  * ext4_setattr()
5196  *
5197  * Called from notify_change.
5198  *
5199  * We want to trap VFS attempts to truncate the file as soon as
5200  * possible.  In particular, we want to make sure that when the VFS
5201  * shrinks i_size, we put the inode on the orphan list and modify
5202  * i_disksize immediately, so that during the subsequent flushing of
5203  * dirty pages and freeing of disk blocks, we can guarantee that any
5204  * commit will leave the blocks being flushed in an unused state on
5205  * disk.  (On recovery, the inode will get truncated and the blocks will
5206  * be freed, so we have a strong guarantee that no future commit will
5207  * leave these blocks visible to the user.)
5208  *
5209  * Another thing we have to assure is that if we are in ordered mode
5210  * and inode is still attached to the committing transaction, we must
5211  * we start writeout of all the dirty pages which are being truncated.
5212  * This way we are sure that all the data written in the previous
5213  * transaction are already on disk (truncate waits for pages under
5214  * writeback).
5215  *
5216  * Called with inode->i_mutex down.
5217  */
5218 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5219 {
5220         struct inode *inode = dentry->d_inode;
5221         int error, rc = 0;
5222         const unsigned int ia_valid = attr->ia_valid;
5223
5224         error = inode_change_ok(inode, attr);
5225         if (error)
5226                 return error;
5227
5228         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5229                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5230                 handle_t *handle;
5231
5232                 /* (user+group)*(old+new) structure, inode write (sb,
5233                  * inode block, ? - but truncate inode update has it) */
5234                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5235                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5236                 if (IS_ERR(handle)) {
5237                         error = PTR_ERR(handle);
5238                         goto err_out;
5239                 }
5240                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5241                 if (error) {
5242                         ext4_journal_stop(handle);
5243                         return error;
5244                 }
5245                 /* Update corresponding info in inode so that everything is in
5246                  * one transaction */
5247                 if (attr->ia_valid & ATTR_UID)
5248                         inode->i_uid = attr->ia_uid;
5249                 if (attr->ia_valid & ATTR_GID)
5250                         inode->i_gid = attr->ia_gid;
5251                 error = ext4_mark_inode_dirty(handle, inode);
5252                 ext4_journal_stop(handle);
5253         }
5254
5255         if (attr->ia_valid & ATTR_SIZE) {
5256                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5257                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5258
5259                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5260                                 error = -EFBIG;
5261                                 goto err_out;
5262                         }
5263                 }
5264         }
5265
5266         if (S_ISREG(inode->i_mode) &&
5267             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5268                 handle_t *handle;
5269
5270                 handle = ext4_journal_start(inode, 3);
5271                 if (IS_ERR(handle)) {
5272                         error = PTR_ERR(handle);
5273                         goto err_out;
5274                 }
5275
5276                 error = ext4_orphan_add(handle, inode);
5277                 EXT4_I(inode)->i_disksize = attr->ia_size;
5278                 rc = ext4_mark_inode_dirty(handle, inode);
5279                 if (!error)
5280                         error = rc;
5281                 ext4_journal_stop(handle);
5282
5283                 if (ext4_should_order_data(inode)) {
5284                         error = ext4_begin_ordered_truncate(inode,
5285                                                             attr->ia_size);
5286                         if (error) {
5287                                 /* Do as much error cleanup as possible */
5288                                 handle = ext4_journal_start(inode, 3);
5289                                 if (IS_ERR(handle)) {
5290                                         ext4_orphan_del(NULL, inode);
5291                                         goto err_out;
5292                                 }
5293                                 ext4_orphan_del(handle, inode);
5294                                 ext4_journal_stop(handle);
5295                                 goto err_out;
5296                         }
5297                 }
5298         }
5299
5300         rc = inode_setattr(inode, attr);
5301
5302         /* If inode_setattr's call to ext4_truncate failed to get a
5303          * transaction handle at all, we need to clean up the in-core
5304          * orphan list manually. */
5305         if (inode->i_nlink)
5306                 ext4_orphan_del(NULL, inode);
5307
5308         if (!rc && (ia_valid & ATTR_MODE))
5309                 rc = ext4_acl_chmod(inode);
5310
5311 err_out:
5312         ext4_std_error(inode->i_sb, error);
5313         if (!error)
5314                 error = rc;
5315         return error;
5316 }
5317
5318 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5319                  struct kstat *stat)
5320 {
5321         struct inode *inode;
5322         unsigned long delalloc_blocks;
5323
5324         inode = dentry->d_inode;
5325         generic_fillattr(inode, stat);
5326
5327         /*
5328          * We can't update i_blocks if the block allocation is delayed
5329          * otherwise in the case of system crash before the real block
5330          * allocation is done, we will have i_blocks inconsistent with
5331          * on-disk file blocks.
