]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (!is_bad_inode(inode))
228                 dquot_initialize(inode);
229
230         if (ext4_should_order_data(inode))
231                 ext4_begin_ordered_truncate(inode, 0);
232         truncate_inode_pages_final(&inode->i_data);
233
234         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235         if (is_bad_inode(inode))
236                 goto no_delete;
237
238         /*
239          * Protect us against freezing - iput() caller didn't have to have any
240          * protection against it
241          */
242         sb_start_intwrite(inode->i_sb);
243         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244                                     ext4_blocks_for_truncate(inode)+3);
245         if (IS_ERR(handle)) {
246                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
247                 /*
248                  * If we're going to skip the normal cleanup, we still need to
249                  * make sure that the in-core orphan linked list is properly
250                  * cleaned up.
251                  */
252                 ext4_orphan_del(NULL, inode);
253                 sb_end_intwrite(inode->i_sb);
254                 goto no_delete;
255         }
256
257         if (IS_SYNC(inode))
258                 ext4_handle_sync(handle);
259         inode->i_size = 0;
260         err = ext4_mark_inode_dirty(handle, inode);
261         if (err) {
262                 ext4_warning(inode->i_sb,
263                              "couldn't mark inode dirty (err %d)", err);
264                 goto stop_handle;
265         }
266         if (inode->i_blocks)
267                 ext4_truncate(inode);
268
269         /*
270          * ext4_ext_truncate() doesn't reserve any slop when it
271          * restarts journal transactions; therefore there may not be
272          * enough credits left in the handle to remove the inode from
273          * the orphan list and set the dtime field.
274          */
275         if (!ext4_handle_has_enough_credits(handle, 3)) {
276                 err = ext4_journal_extend(handle, 3);
277                 if (err > 0)
278                         err = ext4_journal_restart(handle, 3);
279                 if (err != 0) {
280                         ext4_warning(inode->i_sb,
281                                      "couldn't extend journal (err %d)", err);
282                 stop_handle:
283                         ext4_journal_stop(handle);
284                         ext4_orphan_del(NULL, inode);
285                         sb_end_intwrite(inode->i_sb);
286                         goto no_delete;
287                 }
288         }
289
290         /*
291          * Kill off the orphan record which ext4_truncate created.
292          * AKPM: I think this can be inside the above `if'.
293          * Note that ext4_orphan_del() has to be able to cope with the
294          * deletion of a non-existent orphan - this is because we don't
295          * know if ext4_truncate() actually created an orphan record.
296          * (Well, we could do this if we need to, but heck - it works)
297          */
298         ext4_orphan_del(handle, inode);
299         EXT4_I(inode)->i_dtime  = get_seconds();
300
301         /*
302          * One subtle ordering requirement: if anything has gone wrong
303          * (transaction abort, IO errors, whatever), then we can still
304          * do these next steps (the fs will already have been marked as
305          * having errors), but we can't free the inode if the mark_dirty
306          * fails.
307          */
308         if (ext4_mark_inode_dirty(handle, inode))
309                 /* If that failed, just do the required in-core inode clear. */
310                 ext4_clear_inode(inode);
311         else
312                 ext4_free_inode(handle, inode);
313         ext4_journal_stop(handle);
314         sb_end_intwrite(inode->i_sb);
315         return;
316 no_delete:
317         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
318 }
319
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323         return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326
327 /*
328  * Calculate the number of metadata blocks need to reserve
329  * to allocate a block located at @lblock
330  */
331 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
332 {
333         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
334                 return ext4_ext_calc_metadata_amount(inode, lblock);
335
336         return ext4_ind_calc_metadata_amount(inode, lblock);
337 }
338
339 /*
340  * Called with i_data_sem down, which is important since we can call
341  * ext4_discard_preallocations() from here.
342  */
343 void ext4_da_update_reserve_space(struct inode *inode,
344                                         int used, int quota_claim)
345 {
346         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
347         struct ext4_inode_info *ei = EXT4_I(inode);
348
349         spin_lock(&ei->i_block_reservation_lock);
350         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
351         if (unlikely(used > ei->i_reserved_data_blocks)) {
352                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
353                          "with only %d reserved data blocks",
354                          __func__, inode->i_ino, used,
355                          ei->i_reserved_data_blocks);
356                 WARN_ON(1);
357                 used = ei->i_reserved_data_blocks;
358         }
359
360         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
361                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
362                         "with only %d reserved metadata blocks "
363                         "(releasing %d blocks with reserved %d data blocks)",
364                         inode->i_ino, ei->i_allocated_meta_blocks,
365                              ei->i_reserved_meta_blocks, used,
366                              ei->i_reserved_data_blocks);
367                 WARN_ON(1);
368                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
369         }
370
371         /* Update per-inode reservations */
372         ei->i_reserved_data_blocks -= used;
373         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
374         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
375                            used + ei->i_allocated_meta_blocks);
376         ei->i_allocated_meta_blocks = 0;
377
378         if (ei->i_reserved_data_blocks == 0) {
379                 /*
380                  * We can release all of the reserved metadata blocks
381                  * only when we have written all of the delayed
382                  * allocation blocks.
383                  */
384                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
385                                    ei->i_reserved_meta_blocks);
386                 ei->i_reserved_meta_blocks = 0;
387                 ei->i_da_metadata_calc_len = 0;
388         }
389         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
390
391         /* Update quota subsystem for data blocks */
392         if (quota_claim)
393                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
394         else {
395                 /*
396                  * We did fallocate with an offset that is already delayed
397                  * allocated. So on delayed allocated writeback we should
398                  * not re-claim the quota for fallocated blocks.
399                  */
400                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
401         }
402
403         /*
404          * If we have done all the pending block allocations and if
405          * there aren't any writers on the inode, we can discard the
406          * inode's preallocations.
407          */
408         if ((ei->i_reserved_data_blocks == 0) &&
409             (atomic_read(&inode->i_writecount) == 0))
410                 ext4_discard_preallocations(inode);
411 }
412
413 static int __check_block_validity(struct inode *inode, const char *func,
414                                 unsigned int line,
415                                 struct ext4_map_blocks *map)
416 {
417         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
418                                    map->m_len)) {
419                 ext4_error_inode(inode, func, line, map->m_pblk,
420                                  "lblock %lu mapped to illegal pblock "
421                                  "(length %d)", (unsigned long) map->m_lblk,
422                                  map->m_len);
423                 return -EIO;
424         }
425         return 0;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
449                 down_read(&EXT4_I(inode)->i_data_sem);
450         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
451                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         } else {
454                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
455                                              EXT4_GET_BLOCKS_KEEP_SIZE);
456         }
457         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
458                 up_read((&EXT4_I(inode)->i_data_sem));
459         /*
460          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
461          * because it shouldn't be marked in es_map->m_flags.
462          */
463         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
464
465         /*
466          * We don't check m_len because extent will be collpased in status
467          * tree.  So the m_len might not equal.
468          */
469         if (es_map->m_lblk != map->m_lblk ||
470             es_map->m_flags != map->m_flags ||
471             es_map->m_pblk != map->m_pblk) {
472                 printk("ES cache assertion failed for inode: %lu "
473                        "es_cached ex [%d/%d/%llu/%x] != "
474                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
475                        inode->i_ino, es_map->m_lblk, es_map->m_len,
476                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
477                        map->m_len, map->m_pblk, map->m_flags,
478                        retval, flags);
479         }
480 }
481 #endif /* ES_AGGRESSIVE_TEST */
482
483 /*
484  * The ext4_map_blocks() function tries to look up the requested blocks,
485  * and returns if the blocks are already mapped.
486  *
487  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
488  * and store the allocated blocks in the result buffer head and mark it
489  * mapped.
490  *
491  * If file type is extents based, it will call ext4_ext_map_blocks(),
492  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
493  * based files
494  *
495  * On success, it returns the number of blocks being mapped or allocated.
496  * if create==0 and the blocks are pre-allocated and unwritten block,
497  * the result buffer head is unmapped. If the create ==1, it will make sure
498  * the buffer head is mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, buffer head is unmapped
502  *
503  * It returns the error in case of allocation failure.
504  */
505 int ext4_map_blocks(handle_t *handle, struct inode *inode,
506                     struct ext4_map_blocks *map, int flags)
507 {
508         struct extent_status es;
509         int retval;
510         int ret = 0;
511 #ifdef ES_AGGRESSIVE_TEST
512         struct ext4_map_blocks orig_map;
513
514         memcpy(&orig_map, map, sizeof(*map));
515 #endif
516
517         map->m_flags = 0;
518         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
519                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
520                   (unsigned long) map->m_lblk);
521
522         /*
523          * ext4_map_blocks returns an int, and m_len is an unsigned int
524          */
525         if (unlikely(map->m_len > INT_MAX))
526                 map->m_len = INT_MAX;
527
528         /* We can handle the block number less than EXT_MAX_BLOCKS */
529         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530                 return -EIO;
531
532         /* Lookup extent status tree firstly */
533         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
534                 ext4_es_lru_add(inode);
535                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536                         map->m_pblk = ext4_es_pblock(&es) +
537                                         map->m_lblk - es.es_lblk;
538                         map->m_flags |= ext4_es_is_written(&es) ?
539                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545                         retval = 0;
546                 } else {
547                         BUG_ON(1);
548                 }
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555
556         /*
557          * Try to see if we can get the block without requesting a new
558          * file system block.
559          */
560         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
561                 down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         } else {
566                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567                                              EXT4_GET_BLOCKS_KEEP_SIZE);
568         }
569         if (retval > 0) {
570                 unsigned int status;
571
572                 if (unlikely(retval != map->m_len)) {
573                         ext4_warning(inode->i_sb,
574                                      "ES len assertion failed for inode "
575                                      "%lu: retval %d != map->m_len %d",
576                                      inode->i_ino, retval, map->m_len);
577                         WARN_ON(1);
578                 }
579
580                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583                     ext4_find_delalloc_range(inode, map->m_lblk,
584                                              map->m_lblk + map->m_len - 1))
585                         status |= EXTENT_STATUS_DELAYED;
586                 ret = ext4_es_insert_extent(inode, map->m_lblk,
587                                             map->m_len, map->m_pblk, status);
588                 if (ret < 0)
589                         retval = ret;
590         }
591         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
592                 up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596                 ret = check_block_validity(inode, map);
597                 if (ret != 0)
598                         return ret;
599         }
600
601         /* If it is only a block(s) look up */
602         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603                 return retval;
604
605         /*
606          * Returns if the blocks have already allocated
607          *
608          * Note that if blocks have been preallocated
609          * ext4_ext_get_block() returns the create = 0
610          * with buffer head unmapped.
611          */
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613                 /*
614                  * If we need to convert extent to unwritten
615                  * we continue and do the actual work in
616                  * ext4_ext_map_blocks()
617                  */
618                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619                         return retval;
620
621         /*
622          * Here we clear m_flags because after allocating an new extent,
623          * it will be set again.
624          */
625         map->m_flags &= ~EXT4_MAP_FLAGS;
626
627         /*
628          * New blocks allocate and/or writing to unwritten extent
629          * will possibly result in updating i_data, so we take
630          * the write lock of i_data_sem, and call get_blocks()
631          * with create == 1 flag.
632          */
633         down_write(&EXT4_I(inode)->i_data_sem);
634
635         /*
636          * if the caller is from delayed allocation writeout path
637          * we have already reserved fs blocks for allocation
638          * let the underlying get_block() function know to
639          * avoid double accounting
640          */
641         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
642                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
643         /*
644          * We need to check for EXT4 here because migrate
645          * could have changed the inode type in between
646          */
647         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
648                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
649         } else {
650                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
651
652                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
653                         /*
654                          * We allocated new blocks which will result in
655                          * i_data's format changing.  Force the migrate
656                          * to fail by clearing migrate flags
657                          */
658                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
659                 }
660
661                 /*
662                  * Update reserved blocks/metadata blocks after successful
663                  * block allocation which had been deferred till now. We don't
664                  * support fallocate for non extent files. So we can update
665                  * reserve space here.
666                  */
667                 if ((retval > 0) &&
668                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
669                         ext4_da_update_reserve_space(inode, retval, 1);
670         }
671         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
672                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
673
674         if (retval > 0) {
675                 unsigned int status;
676
677                 if (unlikely(retval != map->m_len)) {
678                         ext4_warning(inode->i_sb,
679                                      "ES len assertion failed for inode "
680                                      "%lu: retval %d != map->m_len %d",
681                                      inode->i_ino, retval, map->m_len);
682                         WARN_ON(1);
683                 }
684
685                 /*
686                  * If the extent has been zeroed out, we don't need to update
687                  * extent status tree.
688                  */
689                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
690                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
691                         if (ext4_es_is_written(&es))
692                                 goto has_zeroout;
693                 }
694                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
695                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
696                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
697                     ext4_find_delalloc_range(inode, map->m_lblk,
698                                              map->m_lblk + map->m_len - 1))
699                         status |= EXTENT_STATUS_DELAYED;
700                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
701                                             map->m_pblk, status);
702                 if (ret < 0)
703                         retval = ret;
704         }
705
706 has_zeroout:
707         up_write((&EXT4_I(inode)->i_data_sem));
708         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
709                 ret = check_block_validity(inode, map);
710                 if (ret != 0)
711                         return ret;
712         }
713         return retval;
714 }
715
716 /* Maximum number of blocks we map for direct IO at once. */
717 #define DIO_MAX_BLOCKS 4096
718
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720                            struct buffer_head *bh, int flags)
721 {
722         handle_t *handle = ext4_journal_current_handle();
723         struct ext4_map_blocks map;
724         int ret = 0, started = 0;
725         int dio_credits;
726
727         if (ext4_has_inline_data(inode))
728                 return -ERANGE;
729
730         map.m_lblk = iblock;
731         map.m_len = bh->b_size >> inode->i_blkbits;
732
733         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
734                 /* Direct IO write... */
735                 if (map.m_len > DIO_MAX_BLOCKS)
736                         map.m_len = DIO_MAX_BLOCKS;
737                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
738                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
739                                             dio_credits);
740                 if (IS_ERR(handle)) {
741                         ret = PTR_ERR(handle);
742                         return ret;
743                 }
744                 started = 1;
745         }
746
747         ret = ext4_map_blocks(handle, inode, &map, flags);
748         if (ret > 0) {
749                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
750
751                 map_bh(bh, inode->i_sb, map.m_pblk);
752                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
753                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
754                         set_buffer_defer_completion(bh);
755                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
756                 ret = 0;
757         }
758         if (started)
759                 ext4_journal_stop(handle);
760         return ret;
761 }
762
763 int ext4_get_block(struct inode *inode, sector_t iblock,
764                    struct buffer_head *bh, int create)
765 {
766         return _ext4_get_block(inode, iblock, bh,
767                                create ? EXT4_GET_BLOCKS_CREATE : 0);
768 }
769
770 /*
771  * `handle' can be NULL if create is zero
772  */
773 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
774                                 ext4_lblk_t block, int create, int *errp)
775 {
776         struct ext4_map_blocks map;
777         struct buffer_head *bh;
778         int fatal = 0, err;
779
780         J_ASSERT(handle != NULL || create == 0);
781
782         map.m_lblk = block;
783         map.m_len = 1;
784         err = ext4_map_blocks(handle, inode, &map,
785                               create ? EXT4_GET_BLOCKS_CREATE : 0);
786
787         /* ensure we send some value back into *errp */
788         *errp = 0;
789
790         if (create && err == 0)
791                 err = -ENOSPC;  /* should never happen */
792         if (err < 0)
793                 *errp = err;
794         if (err <= 0)
795                 return NULL;
796
797         bh = sb_getblk(inode->i_sb, map.m_pblk);
798         if (unlikely(!bh)) {
799                 *errp = -ENOMEM;
800                 return NULL;
801         }
802         if (map.m_flags & EXT4_MAP_NEW) {
803                 J_ASSERT(create != 0);
804                 J_ASSERT(handle != NULL);
805
806                 /*
807                  * Now that we do not always journal data, we should
808                  * keep in mind whether this should always journal the
809                  * new buffer as metadata.  For now, regular file
810                  * writes use ext4_get_block instead, so it's not a
811                  * problem.
812                  */
813                 lock_buffer(bh);
814                 BUFFER_TRACE(bh, "call get_create_access");
815                 fatal = ext4_journal_get_create_access(handle, bh);
816                 if (!fatal && !buffer_uptodate(bh)) {
817                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
818                         set_buffer_uptodate(bh);
819                 }
820                 unlock_buffer(bh);
821                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
822                 err = ext4_handle_dirty_metadata(handle, inode, bh);
823                 if (!fatal)
824                         fatal = err;
825         } else {
826                 BUFFER_TRACE(bh, "not a new buffer");
827         }
828         if (fatal) {
829                 *errp = fatal;
830                 brelse(bh);
831                 bh = NULL;
832         }
833         return bh;
834 }
835
836 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
837                                ext4_lblk_t block, int create, int *err)
838 {
839         struct buffer_head *bh;
840
841         bh = ext4_getblk(handle, inode, block, create, err);
842         if (!bh)
843                 return bh;
844         if (buffer_uptodate(bh))
845                 return bh;
846         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
847         wait_on_buffer(bh);
848         if (buffer_uptodate(bh))
849                 return bh;
850         put_bh(bh);
851         *err = -EIO;
852         return NULL;
853 }
854
855 int ext4_walk_page_buffers(handle_t *handle,
856                            struct buffer_head *head,
857                            unsigned from,
858                            unsigned to,
859                            int *partial,
860                            int (*fn)(handle_t *handle,
861                                      struct buffer_head *bh))
862 {
863         struct buffer_head *bh;
864         unsigned block_start, block_end;
865         unsigned blocksize = head->b_size;
866         int err, ret = 0;
867         struct buffer_head *next;
868
869         for (bh = head, block_start = 0;
870              ret == 0 && (bh != head || !block_start);
871              block_start = block_end, bh = next) {
872                 next = bh->b_this_page;
873                 block_end = block_start + blocksize;
874                 if (block_end <= from || block_start >= to) {
875                         if (partial && !buffer_uptodate(bh))
876                                 *partial = 1;
877                         continue;
878                 }
879                 err = (*fn)(handle, bh);
880                 if (!ret)
881                         ret = err;
882         }
883         return ret;
884 }
885
886 /*
887  * To preserve ordering, it is essential that the hole instantiation and
888  * the data write be encapsulated in a single transaction.  We cannot
889  * close off a transaction and start a new one between the ext4_get_block()
890  * and the commit_write().  So doing the jbd2_journal_start at the start of
891  * prepare_write() is the right place.
892  *
893  * Also, this function can nest inside ext4_writepage().  In that case, we
894  * *know* that ext4_writepage() has generated enough buffer credits to do the
895  * whole page.  So we won't block on the journal in that case, which is good,
896  * because the caller may be PF_MEMALLOC.
897  *
898  * By accident, ext4 can be reentered when a transaction is open via
899  * quota file writes.  If we were to commit the transaction while thus
900  * reentered, there can be a deadlock - we would be holding a quota
901  * lock, and the commit would never complete if another thread had a
902  * transaction open and was blocking on the quota lock - a ranking
903  * violation.
904  *
905  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
906  * will _not_ run commit under these circumstances because handle->h_ref
907  * is elevated.  We'll still have enough credits for the tiny quotafile
908  * write.
909  */
910 int do_journal_get_write_access(handle_t *handle,
911                                 struct buffer_head *bh)
912 {
913         int dirty = buffer_dirty(bh);
914         int ret;
915
916         if (!buffer_mapped(bh) || buffer_freed(bh))
917                 return 0;
918         /*
919          * __block_write_begin() could have dirtied some buffers. Clean
920          * the dirty bit as jbd2_journal_get_write_access() could complain
921          * otherwise about fs integrity issues. Setting of the dirty bit
922          * by __block_write_begin() isn't a real problem here as we clear
923          * the bit before releasing a page lock and thus writeback cannot
924          * ever write the buffer.
