]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/ext4/inode.c
ext4: add ext4_group_t, and change all group variables to this type.
[mv-sheeva.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 static int verify_chain(Indirect *from, Indirect *to)
247 {
248         while (from <= to && from->key == *from->p)
249                 from++;
250         return (from > to);
251 }
252
253 /**
254  *      ext4_block_to_path - parse the block number into array of offsets
255  *      @inode: inode in question (we are only interested in its superblock)
256  *      @i_block: block number to be parsed
257  *      @offsets: array to store the offsets in
258  *      @boundary: set this non-zero if the referred-to block is likely to be
259  *             followed (on disk) by an indirect block.
260  *
261  *      To store the locations of file's data ext4 uses a data structure common
262  *      for UNIX filesystems - tree of pointers anchored in the inode, with
263  *      data blocks at leaves and indirect blocks in intermediate nodes.
264  *      This function translates the block number into path in that tree -
265  *      return value is the path length and @offsets[n] is the offset of
266  *      pointer to (n+1)th node in the nth one. If @block is out of range
267  *      (negative or too large) warning is printed and zero returned.
268  *
269  *      Note: function doesn't find node addresses, so no IO is needed. All
270  *      we need to know is the capacity of indirect blocks (taken from the
271  *      inode->i_sb).
272  */
273
274 /*
275  * Portability note: the last comparison (check that we fit into triple
276  * indirect block) is spelled differently, because otherwise on an
277  * architecture with 32-bit longs and 8Kb pages we might get into trouble
278  * if our filesystem had 8Kb blocks. We might use long long, but that would
279  * kill us on x86. Oh, well, at least the sign propagation does not matter -
280  * i_block would have to be negative in the very beginning, so we would not
281  * get there at all.
282  */
283
284 static int ext4_block_to_path(struct inode *inode,
285                         ext4_lblk_t i_block,
286                         ext4_lblk_t offsets[4], int *boundary)
287 {
288         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
289         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
290         const long direct_blocks = EXT4_NDIR_BLOCKS,
291                 indirect_blocks = ptrs,
292                 double_blocks = (1 << (ptrs_bits * 2));
293         int n = 0;
294         int final = 0;
295
296         if (i_block < 0) {
297                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
298         } else if (i_block < direct_blocks) {
299                 offsets[n++] = i_block;
300                 final = direct_blocks;
301         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
302                 offsets[n++] = EXT4_IND_BLOCK;
303                 offsets[n++] = i_block;
304                 final = ptrs;
305         } else if ((i_block -= indirect_blocks) < double_blocks) {
306                 offsets[n++] = EXT4_DIND_BLOCK;
307                 offsets[n++] = i_block >> ptrs_bits;
308                 offsets[n++] = i_block & (ptrs - 1);
309                 final = ptrs;
310         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
311                 offsets[n++] = EXT4_TIND_BLOCK;
312                 offsets[n++] = i_block >> (ptrs_bits * 2);
313                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
314                 offsets[n++] = i_block & (ptrs - 1);
315                 final = ptrs;
316         } else {
317                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
318         }
319         if (boundary)
320                 *boundary = final - 1 - (i_block & (ptrs - 1));
321         return n;
322 }
323
324 /**
325  *      ext4_get_branch - read the chain of indirect blocks leading to data
326  *      @inode: inode in question
327  *      @depth: depth of the chain (1 - direct pointer, etc.)
328  *      @offsets: offsets of pointers in inode/indirect blocks
329  *      @chain: place to store the result
330  *      @err: here we store the error value
331  *
332  *      Function fills the array of triples <key, p, bh> and returns %NULL
333  *      if everything went OK or the pointer to the last filled triple
334  *      (incomplete one) otherwise. Upon the return chain[i].key contains
335  *      the number of (i+1)-th block in the chain (as it is stored in memory,
336  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
337  *      number (it points into struct inode for i==0 and into the bh->b_data
338  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
339  *      block for i>0 and NULL for i==0. In other words, it holds the block
340  *      numbers of the chain, addresses they were taken from (and where we can
341  *      verify that chain did not change) and buffer_heads hosting these
342  *      numbers.