5332          * We always keep i_blocks updated together with real
5333          * allocation. But to not confuse with user, stat
5334          * will return the blocks that include the delayed allocation
5335          * blocks for this file.
5336          */
5337         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5338         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5339         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5340
5341         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5342         return 0;
5343 }
5344
5345 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5346                                       int chunk)
5347 {
5348         int indirects;
5349
5350         /* if nrblocks are contiguous */
5351         if (chunk) {
5352                 /*
5353                  * With N contiguous data blocks, it need at most
5354                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5355                  * 2 dindirect blocks
5356                  * 1 tindirect block
5357                  */
5358                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5359                 return indirects + 3;
5360         }
5361         /*
5362          * if nrblocks are not contiguous, worse case, each block touch
5363          * a indirect block, and each indirect block touch a double indirect
5364          * block, plus a triple indirect block
5365          */
5366         indirects = nrblocks * 2 + 1;
5367         return indirects;
5368 }
5369
5370 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5371 {
5372         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5373                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5374         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5375 }
5376
5377 /*
5378  * Account for index blocks, block groups bitmaps and block group
5379  * descriptor blocks if modify datablocks and index blocks
5380  * worse case, the indexs blocks spread over different block groups
5381  *
5382  * If datablocks are discontiguous, they are possible to spread over
5383  * different block groups too. If they are contiugous, with flexbg,
5384  * they could still across block group boundary.
5385  *
5386  * Also account for superblock, inode, quota and xattr blocks
5387  */
5388 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5389 {
5390         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5391         int gdpblocks;
5392         int idxblocks;
5393         int ret = 0;
5394
5395         /*
5396          * How many index blocks need to touch to modify nrblocks?
5397          * The "Chunk" flag indicating whether the nrblocks is
5398          * physically contiguous on disk
5399          *
5400          * For Direct IO and fallocate, they calls get_block to allocate
5401          * one single extent at a time, so they could set the "Chunk" flag
5402          */
5403         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5404
5405         ret = idxblocks;
5406
5407         /*
5408          * Now let's see how many group bitmaps and group descriptors need
5409          * to account
5410          */
5411         groups = idxblocks;
5412         if (chunk)
5413                 groups += 1;
5414         else
5415                 groups += nrblocks;
5416
5417         gdpblocks = groups;
5418         if (groups > ngroups)
5419                 groups = ngroups;
5420         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5421                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5422
5423         /* bitmaps and block group descriptor blocks */
5424         ret += groups + gdpblocks;
5425
5426         /* Blocks for super block, inode, quota and xattr blocks */
5427         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5428
5429         return ret;
5430 }
5431
5432 /*
5433  * Calulate the total number of credits to reserve to fit
5434  * the modification of a single pages into a single transaction,
5435  * which may include multiple chunks of block allocations.
5436  *
5437  * This could be called via ext4_write_begin()
5438  *
5439  * We need to consider the worse case, when
5440  * one new block per extent.
5441  */
5442 int ext4_writepage_trans_blocks(struct inode *inode)
5443 {
5444         int bpp = ext4_journal_blocks_per_page(inode);
5445         int ret;
5446
5447         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5448
5449         /* Account for data blocks for journalled mode */
5450         if (ext4_should_journal_data(inode))
5451                 ret += bpp;
5452         return ret;
5453 }
5454
5455 /*
5456  * Calculate the journal credits for a chunk of data modification.
5457  *
5458  * This is called from DIO, fallocate or whoever calling
5459  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5460  *
5461  * journal buffers for data blocks are not included here, as DIO
5462  * and fallocate do no need to journal data buffers.
5463  */
5464 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5465 {
5466         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5467 }
5468
5469 /*
5470  * The caller must have previously called ext4_reserve_inode_write().
5471  * Give this, we know that the caller already has write access to iloc->bh.
5472  */
5473 int ext4_mark_iloc_dirty(handle_t *handle,
5474                          struct inode *inode, struct ext4_iloc *iloc)
5475 {
5476         int err = 0;
5477
5478         if (test_opt(inode->i_sb, I_VERSION))
5479                 inode_inc_iversion(inode);
5480
5481         /* the do_update_inode consumes one bh->b_count */
5482         get_bh(iloc->bh);
5483
5484         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5485         err = ext4_do_update_inode(handle, inode, iloc);
5486         put_bh(iloc->bh);
5487         return err;
5488 }
5489
5490 /*
5491  * On success, We end up with an outstanding reference count against
5492  * iloc->bh.  This _must_ be cleaned up later.