925          */
926         if (dirty)
927                 clear_buffer_dirty(bh);
928         BUFFER_TRACE(bh, "get write access");
929         ret = ext4_journal_get_write_access(handle, bh);
930         if (!ret && dirty)
931                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
932         return ret;
933 }
934
935 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
936                    struct buffer_head *bh_result, int create);
937 static int ext4_write_begin(struct file *file, struct address_space *mapping,
938                             loff_t pos, unsigned len, unsigned flags,
939                             struct page **pagep, void **fsdata)
940 {
941         struct inode *inode = mapping->host;
942         int ret, needed_blocks;
943         handle_t *handle;
944         int retries = 0;
945         struct page *page;
946         pgoff_t index;
947         unsigned from, to;
948
949         trace_ext4_write_begin(inode, pos, len, flags);
950         /*
951          * Reserve one block more for addition to orphan list in case
952          * we allocate blocks but write fails for some reason
953          */
954         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
955         index = pos >> PAGE_CACHE_SHIFT;
956         from = pos & (PAGE_CACHE_SIZE - 1);
957         to = from + len;
958
959         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
960                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
961                                                     flags, pagep);
962                 if (ret < 0)
963                         return ret;
964                 if (ret == 1)
965                         return 0;
966         }
967
968         /*
969          * grab_cache_page_write_begin() can take a long time if the
970          * system is thrashing due to memory pressure, or if the page
971          * is being written back.  So grab it first before we start
972          * the transaction handle.  This also allows us to allocate
973          * the page (if needed) without using GFP_NOFS.
974          */
975 retry_grab:
976         page = grab_cache_page_write_begin(mapping, index, flags);
977         if (!page)
978                 return -ENOMEM;
979         unlock_page(page);
980
981 retry_journal:
982         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
983         if (IS_ERR(handle)) {
984                 page_cache_release(page);
985                 return PTR_ERR(handle);
986         }
987
988         lock_page(page);
989         if (page->mapping != mapping) {
990                 /* The page got truncated from under us */
991                 unlock_page(page);
992                 page_cache_release(page);
993                 ext4_journal_stop(handle);
994                 goto retry_grab;
995         }
996         /* In case writeback began while the page was unlocked */
997         wait_for_stable_page(page);
998
999         if (ext4_should_dioread_nolock(inode))
1000                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1001         else
1002                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1003
1004         if (!ret && ext4_should_journal_data(inode)) {
1005                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1006                                              from, to, NULL,
1007                                              do_journal_get_write_access);
1008         }
1009
1010         if (ret) {
1011                 unlock_page(page);
1012                 /*
1013                  * __block_write_begin may have instantiated a few blocks
1014                  * outside i_size.  Trim these off again. Don't need
1015                  * i_size_read because we hold i_mutex.
1016                  *
1017                  * Add inode to orphan list in case we crash before
1018                  * truncate finishes
1019                  */
1020                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1021                         ext4_orphan_add(handle, inode);
1022
1023                 ext4_journal_stop(handle);
1024                 if (pos + len > inode->i_size) {
1025                         ext4_truncate_failed_write(inode);
1026                         /*
1027                          * If truncate failed early the inode might
1028                          * still be on the orphan list; we need to
1029                          * make sure the inode is removed from the
1030                          * orphan list in that case.
1031                          */
1032                         if (inode->i_nlink)
1033                                 ext4_orphan_del(NULL, inode);
1034                 }
1035
1036                 if (ret == -ENOSPC &&
1037                     ext4_should_retry_alloc(inode->i_sb, &retries))
1038                         goto retry_journal;
1039                 page_cache_release(page);
1040                 return ret;
1041         }
1042         *pagep = page;
1043         return ret;
1044 }
1045
1046 /* For write_end() in data=journal mode */
1047 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1048 {
1049         int ret;
1050         if (!buffer_mapped(bh) || buffer_freed(bh))
1051                 return 0;
1052         set_buffer_uptodate(bh);
1053         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1054         clear_buffer_meta(bh);
1055         clear_buffer_prio(bh);
1056         return ret;
1057 }
1058
1059 /*
1060  * We need to pick up the new inode size which generic_commit_write gave us
1061  * `file' can be NULL - eg, when called from page_symlink().
1062  *
1063  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1064  * buffers are managed internally.
1065  */
1066 static int ext4_write_end(struct file *file,
1067                           struct address_space *mapping,
1068                           loff_t pos, unsigned len, unsigned copied,
1069                           struct page *page, void *fsdata)
1070 {
1071         handle_t *handle = ext4_journal_current_handle();
1072         struct inode *inode = mapping->host;
1073         int ret = 0, ret2;
1074         int i_size_changed = 0;
1075
1076         trace_ext4_write_end(inode, pos, len, copied);
1077         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1078                 ret = ext4_jbd2_file_inode(handle, inode);
1079                 if (ret) {
1080                         unlock_page(page);
1081                         page_cache_release(page);
1082                         goto errout;
1083                 }
1084         }
1085
1086         if (ext4_has_inline_data(inode)) {
1087                 ret = ext4_write_inline_data_end(inode, pos, len,
1088                                                  copied, page);
1089                 if (ret < 0)
1090                         goto errout;
1091                 copied = ret;
1092         } else
1093                 copied = block_write_end(file, mapping, pos,
1094                                          len, copied, page, fsdata);
1095
1096         /*
1097          * No need to use i_size_read() here, the i_size
1098          * cannot change under us because we hole i_mutex.
1099          *
1100          * But it's important to update i_size while still holding page lock:
1101          * page writeout could otherwise come in and zero beyond i_size.
1102          */
1103         if (pos + copied > inode->i_size) {
1104                 i_size_write(inode, pos + copied);
1105                 i_size_changed = 1;
1106         }
1107
1108         if (pos + copied > EXT4_I(inode)->i_disksize) {
1109                 /* We need to mark inode dirty even if
1110                  * new_i_size is less that inode->i_size
1111                  * but greater than i_disksize. (hint delalloc)
1112                  */
1113                 ext4_update_i_disksize(inode, (pos + copied));
1114                 i_size_changed = 1;
1115         }
1116         unlock_page(page);
1117         page_cache_release(page);
1118
1119         /*
1120          * Don't mark the inode dirty under page lock. First, it unnecessarily
1121          * makes the holding time of page lock longer. Second, it forces lock
1122          * ordering of page lock and transaction start for journaling
1123          * filesystems.
1124          */
1125         if (i_size_changed)
1126                 ext4_mark_inode_dirty(handle, inode);
1127
1128         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1129                 /* if we have allocated more blocks and copied
1130                  * less. We will have blocks allocated outside
1131                  * inode->i_size. So truncate them
1132                  */
1133                 ext4_orphan_add(handle, inode);
1134 errout:
1135         ret2 = ext4_journal_stop(handle);
1136         if (!ret)
1137                 ret = ret2;
1138
1139         if (pos + len > inode->i_size) {
1140                 ext4_truncate_failed_write(inode);
1141                 /*
1142                  * If truncate failed early the inode might still be
1143                  * on the orphan list; we need to make sure the inode
1144                  * is removed from the orphan list in that case.
1145                  */
1146                 if (inode->i_nlink)
1147                         ext4_orphan_del(NULL, inode);
1148         }
1149
1150         return ret ? ret : copied;
1151 }
1152
1153 static int ext4_journalled_write_end(struct file *file,
1154                                      struct address_space *mapping,
1155                                      loff_t pos, unsigned len, unsigned copied,
1156                                      struct page *page, void *fsdata)
1157 {
1158         handle_t *handle = ext4_journal_current_handle();
1159         struct inode *inode = mapping->host;
1160         int ret = 0, ret2;
1161         int partial = 0;
1162         unsigned from, to;
1163         loff_t new_i_size;
1164
1165         trace_ext4_journalled_write_end(inode, pos, len, copied);
1166         from = pos & (PAGE_CACHE_SIZE - 1);
1167         to = from + len;
1168
1169         BUG_ON(!ext4_handle_valid(handle));
1170
1171         if (ext4_has_inline_data(inode))
1172                 copied = ext4_write_inline_data_end(inode, pos, len,
1173                                                     copied, page);
1174         else {
1175                 if (copied < len) {
1176                         if (!PageUptodate(page))
1177                                 copied = 0;
1178                         page_zero_new_buffers(page, from+copied, to);
1179                 }
1180
1181                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1182                                              to, &partial, write_end_fn);
1183                 if (!partial)
1184                         SetPageUptodate(page);
1185         }
1186         new_i_size = pos + copied;
1187         if (new_i_size > inode->i_size)
1188                 i_size_write(inode, pos+copied);
1189         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1190         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1191         if (new_i_size > EXT4_I(inode)->i_disksize) {
1192                 ext4_update_i_disksize(inode, new_i_size);
1193                 ret2 = ext4_mark_inode_dirty(handle, inode);
1194                 if (!ret)
1195                         ret = ret2;
1196         }
1197
1198         unlock_page(page);
1199         page_cache_release(page);
1200         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1201                 /* if we have allocated more blocks and copied
1202                  * less. We will have blocks allocated outside
1203                  * inode->i_size. So truncate them
1204                  */
1205                 ext4_orphan_add(handle, inode);
1206
1207         ret2 = ext4_journal_stop(handle);
1208         if (!ret)
1209                 ret = ret2;
1210         if (pos + len > inode->i_size) {
1211                 ext4_truncate_failed_write(inode);
1212                 /*
1213                  * If truncate failed early the inode might still be
1214                  * on the orphan list; we need to make sure the inode
1215                  * is removed from the orphan list in that case.
1216                  */
1217                 if (inode->i_nlink)
1218                         ext4_orphan_del(NULL, inode);
1219         }
1220
1221         return ret ? ret : copied;
1222 }
1223
1224 /*
1225  * Reserve a metadata for a single block located at lblock
1226  */
1227 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1228 {
1229         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230         struct ext4_inode_info *ei = EXT4_I(inode);
1231         unsigned int md_needed;
1232         ext4_lblk_t save_last_lblock;
1233         int save_len;
1234
1235         /*
1236          * recalculate the amount of metadata blocks to reserve
1237          * in order to allocate nrblocks
1238          * worse case is one extent per block
1239          */
1240         spin_lock(&ei->i_block_reservation_lock);
1241         /*
1242          * ext4_calc_metadata_amount() has side effects, which we have
1243          * to be prepared undo if we fail to claim space.
1244          */
1245         save_len = ei->i_da_metadata_calc_len;
1246         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1247         md_needed = EXT4_NUM_B2C(sbi,
1248                                  ext4_calc_metadata_amount(inode, lblock));
1249         trace_ext4_da_reserve_space(inode, md_needed);
1250
1251         /*
1252          * We do still charge estimated metadata to the sb though;
1253          * we cannot afford to run out of free blocks.
1254          */
1255         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1256                 ei->i_da_metadata_calc_len = save_len;
1257                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1258                 spin_unlock(&ei->i_block_reservation_lock);
1259                 return -ENOSPC;
1260         }
1261         ei->i_reserved_meta_blocks += md_needed;
1262         spin_unlock(&ei->i_block_reservation_lock);
1263
1264         return 0;       /* success */
1265 }
1266
1267 /*
1268  * Reserve a single cluster located at lblock
1269  */
1270 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1271 {
1272         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1273         struct ext4_inode_info *ei = EXT4_I(inode);
1274         unsigned int md_needed;
1275         int ret;
1276         ext4_lblk_t save_last_lblock;
1277         int save_len;
1278
1279         /*
1280          * We will charge metadata quota at writeout time; this saves
1281          * us from metadata over-estimation, though we may go over by
1282          * a small amount in the end.  Here we just reserve for data.
1283          */
1284         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1285         if (ret)
1286                 return ret;
1287
1288         /*
1289          * recalculate the amount of metadata blocks to reserve
1290          * in order to allocate nrblocks
1291          * worse case is one extent per block
1292          */
1293         spin_lock(&ei->i_block_reservation_lock);
1294         /*
1295          * ext4_calc_metadata_amount() has side effects, which we have
1296          * to be prepared undo if we fail to claim space.
1297          */
1298         save_len = ei->i_da_metadata_calc_len;
1299         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1300         md_needed = EXT4_NUM_B2C(sbi,
1301                                  ext4_calc_metadata_amount(inode, lblock));
1302         trace_ext4_da_reserve_space(inode, md_needed);
1303
1304         /*
1305          * We do still charge estimated metadata to the sb though;
1306          * we cannot afford to run out of free blocks.
1307          */
1308         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1309                 ei->i_da_metadata_calc_len = save_len;
1310                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1311                 spin_unlock(&ei->i_block_reservation_lock);
1312                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1313                 return -ENOSPC;
1314         }
1315         ei->i_reserved_data_blocks++;
1316         ei->i_reserved_meta_blocks += md_needed;
1317         spin_unlock(&ei->i_block_reservation_lock);
1318
1319         return 0;       /* success */
1320 }
1321
1322 static void ext4_da_release_space(struct inode *inode, int to_free)
1323 {
1324         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1325         struct ext4_inode_info *ei = EXT4_I(inode);
1326
1327         if (!to_free)
1328                 return;         /* Nothing to release, exit */
1329
1330         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1331
1332         trace_ext4_da_release_space(inode, to_free);
1333         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1334                 /*
1335                  * if there aren't enough reserved blocks, then the
1336                  * counter is messed up somewhere.  Since this
1337                  * function is called from invalidate page, it's
1338                  * harmless to return without any action.
1339                  */
1340                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1341                          "ino %lu, to_free %d with only %d reserved "
1342                          "data blocks", inode->i_ino, to_free,
1343                          ei->i_reserved_data_blocks);
1344                 WARN_ON(1);
1345                 to_free = ei->i_reserved_data_blocks;
1346         }
1347         ei->i_reserved_data_blocks -= to_free;
1348
1349         if (ei->i_reserved_data_blocks == 0) {
1350                 /*
1351                  * We can release all of the reserved metadata blocks
1352                  * only when we have written all of the delayed
1353                  * allocation blocks.
1354                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1355                  * i_reserved_data_blocks, etc. refer to number of clusters.
1356                  */
1357                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1358                                    ei->i_reserved_meta_blocks);
1359                 ei->i_reserved_meta_blocks = 0;
1360                 ei->i_da_metadata_calc_len = 0;
1361         }
1362
1363         /* update fs dirty data blocks counter */
1364         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1365
1366         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1367
1368         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1369 }
1370
1371 static void ext4_da_page_release_reservation(struct page *page,
1372                                              unsigned int offset,
1373                                              unsigned int length)
1374 {
1375         int to_release = 0;
1376         struct buffer_head *head, *bh;
1377         unsigned int curr_off = 0;
1378         struct inode *inode = page->mapping->host;
1379         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380         unsigned int stop = offset + length;
1381         int num_clusters;
1382         ext4_fsblk_t lblk;
1383
1384         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1385
1386         head = page_buffers(page);
1387         bh = head;
1388         do {
1389                 unsigned int next_off = curr_off + bh->b_size;
1390
1391                 if (next_off > stop)
1392                         break;
1393
1394                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1395                         to_release++;
1396                         clear_buffer_delay(bh);
1397                 }
1398                 curr_off = next_off;
1399         } while ((bh = bh->b_this_page) != head);
1400
1401         if (to_release) {
1402                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1403                 ext4_es_remove_extent(inode, lblk, to_release);
1404         }
1405
1406         /* If we have released all the blocks belonging to a cluster, then we
1407          * need to release the reserved space for that cluster. */
1408         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1409         while (num_clusters > 0) {
1410                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1411                         ((num_clusters - 1) << sbi->s_cluster_bits);
1412                 if (sbi->s_cluster_ratio == 1 ||
1413                     !ext4_find_delalloc_cluster(inode, lblk))
1414                         ext4_da_release_space(inode, 1);
1415
1416                 num_clusters--;
1417         }
1418 }
1419
1420 /*
1421  * Delayed allocation stuff
1422  */
1423
1424 struct mpage_da_data {
1425         struct inode *inode;
1426         struct writeback_control *wbc;
1427
1428         pgoff_t first_page;     /* The first page to write */
1429         pgoff_t next_page;      /* Current page to examine */
1430         pgoff_t last_page;      /* Last page to examine */
1431         /*
1432          * Extent to map - this can be after first_page because that can be
1433          * fully mapped. We somewhat abuse m_flags to store whether the extent
1434          * is delalloc or unwritten.
1435          */
1436         struct ext4_map_blocks map;
1437         struct ext4_io_submit io_submit;        /* IO submission data */
1438 };
1439
1440 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1441                                        bool invalidate)
1442 {
1443         int nr_pages, i;
1444         pgoff_t index, end;
1445         struct pagevec pvec;
1446         struct inode *inode = mpd->inode;
1447         struct address_space *mapping = inode->i_mapping;
1448
1449         /* This is necessary when next_page == 0. */
1450         if (mpd->first_page >= mpd->next_page)
1451                 return;
1452
1453         index = mpd->first_page;
1454         end   = mpd->next_page - 1;
1455         if (invalidate) {
1456                 ext4_lblk_t start, last;
1457                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1458                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1459                 ext4_es_remove_extent(inode, start, last - start + 1);
1460         }
1461
1462         pagevec_init(&pvec, 0);
1463         while (index <= end) {
1464                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1465                 if (nr_pages == 0)
1466                         break;
1467                 for (i = 0; i < nr_pages; i++) {
1468                         struct page *page = pvec.pages[i];
1469                         if (page->index > end)
1470                                 break;
1471                         BUG_ON(!PageLocked(page));
1472                         BUG_ON(PageWriteback(page));
1473                         if (invalidate) {
1474                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1475                                 ClearPageUptodate(page);
1476                         }
1477                         unlock_page(page);
1478                 }
1479                 index = pvec.pages[nr_pages - 1]->index + 1;
1480                 pagevec_release(&pvec);
1481         }
1482 }
1483
1484 static void ext4_print_free_blocks(struct inode *inode)
1485 {
1486         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487         struct super_block *sb = inode->i_sb;
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1491                EXT4_C2B(EXT4_SB(inode->i_sb),
1492                         ext4_count_free_clusters(sb)));
1493         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1494         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1495                (long long) EXT4_C2B(EXT4_SB(sb),
1496                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1497         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1498                (long long) EXT4_C2B(EXT4_SB(sb),
1499                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1500         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1501         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1502                  ei->i_reserved_data_blocks);
1503         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1504                ei->i_reserved_meta_blocks);
1505         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1506                ei->i_allocated_meta_blocks);
1507         return;
1508 }
1509
1510 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1511 {
1512         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1513 }
1514
1515 /*
1516  * This function is grabs code from the very beginning of
1517  * ext4_map_blocks, but assumes that the caller is from delayed write
1518  * time. This function looks up the requested blocks and sets the
1519  * buffer delay bit under the protection of i_data_sem.
1520  */
1521 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1522                               struct ext4_map_blocks *map,
1523                               struct buffer_head *bh)
1524 {
1525         struct extent_status es;
1526         int retval;
1527         sector_t invalid_block = ~((sector_t) 0xffff);
1528 #ifdef ES_AGGRESSIVE_TEST
1529         struct ext4_map_blocks orig_map;
1530
1531         memcpy(&orig_map, map, sizeof(*map));
1532 #endif
1533
1534         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1535                 invalid_block = ~0;
1536
1537         map->m_flags = 0;
1538         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1539                   "logical block %lu\n", inode->i_ino, map->m_len,
1540                   (unsigned long) map->m_lblk);
1541
1542         /* Lookup extent status tree firstly */
1543         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1544                 ext4_es_lru_add(inode);
1545                 if (ext4_es_is_hole(&es)) {
1546                         retval = 0;
1547                         down_read(&EXT4_I(inode)->i_data_sem);
1548                         goto add_delayed;
1549                 }
1550
1551                 /*
1552                  * Delayed extent could be allocated by fallocate.