343  *
344  *      Function stops when it stumbles upon zero pointer (absent block)
345  *              (pointer to last triple returned, *@err == 0)
346  *      or when it gets an IO error reading an indirect block
347  *              (ditto, *@err == -EIO)
348  *      or when it notices that chain had been changed while it was reading
349  *              (ditto, *@err == -EAGAIN)
350  *      or when it reads all @depth-1 indirect blocks successfully and finds
351  *      the whole chain, all way to the data (returns %NULL, *err == 0).
352  */
353 static Indirect *ext4_get_branch(struct inode *inode, int depth,
354                                  ext4_lblk_t  *offsets,
355                                  Indirect chain[4], int *err)
356 {
357         struct super_block *sb = inode->i_sb;
358         Indirect *p = chain;
359         struct buffer_head *bh;
360
361         *err = 0;
362         /* i_data is not going away, no lock needed */
363         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
364         if (!p->key)
365                 goto no_block;
366         while (--depth) {
367                 bh = sb_bread(sb, le32_to_cpu(p->key));
368                 if (!bh)
369                         goto failure;
370                 /* Reader: pointers */
371                 if (!verify_chain(chain, p))
372                         goto changed;
373                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374                 /* Reader: end */
375                 if (!p->key)
376                         goto no_block;
377         }
378         return NULL;
379
380 changed:
381         brelse(bh);
382         *err = -EAGAIN;
383         goto no_block;
384 failure:
385         *err = -EIO;
386 no_block:
387         return p;
388 }
389
390 /**
391  *      ext4_find_near - find a place for allocation with sufficient locality
392  *      @inode: owner
393  *      @ind: descriptor of indirect block.
394  *
395  *      This function returns the prefered place for block allocation.
396  *      It is used when heuristic for sequential allocation fails.
397  *      Rules are:
398  *        + if there is a block to the left of our position - allocate near it.
399  *        + if pointer will live in indirect block - allocate near that block.
400  *        + if pointer will live in inode - allocate in the same
401  *          cylinder group.
402  *
403  * In the latter case we colour the starting block by the callers PID to
404  * prevent it from clashing with concurrent allocations for a different inode
405  * in the same block group.   The PID is used here so that functionally related
406  * files will be close-by on-disk.
407  *
408  *      Caller must make sure that @ind is valid and will stay that way.
409  */
410 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
411 {
412         struct ext4_inode_info *ei = EXT4_I(inode);
413         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414         __le32 *p;
415         ext4_fsblk_t bg_start;
416         ext4_grpblk_t colour;
417
418         /* Try to find previous block */
419         for (p = ind->p - 1; p >= start; p--) {
420                 if (*p)
421                         return le32_to_cpu(*p);
422         }
423
424         /* No such thing, so let's try location of indirect block */
425         if (ind->bh)
426                 return ind->bh->b_blocknr;
427
428         /*
429          * It is going to be referred to from the inode itself? OK, just put it
430          * into the same cylinder group then.
431          */
432         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
433         colour = (current->pid % 16) *
434                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435         return bg_start + colour;
436 }
437
438 /**
439  *      ext4_find_goal - find a prefered place for allocation.
440  *      @inode: owner
441  *      @block:  block we want
442  *      @chain:  chain of indirect blocks
443  *      @partial: pointer to the last triple within a chain
444  *      @goal:  place to store the result.
445  *
446  *      Normally this function find the prefered place for block allocation,
447  *      stores it in *@goal and returns zero.
448  */
449
450 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
451                 Indirect chain[4], Indirect *partial)
452 {
453         struct ext4_block_alloc_info *block_i;
454
455         block_i =  EXT4_I(inode)->i_block_alloc_info;
456
457         /*
458          * try the heuristic for sequential allocation,
459          * failing that at least try to get decent locality.
460          */
461         if (block_i && (block == block_i->last_alloc_logical_block + 1)
462                 && (block_i->last_alloc_physical_block != 0)) {
463                 return block_i->last_alloc_physical_block + 1;
464         }
465
466         return ext4_find_near(inode, partial);
467 }
468
469 /**
470  *      ext4_blks_to_allocate: Look up the block map and count the number
471  *      of direct blocks need to be allocated for the given branch.