5493  */
5494
5495 int
5496 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5497                          struct ext4_iloc *iloc)
5498 {
5499         int err;
5500
5501         err = ext4_get_inode_loc(inode, iloc);
5502         if (!err) {
5503                 BUFFER_TRACE(iloc->bh, "get_write_access");
5504                 err = ext4_journal_get_write_access(handle, iloc->bh);
5505                 if (err) {
5506                         brelse(iloc->bh);
5507                         iloc->bh = NULL;
5508                 }
5509         }
5510         ext4_std_error(inode->i_sb, err);
5511         return err;
5512 }
5513
5514 /*
5515  * Expand an inode by new_extra_isize bytes.
5516  * Returns 0 on success or negative error number on failure.
5517  */
5518 static int ext4_expand_extra_isize(struct inode *inode,
5519                                    unsigned int new_extra_isize,
5520                                    struct ext4_iloc iloc,
5521                                    handle_t *handle)
5522 {
5523         struct ext4_inode *raw_inode;
5524         struct ext4_xattr_ibody_header *header;
5525         struct ext4_xattr_entry *entry;
5526
5527         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5528                 return 0;
5529
5530         raw_inode = ext4_raw_inode(&iloc);
5531
5532         header = IHDR(inode, raw_inode);
5533         entry = IFIRST(header);
5534
5535         /* No extended attributes present */
5536         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5537                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5538                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5539                         new_extra_isize);
5540                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5541                 return 0;
5542         }
5543
5544         /* try to expand with EAs present */
5545         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5546                                           raw_inode, handle);
5547 }
5548
5549 /*
5550  * What we do here is to mark the in-core inode as clean with respect to inode
5551  * dirtiness (it may still be data-dirty).
5552  * This means that the in-core inode may be reaped by prune_icache
5553  * without having to perform any I/O.  This is a very good thing,
5554  * because *any* task may call prune_icache - even ones which
5555  * have a transaction open against a different journal.
5556  *
5557  * Is this cheating?  Not really.  Sure, we haven't written the
5558  * inode out, but prune_icache isn't a user-visible syncing function.
5559  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5560  * we start and wait on commits.
5561  *
5562  * Is this efficient/effective?  Well, we're being nice to the system
5563  * by cleaning up our inodes proactively so they can be reaped
5564  * without I/O.  But we are potentially leaving up to five seconds'
5565  * worth of inodes floating about which prune_icache wants us to
5566  * write out.  One way to fix that would be to get prune_icache()
5567  * to do a write_super() to free up some memory.  It has the desired
5568  * effect.
5569  */
5570 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5571 {
5572         struct ext4_iloc iloc;
5573         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5574         static unsigned int mnt_count;
5575         int err, ret;
5576
5577         might_sleep();
5578         err = ext4_reserve_inode_write(handle, inode, &iloc);
5579         if (ext4_handle_valid(handle) &&
5580             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5581             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5582                 /*
5583                  * We need extra buffer credits since we may write into EA block
5584                  * with this same handle. If journal_extend fails, then it will
5585                  * only result in a minor loss of functionality for that inode.
5586                  * If this is felt to be critical, then e2fsck should be run to
5587                  * force a large enough s_min_extra_isize.
5588                  */
5589                 if ((jbd2_journal_extend(handle,
5590                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5591                         ret = ext4_expand_extra_isize(inode,
5592                                                       sbi->s_want_extra_isize,
5593                                                       iloc, handle);
5594                         if (ret) {
5595                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5596                                 if (mnt_count !=
5597                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5598                                         ext4_warning(inode->i_sb, __func__,
5599                                         "Unable to expand inode %lu. Delete"
5600                                         " some EAs or run e2fsck.",
5601                                         inode->i_ino);
5602                                         mnt_count =
5603                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5604                                 }
5605                         }
5606                 }
5607         }
5608         if (!err)
5609                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5610         return err;
5611 }
5612
5613 /*
5614  * ext4_dirty_inode() is called from __mark_inode_dirty()
5615  *
5616  * We're really interested in the case where a file is being extended.
5617  * i_size has been changed by generic_commit_write() and we thus need
5618  * to include the updated inode in the current transaction.
5619  *
5620  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5621  * are allocated to the file.
5622  *
5623  * If the inode is marked synchronous, we don't honour that here - doing
5624  * so would cause a commit on atime updates, which we don't bother doing.
5625  * We handle synchronous inodes at the highest possible level.
5626  */
5627 void ext4_dirty_inode(struct inode *inode)
5628 {
5629         handle_t *handle;
5630
5631         handle = ext4_journal_start(inode, 2);
5632         if (IS_ERR(handle))
5633                 goto out;
5634
5635         ext4_mark_inode_dirty(handle, inode);
5636
5637         ext4_journal_stop(handle);
5638 out:
5639         return;
5640 }
5641
5642 #if 0
5643 /*
5644  * Bind an inode's backing buffer_head into this transaction, to prevent
5645  * it from being flushed to disk early.  Unlike
5646  * ext4_reserve_inode_write, this leaves behind no bh reference and
5647  * returns no iloc structure, so the caller needs to repeat the iloc
5648  * lookup to mark the inode dirty later.