1553                  * So we need to check it.
1554                  */
1555                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1556                         map_bh(bh, inode->i_sb, invalid_block);
1557                         set_buffer_new(bh);
1558                         set_buffer_delay(bh);
1559                         return 0;
1560                 }
1561
1562                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1563                 retval = es.es_len - (iblock - es.es_lblk);
1564                 if (retval > map->m_len)
1565                         retval = map->m_len;
1566                 map->m_len = retval;
1567                 if (ext4_es_is_written(&es))
1568                         map->m_flags |= EXT4_MAP_MAPPED;
1569                 else if (ext4_es_is_unwritten(&es))
1570                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1571                 else
1572                         BUG_ON(1);
1573
1574 #ifdef ES_AGGRESSIVE_TEST
1575                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1576 #endif
1577                 return retval;
1578         }
1579
1580         /*
1581          * Try to see if we can get the block without requesting a new
1582          * file system block.
1583          */
1584         down_read(&EXT4_I(inode)->i_data_sem);
1585         if (ext4_has_inline_data(inode)) {
1586                 /*
1587                  * We will soon create blocks for this page, and let
1588                  * us pretend as if the blocks aren't allocated yet.
1589                  * In case of clusters, we have to handle the work
1590                  * of mapping from cluster so that the reserved space
1591                  * is calculated properly.
1592                  */
1593                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1594                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1595                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1596                 retval = 0;
1597         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1598                 retval = ext4_ext_map_blocks(NULL, inode, map,
1599                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1600         else
1601                 retval = ext4_ind_map_blocks(NULL, inode, map,
1602                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1603
1604 add_delayed:
1605         if (retval == 0) {
1606                 int ret;
1607                 /*
1608                  * XXX: __block_prepare_write() unmaps passed block,
1609                  * is it OK?
1610                  */
1611                 /*
1612                  * If the block was allocated from previously allocated cluster,
1613                  * then we don't need to reserve it again. However we still need
1614                  * to reserve metadata for every block we're going to write.
1615                  */
1616                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1617                         ret = ext4_da_reserve_space(inode, iblock);
1618                         if (ret) {
1619                                 /* not enough space to reserve */
1620                                 retval = ret;
1621                                 goto out_unlock;
1622                         }
1623                 } else {
1624                         ret = ext4_da_reserve_metadata(inode, iblock);
1625                         if (ret) {
1626                                 /* not enough space to reserve */
1627                                 retval = ret;
1628                                 goto out_unlock;
1629                         }
1630                 }
1631
1632                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1633                                             ~0, EXTENT_STATUS_DELAYED);
1634                 if (ret) {
1635                         retval = ret;
1636                         goto out_unlock;
1637                 }
1638
1639                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1640                  * and it should not appear on the bh->b_state.
1641                  */
1642                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1643
1644                 map_bh(bh, inode->i_sb, invalid_block);
1645                 set_buffer_new(bh);
1646                 set_buffer_delay(bh);
1647         } else if (retval > 0) {
1648                 int ret;
1649                 unsigned int status;
1650
1651                 if (unlikely(retval != map->m_len)) {
1652                         ext4_warning(inode->i_sb,
1653                                      "ES len assertion failed for inode "
1654                                      "%lu: retval %d != map->m_len %d",
1655                                      inode->i_ino, retval, map->m_len);
1656                         WARN_ON(1);
1657                 }
1658
1659                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1660                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1661                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1662                                             map->m_pblk, status);
1663                 if (ret != 0)
1664                         retval = ret;
1665         }
1666
1667 out_unlock:
1668         up_read((&EXT4_I(inode)->i_data_sem));
1669
1670         return retval;
1671 }
1672
1673 /*
1674  * This is a special get_blocks_t callback which is used by
1675  * ext4_da_write_begin().  It will either return mapped block or
1676  * reserve space for a single block.
1677  *
1678  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1679  * We also have b_blocknr = -1 and b_bdev initialized properly
1680  *
1681  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1682  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1683  * initialized properly.
1684  */
1685 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1686                            struct buffer_head *bh, int create)
1687 {
1688         struct ext4_map_blocks map;
1689         int ret = 0;
1690
1691         BUG_ON(create == 0);
1692         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1693
1694         map.m_lblk = iblock;
1695         map.m_len = 1;
1696
1697         /*
1698          * first, we need to know whether the block is allocated already
1699          * preallocated blocks are unmapped but should treated
1700          * the same as allocated blocks.
1701          */
1702         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1703         if (ret <= 0)
1704                 return ret;
1705
1706         map_bh(bh, inode->i_sb, map.m_pblk);
1707         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1708
1709         if (buffer_unwritten(bh)) {
1710                 /* A delayed write to unwritten bh should be marked
1711                  * new and mapped.  Mapped ensures that we don't do
1712                  * get_block multiple times when we write to the same
1713                  * offset and new ensures that we do proper zero out
1714                  * for partial write.
1715                  */
1716                 set_buffer_new(bh);
1717                 set_buffer_mapped(bh);
1718         }
1719         return 0;
1720 }
1721
1722 static int bget_one(handle_t *handle, struct buffer_head *bh)
1723 {
1724         get_bh(bh);
1725         return 0;
1726 }
1727
1728 static int bput_one(handle_t *handle, struct buffer_head *bh)
1729 {
1730         put_bh(bh);
1731         return 0;
1732 }
1733
1734 static int __ext4_journalled_writepage(struct page *page,
1735                                        unsigned int len)
1736 {
1737         struct address_space *mapping = page->mapping;
1738         struct inode *inode = mapping->host;
1739         struct buffer_head *page_bufs = NULL;
1740         handle_t *handle = NULL;
1741         int ret = 0, err = 0;
1742         int inline_data = ext4_has_inline_data(inode);
1743         struct buffer_head *inode_bh = NULL;
1744
1745         ClearPageChecked(page);
1746
1747         if (inline_data) {
1748                 BUG_ON(page->index != 0);
1749                 BUG_ON(len > ext4_get_max_inline_size(inode));
1750                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1751                 if (inode_bh == NULL)
1752                         goto out;
1753         } else {
1754                 page_bufs = page_buffers(page);
1755                 if (!page_bufs) {
1756                         BUG();
1757                         goto out;
1758                 }
1759                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1760                                        NULL, bget_one);
1761         }
1762         /* As soon as we unlock the page, it can go away, but we have
1763          * references to buffers so we are safe */
1764         unlock_page(page);
1765
1766         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1767                                     ext4_writepage_trans_blocks(inode));
1768         if (IS_ERR(handle)) {
1769                 ret = PTR_ERR(handle);
1770                 goto out;
1771         }
1772
1773         BUG_ON(!ext4_handle_valid(handle));
1774
1775         if (inline_data) {
1776                 BUFFER_TRACE(inode_bh, "get write access");
1777                 ret = ext4_journal_get_write_access(handle, inode_bh);
1778
1779                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1780
1781         } else {
1782                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1783                                              do_journal_get_write_access);
1784
1785                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1786                                              write_end_fn);
1787         }
1788         if (ret == 0)
1789                 ret = err;
1790         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1791         err = ext4_journal_stop(handle);
1792         if (!ret)
1793                 ret = err;
1794
1795         if (!ext4_has_inline_data(inode))
1796                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1797                                        NULL, bput_one);
1798         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1799 out:
1800         brelse(inode_bh);
1801         return ret;
1802 }
1803
1804 /*
1805  * Note that we don't need to start a transaction unless we're journaling data
1806  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1807  * need to file the inode to the transaction's list in ordered mode because if
1808  * we are writing back data added by write(), the inode is already there and if
1809  * we are writing back data modified via mmap(), no one guarantees in which
1810  * transaction the data will hit the disk. In case we are journaling data, we
1811  * cannot start transaction directly because transaction start ranks above page
1812  * lock so we have to do some magic.
1813  *
1814  * This function can get called via...
1815  *   - ext4_writepages after taking page lock (have journal handle)
1816  *   - journal_submit_inode_data_buffers (no journal handle)
1817  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1818  *   - grab_page_cache when doing write_begin (have journal handle)
1819  *
1820  * We don't do any block allocation in this function. If we have page with
1821  * multiple blocks we need to write those buffer_heads that are mapped. This
1822  * is important for mmaped based write. So if we do with blocksize 1K
1823  * truncate(f, 1024);
1824  * a = mmap(f, 0, 4096);
1825  * a[0] = 'a';
1826  * truncate(f, 4096);
1827  * we have in the page first buffer_head mapped via page_mkwrite call back
1828  * but other buffer_heads would be unmapped but dirty (dirty done via the
1829  * do_wp_page). So writepage should write the first block. If we modify
1830  * the mmap area beyond 1024 we will again get a page_fault and the
1831  * page_mkwrite callback will do the block allocation and mark the
1832  * buffer_heads mapped.
1833  *
1834  * We redirty the page if we have any buffer_heads that is either delay or
1835  * unwritten in the page.
1836  *
1837  * We can get recursively called as show below.
1838  *
1839  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1840  *              ext4_writepage()
1841  *
1842  * But since we don't do any block allocation we should not deadlock.
1843  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1844  */
1845 static int ext4_writepage(struct page *page,
1846                           struct writeback_control *wbc)
1847 {
1848         int ret = 0;
1849         loff_t size;
1850         unsigned int len;
1851         struct buffer_head *page_bufs = NULL;
1852         struct inode *inode = page->mapping->host;
1853         struct ext4_io_submit io_submit;
1854         bool keep_towrite = false;
1855
1856         trace_ext4_writepage(page);
1857         size = i_size_read(inode);
1858         if (page->index == size >> PAGE_CACHE_SHIFT)
1859                 len = size & ~PAGE_CACHE_MASK;
1860         else
1861                 len = PAGE_CACHE_SIZE;
1862
1863         page_bufs = page_buffers(page);
1864         /*
1865          * We cannot do block allocation or other extent handling in this
1866          * function. If there are buffers needing that, we have to redirty
1867          * the page. But we may reach here when we do a journal commit via
1868          * journal_submit_inode_data_buffers() and in that case we must write
1869          * allocated buffers to achieve data=ordered mode guarantees.
1870          */
1871         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1872                                    ext4_bh_delay_or_unwritten)) {
1873                 redirty_page_for_writepage(wbc, page);
1874                 if (current->flags & PF_MEMALLOC) {
1875                         /*
1876                          * For memory cleaning there's no point in writing only
1877                          * some buffers. So just bail out. Warn if we came here
1878                          * from direct reclaim.
1879                          */
1880                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1881                                                         == PF_MEMALLOC);
1882                         unlock_page(page);
1883                         return 0;
1884                 }
1885                 keep_towrite = true;
1886         }
1887
1888         if (PageChecked(page) && ext4_should_journal_data(inode))
1889                 /*
1890                  * It's mmapped pagecache.  Add buffers and journal it.  There
1891                  * doesn't seem much point in redirtying the page here.
1892                  */
1893                 return __ext4_journalled_writepage(page, len);
1894
1895         ext4_io_submit_init(&io_submit, wbc);
1896         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1897         if (!io_submit.io_end) {
1898                 redirty_page_for_writepage(wbc, page);
1899                 unlock_page(page);
1900                 return -ENOMEM;
1901         }
1902         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1903         ext4_io_submit(&io_submit);
1904         /* Drop io_end reference we got from init */
1905         ext4_put_io_end_defer(io_submit.io_end);
1906         return ret;
1907 }
1908
1909 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1910 {
1911         int len;
1912         loff_t size = i_size_read(mpd->inode);
1913         int err;
1914
1915         BUG_ON(page->index != mpd->first_page);
1916         if (page->index == size >> PAGE_CACHE_SHIFT)
1917                 len = size & ~PAGE_CACHE_MASK;
1918         else
1919                 len = PAGE_CACHE_SIZE;
1920         clear_page_dirty_for_io(page);
1921         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1922         if (!err)
1923                 mpd->wbc->nr_to_write--;
1924         mpd->first_page++;
1925
1926         return err;
1927 }
1928
1929 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1930
1931 /*
1932  * mballoc gives us at most this number of blocks...
1933  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1934  * The rest of mballoc seems to handle chunks up to full group size.
1935  */
1936 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1937
1938 /*
1939  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1940  *
1941  * @mpd - extent of blocks
1942  * @lblk - logical number of the block in the file
1943  * @bh - buffer head we want to add to the extent
1944  *
1945  * The function is used to collect contig. blocks in the same state. If the
1946  * buffer doesn't require mapping for writeback and we haven't started the
1947  * extent of buffers to map yet, the function returns 'true' immediately - the
1948  * caller can write the buffer right away. Otherwise the function returns true
1949  * if the block has been added to the extent, false if the block couldn't be
1950  * added.
1951  */
1952 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1953                                    struct buffer_head *bh)
1954 {
1955         struct ext4_map_blocks *map = &mpd->map;
1956
1957         /* Buffer that doesn't need mapping for writeback? */
1958         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1959             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1960                 /* So far no extent to map => we write the buffer right away */
1961                 if (map->m_len == 0)
1962                         return true;
1963                 return false;
1964         }
1965
1966         /* First block in the extent? */
1967         if (map->m_len == 0) {
1968                 map->m_lblk = lblk;
1969                 map->m_len = 1;
1970                 map->m_flags = bh->b_state & BH_FLAGS;
1971                 return true;
1972         }
1973
1974         /* Don't go larger than mballoc is willing to allocate */
1975         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1976                 return false;
1977
1978         /* Can we merge the block to our big extent? */
1979         if (lblk == map->m_lblk + map->m_len &&
1980             (bh->b_state & BH_FLAGS) == map->m_flags) {
1981                 map->m_len++;
1982                 return true;
1983         }
1984         return false;
1985 }
1986
1987 /*
1988  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1989  *
1990  * @mpd - extent of blocks for mapping
1991  * @head - the first buffer in the page
1992  * @bh - buffer we should start processing from
1993  * @lblk - logical number of the block in the file corresponding to @bh
1994  *
1995  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1996  * the page for IO if all buffers in this page were mapped and there's no
1997  * accumulated extent of buffers to map or add buffers in the page to the
1998  * extent of buffers to map. The function returns 1 if the caller can continue
1999  * by processing the next page, 0 if it should stop adding buffers to the
2000  * extent to map because we cannot extend it anymore. It can also return value
2001  * < 0 in case of error during IO submission.
2002  */
2003 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2004                                    struct buffer_head *head,
2005                                    struct buffer_head *bh,
2006                                    ext4_lblk_t lblk)
2007 {
2008         struct inode *inode = mpd->inode;
2009         int err;
2010         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2011                                                         >> inode->i_blkbits;
2012
2013         do {
2014                 BUG_ON(buffer_locked(bh));
2015
2016                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2017                         /* Found extent to map? */
2018                         if (mpd->map.m_len)
2019                                 return 0;
2020                         /* Everything mapped so far and we hit EOF */
2021                         break;
2022                 }
2023         } while (lblk++, (bh = bh->b_this_page) != head);
2024         /* So far everything mapped? Submit the page for IO. */
2025         if (mpd->map.m_len == 0) {
2026                 err = mpage_submit_page(mpd, head->b_page);
2027                 if (err < 0)
2028                         return err;
2029         }
2030         return lblk < blocks;
2031 }
2032
2033 /*
2034  * mpage_map_buffers - update buffers corresponding to changed extent and
2035  *                     submit fully mapped pages for IO
2036  *
2037  * @mpd - description of extent to map, on return next extent to map
2038  *
2039  * Scan buffers corresponding to changed extent (we expect corresponding pages
2040  * to be already locked) and update buffer state according to new extent state.
2041  * We map delalloc buffers to their physical location, clear unwritten bits,
2042  * and mark buffers as uninit when we perform writes to unwritten extents
2043  * and do extent conversion after IO is finished. If the last page is not fully
2044  * mapped, we update @map to the next extent in the last page that needs
2045  * mapping. Otherwise we submit the page for IO.
2046  */
2047 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2048 {
2049         struct pagevec pvec;
2050         int nr_pages, i;
2051         struct inode *inode = mpd->inode;
2052         struct buffer_head *head, *bh;
2053         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2054         pgoff_t start, end;
2055         ext4_lblk_t lblk;
2056         sector_t pblock;
2057         int err;
2058
2059         start = mpd->map.m_lblk >> bpp_bits;
2060         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2061         lblk = start << bpp_bits;
2062         pblock = mpd->map.m_pblk;
2063
2064         pagevec_init(&pvec, 0);
2065         while (start <= end) {
2066                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2067                                           PAGEVEC_SIZE);
2068                 if (nr_pages == 0)
2069                         break;
2070                 for (i = 0; i < nr_pages; i++) {
2071                         struct page *page = pvec.pages[i];
2072
2073                         if (page->index > end)
2074                                 break;
2075                         /* Up to 'end' pages must be contiguous */
2076                         BUG_ON(page->index != start);
2077                         bh = head = page_buffers(page);
2078                         do {
2079                                 if (lblk < mpd->map.m_lblk)
2080                                         continue;
2081                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2082                                         /*
2083                                          * Buffer after end of mapped extent.
2084                                          * Find next buffer in the page to map.
2085                                          */
2086                                         mpd->map.m_len = 0;
2087                                         mpd->map.m_flags = 0;
2088                                         /*
2089                                          * FIXME: If dioread_nolock supports
2090                                          * blocksize < pagesize, we need to make
2091                                          * sure we add size mapped so far to
2092                                          * io_end->size as the following call
2093                                          * can submit the page for IO.
2094                                          */
2095                                         err = mpage_process_page_bufs(mpd, head,
2096                                                                       bh, lblk);
2097                                         pagevec_release(&pvec);
2098                                         if (err > 0)
2099                                                 err = 0;
2100                                         return err;
2101                                 }
2102                                 if (buffer_delay(bh)) {
2103                                         clear_buffer_delay(bh);
2104                                         bh->b_blocknr = pblock++;
2105                                 }
2106                                 clear_buffer_unwritten(bh);
2107                         } while (lblk++, (bh = bh->b_this_page) != head);
2108
2109                         /*
2110                          * FIXME: This is going to break if dioread_nolock
2111                          * supports blocksize < pagesize as we will try to
2112                          * convert potentially unmapped parts of inode.
2113                          */
2114                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2115                         /* Page fully mapped - let IO run! */
2116                         err = mpage_submit_page(mpd, page);
2117                         if (err < 0) {
2118                                 pagevec_release(&pvec);
2119                                 return err;
2120                         }
2121                         start++;
2122                 }
2123                 pagevec_release(&pvec);
2124         }
2125         /* Extent fully mapped and matches with page boundary. We are done. */
2126         mpd->map.m_len = 0;
2127         mpd->map.m_flags = 0;
2128         return 0;
2129 }
2130
2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132 {
2133         struct inode *inode = mpd->inode;
2134         struct ext4_map_blocks *map = &mpd->map;
2135         int get_blocks_flags;
2136         int err, dioread_nolock;
2137
2138         trace_ext4_da_write_pages_extent(inode, map);
2139         /*
2140          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141          * to convert an unwritten extent to be initialized (in the case
2142          * where we have written into one or more preallocated blocks).  It is
2143          * possible that we're going to need more metadata blocks than
2144          * previously reserved. However we must not fail because we're in
2145          * writeback and there is nothing we can do about it so it might result
2146          * in data loss.  So use reserved blocks to allocate metadata if
2147          * possible.
2148          *
2149          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2150          * in question are delalloc blocks.  This affects functions in many
2151          * different parts of the allocation call path.  This flag exists
2152          * primarily because we don't want to change *many* call functions, so
2153          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2154          * once the inode's allocation semaphore is taken.