472  *
473  *      @branch: chain of indirect blocks
474  *      @k: number of blocks need for indirect blocks
475  *      @blks: number of data blocks to be mapped.
476  *      @blocks_to_boundary:  the offset in the indirect block
477  *
478  *      return the total number of blocks to be allocate, including the
479  *      direct and indirect blocks.
480  */
481 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
482                 int blocks_to_boundary)
483 {
484         unsigned long count = 0;
485
486         /*
487          * Simple case, [t,d]Indirect block(s) has not allocated yet
488          * then it's clear blocks on that path have not allocated
489          */
490         if (k > 0) {
491                 /* right now we don't handle cross boundary allocation */
492                 if (blks < blocks_to_boundary + 1)
493                         count += blks;
494                 else
495                         count += blocks_to_boundary + 1;
496                 return count;
497         }
498
499         count++;
500         while (count < blks && count <= blocks_to_boundary &&
501                 le32_to_cpu(*(branch[0].p + count)) == 0) {
502                 count++;
503         }
504         return count;
505 }
506
507 /**
508  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
509  *      @indirect_blks: the number of blocks need to allocate for indirect
510  *                      blocks
511  *
512  *      @new_blocks: on return it will store the new block numbers for
513  *      the indirect blocks(if needed) and the first direct block,
514  *      @blks:  on return it will store the total number of allocated
515  *              direct blocks
516  */
517 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
518                         ext4_fsblk_t goal, int indirect_blks, int blks,
519                         ext4_fsblk_t new_blocks[4], int *err)
520 {
521         int target, i;
522         unsigned long count = 0;
523         int index = 0;
524         ext4_fsblk_t current_block = 0;
525         int ret = 0;
526
527         /*
528          * Here we try to allocate the requested multiple blocks at once,
529          * on a best-effort basis.
530          * To build a branch, we should allocate blocks for
531          * the indirect blocks(if not allocated yet), and at least
532          * the first direct block of this branch.  That's the
533          * minimum number of blocks need to allocate(required)
534          */
535         target = blks + indirect_blks;
536
537         while (1) {
538                 count = target;
539                 /* allocating blocks for indirect blocks and direct blocks */
540                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
541                 if (*err)
542                         goto failed_out;
543
544                 target -= count;
545                 /* allocate blocks for indirect blocks */
546                 while (index < indirect_blks && count) {
547                         new_blocks[index++] = current_block++;
548                         count--;
549                 }
550
551                 if (count > 0)
552                         break;
553         }
554
555         /* save the new block number for the first direct block */
556         new_blocks[index] = current_block;
557
558         /* total number of blocks allocated for direct blocks */
559         ret = count;
560         *err = 0;
561         return ret;
562 failed_out:
563         for (i = 0; i <index; i++)
564                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
565         return ret;
566 }
567
568 /**
569  *      ext4_alloc_branch - allocate and set up a chain of blocks.
570  *      @inode: owner
571  *      @indirect_blks: number of allocated indirect blocks
572  *      @blks: number of allocated direct blocks
573  *      @offsets: offsets (in the blocks) to store the pointers to next.
574  *      @branch: place to store the chain in.
575  *
576  *      This function allocates blocks, zeroes out all but the last one,
577  *      links them into chain and (if we are synchronous) writes them to disk.
578  *      In other words, it prepares a branch that can be spliced onto the
579  *      inode. It stores the information about that chain in the branch[], in
580  *      the same format as ext4_get_branch() would do. We are calling it after
581  *      we had read the existing part of chain and partial points to the last
582  *      triple of that (one with zero ->key). Upon the exit we have the same
583  *      picture as after the successful ext4_get_block(), except that in one
584  *      place chain is disconnected - *branch->p is still zero (we did not
585  *      set the last link), but branch->key contains the number that should
586  *      be placed into *branch->p to fill that gap.
587  *
588  *      If allocation fails we free all blocks we've allocated (and forget
589  *      their buffer_heads) and return the error value the from failed
590  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591  *      as described above and return 0.