5649  */
5650 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5651 {
5652         struct ext4_iloc iloc;
5653
5654         int err = 0;
5655         if (handle) {
5656                 err = ext4_get_inode_loc(inode, &iloc);
5657                 if (!err) {
5658                         BUFFER_TRACE(iloc.bh, "get_write_access");
5659                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5660                         if (!err)
5661                                 err = ext4_handle_dirty_metadata(handle,
5662                                                                  inode,
5663                                                                  iloc.bh);
5664                         brelse(iloc.bh);
5665                 }
5666         }
5667         ext4_std_error(inode->i_sb, err);
5668         return err;
5669 }
5670 #endif
5671
5672 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5673 {
5674         journal_t *journal;
5675         handle_t *handle;
5676         int err;
5677
5678         /*
5679          * We have to be very careful here: changing a data block's
5680          * journaling status dynamically is dangerous.  If we write a
5681          * data block to the journal, change the status and then delete
5682          * that block, we risk forgetting to revoke the old log record
5683          * from the journal and so a subsequent replay can corrupt data.
5684          * So, first we make sure that the journal is empty and that
5685          * nobody is changing anything.
5686          */
5687
5688         journal = EXT4_JOURNAL(inode);
5689         if (!journal)
5690                 return 0;
5691         if (is_journal_aborted(journal))
5692                 return -EROFS;
5693
5694         jbd2_journal_lock_updates(journal);
5695         jbd2_journal_flush(journal);
5696
5697         /*
5698          * OK, there are no updates running now, and all cached data is
5699          * synced to disk.  We are now in a completely consistent state
5700          * which doesn't have anything in the journal, and we know that
5701          * no filesystem updates are running, so it is safe to modify
5702          * the inode's in-core data-journaling state flag now.
5703          */
5704
5705         if (val)
5706                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5707         else
5708                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5709         ext4_set_aops(inode);
5710
5711         jbd2_journal_unlock_updates(journal);
5712
5713         /* Finally we can mark the inode as dirty. */
5714
5715         handle = ext4_journal_start(inode, 1);
5716         if (IS_ERR(handle))
5717                 return PTR_ERR(handle);
5718
5719         err = ext4_mark_inode_dirty(handle, inode);
5720         ext4_handle_sync(handle);
5721         ext4_journal_stop(handle);
5722         ext4_std_error(inode->i_sb, err);
5723
5724         return err;
5725 }
5726
5727 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5728 {
5729         return !buffer_mapped(bh);
5730 }
5731
5732 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5733 {
5734         struct page *page = vmf->page;
5735         loff_t size;
5736         unsigned long len;
5737         int ret = -EINVAL;
5738         void *fsdata;
5739         struct file *file = vma->vm_file;
5740         struct inode *inode = file->f_path.dentry->d_inode;
5741         struct address_space *mapping = inode->i_mapping;
5742
5743         /*
5744          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5745          * get i_mutex because we are already holding mmap_sem.
5746          */
5747         down_read(&inode->i_alloc_sem);
5748         size = i_size_read(inode);
5749         if (page->mapping != mapping || size <= page_offset(page)
5750             || !PageUptodate(page)) {
5751                 /* page got truncated from under us? */
5752                 goto out_unlock;
5753         }
5754         ret = 0;
5755         if (PageMappedToDisk(page))
5756                 goto out_unlock;
5757
5758         if (page->index == size >> PAGE_CACHE_SHIFT)
5759                 len = size & ~PAGE_CACHE_MASK;
5760         else
5761                 len = PAGE_CACHE_SIZE;
5762
5763         lock_page(page);
5764         /*
5765          * return if we have all the buffers mapped. This avoid
5766          * the need to call write_begin/write_end which does a
5767          * journal_start/journal_stop which can block and take
5768          * long time
5769          */
5770         if (page_has_buffers(page)) {
5771                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5772                                         ext4_bh_unmapped)) {
5773                         unlock_page(page);
5774                         goto out_unlock;
5775                 }
5776         }
5777         unlock_page(page);
5778         /*
5779          * OK, we need to fill the hole... Do write_begin write_end
5780          * to do block allocation/reservation.We are not holding
5781          * inode.i__mutex here. That allow * parallel write_begin,
5782          * write_end call. lock_page prevent this from happening
5783          * on the same page though
5784          */
5785         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5786                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5787         if (ret < 0)
5788                 goto out_unlock;
5789         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5790                         len, len, page, fsdata);
5791         if (ret < 0)
5792                 goto out_unlock;
5793         ret = 0;
5794 out_unlock:
5795         if (ret)
5796                 ret = VM_FAULT_SIGBUS;
5797         up_read(&inode->i_alloc_sem);
5798         return ret;
5799 }