2155          */
2156         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2157                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2158         dioread_nolock = ext4_should_dioread_nolock(inode);
2159         if (dioread_nolock)
2160                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2161         if (map->m_flags & (1 << BH_Delay))
2162                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2163
2164         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2165         if (err < 0)
2166                 return err;
2167         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2168                 if (!mpd->io_submit.io_end->handle &&
2169                     ext4_handle_valid(handle)) {
2170                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2171                         handle->h_rsv_handle = NULL;
2172                 }
2173                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2174         }
2175
2176         BUG_ON(map->m_len == 0);
2177         if (map->m_flags & EXT4_MAP_NEW) {
2178                 struct block_device *bdev = inode->i_sb->s_bdev;
2179                 int i;
2180
2181                 for (i = 0; i < map->m_len; i++)
2182                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2183         }
2184         return 0;
2185 }
2186
2187 /*
2188  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2189  *                               mpd->len and submit pages underlying it for IO
2190  *
2191  * @handle - handle for journal operations
2192  * @mpd - extent to map
2193  * @give_up_on_write - we set this to true iff there is a fatal error and there
2194  *                     is no hope of writing the data. The caller should discard
2195  *                     dirty pages to avoid infinite loops.
2196  *
2197  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2198  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2199  * them to initialized or split the described range from larger unwritten
2200  * extent. Note that we need not map all the described range since allocation
2201  * can return less blocks or the range is covered by more unwritten extents. We
2202  * cannot map more because we are limited by reserved transaction credits. On
2203  * the other hand we always make sure that the last touched page is fully
2204  * mapped so that it can be written out (and thus forward progress is
2205  * guaranteed). After mapping we submit all mapped pages for IO.
2206  */
2207 static int mpage_map_and_submit_extent(handle_t *handle,
2208                                        struct mpage_da_data *mpd,
2209                                        bool *give_up_on_write)
2210 {
2211         struct inode *inode = mpd->inode;
2212         struct ext4_map_blocks *map = &mpd->map;
2213         int err;
2214         loff_t disksize;
2215
2216         mpd->io_submit.io_end->offset =
2217                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2218         do {
2219                 err = mpage_map_one_extent(handle, mpd);
2220                 if (err < 0) {
2221                         struct super_block *sb = inode->i_sb;
2222
2223                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2224                                 goto invalidate_dirty_pages;
2225                         /*
2226                          * Let the uper layers retry transient errors.
2227                          * In the case of ENOSPC, if ext4_count_free_blocks()
2228                          * is non-zero, a commit should free up blocks.
2229                          */
2230                         if ((err == -ENOMEM) ||
2231                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2232                                 return err;
2233                         ext4_msg(sb, KERN_CRIT,
2234                                  "Delayed block allocation failed for "
2235                                  "inode %lu at logical offset %llu with"
2236                                  " max blocks %u with error %d",
2237                                  inode->i_ino,
2238                                  (unsigned long long)map->m_lblk,
2239                                  (unsigned)map->m_len, -err);
2240                         ext4_msg(sb, KERN_CRIT,
2241                                  "This should not happen!! Data will "
2242                                  "be lost\n");
2243                         if (err == -ENOSPC)
2244                                 ext4_print_free_blocks(inode);
2245                 invalidate_dirty_pages:
2246                         *give_up_on_write = true;
2247                         return err;
2248                 }
2249                 /*
2250                  * Update buffer state, submit mapped pages, and get us new
2251                  * extent to map
2252                  */
2253                 err = mpage_map_and_submit_buffers(mpd);
2254                 if (err < 0)
2255                         return err;
2256         } while (map->m_len);
2257
2258         /*
2259          * Update on-disk size after IO is submitted.  Races with
2260          * truncate are avoided by checking i_size under i_data_sem.
2261          */
2262         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2263         if (disksize > EXT4_I(inode)->i_disksize) {
2264                 int err2;
2265                 loff_t i_size;
2266
2267                 down_write(&EXT4_I(inode)->i_data_sem);
2268                 i_size = i_size_read(inode);
2269                 if (disksize > i_size)
2270                         disksize = i_size;
2271                 if (disksize > EXT4_I(inode)->i_disksize)
2272                         EXT4_I(inode)->i_disksize = disksize;
2273                 err2 = ext4_mark_inode_dirty(handle, inode);
2274                 up_write(&EXT4_I(inode)->i_data_sem);
2275                 if (err2)
2276                         ext4_error(inode->i_sb,
2277                                    "Failed to mark inode %lu dirty",
2278                                    inode->i_ino);
2279                 if (!err)
2280                         err = err2;
2281         }
2282         return err;
2283 }
2284
2285 /*
2286  * Calculate the total number of credits to reserve for one writepages
2287  * iteration. This is called from ext4_writepages(). We map an extent of
2288  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2289  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2290  * bpp - 1 blocks in bpp different extents.
2291  */
2292 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2293 {
2294         int bpp = ext4_journal_blocks_per_page(inode);
2295
2296         return ext4_meta_trans_blocks(inode,
2297                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2298 }
2299
2300 /*
2301  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2302  *                               and underlying extent to map
2303  *
2304  * @mpd - where to look for pages
2305  *
2306  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2307  * IO immediately. When we find a page which isn't mapped we start accumulating
2308  * extent of buffers underlying these pages that needs mapping (formed by
2309  * either delayed or unwritten buffers). We also lock the pages containing
2310  * these buffers. The extent found is returned in @mpd structure (starting at
2311  * mpd->lblk with length mpd->len blocks).
2312  *
2313  * Note that this function can attach bios to one io_end structure which are
2314  * neither logically nor physically contiguous. Although it may seem as an
2315  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2316  * case as we need to track IO to all buffers underlying a page in one io_end.
2317  */
2318 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2319 {
2320         struct address_space *mapping = mpd->inode->i_mapping;
2321         struct pagevec pvec;
2322         unsigned int nr_pages;
2323         long left = mpd->wbc->nr_to_write;
2324         pgoff_t index = mpd->first_page;
2325         pgoff_t end = mpd->last_page;
2326         int tag;
2327         int i, err = 0;
2328         int blkbits = mpd->inode->i_blkbits;
2329         ext4_lblk_t lblk;
2330         struct buffer_head *head;
2331
2332         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2333                 tag = PAGECACHE_TAG_TOWRITE;
2334         else
2335                 tag = PAGECACHE_TAG_DIRTY;
2336
2337         pagevec_init(&pvec, 0);
2338         mpd->map.m_len = 0;
2339         mpd->next_page = index;
2340         while (index <= end) {
2341                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2342                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2343                 if (nr_pages == 0)
2344                         goto out;
2345
2346                 for (i = 0; i < nr_pages; i++) {
2347                         struct page *page = pvec.pages[i];
2348
2349                         /*
2350                          * At this point, the page may be truncated or
2351                          * invalidated (changing page->mapping to NULL), or
2352                          * even swizzled back from swapper_space to tmpfs file
2353                          * mapping. However, page->index will not change
2354                          * because we have a reference on the page.
2355                          */
2356                         if (page->index > end)
2357                                 goto out;
2358
2359                         /*
2360                          * Accumulated enough dirty pages? This doesn't apply
2361                          * to WB_SYNC_ALL mode. For integrity sync we have to
2362                          * keep going because someone may be concurrently
2363                          * dirtying pages, and we might have synced a lot of
2364                          * newly appeared dirty pages, but have not synced all
2365                          * of the old dirty pages.
2366                          */
2367                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2368                                 goto out;
2369
2370                         /* If we can't merge this page, we are done. */
2371                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2372                                 goto out;
2373
2374                         lock_page(page);
2375                         /*
2376                          * If the page is no longer dirty, or its mapping no
2377                          * longer corresponds to inode we are writing (which
2378                          * means it has been truncated or invalidated), or the
2379                          * page is already under writeback and we are not doing
2380                          * a data integrity writeback, skip the page
2381                          */
2382                         if (!PageDirty(page) ||
2383                             (PageWriteback(page) &&
2384                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2385                             unlikely(page->mapping != mapping)) {
2386                                 unlock_page(page);
2387                                 continue;
2388                         }
2389
2390                         wait_on_page_writeback(page);
2391                         BUG_ON(PageWriteback(page));
2392
2393                         if (mpd->map.m_len == 0)
2394                                 mpd->first_page = page->index;
2395                         mpd->next_page = page->index + 1;
2396                         /* Add all dirty buffers to mpd */
2397                         lblk = ((ext4_lblk_t)page->index) <<
2398                                 (PAGE_CACHE_SHIFT - blkbits);
2399                         head = page_buffers(page);
2400                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2401                         if (err <= 0)
2402                                 goto out;
2403                         err = 0;
2404                         left--;
2405                 }
2406                 pagevec_release(&pvec);
2407                 cond_resched();
2408         }
2409         return 0;
2410 out:
2411         pagevec_release(&pvec);
2412         return err;
2413 }
2414
2415 static int __writepage(struct page *page, struct writeback_control *wbc,
2416                        void *data)
2417 {
2418         struct address_space *mapping = data;
2419         int ret = ext4_writepage(page, wbc);
2420         mapping_set_error(mapping, ret);
2421         return ret;
2422 }
2423
2424 static int ext4_writepages(struct address_space *mapping,
2425                            struct writeback_control *wbc)
2426 {
2427         pgoff_t writeback_index = 0;
2428         long nr_to_write = wbc->nr_to_write;
2429         int range_whole = 0;
2430         int cycled = 1;
2431         handle_t *handle = NULL;
2432         struct mpage_da_data mpd;
2433         struct inode *inode = mapping->host;
2434         int needed_blocks, rsv_blocks = 0, ret = 0;
2435         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2436         bool done;
2437         struct blk_plug plug;
2438         bool give_up_on_write = false;
2439
2440         trace_ext4_writepages(inode, wbc);
2441
2442         /*
2443          * No pages to write? This is mainly a kludge to avoid starting
2444          * a transaction for special inodes like journal inode on last iput()
2445          * because that could violate lock ordering on umount
2446          */
2447         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2448                 goto out_writepages;
2449
2450         if (ext4_should_journal_data(inode)) {
2451                 struct blk_plug plug;
2452
2453                 blk_start_plug(&plug);
2454                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2455                 blk_finish_plug(&plug);
2456                 goto out_writepages;
2457         }
2458
2459         /*
2460          * If the filesystem has aborted, it is read-only, so return
2461          * right away instead of dumping stack traces later on that
2462          * will obscure the real source of the problem.  We test
2463          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2464          * the latter could be true if the filesystem is mounted
2465          * read-only, and in that case, ext4_writepages should
2466          * *never* be called, so if that ever happens, we would want
2467          * the stack trace.
2468          */
2469         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2470                 ret = -EROFS;
2471                 goto out_writepages;
2472         }
2473
2474         if (ext4_should_dioread_nolock(inode)) {
2475                 /*
2476                  * We may need to convert up to one extent per block in
2477                  * the page and we may dirty the inode.
2478                  */
2479                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2480         }
2481
2482         /*
2483          * If we have inline data and arrive here, it means that
2484          * we will soon create the block for the 1st page, so
2485          * we'd better clear the inline data here.
2486          */
2487         if (ext4_has_inline_data(inode)) {
2488                 /* Just inode will be modified... */
2489                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2490                 if (IS_ERR(handle)) {
2491                         ret = PTR_ERR(handle);
2492                         goto out_writepages;
2493                 }
2494                 BUG_ON(ext4_test_inode_state(inode,
2495                                 EXT4_STATE_MAY_INLINE_DATA));
2496                 ext4_destroy_inline_data(handle, inode);
2497                 ext4_journal_stop(handle);
2498         }
2499
2500         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2501                 range_whole = 1;
2502
2503         if (wbc->range_cyclic) {
2504                 writeback_index = mapping->writeback_index;
2505                 if (writeback_index)
2506                         cycled = 0;
2507                 mpd.first_page = writeback_index;
2508                 mpd.last_page = -1;
2509         } else {
2510                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2511                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2512         }
2513
2514         mpd.inode = inode;
2515         mpd.wbc = wbc;
2516         ext4_io_submit_init(&mpd.io_submit, wbc);
2517 retry:
2518         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2519                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2520         done = false;
2521         blk_start_plug(&plug);
2522         while (!done && mpd.first_page <= mpd.last_page) {
2523                 /* For each extent of pages we use new io_end */
2524                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2525                 if (!mpd.io_submit.io_end) {
2526                         ret = -ENOMEM;
2527                         break;
2528                 }
2529
2530                 /*
2531                  * We have two constraints: We find one extent to map and we
2532                  * must always write out whole page (makes a difference when
2533                  * blocksize < pagesize) so that we don't block on IO when we
2534                  * try to write out the rest of the page. Journalled mode is
2535                  * not supported by delalloc.
2536                  */
2537                 BUG_ON(ext4_should_journal_data(inode));
2538                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2539
2540                 /* start a new transaction */
2541                 handle = ext4_journal_start_with_reserve(inode,
2542                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2543                 if (IS_ERR(handle)) {
2544                         ret = PTR_ERR(handle);
2545                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2546                                "%ld pages, ino %lu; err %d", __func__,
2547                                 wbc->nr_to_write, inode->i_ino, ret);
2548                         /* Release allocated io_end */
2549                         ext4_put_io_end(mpd.io_submit.io_end);
2550                         break;
2551                 }
2552
2553                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2554                 ret = mpage_prepare_extent_to_map(&mpd);
2555                 if (!ret) {
2556                         if (mpd.map.m_len)
2557                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2558                                         &give_up_on_write);
2559                         else {
2560                                 /*
2561                                  * We scanned the whole range (or exhausted
2562                                  * nr_to_write), submitted what was mapped and
2563                                  * didn't find anything needing mapping. We are
2564                                  * done.
2565                                  */
2566                                 done = true;
2567                         }
2568                 }
2569                 ext4_journal_stop(handle);
2570                 /* Submit prepared bio */
2571                 ext4_io_submit(&mpd.io_submit);
2572                 /* Unlock pages we didn't use */
2573                 mpage_release_unused_pages(&mpd, give_up_on_write);
2574                 /* Drop our io_end reference we got from init */
2575                 ext4_put_io_end(mpd.io_submit.io_end);
2576
2577                 if (ret == -ENOSPC && sbi->s_journal) {
2578                         /*
2579                          * Commit the transaction which would
2580                          * free blocks released in the transaction
2581                          * and try again
2582                          */
2583                         jbd2_journal_force_commit_nested(sbi->s_journal);
2584                         ret = 0;
2585                         continue;
2586                 }
2587                 /* Fatal error - ENOMEM, EIO... */
2588                 if (ret)
2589                         break;
2590         }
2591         blk_finish_plug(&plug);
2592         if (!ret && !cycled && wbc->nr_to_write > 0) {
2593                 cycled = 1;
2594                 mpd.last_page = writeback_index - 1;
2595                 mpd.first_page = 0;
2596                 goto retry;
2597         }
2598
2599         /* Update index */
2600         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2601                 /*
2602                  * Set the writeback_index so that range_cyclic
2603                  * mode will write it back later
2604                  */
2605                 mapping->writeback_index = mpd.first_page;
2606
2607 out_writepages:
2608         trace_ext4_writepages_result(inode, wbc, ret,
2609                                      nr_to_write - wbc->nr_to_write);
2610         return ret;
2611 }
2612
2613 static int ext4_nonda_switch(struct super_block *sb)
2614 {
2615         s64 free_clusters, dirty_clusters;
2616         struct ext4_sb_info *sbi = EXT4_SB(sb);
2617
2618         /*
2619          * switch to non delalloc mode if we are running low
2620          * on free block. The free block accounting via percpu
2621          * counters can get slightly wrong with percpu_counter_batch getting
2622          * accumulated on each CPU without updating global counters
2623          * Delalloc need an accurate free block accounting. So switch
2624          * to non delalloc when we are near to error range.
2625          */
2626         free_clusters =
2627                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2628         dirty_clusters =
2629                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2630         /*
2631          * Start pushing delalloc when 1/2 of free blocks are dirty.
2632          */
2633         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2634                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2635
2636         if (2 * free_clusters < 3 * dirty_clusters ||
2637             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2638                 /*
2639                  * free block count is less than 150% of dirty blocks
2640                  * or free blocks is less than watermark
2641                  */
2642                 return 1;
2643         }
2644         return 0;
2645 }
2646
2647 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2648                                loff_t pos, unsigned len, unsigned flags,
2649                                struct page **pagep, void **fsdata)
2650 {
2651         int ret, retries = 0;
2652         struct page *page;
2653         pgoff_t index;
2654         struct inode *inode = mapping->host;
2655         handle_t *handle;
2656
2657         index = pos >> PAGE_CACHE_SHIFT;
2658
2659         if (ext4_nonda_switch(inode->i_sb)) {
2660                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2661                 return ext4_write_begin(file, mapping, pos,
2662                                         len, flags, pagep, fsdata);
2663         }
2664         *fsdata = (void *)0;
2665         trace_ext4_da_write_begin(inode, pos, len, flags);
2666
2667         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2668                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2669                                                       pos, len, flags,
2670                                                       pagep, fsdata);
2671                 if (ret < 0)
2672                         return ret;
2673                 if (ret == 1)
2674                         return 0;
2675         }
2676
2677         /*
2678          * grab_cache_page_write_begin() can take a long time if the
2679          * system is thrashing due to memory pressure, or if the page
2680          * is being written back.  So grab it first before we start
2681          * the transaction handle.  This also allows us to allocate
2682          * the page (if needed) without using GFP_NOFS.
2683          */
2684 retry_grab:
2685         page = grab_cache_page_write_begin(mapping, index, flags);
2686         if (!page)
2687                 return -ENOMEM;
2688         unlock_page(page);
2689
2690         /*
2691          * With delayed allocation, we don't log the i_disksize update
2692          * if there is delayed block allocation. But we still need
2693          * to journalling the i_disksize update if writes to the end
2694          * of file which has an already mapped buffer.
2695          */
2696 retry_journal:
2697         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2698         if (IS_ERR(handle)) {
2699                 page_cache_release(page);
2700                 return PTR_ERR(handle);
2701         }
2702
2703         lock_page(page);
2704         if (page->mapping != mapping) {
2705                 /* The page got truncated from under us */
2706                 unlock_page(page);
2707                 page_cache_release(page);
2708                 ext4_journal_stop(handle);
2709                 goto retry_grab;
2710         }
2711         /* In case writeback began while the page was unlocked */
2712         wait_for_stable_page(page);
2713
2714         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2715         if (ret < 0) {
2716                 unlock_page(page);
2717                 ext4_journal_stop(handle);
2718                 /*
2719                  * block_write_begin may have instantiated a few blocks
2720                  * outside i_size.  Trim these off again. Don't need
2721                  * i_size_read because we hold i_mutex.
2722                  */
2723                 if (pos + len > inode->i_size)
2724                         ext4_truncate_failed_write(inode);
2725
2726                 if (ret == -ENOSPC &&
2727                     ext4_should_retry_alloc(inode->i_sb, &retries))
2728                         goto retry_journal;
2729
2730                 page_cache_release(page);
2731                 return ret;
2732         }
2733
2734         *pagep = page;
2735         return ret;
2736 }
2737
2738 /*
2739  * Check if we should update i_disksize
2740  * when write to the end of file but not require block allocation
2741  */
2742 static int ext4_da_should_update_i_disksize(struct page *page,
2743                                             unsigned long offset)
2744 {
2745         struct buffer_head *bh;
2746         struct inode *inode = page->mapping->host;
2747         unsigned int idx;
2748         int i;
2749
2750         bh = page_buffers(page);
2751         idx = offset >> inode->i_blkbits;
2752
2753         for (i = 0; i < idx; i++)
2754                 bh = bh->b_this_page;
2755
2756         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2757                 return 0;
2758         return 1;
2759 }
2760
2761 static int ext4_da_write_end(struct file *file,
2762                              struct address_space *mapping,
2763                              loff_t pos, unsigned len, unsigned copied,
2764                              struct page *page, void *fsdata)
2765 {
2766         struct inode *inode = mapping->host;
2767         int ret = 0, ret2;
2768         handle_t *handle = ext4_journal_current_handle();
2769         loff_t new_i_size;
2770         unsigned long start, end;
2771         int write_mode = (int)(unsigned long)fsdata;
2772
2773         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2774                 return ext4_write_end(file, mapping, pos,
2775                                       len, copied, page, fsdata);
2776
2777         trace_ext4_da_write_end(inode, pos, len, copied);
2778         start = pos & (PAGE_CACHE_SIZE - 1);
2779         end = start + copied - 1;
2780
2781         /*
2782          * generic_write_end() will run mark_inode_dirty() if i_size
2783          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2784          * into that.