592  */
593 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
594                         int indirect_blks, int *blks, ext4_fsblk_t goal,
595                         ext4_lblk_t *offsets, Indirect *branch)
596 {
597         int blocksize = inode->i_sb->s_blocksize;
598         int i, n = 0;
599         int err = 0;
600         struct buffer_head *bh;
601         int num;
602         ext4_fsblk_t new_blocks[4];
603         ext4_fsblk_t current_block;
604
605         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
606                                 *blks, new_blocks, &err);
607         if (err)
608                 return err;
609
610         branch[0].key = cpu_to_le32(new_blocks[0]);
611         /*
612          * metadata blocks and data blocks are allocated.
613          */
614         for (n = 1; n <= indirect_blks;  n++) {
615                 /*
616                  * Get buffer_head for parent block, zero it out
617                  * and set the pointer to new one, then send
618                  * parent to disk.
619                  */
620                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621                 branch[n].bh = bh;
622                 lock_buffer(bh);
623                 BUFFER_TRACE(bh, "call get_create_access");
624                 err = ext4_journal_get_create_access(handle, bh);
625                 if (err) {
626                         unlock_buffer(bh);
627                         brelse(bh);
628                         goto failed;
629                 }
630
631                 memset(bh->b_data, 0, blocksize);
632                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
633                 branch[n].key = cpu_to_le32(new_blocks[n]);
634                 *branch[n].p = branch[n].key;
635                 if ( n == indirect_blks) {
636                         current_block = new_blocks[n];
637                         /*
638                          * End of chain, update the last new metablock of
639                          * the chain to point to the new allocated
640                          * data blocks numbers
641                          */
642                         for (i=1; i < num; i++)
643                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
644                 }
645                 BUFFER_TRACE(bh, "marking uptodate");
646                 set_buffer_uptodate(bh);
647                 unlock_buffer(bh);
648
649                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
650                 err = ext4_journal_dirty_metadata(handle, bh);
651                 if (err)
652                         goto failed;
653         }
654         *blks = num;
655         return err;
656 failed:
657         /* Allocation failed, free what we already allocated */
658         for (i = 1; i <= n ; i++) {
659                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
660                 ext4_journal_forget(handle, branch[i].bh);
661         }
662         for (i = 0; i <indirect_blks; i++)
663                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
664
665         ext4_free_blocks(handle, inode, new_blocks[i], num);
666
667         return err;
668 }
669
670 /**
671  * ext4_splice_branch - splice the allocated branch onto inode.
672  * @inode: owner
673  * @block: (logical) number of block we are adding
674  * @chain: chain of indirect blocks (with a missing link - see
675  *      ext4_alloc_branch)
676  * @where: location of missing link
677  * @num:   number of indirect blocks we are adding
678  * @blks:  number of direct blocks we are adding
679  *
680  * This function fills the missing link and does all housekeeping needed in
681  * inode (->i_blocks, etc.). In case of success we end up with the full
682  * chain to new block and return 0.
683  */
684 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
685                         ext4_lblk_t block, Indirect *where, int num, int blks)
686 {
687         int i;
688         int err = 0;
689         struct ext4_block_alloc_info *block_i;
690         ext4_fsblk_t current_block;
691
692         block_i = EXT4_I(inode)->i_block_alloc_info;
693         /*
694          * If we're splicing into a [td]indirect block (as opposed to the
695          * inode) then we need to get write access to the [td]indirect block
696          * before the splice.