2785          */
2786         new_i_size = pos + copied;
2787         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2788                 if (ext4_has_inline_data(inode) ||
2789                     ext4_da_should_update_i_disksize(page, end)) {
2790                         down_write(&EXT4_I(inode)->i_data_sem);
2791                         if (new_i_size > EXT4_I(inode)->i_disksize)
2792                                 EXT4_I(inode)->i_disksize = new_i_size;
2793                         up_write(&EXT4_I(inode)->i_data_sem);
2794                         /* We need to mark inode dirty even if
2795                          * new_i_size is less that inode->i_size
2796                          * bu greater than i_disksize.(hint delalloc)
2797                          */
2798                         ext4_mark_inode_dirty(handle, inode);
2799                 }
2800         }
2801
2802         if (write_mode != CONVERT_INLINE_DATA &&
2803             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2804             ext4_has_inline_data(inode))
2805                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2806                                                      page);
2807         else
2808                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2809                                                         page, fsdata);
2810
2811         copied = ret2;
2812         if (ret2 < 0)
2813                 ret = ret2;
2814         ret2 = ext4_journal_stop(handle);
2815         if (!ret)
2816                 ret = ret2;
2817
2818         return ret ? ret : copied;
2819 }
2820
2821 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2822                                    unsigned int length)
2823 {
2824         /*
2825          * Drop reserved blocks
2826          */
2827         BUG_ON(!PageLocked(page));
2828         if (!page_has_buffers(page))
2829                 goto out;
2830
2831         ext4_da_page_release_reservation(page, offset, length);
2832
2833 out:
2834         ext4_invalidatepage(page, offset, length);
2835
2836         return;
2837 }
2838
2839 /*
2840  * Force all delayed allocation blocks to be allocated for a given inode.
2841  */
2842 int ext4_alloc_da_blocks(struct inode *inode)
2843 {
2844         trace_ext4_alloc_da_blocks(inode);
2845
2846         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2847             !EXT4_I(inode)->i_reserved_meta_blocks)
2848                 return 0;
2849
2850         /*
2851          * We do something simple for now.  The filemap_flush() will
2852          * also start triggering a write of the data blocks, which is
2853          * not strictly speaking necessary (and for users of
2854          * laptop_mode, not even desirable).  However, to do otherwise
2855          * would require replicating code paths in:
2856          *
2857          * ext4_writepages() ->
2858          *    write_cache_pages() ---> (via passed in callback function)
2859          *        __mpage_da_writepage() -->
2860          *           mpage_add_bh_to_extent()
2861          *           mpage_da_map_blocks()
2862          *
2863          * The problem is that write_cache_pages(), located in
2864          * mm/page-writeback.c, marks pages clean in preparation for
2865          * doing I/O, which is not desirable if we're not planning on
2866          * doing I/O at all.
2867          *
2868          * We could call write_cache_pages(), and then redirty all of
2869          * the pages by calling redirty_page_for_writepage() but that
2870          * would be ugly in the extreme.  So instead we would need to
2871          * replicate parts of the code in the above functions,
2872          * simplifying them because we wouldn't actually intend to
2873          * write out the pages, but rather only collect contiguous
2874          * logical block extents, call the multi-block allocator, and
2875          * then update the buffer heads with the block allocations.
2876          *
2877          * For now, though, we'll cheat by calling filemap_flush(),
2878          * which will map the blocks, and start the I/O, but not
2879          * actually wait for the I/O to complete.
2880          */
2881         return filemap_flush(inode->i_mapping);
2882 }
2883
2884 /*
2885  * bmap() is special.  It gets used by applications such as lilo and by
2886  * the swapper to find the on-disk block of a specific piece of data.
2887  *
2888  * Naturally, this is dangerous if the block concerned is still in the
2889  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2890  * filesystem and enables swap, then they may get a nasty shock when the
2891  * data getting swapped to that swapfile suddenly gets overwritten by
2892  * the original zero's written out previously to the journal and
2893  * awaiting writeback in the kernel's buffer cache.
2894  *
2895  * So, if we see any bmap calls here on a modified, data-journaled file,
2896  * take extra steps to flush any blocks which might be in the cache.
2897  */
2898 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2899 {
2900         struct inode *inode = mapping->host;
2901         journal_t *journal;
2902         int err;
2903
2904         /*
2905          * We can get here for an inline file via the FIBMAP ioctl
2906          */
2907         if (ext4_has_inline_data(inode))
2908                 return 0;
2909
2910         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911                         test_opt(inode->i_sb, DELALLOC)) {
2912                 /*
2913                  * With delalloc we want to sync the file
2914                  * so that we can make sure we allocate
2915                  * blocks for file
2916                  */
2917                 filemap_write_and_wait(mapping);
2918         }
2919
2920         if (EXT4_JOURNAL(inode) &&
2921             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2922                 /*
2923                  * This is a REALLY heavyweight approach, but the use of
2924                  * bmap on dirty files is expected to be extremely rare:
2925                  * only if we run lilo or swapon on a freshly made file
2926                  * do we expect this to happen.
2927                  *
2928                  * (bmap requires CAP_SYS_RAWIO so this does not
2929                  * represent an unprivileged user DOS attack --- we'd be
2930                  * in trouble if mortal users could trigger this path at
2931                  * will.)
2932                  *
2933                  * NB. EXT4_STATE_JDATA is not set on files other than
2934                  * regular files.  If somebody wants to bmap a directory
2935                  * or symlink and gets confused because the buffer
2936                  * hasn't yet been flushed to disk, they deserve
2937                  * everything they get.
2938                  */
2939
2940                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2941                 journal = EXT4_JOURNAL(inode);
2942                 jbd2_journal_lock_updates(journal);
2943                 err = jbd2_journal_flush(journal);
2944                 jbd2_journal_unlock_updates(journal);
2945
2946                 if (err)
2947                         return 0;
2948         }
2949
2950         return generic_block_bmap(mapping, block, ext4_get_block);
2951 }
2952
2953 static int ext4_readpage(struct file *file, struct page *page)
2954 {
2955         int ret = -EAGAIN;
2956         struct inode *inode = page->mapping->host;
2957
2958         trace_ext4_readpage(page);
2959
2960         if (ext4_has_inline_data(inode))
2961                 ret = ext4_readpage_inline(inode, page);
2962
2963         if (ret == -EAGAIN)
2964                 return mpage_readpage(page, ext4_get_block);
2965
2966         return ret;
2967 }
2968
2969 static int
2970 ext4_readpages(struct file *file, struct address_space *mapping,
2971                 struct list_head *pages, unsigned nr_pages)
2972 {
2973         struct inode *inode = mapping->host;
2974
2975         /* If the file has inline data, no need to do readpages. */
2976         if (ext4_has_inline_data(inode))
2977                 return 0;
2978
2979         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 }
2981
2982 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2983                                 unsigned int length)
2984 {
2985         trace_ext4_invalidatepage(page, offset, length);
2986
2987         /* No journalling happens on data buffers when this function is used */
2988         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2989
2990         block_invalidatepage(page, offset, length);
2991 }
2992
2993 static int __ext4_journalled_invalidatepage(struct page *page,
2994                                             unsigned int offset,
2995                                             unsigned int length)
2996 {
2997         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998
2999         trace_ext4_journalled_invalidatepage(page, offset, length);
3000
3001         /*
3002          * If it's a full truncate we just forget about the pending dirtying
3003          */
3004         if (offset == 0 && length == PAGE_CACHE_SIZE)
3005                 ClearPageChecked(page);
3006
3007         return jbd2_journal_invalidatepage(journal, page, offset, length);
3008 }
3009
3010 /* Wrapper for aops... */
3011 static void ext4_journalled_invalidatepage(struct page *page,
3012                                            unsigned int offset,
3013                                            unsigned int length)
3014 {
3015         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3016 }
3017
3018 static int ext4_releasepage(struct page *page, gfp_t wait)
3019 {
3020         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3021
3022         trace_ext4_releasepage(page);
3023
3024         /* Page has dirty journalled data -> cannot release */
3025         if (PageChecked(page))
3026                 return 0;
3027         if (journal)
3028                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3029         else
3030                 return try_to_free_buffers(page);
3031 }
3032
3033 /*
3034  * ext4_get_block used when preparing for a DIO write or buffer write.
3035  * We allocate an uinitialized extent if blocks haven't been allocated.
3036  * The extent will be converted to initialized after the IO is complete.
3037  */
3038 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3039                    struct buffer_head *bh_result, int create)
3040 {
3041         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3042                    inode->i_ino, create);
3043         return _ext4_get_block(inode, iblock, bh_result,
3044                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3045 }
3046
3047 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3048                    struct buffer_head *bh_result, int create)
3049 {
3050         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3051                    inode->i_ino, create);
3052         return _ext4_get_block(inode, iblock, bh_result,
3053                                EXT4_GET_BLOCKS_NO_LOCK);
3054 }
3055
3056 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3057                             ssize_t size, void *private)
3058 {
3059         ext4_io_end_t *io_end = iocb->private;
3060
3061         /* if not async direct IO just return */
3062         if (!io_end)
3063                 return;
3064
3065         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3066                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3067                   iocb->private, io_end->inode->i_ino, iocb, offset,
3068                   size);
3069
3070         iocb->private = NULL;
3071         io_end->offset = offset;
3072         io_end->size = size;
3073         ext4_put_io_end(io_end);
3074 }
3075
3076 /*
3077  * For ext4 extent files, ext4 will do direct-io write to holes,
3078  * preallocated extents, and those write extend the file, no need to
3079  * fall back to buffered IO.
3080  *
3081  * For holes, we fallocate those blocks, mark them as unwritten
3082  * If those blocks were preallocated, we mark sure they are split, but
3083  * still keep the range to write as unwritten.
3084  *
3085  * The unwritten extents will be converted to written when DIO is completed.
3086  * For async direct IO, since the IO may still pending when return, we
3087  * set up an end_io call back function, which will do the conversion
3088  * when async direct IO completed.
3089  *
3090  * If the O_DIRECT write will extend the file then add this inode to the
3091  * orphan list.  So recovery will truncate it back to the original size
3092  * if the machine crashes during the write.
3093  *
3094  */
3095 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3096                               const struct iovec *iov, loff_t offset,
3097                               unsigned long nr_segs)
3098 {
3099         struct file *file = iocb->ki_filp;
3100         struct inode *inode = file->f_mapping->host;
3101         ssize_t ret;
3102         size_t count = iov_length(iov, nr_segs);
3103         int overwrite = 0;
3104         get_block_t *get_block_func = NULL;
3105         int dio_flags = 0;
3106         loff_t final_size = offset + count;
3107         ext4_io_end_t *io_end = NULL;
3108
3109         /* Use the old path for reads and writes beyond i_size. */
3110         if (rw != WRITE || final_size > inode->i_size)
3111                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3112
3113         BUG_ON(iocb->private == NULL);
3114
3115         /*
3116          * Make all waiters for direct IO properly wait also for extent
3117          * conversion. This also disallows race between truncate() and
3118          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3119          */
3120         if (rw == WRITE)
3121                 atomic_inc(&inode->i_dio_count);
3122
3123         /* If we do a overwrite dio, i_mutex locking can be released */
3124         overwrite = *((int *)iocb->private);
3125
3126         if (overwrite) {
3127                 down_read(&EXT4_I(inode)->i_data_sem);
3128                 mutex_unlock(&inode->i_mutex);
3129         }
3130
3131         /*
3132          * We could direct write to holes and fallocate.
3133          *
3134          * Allocated blocks to fill the hole are marked as
3135          * unwritten to prevent parallel buffered read to expose
3136          * the stale data before DIO complete the data IO.
3137          *
3138          * As to previously fallocated extents, ext4 get_block will
3139          * just simply mark the buffer mapped but still keep the
3140          * extents unwritten.
3141          *
3142          * For non AIO case, we will convert those unwritten extents
3143          * to written after return back from blockdev_direct_IO.
3144          *
3145          * For async DIO, the conversion needs to be deferred when the
3146          * IO is completed. The ext4 end_io callback function will be
3147          * called to take care of the conversion work.  Here for async
3148          * case, we allocate an io_end structure to hook to the iocb.
3149          */
3150         iocb->private = NULL;
3151         ext4_inode_aio_set(inode, NULL);
3152         if (!is_sync_kiocb(iocb)) {
3153                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3154                 if (!io_end) {
3155                         ret = -ENOMEM;
3156                         goto retake_lock;
3157                 }
3158                 /*
3159                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3160                  */
3161                 iocb->private = ext4_get_io_end(io_end);
3162                 /*
3163                  * we save the io structure for current async direct
3164                  * IO, so that later ext4_map_blocks() could flag the
3165                  * io structure whether there is a unwritten extents
3166                  * needs to be converted when IO is completed.
3167                  */
3168                 ext4_inode_aio_set(inode, io_end);
3169         }
3170
3171         if (overwrite) {
3172                 get_block_func = ext4_get_block_write_nolock;
3173         } else {
3174                 get_block_func = ext4_get_block_write;
3175                 dio_flags = DIO_LOCKING;
3176         }
3177         ret = __blockdev_direct_IO(rw, iocb, inode,
3178                                    inode->i_sb->s_bdev, iov,
3179                                    offset, nr_segs,
3180                                    get_block_func,
3181                                    ext4_end_io_dio,
3182                                    NULL,
3183                                    dio_flags);
3184
3185         /*
3186          * Put our reference to io_end. This can free the io_end structure e.g.
3187          * in sync IO case or in case of error. It can even perform extent
3188          * conversion if all bios we submitted finished before we got here.
3189          * Note that in that case iocb->private can be already set to NULL
3190          * here.
3191          */
3192         if (io_end) {
3193                 ext4_inode_aio_set(inode, NULL);
3194                 ext4_put_io_end(io_end);
3195                 /*
3196                  * When no IO was submitted ext4_end_io_dio() was not
3197                  * called so we have to put iocb's reference.
3198                  */
3199                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3200                         WARN_ON(iocb->private != io_end);
3201                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3202                         ext4_put_io_end(io_end);
3203                         iocb->private = NULL;
3204                 }
3205         }
3206         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3207                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3208                 int err;
3209                 /*
3210                  * for non AIO case, since the IO is already
3211                  * completed, we could do the conversion right here
3212                  */
3213                 err = ext4_convert_unwritten_extents(NULL, inode,
3214                                                      offset, ret);
3215                 if (err < 0)
3216                         ret = err;
3217                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3218         }
3219
3220 retake_lock:
3221         if (rw == WRITE)
3222                 inode_dio_done(inode);
3223         /* take i_mutex locking again if we do a ovewrite dio */
3224         if (overwrite) {
3225                 up_read(&EXT4_I(inode)->i_data_sem);
3226                 mutex_lock(&inode->i_mutex);
3227         }
3228
3229         return ret;
3230 }
3231
3232 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3233                               const struct iovec *iov, loff_t offset,
3234                               unsigned long nr_segs)
3235 {
3236         struct file *file = iocb->ki_filp;
3237         struct inode *inode = file->f_mapping->host;
3238         ssize_t ret;
3239
3240         /*
3241          * If we are doing data journalling we don't support O_DIRECT
3242          */
3243         if (ext4_should_journal_data(inode))
3244                 return 0;
3245
3246         /* Let buffer I/O handle the inline data case. */
3247         if (ext4_has_inline_data(inode))
3248                 return 0;
3249
3250         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3251         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3252                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3253         else
3254                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3255         trace_ext4_direct_IO_exit(inode, offset,
3256                                 iov_length(iov, nr_segs), rw, ret);
3257         return ret;
3258 }
3259
3260 /*
3261  * Pages can be marked dirty completely asynchronously from ext4's journalling
3262  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3263  * much here because ->set_page_dirty is called under VFS locks.  The page is
3264  * not necessarily locked.
3265  *
3266  * We cannot just dirty the page and leave attached buffers clean, because the
3267  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3268  * or jbddirty because all the journalling code will explode.
3269  *
3270  * So what we do is to mark the page "pending dirty" and next time writepage
3271  * is called, propagate that into the buffers appropriately.
3272  */
3273 static int ext4_journalled_set_page_dirty(struct page *page)
3274 {
3275         SetPageChecked(page);
3276         return __set_page_dirty_nobuffers(page);
3277 }
3278
3279 static const struct address_space_operations ext4_aops = {
3280         .readpage               = ext4_readpage,
3281         .readpages              = ext4_readpages,
3282         .writepage              = ext4_writepage,
3283         .writepages             = ext4_writepages,
3284         .write_begin            = ext4_write_begin,
3285         .write_end              = ext4_write_end,
3286         .bmap                   = ext4_bmap,
3287         .invalidatepage         = ext4_invalidatepage,
3288         .releasepage            = ext4_releasepage,
3289         .direct_IO              = ext4_direct_IO,
3290         .migratepage            = buffer_migrate_page,
3291         .is_partially_uptodate  = block_is_partially_uptodate,
3292         .error_remove_page      = generic_error_remove_page,
3293 };
3294
3295 static const struct address_space_operations ext4_journalled_aops = {
3296         .readpage               = ext4_readpage,
3297         .readpages              = ext4_readpages,
3298         .writepage              = ext4_writepage,
3299         .writepages             = ext4_writepages,
3300         .write_begin            = ext4_write_begin,
3301         .write_end              = ext4_journalled_write_end,
3302         .set_page_dirty         = ext4_journalled_set_page_dirty,
3303         .bmap                   = ext4_bmap,
3304         .invalidatepage         = ext4_journalled_invalidatepage,
3305         .releasepage            = ext4_releasepage,
3306         .direct_IO              = ext4_direct_IO,
3307         .is_partially_uptodate  = block_is_partially_uptodate,
3308         .error_remove_page      = generic_error_remove_page,
3309 };
3310
3311 static const struct address_space_operations ext4_da_aops = {
3312         .readpage               = ext4_readpage,
3313         .readpages              = ext4_readpages,
3314         .writepage              = ext4_writepage,
3315         .writepages             = ext4_writepages,
3316         .write_begin            = ext4_da_write_begin,
3317         .write_end              = ext4_da_write_end,
3318         .bmap                   = ext4_bmap,
3319         .invalidatepage         = ext4_da_invalidatepage,
3320         .releasepage            = ext4_releasepage,
3321         .direct_IO              = ext4_direct_IO,
3322         .migratepage            = buffer_migrate_page,
3323         .is_partially_uptodate  = block_is_partially_uptodate,
3324         .error_remove_page      = generic_error_remove_page,
3325 };
3326
3327 void ext4_set_aops(struct inode *inode)
3328 {
3329         switch (ext4_inode_journal_mode(inode)) {
3330         case EXT4_INODE_ORDERED_DATA_MODE:
3331                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3332                 break;
3333         case EXT4_INODE_WRITEBACK_DATA_MODE:
3334                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3335                 break;
3336         case EXT4_INODE_JOURNAL_DATA_MODE:
3337                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3338                 return;
3339         default:
3340                 BUG();
3341         }
3342         if (test_opt(inode->i_sb, DELALLOC))
3343                 inode->i_mapping->a_ops = &ext4_da_aops;
3344         else
3345                 inode->i_mapping->a_ops = &ext4_aops;
3346 }
3347
3348 /*
3349  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3350  * starting from file offset 'from'.  The range to be zero'd must
3351  * be contained with in one block.  If the specified range exceeds
3352  * the end of the block it will be shortened to end of the block
3353  * that cooresponds to 'from'
3354  */
3355 static int ext4_block_zero_page_range(handle_t *handle,
3356                 struct address_space *mapping, loff_t from, loff_t length)
3357 {
3358         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3359         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3360         unsigned blocksize, max, pos;
3361         ext4_lblk_t iblock;
3362         struct inode *inode = mapping->host;
3363         struct buffer_head *bh;
3364         struct page *page;
3365         int err = 0;
3366
3367         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3368                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3369         if (!page)
3370                 return -ENOMEM;
3371
3372         blocksize = inode->i_sb->s_blocksize;
3373         max = blocksize - (offset & (blocksize - 1));
3374
3375         /*
3376          * correct length if it does not fall between
3377          * 'from' and the end of the block
3378          */
3379         if (length > max || length < 0)
3380                 length = max;
3381
3382         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3383
3384         if (!page_has_buffers(page))
3385                 create_empty_buffers(page, blocksize, 0);
3386
3387         /* Find the buffer that contains "offset" */
3388         bh = page_buffers(page);
3389         pos = blocksize;
3390         while (offset >= pos) {
3391                 bh = bh->b_this_page;
3392                 iblock++;
3393                 pos += blocksize;
3394         }
3395         if (buffer_freed(bh)) {
3396                 BUFFER_TRACE(bh, "freed: skip");
3397                 goto unlock;
3398         }
3399         if (!buffer_mapped(bh)) {
3400                 BUFFER_TRACE(bh, "unmapped");
3401                 ext4_get_block(inode, iblock, bh, 0);
3402                 /* unmapped? It's a hole - nothing to do */
3403                 if (!buffer_mapped(bh)) {
3404                         BUFFER_TRACE(bh, "still unmapped");
3405                         goto unlock;
3406                 }
3407         }
3408
3409         /* Ok, it's mapped. Make sure it's up-to-date */
3410         if (PageUptodate(page))
3411                 set_buffer_uptodate(bh);
3412
3413         if (!buffer_uptodate(bh)) {
3414                 err = -EIO;
3415                 ll_rw_block(READ, 1, &bh);
3416                 wait_on_buffer(bh);
3417                 /* Uhhuh. Read error. Complain and punt. */
3418                 if (!buffer_uptodate(bh))
3419                         goto unlock;
3420         }
3421         if (ext4_should_journal_data(inode)) {
3422                 BUFFER_TRACE(bh, "get write access");
3423                 err = ext4_journal_get_write_access(handle, bh);
3424                 if (err)
3425                         goto unlock;
3426         }
3427         zero_user(page, offset, length);
3428         BUFFER_TRACE(bh, "zeroed end of block");
3429
3430         if (ext4_should_journal_data(inode)) {
3431                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3432         } else {
3433                 err = 0;
3434                 mark_buffer_dirty(bh);
3435                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3436                         err = ext4_jbd2_file_inode(handle, inode);
3437         }
3438
3439 unlock:
3440         unlock_page(page);
3441         page_cache_release(page);
3442         return err;
3443 }
3444
3445 /*
3446  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3447  * up to the end of the block which corresponds to `from'.
3448  * This required during truncate. We need to physically zero the tail end
3449  * of that block so it doesn't yield old data if the file is later grown.
3450  */
3451 static int ext4_block_truncate_page(handle_t *handle,
3452                 struct address_space *mapping, loff_t from)
3453 {
3454         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3455         unsigned length;
3456         unsigned blocksize;
3457         struct inode *inode = mapping->host;
3458
3459         blocksize = inode->i_sb->s_blocksize;
3460         length = blocksize - (offset & (blocksize - 1));
3461
3462         return ext4_block_zero_page_range(handle, mapping, from, length);
3463 }
3464
3465 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3466                              loff_t lstart, loff_t length)
3467 {
3468         struct super_block *sb = inode->i_sb;
3469         struct address_space *mapping = inode->i_mapping;
3470         unsigned partial_start, partial_end;
3471         ext4_fsblk_t start, end;
3472         loff_t byte_end = (lstart + length - 1);
3473         int err = 0;
3474
3475         partial_start = lstart & (sb->s_blocksize - 1);
3476         partial_end = byte_end & (sb->s_blocksize - 1);
3477
3478         start = lstart >> sb->s_blocksize_bits;
3479         end = byte_end >> sb->s_blocksize_bits;
3480
3481         /* Handle partial zero within the single block */
3482         if (start == end &&
3483             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3484                 err = ext4_block_zero_page_range(handle, mapping,
3485                                                  lstart, length);
3486                 return err;
3487         }
3488         /* Handle partial zero out on the start of the range */
3489         if (partial_start) {
3490                 err = ext4_block_zero_page_range(handle, mapping,
3491                                                  lstart, sb->s_blocksize);
3492                 if (err)
3493                         return err;
3494         }
3495         /* Handle partial zero out on the end of the range */
3496         if (partial_end != sb->s_blocksize - 1)
3497                 err = ext4_block_zero_page_range(handle, mapping,
3498                                                  byte_end - partial_end,
3499                                                  partial_end + 1);
3500         return err;
3501 }
3502
3503 int ext4_can_truncate(struct inode *inode)
3504 {
3505         if (S_ISREG(inode->i_mode))
3506                 return 1;
3507         if (S_ISDIR(inode->i_mode))
3508                 return 1;
3509         if (S_ISLNK(inode->i_mode))
3510                 return !ext4_inode_is_fast_symlink(inode);
3511         return 0;
3512 }
3513
3514 /*
3515  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3516  * associated with the given offset and length
3517  *
3518  * @inode:  File inode
3519  * @offset: The offset where the hole will begin
3520  * @len:    The length of the hole
3521  *
3522  * Returns: 0 on success or negative on failure
3523  */
3524
3525 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3526 {
3527         struct super_block *sb = inode->i_sb;
3528         ext4_lblk_t first_block, stop_block;
3529         struct address_space *mapping = inode->i_mapping;
3530         loff_t first_block_offset, last_block_offset;
3531         handle_t *handle;
3532         unsigned int credits;
3533         int ret = 0;
3534
3535         if (!S_ISREG(inode->i_mode))
3536                 return -EOPNOTSUPP;
3537
3538         trace_ext4_punch_hole(inode, offset, length, 0);
3539
3540         /*
3541          * Write out all dirty pages to avoid race conditions
3542          * Then release them.
3543          */
3544         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3545                 ret = filemap_write_and_wait_range(mapping, offset,
3546                                                    offset + length - 1);
3547                 if (ret)
3548                         return ret;
3549         }
3550
3551         mutex_lock(&inode->i_mutex);
3552
3553         /* No need to punch hole beyond i_size */
3554         if (offset >= inode->i_size)
3555                 goto out_mutex;
3556
3557         /*
3558          * If the hole extends beyond i_size, set the hole
3559          * to end after the page that contains i_size
3560          */
3561         if (offset + length > inode->i_size) {
3562                 length = inode->i_size +
3563                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3564                    offset;
3565         }
3566
3567         if (offset & (sb->s_blocksize - 1) ||
3568             (offset + length) & (sb->s_blocksize - 1)) {
3569                 /*
3570                  * Attach jinode to inode for jbd2 if we do any zeroing of
3571                  * partial block
3572                  */
3573                 ret = ext4_inode_attach_jinode(inode);
3574                 if (ret < 0)
3575                         goto out_mutex;
3576
3577         }
3578
3579         first_block_offset = round_up(offset, sb->s_blocksize);
3580         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3581
3582         /* Now release the pages and zero block aligned part of pages*/
3583         if (last_block_offset > first_block_offset)
3584                 truncate_pagecache_range(inode, first_block_offset,
3585                                          last_block_offset);
3586
3587         /* Wait all existing dio workers, newcomers will block on i_mutex */
3588         ext4_inode_block_unlocked_dio(inode);
3589         inode_dio_wait(inode);
3590
3591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3592                 credits = ext4_writepage_trans_blocks(inode);
3593         else
3594                 credits = ext4_blocks_for_truncate(inode);
3595         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3596         if (IS_ERR(handle)) {
3597                 ret = PTR_ERR(handle);
3598                 ext4_std_error(sb, ret);
3599                 goto out_dio;
3600         }
3601
3602         ret = ext4_zero_partial_blocks(handle, inode, offset,
3603                                        length);
3604         if (ret)
3605                 goto out_stop;
3606
3607         first_block = (offset + sb->s_blocksize - 1) >>
3608                 EXT4_BLOCK_SIZE_BITS(sb);
3609         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3610
3611         /* If there are no blocks to remove, return now */
3612         if (first_block >= stop_block)
3613                 goto out_stop;
3614
3615         down_write(&EXT4_I(inode)->i_data_sem);
3616         ext4_discard_preallocations(inode);
3617
3618         ret = ext4_es_remove_extent(inode, first_block,
3619                                     stop_block - first_block);
3620         if (ret) {
3621                 up_write(&EXT4_I(inode)->i_data_sem);
3622                 goto out_stop;
3623         }
3624
3625         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3626                 ret = ext4_ext_remove_space(inode, first_block,
3627                                             stop_block - 1);
3628         else
3629                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3630                                             stop_block);
3631
3632         up_write(&EXT4_I(inode)->i_data_sem);
3633         if (IS_SYNC(inode))
3634                 ext4_handle_sync(handle);
3635
3636         /* Now release the pages again to reduce race window */
3637         if (last_block_offset > first_block_offset)
3638                 truncate_pagecache_range(inode, first_block_offset,
3639                                          last_block_offset);
3640
3641         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3642         ext4_mark_inode_dirty(handle, inode);
3643 out_stop:
3644         ext4_journal_stop(handle);
3645 out_dio:
3646         ext4_inode_resume_unlocked_dio(inode);
3647 out_mutex:
3648         mutex_unlock(&inode->i_mutex);
3649         return ret;
3650 }
3651
3652 int ext4_inode_attach_jinode(struct inode *inode)
3653 {
3654         struct ext4_inode_info *ei = EXT4_I(inode);
3655         struct jbd2_inode *jinode;
3656
3657         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3658                 return 0;
3659
3660         jinode = jbd2_alloc_inode(GFP_KERNEL);
3661         spin_lock(&inode->i_lock);
3662         if (!ei->jinode) {
3663                 if (!jinode) {
3664                         spin_unlock(&inode->i_lock);
3665                         return -ENOMEM;
3666                 }
3667                 ei->jinode = jinode;
3668                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3669                 jinode = NULL;
3670         }
3671         spin_unlock(&inode->i_lock);
3672         if (unlikely(jinode != NULL))
3673                 jbd2_free_inode(jinode);
3674         return 0;
3675 }
3676
3677 /*
3678  * ext4_truncate()
3679  *
3680  * We block out ext4_get_block() block instantiations across the entire
3681  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3682  * simultaneously on behalf of the same inode.
3683  *
3684  * As we work through the truncate and commit bits of it to the journal there
3685  * is one core, guiding principle: the file's tree must always be consistent on
3686  * disk.  We must be able to restart the truncate after a crash.
3687  *
3688  * The file's tree may be transiently inconsistent in memory (although it
3689  * probably isn't), but whenever we close off and commit a journal transaction,
3690  * the contents of (the filesystem + the journal) must be consistent and
3691  * restartable.  It's pretty simple, really: bottom up, right to left (although
3692  * left-to-right works OK too).
3693  *
3694  * Note that at recovery time, journal replay occurs *before* the restart of
3695  * truncate against the orphan inode list.
3696  *
3697  * The committed inode has the new, desired i_size (which is the same as
3698  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3699  * that this inode's truncate did not complete and it will again call
3700  * ext4_truncate() to have another go.  So there will be instantiated blocks
3701  * to the right of the truncation point in a crashed ext4 filesystem.  But
3702  * that's fine - as long as they are linked from the inode, the post-crash
3703  * ext4_truncate() run will find them and release them.
3704  */
3705 void ext4_truncate(struct inode *inode)
3706 {
3707         struct ext4_inode_info *ei = EXT4_I(inode);
3708         unsigned int credits;
3709         handle_t *handle;
3710         struct address_space *mapping = inode->i_mapping;
3711
3712         /*
3713          * There is a possibility that we're either freeing the inode
3714          * or it's a completely new inode. In those cases we might not
3715          * have i_mutex locked because it's not necessary.
3716          */
3717         if (!(inode->i_state & (I_NEW|I_FREEING)))
3718                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3719         trace_ext4_truncate_enter(inode);
3720
3721         if (!ext4_can_truncate(inode))
3722                 return;
3723
3724         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3725
3726         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3727                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3728
3729         if (ext4_has_inline_data(inode)) {
3730                 int has_inline = 1;
3731
3732                 ext4_inline_data_truncate(inode, &has_inline);
3733                 if (has_inline)
3734                         return;
3735         }
3736
3737         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3738         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3739                 if (ext4_inode_attach_jinode(inode) < 0)
3740                         return;
3741         }
3742
3743         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3744                 credits = ext4_writepage_trans_blocks(inode);
3745         else
3746                 credits = ext4_blocks_for_truncate(inode);
3747
3748         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3749         if (IS_ERR(handle)) {
3750                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3751                 return;
3752         }
3753
3754         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3755                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3756
3757         /*
3758          * We add the inode to the orphan list, so that if this
3759          * truncate spans multiple transactions, and we crash, we will
3760          * resume the truncate when the filesystem recovers.  It also
3761          * marks the inode dirty, to catch the new size.
3762          *
3763          * Implication: the file must always be in a sane, consistent
3764          * truncatable state while each transaction commits.
3765          */
3766         if (ext4_orphan_add(handle, inode))
3767                 goto out_stop;
3768
3769         down_write(&EXT4_I(inode)->i_data_sem);
3770
3771         ext4_discard_preallocations(inode);
3772
3773         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3774                 ext4_ext_truncate(handle, inode);
3775         else
3776                 ext4_ind_truncate(handle, inode);
3777
3778         up_write(&ei->i_data_sem);
3779
3780         if (IS_SYNC(inode))
3781                 ext4_handle_sync(handle);
3782
3783 out_stop:
3784         /*
3785          * If this was a simple ftruncate() and the file will remain alive,
3786          * then we need to clear up the orphan record which we created above.
3787          * However, if this was a real unlink then we were called by
3788          * ext4_delete_inode(), and we allow that function to clean up the
3789          * orphan info for us.
3790          */
3791         if (inode->i_nlink)
3792                 ext4_orphan_del(handle, inode);
3793
3794         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3795         ext4_mark_inode_dirty(handle, inode);
3796         ext4_journal_stop(handle);
3797
3798         trace_ext4_truncate_exit(inode);
3799 }
3800
3801 /*
3802  * ext4_get_inode_loc returns with an extra refcount against the inode's
3803  * underlying buffer_head on success. If 'in_mem' is true, we have all
3804  * data in memory that is needed to recreate the on-disk version of this
3805  * inode.
3806  */
3807 static int __ext4_get_inode_loc(struct inode *inode,
3808                                 struct ext4_iloc *iloc, int in_mem)
3809 {
3810         struct ext4_group_desc  *gdp;
3811         struct buffer_head      *bh;
3812         struct super_block      *sb = inode->i_sb;
3813         ext4_fsblk_t            block;
3814         int                     inodes_per_block, inode_offset;
3815
3816         iloc->bh = NULL;
3817         if (!ext4_valid_inum(sb, inode->i_ino))
3818                 return -EIO;
3819
3820         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3821         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3822         if (!gdp)
3823                 return -EIO;
3824
3825         /*
3826          * Figure out the offset within the block group inode table
3827          */
3828         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3829         inode_offset = ((inode->i_ino - 1) %
3830                         EXT4_INODES_PER_GROUP(sb));
3831         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3832         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3833
3834         bh = sb_getblk(sb, block);
3835         if (unlikely(!bh))
3836                 return -ENOMEM;
3837         if (!buffer_uptodate(bh)) {
3838                 lock_buffer(bh);
3839
3840                 /*
3841                  * If the buffer has the write error flag, we have failed
3842                  * to write out another inode in the same block.  In this
3843                  * case, we don't have to read the block because we may
3844                  * read the old inode data successfully.
3845                  */
3846                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3847                         set_buffer_uptodate(bh);
3848
3849                 if (buffer_uptodate(bh)) {
3850                         /* someone brought it uptodate while we waited */
3851                         unlock_buffer(bh);
3852                         goto has_buffer;
3853                 }
3854
3855                 /*
3856                  * If we have all information of the inode in memory and this
3857                  * is the only valid inode in the block, we need not read the
3858                  * block.
3859                  */
3860                 if (in_mem) {
3861                         struct buffer_head *bitmap_bh;
3862                         int i, start;
3863
3864                         start = inode_offset & ~(inodes_per_block - 1);
3865
3866                         /* Is the inode bitmap in cache? */
3867                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3868                         if (unlikely(!bitmap_bh))
3869                                 goto make_io;
3870
3871                         /*
3872                          * If the inode bitmap isn't in cache then the
3873                          * optimisation may end up performing two reads instead
3874                          * of one, so skip it.
3875                          */
3876                         if (!buffer_uptodate(bitmap_bh)) {
3877                                 brelse(bitmap_bh);
3878                                 goto make_io;
3879                         }
3880                         for (i = start; i < start + inodes_per_block; i++) {
3881                                 if (i == inode_offset)
3882                                         continue;
3883                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3884                                         break;
3885                         }
3886                         brelse(bitmap_bh);
3887                         if (i == start + inodes_per_block) {
3888                                 /* all other inodes are free, so skip I/O */
3889                                 memset(bh->b_data, 0, bh->b_size);
3890                                 set_buffer_uptodate(bh);
3891                                 unlock_buffer(bh);
3892                                 goto has_buffer;
3893                         }
3894                 }
3895
3896 make_io:
3897                 /*
3898                  * If we need to do any I/O, try to pre-readahead extra
3899                  * blocks from the inode table.
3900                  */
3901                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3902                         ext4_fsblk_t b, end, table;
3903                         unsigned num;
3904                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3905
3906                         table = ext4_inode_table(sb, gdp);
3907                         /* s_inode_readahead_blks is always a power of 2 */
3908                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3909                         if (table > b)
3910                                 b = table;
3911                         end = b + ra_blks;
3912                         num = EXT4_INODES_PER_GROUP(sb);
3913                         if (ext4_has_group_desc_csum(sb))
3914                                 num -= ext4_itable_unused_count(sb, gdp);
3915                         table += num / inodes_per_block;
3916                         if (end > table)
3917                                 end = table;
3918                         while (b <= end)
3919                                 sb_breadahead(sb, b++);
3920                 }
3921
3922                 /*
3923                  * There are other valid inodes in the buffer, this inode
3924                  * has in-inode xattrs, or we don't have this inode in memory.
3925                  * Read the block from disk.