697          */
698         if (where->bh) {
699                 BUFFER_TRACE(where->bh, "get_write_access");
700                 err = ext4_journal_get_write_access(handle, where->bh);
701                 if (err)
702                         goto err_out;
703         }
704         /* That's it */
705
706         *where->p = where->key;
707
708         /*
709          * Update the host buffer_head or inode to point to more just allocated
710          * direct blocks blocks
711          */
712         if (num == 0 && blks > 1) {
713                 current_block = le32_to_cpu(where->key) + 1;
714                 for (i = 1; i < blks; i++)
715                         *(where->p + i ) = cpu_to_le32(current_block++);
716         }
717
718         /*
719          * update the most recently allocated logical & physical block
720          * in i_block_alloc_info, to assist find the proper goal block for next
721          * allocation
722          */
723         if (block_i) {
724                 block_i->last_alloc_logical_block = block + blks - 1;
725                 block_i->last_alloc_physical_block =
726                                 le32_to_cpu(where[num].key) + blks - 1;
727         }
728
729         /* We are done with atomic stuff, now do the rest of housekeeping */
730
731         inode->i_ctime = ext4_current_time(inode);
732         ext4_mark_inode_dirty(handle, inode);
733
734         /* had we spliced it onto indirect block? */
735         if (where->bh) {
736                 /*
737                  * If we spliced it onto an indirect block, we haven't
738                  * altered the inode.  Note however that if it is being spliced
739                  * onto an indirect block at the very end of the file (the
740                  * file is growing) then we *will* alter the inode to reflect
741                  * the new i_size.  But that is not done here - it is done in
742                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
743                  */
744                 jbd_debug(5, "splicing indirect only\n");
745                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
746                 err = ext4_journal_dirty_metadata(handle, where->bh);
747                 if (err)
748                         goto err_out;
749         } else {
750                 /*
751                  * OK, we spliced it into the inode itself on a direct block.
752                  * Inode was dirtied above.
753                  */
754                 jbd_debug(5, "splicing direct\n");
755         }
756         return err;
757
758 err_out:
759         for (i = 1; i <= num; i++) {
760                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
761                 ext4_journal_forget(handle, where[i].bh);
762                 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
763         }
764         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
766         return err;
767 }
768
769 /*
770  * Allocation strategy is simple: if we have to allocate something, we will
771  * have to go the whole way to leaf. So let's do it before attaching anything
772  * to tree, set linkage between the newborn blocks, write them if sync is
773  * required, recheck the path, free and repeat if check fails, otherwise
774  * set the last missing link (that will protect us from any truncate-generated
775  * removals - all blocks on the path are immune now) and possibly force the
776  * write on the parent block.
777  * That has a nice additional property: no special recovery from the failed
778  * allocations is needed - we simply release blocks and do not touch anything
779  * reachable from inode.
780  *
781  * `handle' can be NULL if create == 0.
782  *
783  * The BKL may not be held on entry here.  Be sure to take it early.
784  * return > 0, # of blocks mapped or allocated.
785  * return = 0, if plain lookup failed.
786  * return < 0, error case.
787  */
788 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
789                 ext4_lblk_t iblock, unsigned long maxblocks,
790                 struct buffer_head *bh_result,
791                 int create, int extend_disksize)
792 {
793         int err = -EIO;
794         ext4_lblk_t offsets[4];
795         Indirect chain[4];
796         Indirect *partial;
797         ext4_fsblk_t goal;
798         int indirect_blks;
799         int blocks_to_boundary = 0;
800         int depth;
801         struct ext4_inode_info *ei = EXT4_I(inode);
802         int count = 0;
803         ext4_fsblk_t first_block = 0;
804
805
806         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
807         J_ASSERT(handle != NULL || create == 0);
808         depth = ext4_block_to_path(inode, iblock, offsets,
809                                         &blocks_to_boundary);
810
811         if (depth == 0)
812                 goto out;
813
814         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
815
816         /* Simplest case - block found, no allocation needed */
817         if (!partial) {
818                 first_block = le32_to_cpu(chain[depth - 1].key);
819                 clear_buffer_new(bh_result);
820                 count++;
821                 /*map more blocks*/
822                 while (count < maxblocks && count <= blocks_to_boundary) {
823                         ext4_fsblk_t blk;
824
825                         if (!verify_chain(chain, partial)) {
826                                 /*
827                                  * Indirect block might be removed by
828                                  * truncate while we were reading it.
829                                  * Handling of that case: forget what we've
830                                  * got now. Flag the err as EAGAIN, so it
831                                  * will reread.