3926                  */
3927                 trace_ext4_load_inode(inode);
3928                 get_bh(bh);
3929                 bh->b_end_io = end_buffer_read_sync;
3930                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3931                 wait_on_buffer(bh);
3932                 if (!buffer_uptodate(bh)) {
3933                         EXT4_ERROR_INODE_BLOCK(inode, block,
3934                                                "unable to read itable block");
3935                         brelse(bh);
3936                         return -EIO;
3937                 }
3938         }
3939 has_buffer:
3940         iloc->bh = bh;
3941         return 0;
3942 }
3943
3944 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3945 {
3946         /* We have all inode data except xattrs in memory here. */
3947         return __ext4_get_inode_loc(inode, iloc,
3948                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3949 }
3950
3951 void ext4_set_inode_flags(struct inode *inode)
3952 {
3953         unsigned int flags = EXT4_I(inode)->i_flags;
3954         unsigned int new_fl = 0;
3955
3956         if (flags & EXT4_SYNC_FL)
3957                 new_fl |= S_SYNC;
3958         if (flags & EXT4_APPEND_FL)
3959                 new_fl |= S_APPEND;
3960         if (flags & EXT4_IMMUTABLE_FL)
3961                 new_fl |= S_IMMUTABLE;
3962         if (flags & EXT4_NOATIME_FL)
3963                 new_fl |= S_NOATIME;
3964         if (flags & EXT4_DIRSYNC_FL)
3965                 new_fl |= S_DIRSYNC;
3966         inode_set_flags(inode, new_fl,
3967                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3968 }
3969
3970 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3971 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3972 {
3973         unsigned int vfs_fl;
3974         unsigned long old_fl, new_fl;
3975
3976         do {
3977                 vfs_fl = ei->vfs_inode.i_flags;
3978                 old_fl = ei->i_flags;
3979                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3980                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3981                                 EXT4_DIRSYNC_FL);
3982                 if (vfs_fl & S_SYNC)
3983                         new_fl |= EXT4_SYNC_FL;
3984                 if (vfs_fl & S_APPEND)
3985                         new_fl |= EXT4_APPEND_FL;
3986                 if (vfs_fl & S_IMMUTABLE)
3987                         new_fl |= EXT4_IMMUTABLE_FL;
3988                 if (vfs_fl & S_NOATIME)
3989                         new_fl |= EXT4_NOATIME_FL;
3990                 if (vfs_fl & S_DIRSYNC)
3991                         new_fl |= EXT4_DIRSYNC_FL;
3992         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3993 }
3994
3995 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3996                                   struct ext4_inode_info *ei)
3997 {
3998         blkcnt_t i_blocks ;
3999         struct inode *inode = &(ei->vfs_inode);
4000         struct super_block *sb = inode->i_sb;
4001
4002         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4003                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4004                 /* we are using combined 48 bit field */
4005                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4006                                         le32_to_cpu(raw_inode->i_blocks_lo);
4007                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4008                         /* i_blocks represent file system block size */
4009                         return i_blocks  << (inode->i_blkbits - 9);
4010                 } else {
4011                         return i_blocks;
4012                 }
4013         } else {
4014                 return le32_to_cpu(raw_inode->i_blocks_lo);
4015         }
4016 }
4017
4018 static inline void ext4_iget_extra_inode(struct inode *inode,
4019                                          struct ext4_inode *raw_inode,
4020                                          struct ext4_inode_info *ei)
4021 {
4022         __le32 *magic = (void *)raw_inode +
4023                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4024         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4025                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4026                 ext4_find_inline_data_nolock(inode);
4027         } else
4028                 EXT4_I(inode)->i_inline_off = 0;
4029 }
4030
4031 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4032 {
4033         struct ext4_iloc iloc;
4034         struct ext4_inode *raw_inode;
4035         struct ext4_inode_info *ei;
4036         struct inode *inode;
4037         journal_t *journal = EXT4_SB(sb)->s_journal;
4038         long ret;
4039         int block;
4040         uid_t i_uid;
4041         gid_t i_gid;
4042
4043         inode = iget_locked(sb, ino);
4044         if (!inode)
4045                 return ERR_PTR(-ENOMEM);
4046         if (!(inode->i_state & I_NEW))
4047                 return inode;
4048
4049         ei = EXT4_I(inode);
4050         iloc.bh = NULL;
4051
4052         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4053         if (ret < 0)
4054                 goto bad_inode;
4055         raw_inode = ext4_raw_inode(&iloc);
4056
4057         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4058                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4059                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4060                     EXT4_INODE_SIZE(inode->i_sb)) {
4061                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4062                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4063                                 EXT4_INODE_SIZE(inode->i_sb));
4064                         ret = -EIO;
4065                         goto bad_inode;
4066                 }
4067         } else
4068                 ei->i_extra_isize = 0;
4069
4070         /* Precompute checksum seed for inode metadata */
4071         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4072                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4073                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4074                 __u32 csum;
4075                 __le32 inum = cpu_to_le32(inode->i_ino);
4076                 __le32 gen = raw_inode->i_generation;
4077                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4078                                    sizeof(inum));
4079                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4080                                               sizeof(gen));
4081         }
4082
4083         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4084                 EXT4_ERROR_INODE(inode, "checksum invalid");
4085                 ret = -EIO;
4086                 goto bad_inode;
4087         }
4088
4089         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4090         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4091         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4092         if (!(test_opt(inode->i_sb, NO_UID32))) {
4093                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4094                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4095         }
4096         i_uid_write(inode, i_uid);
4097         i_gid_write(inode, i_gid);
4098         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4099
4100         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4101         ei->i_inline_off = 0;
4102         ei->i_dir_start_lookup = 0;
4103         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4104         /* We now have enough fields to check if the inode was active or not.
4105          * This is needed because nfsd might try to access dead inodes
4106          * the test is that same one that e2fsck uses
4107          * NeilBrown 1999oct15
4108          */
4109         if (inode->i_nlink == 0) {
4110                 if ((inode->i_mode == 0 ||
4111                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4112                     ino != EXT4_BOOT_LOADER_INO) {
4113                         /* this inode is deleted */
4114                         ret = -ESTALE;
4115                         goto bad_inode;
4116                 }
4117                 /* The only unlinked inodes we let through here have
4118                  * valid i_mode and are being read by the orphan
4119                  * recovery code: that's fine, we're about to complete
4120                  * the process of deleting those.
4121                  * OR it is the EXT4_BOOT_LOADER_INO which is
4122                  * not initialized on a new filesystem. */
4123         }
4124         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4125         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4126         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4127         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4128                 ei->i_file_acl |=
4129                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4130         inode->i_size = ext4_isize(raw_inode);
4131         ei->i_disksize = inode->i_size;
4132 #ifdef CONFIG_QUOTA
4133         ei->i_reserved_quota = 0;
4134 #endif
4135         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4136         ei->i_block_group = iloc.block_group;
4137         ei->i_last_alloc_group = ~0;
4138         /*
4139          * NOTE! The in-memory inode i_data array is in little-endian order
4140          * even on big-endian machines: we do NOT byteswap the block numbers!
4141          */
4142         for (block = 0; block < EXT4_N_BLOCKS; block++)
4143                 ei->i_data[block] = raw_inode->i_block[block];
4144         INIT_LIST_HEAD(&ei->i_orphan);
4145
4146         /*
4147          * Set transaction id's of transactions that have to be committed
4148          * to finish f[data]sync. We set them to currently running transaction
4149          * as we cannot be sure that the inode or some of its metadata isn't
4150          * part of the transaction - the inode could have been reclaimed and
4151          * now it is reread from disk.
4152          */
4153         if (journal) {
4154                 transaction_t *transaction;
4155                 tid_t tid;
4156
4157                 read_lock(&journal->j_state_lock);
4158                 if (journal->j_running_transaction)
4159                         transaction = journal->j_running_transaction;
4160                 else
4161                         transaction = journal->j_committing_transaction;
4162                 if (transaction)
4163                         tid = transaction->t_tid;
4164                 else
4165                         tid = journal->j_commit_sequence;
4166                 read_unlock(&journal->j_state_lock);
4167                 ei->i_sync_tid = tid;
4168                 ei->i_datasync_tid = tid;
4169         }
4170
4171         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4172                 if (ei->i_extra_isize == 0) {
4173                         /* The extra space is currently unused. Use it. */
4174                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4175                                             EXT4_GOOD_OLD_INODE_SIZE;
4176                 } else {
4177                         ext4_iget_extra_inode(inode, raw_inode, ei);
4178                 }
4179         }
4180
4181         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4182         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4183         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4184         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4185
4186         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4187                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4188                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4189                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4190                                 inode->i_version |=
4191                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4192                 }
4193         }
4194
4195         ret = 0;
4196         if (ei->i_file_acl &&
4197             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4198                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4199                                  ei->i_file_acl);
4200                 ret = -EIO;
4201                 goto bad_inode;
4202         } else if (!ext4_has_inline_data(inode)) {
4203                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4204                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4205                             (S_ISLNK(inode->i_mode) &&
4206                              !ext4_inode_is_fast_symlink(inode))))
4207                                 /* Validate extent which is part of inode */
4208                                 ret = ext4_ext_check_inode(inode);
4209                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4210                            (S_ISLNK(inode->i_mode) &&
4211                             !ext4_inode_is_fast_symlink(inode))) {
4212                         /* Validate block references which are part of inode */
4213                         ret = ext4_ind_check_inode(inode);
4214                 }
4215         }
4216         if (ret)
4217                 goto bad_inode;
4218
4219         if (S_ISREG(inode->i_mode)) {
4220                 inode->i_op = &ext4_file_inode_operations;
4221                 inode->i_fop = &ext4_file_operations;
4222                 ext4_set_aops(inode);
4223         } else if (S_ISDIR(inode->i_mode)) {
4224                 inode->i_op = &ext4_dir_inode_operations;
4225                 inode->i_fop = &ext4_dir_operations;
4226         } else if (S_ISLNK(inode->i_mode)) {
4227                 if (ext4_inode_is_fast_symlink(inode)) {
4228                         inode->i_op = &ext4_fast_symlink_inode_operations;
4229                         nd_terminate_link(ei->i_data, inode->i_size,
4230                                 sizeof(ei->i_data) - 1);
4231                 } else {
4232                         inode->i_op = &ext4_symlink_inode_operations;
4233                         ext4_set_aops(inode);
4234                 }
4235         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4236               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4237                 inode->i_op = &ext4_special_inode_operations;
4238                 if (raw_inode->i_block[0])
4239                         init_special_inode(inode, inode->i_mode,
4240                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4241                 else
4242                         init_special_inode(inode, inode->i_mode,
4243                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4244         } else if (ino == EXT4_BOOT_LOADER_INO) {
4245                 make_bad_inode(inode);
4246         } else {
4247                 ret = -EIO;
4248                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4249                 goto bad_inode;
4250         }
4251         brelse(iloc.bh);
4252         ext4_set_inode_flags(inode);
4253         unlock_new_inode(inode);
4254         return inode;
4255
4256 bad_inode:
4257         brelse(iloc.bh);
4258         iget_failed(inode);
4259         return ERR_PTR(ret);
4260 }
4261
4262 static int ext4_inode_blocks_set(handle_t *handle,
4263                                 struct ext4_inode *raw_inode,
4264                                 struct ext4_inode_info *ei)
4265 {
4266         struct inode *inode = &(ei->vfs_inode);
4267         u64 i_blocks = inode->i_blocks;
4268         struct super_block *sb = inode->i_sb;
4269
4270         if (i_blocks <= ~0U) {
4271                 /*
4272                  * i_blocks can be represented in a 32 bit variable
4273                  * as multiple of 512 bytes
4274                  */
4275                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4276                 raw_inode->i_blocks_high = 0;
4277                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278                 return 0;
4279         }
4280         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4281                 return -EFBIG;
4282
4283         if (i_blocks <= 0xffffffffffffULL) {
4284                 /*
4285                  * i_blocks can be represented in a 48 bit variable
4286                  * as multiple of 512 bytes
4287                  */
4288                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4289                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4290                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4291         } else {
4292                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4293                 /* i_block is stored in file system block size */
4294                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4295                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4296                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4297         }
4298         return 0;
4299 }
4300
4301 /*
4302  * Post the struct inode info into an on-disk inode location in the
4303  * buffer-cache.  This gobbles the caller's reference to the
4304  * buffer_head in the inode location struct.
4305  *
4306  * The caller must have write access to iloc->bh.
4307  */
4308 static int ext4_do_update_inode(handle_t *handle,
4309                                 struct inode *inode,
4310                                 struct ext4_iloc *iloc)
4311 {
4312         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4313         struct ext4_inode_info *ei = EXT4_I(inode);
4314         struct buffer_head *bh = iloc->bh;
4315         struct super_block *sb = inode->i_sb;
4316         int err = 0, rc, block;
4317         int need_datasync = 0, set_large_file = 0;
4318         uid_t i_uid;
4319         gid_t i_gid;
4320
4321         spin_lock(&ei->i_raw_lock);
4322
4323         /* For fields not tracked in the in-memory inode,
4324          * initialise them to zero for new inodes. */
4325         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4326                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4327
4328         ext4_get_inode_flags(ei);
4329         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4330         i_uid = i_uid_read(inode);
4331         i_gid = i_gid_read(inode);
4332         if (!(test_opt(inode->i_sb, NO_UID32))) {
4333                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4334                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4335 /*
4336  * Fix up interoperability with old kernels. Otherwise, old inodes get
4337  * re-used with the upper 16 bits of the uid/gid intact
4338  */
4339                 if (!ei->i_dtime) {
4340                         raw_inode->i_uid_high =
4341                                 cpu_to_le16(high_16_bits(i_uid));
4342                         raw_inode->i_gid_high =
4343                                 cpu_to_le16(high_16_bits(i_gid));
4344                 } else {
4345                         raw_inode->i_uid_high = 0;
4346                         raw_inode->i_gid_high = 0;
4347                 }
4348         } else {
4349                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4350                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4351                 raw_inode->i_uid_high = 0;
4352                 raw_inode->i_gid_high = 0;
4353         }
4354         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4355
4356         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4357         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4358         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4359         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4360
4361         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4362                 spin_unlock(&ei->i_raw_lock);
4363                 goto out_brelse;
4364         }
4365         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4366         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4367         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4368                 raw_inode->i_file_acl_high =
4369                         cpu_to_le16(ei->i_file_acl >> 32);
4370         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4371         if (ei->i_disksize != ext4_isize(raw_inode)) {
4372                 ext4_isize_set(raw_inode, ei->i_disksize);
4373                 need_datasync = 1;
4374         }
4375         if (ei->i_disksize > 0x7fffffffULL) {
4376                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4377                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4378                                 EXT4_SB(sb)->s_es->s_rev_level ==
4379                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4380                         set_large_file = 1;
4381         }
4382         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384                 if (old_valid_dev(inode->i_rdev)) {
4385                         raw_inode->i_block[0] =
4386                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4387                         raw_inode->i_block[1] = 0;
4388                 } else {
4389                         raw_inode->i_block[0] = 0;
4390                         raw_inode->i_block[1] =
4391                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4392                         raw_inode->i_block[2] = 0;
4393                 }
4394         } else if (!ext4_has_inline_data(inode)) {
4395                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4396                         raw_inode->i_block[block] = ei->i_data[block];
4397         }
4398
4399         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401                 if (ei->i_extra_isize) {
4402                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403                                 raw_inode->i_version_hi =
4404                                         cpu_to_le32(inode->i_version >> 32);
4405                         raw_inode->i_extra_isize =
4406                                 cpu_to_le16(ei->i_extra_isize);
4407                 }
4408         }
4409
4410         ext4_inode_csum_set(inode, raw_inode, ei);
4411
4412         spin_unlock(&ei->i_raw_lock);
4413
4414         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4415         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4416         if (!err)
4417                 err = rc;
4418         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4419         if (set_large_file) {
4420                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4421                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4422                 if (err)
4423                         goto out_brelse;
4424                 ext4_update_dynamic_rev(sb);
4425                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4426                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4427                 ext4_handle_sync(handle);
4428                 err = ext4_handle_dirty_super(handle, sb);
4429         }
4430         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4431 out_brelse:
4432         brelse(bh);
4433         ext4_std_error(inode->i_sb, err);
4434         return err;
4435 }
4436
4437 /*
4438  * ext4_write_inode()
4439  *
4440  * We are called from a few places:
4441  *
4442  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4443  *   Here, there will be no transaction running. We wait for any running
4444  *   transaction to commit.
4445  *
4446  * - Within flush work (sys_sync(), kupdate and such).
4447  *   We wait on commit, if told to.
4448  *
4449  * - Within iput_final() -> write_inode_now()
4450  *   We wait on commit, if told to.
4451  *
4452  * In all cases it is actually safe for us to return without doing anything,
4453  * because the inode has been copied into a raw inode buffer in
4454  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4455  * writeback.
4456  *
4457  * Note that we are absolutely dependent upon all inode dirtiers doing the
4458  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4459  * which we are interested.
4460  *
4461  * It would be a bug for them to not do this.  The code:
4462  *
4463  *      mark_inode_dirty(inode)
4464  *      stuff();
4465  *      inode->i_size = expr;
4466  *
4467  * is in error because write_inode() could occur while `stuff()' is running,
4468  * and the new i_size will be lost.  Plus the inode will no longer be on the
4469  * superblock's dirty inode list.
4470  */
4471 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4472 {
4473         int err;
4474
4475         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4476                 return 0;
4477
4478         if (EXT4_SB(inode->i_sb)->s_journal) {
4479                 if (ext4_journal_current_handle()) {
4480                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4481                         dump_stack();
4482                         return -EIO;
4483                 }
4484
4485                 /*
4486                  * No need to force transaction in WB_SYNC_NONE mode. Also
4487                  * ext4_sync_fs() will force the commit after everything is
4488                  * written.
4489                  */
4490                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4491                         return 0;
4492
4493                 err = ext4_force_commit(inode->i_sb);
4494         } else {
4495                 struct ext4_iloc iloc;
4496
4497                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4498                 if (err)
4499                         return err;
4500                 /*
4501                  * sync(2) will flush the whole buffer cache. No need to do
4502                  * it here separately for each inode.
4503                  */
4504                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4505                         sync_dirty_buffer(iloc.bh);
4506                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4507                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4508                                          "IO error syncing inode");
4509                         err = -EIO;
4510                 }
4511                 brelse(iloc.bh);
4512         }
4513         return err;
4514 }
4515
4516 /*
4517  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4518  * buffers that are attached to a page stradding i_size and are undergoing
4519  * commit. In that case we have to wait for commit to finish and try again.
4520  */
4521 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4522 {
4523         struct page *page;
4524         unsigned offset;
4525         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4526         tid_t commit_tid = 0;
4527         int ret;
4528
4529         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4530         /*
4531          * All buffers in the last page remain valid? Then there's nothing to
4532          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4533          * blocksize case
4534          */
4535         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4536                 return;
4537         while (1) {
4538                 page = find_lock_page(inode->i_mapping,
4539                                       inode->i_size >> PAGE_CACHE_SHIFT);
4540                 if (!page)
4541                         return;
4542                 ret = __ext4_journalled_invalidatepage(page, offset,
4543                                                 PAGE_CACHE_SIZE - offset);
4544                 unlock_page(page);
4545                 page_cache_release(page);
4546                 if (ret != -EBUSY)
4547                         return;
4548                 commit_tid = 0;
4549                 read_lock(&journal->j_state_lock);
4550                 if (journal->j_committing_transaction)
4551                         commit_tid = journal->j_committing_transaction->t_tid;
4552                 read_unlock(&journal->j_state_lock);
4553                 if (commit_tid)
4554                         jbd2_log_wait_commit(journal, commit_tid);
4555         }
4556 }
4557
4558 /*
4559  * ext4_setattr()
4560  *
4561  * Called from notify_change.
4562  *
4563  * We want to trap VFS attempts to truncate the file as soon as
4564  * possible.  In particular, we want to make sure that when the VFS
4565  * shrinks i_size, we put the inode on the orphan list and modify
4566  * i_disksize immediately, so that during the subsequent flushing of
4567  * dirty pages and freeing of disk blocks, we can guarantee that any
4568  * commit will leave the blocks being flushed in an unused state on
4569  * disk.  (On recovery, the inode will get truncated and the blocks will
4570  * be freed, so we have a strong guarantee that no future commit will
4571  * leave these blocks visible to the user.)
4572  *
4573  * Another thing we have to assure is that if we are in ordered mode
4574  * and inode is still attached to the committing transaction, we must
4575  * we start writeout of all the dirty pages which are being truncated.
4576  * This way we are sure that all the data written in the previous
4577  * transaction are already on disk (truncate waits for pages under
4578  * writeback).
4579  *
4580  * Called with inode->i_mutex down.