832                                  */
833                                 err = -EAGAIN;
834                                 count = 0;
835                                 break;
836                         }
837                         blk = le32_to_cpu(*(chain[depth-1].p + count));
838
839                         if (blk == first_block + count)
840                                 count++;
841                         else
842                                 break;
843                 }
844                 if (err != -EAGAIN)
845                         goto got_it;
846         }
847
848         /* Next simple case - plain lookup or failed read of indirect block */
849         if (!create || err == -EIO)
850                 goto cleanup;
851
852         mutex_lock(&ei->truncate_mutex);
853
854         /*
855          * If the indirect block is missing while we are reading
856          * the chain(ext4_get_branch() returns -EAGAIN err), or
857          * if the chain has been changed after we grab the semaphore,
858          * (either because another process truncated this branch, or
859          * another get_block allocated this branch) re-grab the chain to see if
860          * the request block has been allocated or not.
861          *
862          * Since we already block the truncate/other get_block
863          * at this point, we will have the current copy of the chain when we
864          * splice the branch into the tree.
865          */
866         if (err == -EAGAIN || !verify_chain(chain, partial)) {
867                 while (partial > chain) {
868                         brelse(partial->bh);
869                         partial--;
870                 }
871                 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
872                 if (!partial) {
873                         count++;
874                         mutex_unlock(&ei->truncate_mutex);
875                         if (err)
876                                 goto cleanup;
877                         clear_buffer_new(bh_result);
878                         goto got_it;
879                 }
880         }
881
882         /*
883          * Okay, we need to do block allocation.  Lazily initialize the block
884          * allocation info here if necessary
885         */
886         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
887                 ext4_init_block_alloc_info(inode);
888
889         goal = ext4_find_goal(inode, iblock, chain, partial);
890
891         /* the number of blocks need to allocate for [d,t]indirect blocks */
892         indirect_blks = (chain + depth) - partial - 1;
893
894         /*
895          * Next look up the indirect map to count the totoal number of
896          * direct blocks to allocate for this branch.
897          */
898         count = ext4_blks_to_allocate(partial, indirect_blks,
899                                         maxblocks, blocks_to_boundary);
900         /*
901          * Block out ext4_truncate while we alter the tree
902          */
903         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
904                                 offsets + (partial - chain), partial);
905
906         /*
907          * The ext4_splice_branch call will free and forget any buffers
908          * on the new chain if there is a failure, but that risks using
909          * up transaction credits, especially for bitmaps where the
910          * credits cannot be returned.  Can we handle this somehow?  We
911          * may need to return -EAGAIN upwards in the worst case.  --sct
912          */
913         if (!err)
914                 err = ext4_splice_branch(handle, inode, iblock,
915                                         partial, indirect_blks, count);
916         /*
917          * i_disksize growing is protected by truncate_mutex.  Don't forget to
918          * protect it if you're about to implement concurrent
919          * ext4_get_block() -bzzz
920         */
921         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
922                 ei->i_disksize = inode->i_size;
923         mutex_unlock(&ei->truncate_mutex);
924         if (err)
925                 goto cleanup;
926
927         set_buffer_new(bh_result);
928 got_it:
929         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
930         if (count > blocks_to_boundary)
931                 set_buffer_boundary(bh_result);
932         err = count;
933         /* Clean up and exit */
934         partial = chain + depth - 1;    /* the whole chain */
935 cleanup:
936         while (partial > chain) {
937                 BUFFER_TRACE(partial->bh, "call brelse");
938                 brelse(partial->bh);
939                 partial--;
940         }
941         BUFFER_TRACE(bh_result, "returned");
942 out:
943         return err;
944 }
945
946 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
947
948 static int ext4_get_block(struct inode *inode, sector_t iblock,
949                         struct buffer_head *bh_result, int create)
950 {
951         handle_t *handle = ext4_journal_current_handle();
952         int ret = 0;
953         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
954
955         if (!create)
956                 goto get_block;         /* A read */
957
958         if (max_blocks == 1)
959                 goto get_block;         /* A single block get */
960
961         if (handle->h_transaction->t_state == T_LOCKED) {
962                 /*
963                  * Huge direct-io writes can hold off commits for long
964                  * periods of time.  Let this commit run.
965                  */
966                 ext4_journal_stop(handle);
967                 handle = ext4_journal_start(inode, DIO_CREDITS);
968                 if (IS_ERR(handle))
969                         ret = PTR_ERR(handle);
970                 goto get_block;
971         }
972
973         if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
974                 /*
975                  * Getting low on buffer credits...