4581  */
4582 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4583 {
4584         struct inode *inode = dentry->d_inode;
4585         int error, rc = 0;
4586         int orphan = 0;
4587         const unsigned int ia_valid = attr->ia_valid;
4588
4589         error = inode_change_ok(inode, attr);
4590         if (error)
4591                 return error;
4592
4593         if (is_quota_modification(inode, attr))
4594                 dquot_initialize(inode);
4595         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4596             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4597                 handle_t *handle;
4598
4599                 /* (user+group)*(old+new) structure, inode write (sb,
4600                  * inode block, ? - but truncate inode update has it) */
4601                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4602                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4603                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4604                 if (IS_ERR(handle)) {
4605                         error = PTR_ERR(handle);
4606                         goto err_out;
4607                 }
4608                 error = dquot_transfer(inode, attr);
4609                 if (error) {
4610                         ext4_journal_stop(handle);
4611                         return error;
4612                 }
4613                 /* Update corresponding info in inode so that everything is in
4614                  * one transaction */
4615                 if (attr->ia_valid & ATTR_UID)
4616                         inode->i_uid = attr->ia_uid;
4617                 if (attr->ia_valid & ATTR_GID)
4618                         inode->i_gid = attr->ia_gid;
4619                 error = ext4_mark_inode_dirty(handle, inode);
4620                 ext4_journal_stop(handle);
4621         }
4622
4623         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4624                 handle_t *handle;
4625
4626                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4627                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4628
4629                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4630                                 return -EFBIG;
4631                 }
4632
4633                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4634                         inode_inc_iversion(inode);
4635
4636                 if (S_ISREG(inode->i_mode) &&
4637                     (attr->ia_size < inode->i_size)) {
4638                         if (ext4_should_order_data(inode)) {
4639                                 error = ext4_begin_ordered_truncate(inode,
4640                                                             attr->ia_size);
4641                                 if (error)
4642                                         goto err_out;
4643                         }
4644                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4645                         if (IS_ERR(handle)) {
4646                                 error = PTR_ERR(handle);
4647                                 goto err_out;
4648                         }
4649                         if (ext4_handle_valid(handle)) {
4650                                 error = ext4_orphan_add(handle, inode);
4651                                 orphan = 1;
4652                         }
4653                         down_write(&EXT4_I(inode)->i_data_sem);
4654                         EXT4_I(inode)->i_disksize = attr->ia_size;
4655                         rc = ext4_mark_inode_dirty(handle, inode);
4656                         if (!error)
4657                                 error = rc;
4658                         /*
4659                          * We have to update i_size under i_data_sem together
4660                          * with i_disksize to avoid races with writeback code
4661                          * running ext4_wb_update_i_disksize().
4662                          */
4663                         if (!error)
4664                                 i_size_write(inode, attr->ia_size);
4665                         up_write(&EXT4_I(inode)->i_data_sem);
4666                         ext4_journal_stop(handle);
4667                         if (error) {
4668                                 ext4_orphan_del(NULL, inode);
4669                                 goto err_out;
4670                         }
4671                 } else
4672                         i_size_write(inode, attr->ia_size);
4673
4674                 /*
4675                  * Blocks are going to be removed from the inode. Wait
4676                  * for dio in flight.  Temporarily disable
4677                  * dioread_nolock to prevent livelock.
4678                  */
4679                 if (orphan) {
4680                         if (!ext4_should_journal_data(inode)) {
4681                                 ext4_inode_block_unlocked_dio(inode);
4682                                 inode_dio_wait(inode);
4683                                 ext4_inode_resume_unlocked_dio(inode);
4684                         } else
4685                                 ext4_wait_for_tail_page_commit(inode);
4686                 }
4687                 /*
4688                  * Truncate pagecache after we've waited for commit
4689                  * in data=journal mode to make pages freeable.
4690                  */
4691                         truncate_pagecache(inode, inode->i_size);
4692         }
4693         /*
4694          * We want to call ext4_truncate() even if attr->ia_size ==
4695          * inode->i_size for cases like truncation of fallocated space
4696          */
4697         if (attr->ia_valid & ATTR_SIZE)
4698                 ext4_truncate(inode);
4699
4700         if (!rc) {
4701                 setattr_copy(inode, attr);
4702                 mark_inode_dirty(inode);
4703         }
4704
4705         /*
4706          * If the call to ext4_truncate failed to get a transaction handle at
4707          * all, we need to clean up the in-core orphan list manually.
4708          */
4709         if (orphan && inode->i_nlink)
4710                 ext4_orphan_del(NULL, inode);
4711
4712         if (!rc && (ia_valid & ATTR_MODE))
4713                 rc = posix_acl_chmod(inode, inode->i_mode);
4714
4715 err_out:
4716         ext4_std_error(inode->i_sb, error);
4717         if (!error)
4718                 error = rc;
4719         return error;
4720 }
4721
4722 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4723                  struct kstat *stat)
4724 {
4725         struct inode *inode;
4726         unsigned long long delalloc_blocks;
4727
4728         inode = dentry->d_inode;
4729         generic_fillattr(inode, stat);
4730
4731         /*
4732          * If there is inline data in the inode, the inode will normally not
4733          * have data blocks allocated (it may have an external xattr block).
4734          * Report at least one sector for such files, so tools like tar, rsync,
4735          * others doen't incorrectly think the file is completely sparse.
4736          */
4737         if (unlikely(ext4_has_inline_data(inode)))
4738                 stat->blocks += (stat->size + 511) >> 9;
4739
4740         /*
4741          * We can't update i_blocks if the block allocation is delayed
4742          * otherwise in the case of system crash before the real block
4743          * allocation is done, we will have i_blocks inconsistent with
4744          * on-disk file blocks.
4745          * We always keep i_blocks updated together with real
4746          * allocation. But to not confuse with user, stat
4747          * will return the blocks that include the delayed allocation
4748          * blocks for this file.
4749          */
4750         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4751                                    EXT4_I(inode)->i_reserved_data_blocks);
4752         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4753         return 0;
4754 }
4755
4756 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4757                                    int pextents)
4758 {
4759         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4760                 return ext4_ind_trans_blocks(inode, lblocks);
4761         return ext4_ext_index_trans_blocks(inode, pextents);
4762 }
4763
4764 /*
4765  * Account for index blocks, block groups bitmaps and block group
4766  * descriptor blocks if modify datablocks and index blocks
4767  * worse case, the indexs blocks spread over different block groups
4768  *
4769  * If datablocks are discontiguous, they are possible to spread over
4770  * different block groups too. If they are contiguous, with flexbg,
4771  * they could still across block group boundary.
4772  *
4773  * Also account for superblock, inode, quota and xattr blocks
4774  */
4775 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4776                                   int pextents)
4777 {
4778         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4779         int gdpblocks;
4780         int idxblocks;
4781         int ret = 0;
4782
4783         /*
4784          * How many index blocks need to touch to map @lblocks logical blocks
4785          * to @pextents physical extents?
4786          */
4787         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4788
4789         ret = idxblocks;
4790
4791         /*
4792          * Now let's see how many group bitmaps and group descriptors need
4793          * to account
4794          */
4795         groups = idxblocks + pextents;
4796         gdpblocks = groups;
4797         if (groups > ngroups)
4798                 groups = ngroups;
4799         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4800                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4801
4802         /* bitmaps and block group descriptor blocks */
4803         ret += groups + gdpblocks;
4804
4805         /* Blocks for super block, inode, quota and xattr blocks */
4806         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4807
4808         return ret;
4809 }
4810
4811 /*
4812  * Calculate the total number of credits to reserve to fit
4813  * the modification of a single pages into a single transaction,
4814  * which may include multiple chunks of block allocations.
4815  *
4816  * This could be called via ext4_write_begin()
4817  *
4818  * We need to consider the worse case, when
4819  * one new block per extent.
4820  */
4821 int ext4_writepage_trans_blocks(struct inode *inode)
4822 {
4823         int bpp = ext4_journal_blocks_per_page(inode);
4824         int ret;
4825
4826         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4827
4828         /* Account for data blocks for journalled mode */
4829         if (ext4_should_journal_data(inode))
4830                 ret += bpp;
4831         return ret;
4832 }
4833
4834 /*
4835  * Calculate the journal credits for a chunk of data modification.
4836  *
4837  * This is called from DIO, fallocate or whoever calling
4838  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4839  *
4840  * journal buffers for data blocks are not included here, as DIO
4841  * and fallocate do no need to journal data buffers.
4842  */
4843 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4844 {
4845         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4846 }
4847
4848 /*
4849  * The caller must have previously called ext4_reserve_inode_write().
4850  * Give this, we know that the caller already has write access to iloc->bh.
4851  */
4852 int ext4_mark_iloc_dirty(handle_t *handle,
4853                          struct inode *inode, struct ext4_iloc *iloc)
4854 {
4855         int err = 0;
4856
4857         if (IS_I_VERSION(inode))
4858                 inode_inc_iversion(inode);
4859
4860         /* the do_update_inode consumes one bh->b_count */
4861         get_bh(iloc->bh);
4862
4863         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4864         err = ext4_do_update_inode(handle, inode, iloc);
4865         put_bh(iloc->bh);
4866         return err;
4867 }
4868
4869 /*
4870  * On success, We end up with an outstanding reference count against
4871  * iloc->bh.  This _must_ be cleaned up later.
4872  */
4873
4874 int
4875 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4876                          struct ext4_iloc *iloc)
4877 {
4878         int err;
4879
4880         err = ext4_get_inode_loc(inode, iloc);
4881         if (!err) {
4882                 BUFFER_TRACE(iloc->bh, "get_write_access");
4883                 err = ext4_journal_get_write_access(handle, iloc->bh);
4884                 if (err) {
4885                         brelse(iloc->bh);
4886                         iloc->bh = NULL;
4887                 }
4888         }
4889         ext4_std_error(inode->i_sb, err);
4890         return err;
4891 }
4892
4893 /*
4894  * Expand an inode by new_extra_isize bytes.
4895  * Returns 0 on success or negative error number on failure.
4896  */
4897 static int ext4_expand_extra_isize(struct inode *inode,
4898                                    unsigned int new_extra_isize,
4899                                    struct ext4_iloc iloc,
4900                                    handle_t *handle)
4901 {
4902         struct ext4_inode *raw_inode;
4903         struct ext4_xattr_ibody_header *header;
4904
4905         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4906                 return 0;
4907
4908         raw_inode = ext4_raw_inode(&iloc);
4909
4910         header = IHDR(inode, raw_inode);
4911
4912         /* No extended attributes present */
4913         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4914             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4915                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4916                         new_extra_isize);
4917                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4918                 return 0;
4919         }
4920
4921         /* try to expand with EAs present */
4922         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4923                                           raw_inode, handle);
4924 }
4925
4926 /*
4927  * What we do here is to mark the in-core inode as clean with respect to inode
4928  * dirtiness (it may still be data-dirty).
4929  * This means that the in-core inode may be reaped by prune_icache
4930  * without having to perform any I/O.  This is a very good thing,
4931  * because *any* task may call prune_icache - even ones which
4932  * have a transaction open against a different journal.
4933  *
4934  * Is this cheating?  Not really.  Sure, we haven't written the
4935  * inode out, but prune_icache isn't a user-visible syncing function.
4936  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4937  * we start and wait on commits.
4938  */
4939 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4940 {
4941         struct ext4_iloc iloc;
4942         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4943         static unsigned int mnt_count;
4944         int err, ret;
4945
4946         might_sleep();
4947         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4948         err = ext4_reserve_inode_write(handle, inode, &iloc);
4949         if (ext4_handle_valid(handle) &&
4950             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4951             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4952                 /*
4953                  * We need extra buffer credits since we may write into EA block
4954                  * with this same handle. If journal_extend fails, then it will
4955                  * only result in a minor loss of functionality for that inode.
4956                  * If this is felt to be critical, then e2fsck should be run to
4957                  * force a large enough s_min_extra_isize.
4958                  */
4959                 if ((jbd2_journal_extend(handle,
4960                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4961                         ret = ext4_expand_extra_isize(inode,
4962                                                       sbi->s_want_extra_isize,
4963                                                       iloc, handle);
4964                         if (ret) {
4965                                 ext4_set_inode_state(inode,
4966                                                      EXT4_STATE_NO_EXPAND);
4967                                 if (mnt_count !=
4968                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4969                                         ext4_warning(inode->i_sb,
4970                                         "Unable to expand inode %lu. Delete"
4971                                         " some EAs or run e2fsck.",
4972                                         inode->i_ino);
4973                                         mnt_count =
4974                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4975                                 }
4976                         }
4977                 }
4978         }
4979         if (!err)
4980                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4981         return err;
4982 }
4983
4984 /*
4985  * ext4_dirty_inode() is called from __mark_inode_dirty()
4986  *
4987  * We're really interested in the case where a file is being extended.
4988  * i_size has been changed by generic_commit_write() and we thus need
4989  * to include the updated inode in the current transaction.
4990  *
4991  * Also, dquot_alloc_block() will always dirty the inode when blocks
4992  * are allocated to the file.
4993  *
4994  * If the inode is marked synchronous, we don't honour that here - doing
4995  * so would cause a commit on atime updates, which we don't bother doing.
4996  * We handle synchronous inodes at the highest possible level.
4997  */
4998 void ext4_dirty_inode(struct inode *inode, int flags)
4999 {
5000         handle_t *handle;
5001
5002         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5003         if (IS_ERR(handle))
5004                 goto out;
5005
5006         ext4_mark_inode_dirty(handle, inode);
5007
5008         ext4_journal_stop(handle);
5009 out:
5010         return;
5011 }
5012
5013 #if 0
5014 /*
5015  * Bind an inode's backing buffer_head into this transaction, to prevent
5016  * it from being flushed to disk early.  Unlike
5017  * ext4_reserve_inode_write, this leaves behind no bh reference and
5018  * returns no iloc structure, so the caller needs to repeat the iloc
5019  * lookup to mark the inode dirty later.
5020  */
5021 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5022 {
5023         struct ext4_iloc iloc;
5024
5025         int err = 0;
5026         if (handle) {
5027                 err = ext4_get_inode_loc(inode, &iloc);
5028                 if (!err) {
5029                         BUFFER_TRACE(iloc.bh, "get_write_access");
5030                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5031                         if (!err)
5032                                 err = ext4_handle_dirty_metadata(handle,
5033                                                                  NULL,
5034                                                                  iloc.bh);
5035                         brelse(iloc.bh);
5036                 }
5037         }
5038         ext4_std_error(inode->i_sb, err);
5039         return err;
5040 }
5041 #endif
5042
5043 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5044 {
5045         journal_t *journal;
5046         handle_t *handle;
5047         int err;
5048
5049         /*
5050          * We have to be very careful here: changing a data block's
5051          * journaling status dynamically is dangerous.  If we write a
5052          * data block to the journal, change the status and then delete
5053          * that block, we risk forgetting to revoke the old log record
5054          * from the journal and so a subsequent replay can corrupt data.
5055          * So, first we make sure that the journal is empty and that
5056          * nobody is changing anything.
5057          */
5058
5059         journal = EXT4_JOURNAL(inode);
5060         if (!journal)
5061                 return 0;
5062         if (is_journal_aborted(journal))
5063                 return -EROFS;
5064         /* We have to allocate physical blocks for delalloc blocks
5065          * before flushing journal. otherwise delalloc blocks can not
5066          * be allocated any more. even more truncate on delalloc blocks
5067          * could trigger BUG by flushing delalloc blocks in journal.
5068          * There is no delalloc block in non-journal data mode.
5069          */
5070         if (val && test_opt(inode->i_sb, DELALLOC)) {
5071                 err = ext4_alloc_da_blocks(inode);
5072                 if (err < 0)
5073                         return err;
5074         }
5075
5076         /* Wait for all existing dio workers */
5077         ext4_inode_block_unlocked_dio(inode);
5078         inode_dio_wait(inode);
5079
5080         jbd2_journal_lock_updates(journal);
5081
5082         /*
5083          * OK, there are no updates running now, and all cached data is
5084          * synced to disk.  We are now in a completely consistent state
5085          * which doesn't have anything in the journal, and we know that
5086          * no filesystem updates are running, so it is safe to modify
5087          * the inode's in-core data-journaling state flag now.
5088          */
5089
5090         if (val)
5091                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5092         else {
5093                 jbd2_journal_flush(journal);
5094                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5095         }
5096         ext4_set_aops(inode);
5097
5098         jbd2_journal_unlock_updates(journal);
5099         ext4_inode_resume_unlocked_dio(inode);
5100
5101         /* Finally we can mark the inode as dirty. */
5102
5103         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5104         if (IS_ERR(handle))
5105                 return PTR_ERR(handle);
5106
5107         err = ext4_mark_inode_dirty(handle, inode);
5108         ext4_handle_sync(handle);
5109         ext4_journal_stop(handle);
5110         ext4_std_error(inode->i_sb, err);
5111
5112         return err;
5113 }
5114
5115 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5116 {
5117         return !buffer_mapped(bh);
5118 }
5119
5120 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5121 {
5122         struct page *page = vmf->page;
5123         loff_t size;
5124         unsigned long len;
5125         int ret;
5126         struct file *file = vma->vm_file;
5127         struct inode *inode = file_inode(file);
5128         struct address_space *mapping = inode->i_mapping;
5129         handle_t *handle;
5130         get_block_t *get_block;
5131         int retries = 0;
5132
5133         sb_start_pagefault(inode->i_sb);
5134         file_update_time(vma->vm_file);
5135         /* Delalloc case is easy... */
5136         if (test_opt(inode->i_sb, DELALLOC) &&
5137             !ext4_should_journal_data(inode) &&
5138             !ext4_nonda_switch(inode->i_sb)) {
5139                 do {
5140                         ret = __block_page_mkwrite(vma, vmf,
5141                                                    ext4_da_get_block_prep);
5142                 } while (ret == -ENOSPC &&
5143                        ext4_should_retry_alloc(inode->i_sb, &retries));
5144                 goto out_ret;
5145         }
5146
5147         lock_page(page);
5148         size = i_size_read(inode);
5149         /* Page got truncated from under us? */
5150         if (page->mapping != mapping || page_offset(page) > size) {
5151                 unlock_page(page);
5152                 ret = VM_FAULT_NOPAGE;
5153                 goto out;
5154         }
5155
5156         if (page->index == size >> PAGE_CACHE_SHIFT)
5157                 len = size & ~PAGE_CACHE_MASK;
5158         else
5159                 len = PAGE_CACHE_SIZE;
5160         /*
5161          * Return if we have all the buffers mapped. This avoids the need to do
5162          * journal_start/journal_stop which can block and take a long time
5163          */
5164         if (page_has_buffers(page)) {
5165                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5166                                             0, len, NULL,
5167                                             ext4_bh_unmapped)) {
5168                         /* Wait so that we don't change page under IO */
5169                         wait_for_stable_page(page);
5170                         ret = VM_FAULT_LOCKED;
5171                         goto out;
5172                 }
5173         }
5174         unlock_page(page);
5175         /* OK, we need to fill the hole... */
5176         if (ext4_should_dioread_nolock(inode))
5177                 get_block = ext4_get_block_write;
5178         else
5179                 get_block = ext4_get_block;
5180 retry_alloc:
5181         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5182                                     ext4_writepage_trans_blocks(inode));
5183         if (IS_ERR(handle)) {
5184                 ret = VM_FAULT_SIGBUS;
5185                 goto out;
5186         }
5187         ret = __block_page_mkwrite(vma, vmf, get_block);
5188         if (!ret && ext4_should_journal_data(inode)) {
5189                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5190                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5191                         unlock_page(page);
5192                         ret = VM_FAULT_SIGBUS;
5193                         ext4_journal_stop(handle);
5194                         goto out;
5195                 }
5196                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5197         }
5198         ext4_journal_stop(handle);
5199         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5200                 goto retry_alloc;
5201 out_ret:
5202         ret = block_page_mkwrite_return(ret);
5203 out:
5204         sb_end_pagefault(inode->i_sb);
5205         return ret;
5206 }