976                  */
977                 ret = ext4_journal_extend(handle, DIO_CREDITS);
978                 if (ret > 0) {
979                         /*
980                          * Couldn't extend the transaction.  Start a new one.
981                          */
982                         ret = ext4_journal_restart(handle, DIO_CREDITS);
983                 }
984         }
985
986 get_block:
987         if (ret == 0) {
988                 ret = ext4_get_blocks_wrap(handle, inode, iblock,
989                                         max_blocks, bh_result, create, 0);
990                 if (ret > 0) {
991                         bh_result->b_size = (ret << inode->i_blkbits);
992                         ret = 0;
993                 }
994         }
995         return ret;
996 }
997
998 /*
999  * `handle' can be NULL if create is zero
1000  */
1001 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1002                                 ext4_lblk_t block, int create, int *errp)
1003 {
1004         struct buffer_head dummy;
1005         int fatal = 0, err;
1006
1007         J_ASSERT(handle != NULL || create == 0);
1008
1009         dummy.b_state = 0;
1010         dummy.b_blocknr = -1000;
1011         buffer_trace_init(&dummy.b_history);
1012         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1013                                         &dummy, create, 1);
1014         /*
1015          * ext4_get_blocks_handle() returns number of blocks
1016          * mapped. 0 in case of a HOLE.
1017          */
1018         if (err > 0) {
1019                 if (err > 1)
1020                         WARN_ON(1);
1021                 err = 0;
1022         }
1023         *errp = err;
1024         if (!err && buffer_mapped(&dummy)) {
1025                 struct buffer_head *bh;
1026                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1027                 if (!bh) {
1028                         *errp = -EIO;
1029                         goto err;
1030                 }
1031                 if (buffer_new(&dummy)) {
1032                         J_ASSERT(create != 0);
1033                         J_ASSERT(handle != NULL);
1034
1035                         /*
1036                          * Now that we do not always journal data, we should
1037                          * keep in mind whether this should always journal the
1038                          * new buffer as metadata.  For now, regular file
1039                          * writes use ext4_get_block instead, so it's not a
1040                          * problem.
1041                          */
1042                         lock_buffer(bh);
1043                         BUFFER_TRACE(bh, "call get_create_access");
1044                         fatal = ext4_journal_get_create_access(handle, bh);
1045                         if (!fatal && !buffer_uptodate(bh)) {
1046                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1047                                 set_buffer_uptodate(bh);
1048                         }
1049                         unlock_buffer(bh);
1050                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1051                         err = ext4_journal_dirty_metadata(handle, bh);
1052                         if (!fatal)
1053                                 fatal = err;
1054                 } else {
1055                         BUFFER_TRACE(bh, "not a new buffer");
1056                 }
1057                 if (fatal) {
1058                         *errp = fatal;
1059                         brelse(bh);
1060                         bh = NULL;
1061                 }
1062                 return bh;
1063         }
1064 err:
1065         return NULL;
1066 }
1067
1068 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1069                                ext4_lblk_t block, int create, int *err)
1070 {
1071         struct buffer_head * bh;
1072
1073         bh = ext4_getblk(handle, inode, block, create, err);
1074         if (!bh)
1075                 return bh;
1076         if (buffer_uptodate(bh))
1077                 return bh;
1078         ll_rw_block(READ_META, 1, &bh);
1079         wait_on_buffer(bh);
1080         if (buffer_uptodate(bh))
1081                 return bh;
1082         put_bh(bh);
1083         *err = -EIO;
1084         return NULL;
1085 }
1086
1087 static int walk_page_buffers(   handle_t *handle,
1088                                 struct buffer_head *head,
1089                                 unsigned from,
1090                                 unsigned to,
1091                                 int *partial,
1092                                 int (*fn)(      handle_t *handle,
1093                                                 struct buffer_head *bh))
1094 {
1095         struct buffer_head *bh;
1096         unsigned block_start, block_end;
1097         unsigned blocksize = head->b_size;
1098         int err, ret = 0;
1099         struct buffer_head *next;
1100
1101         for (   bh = head, block_start = 0;
1102                 ret == 0 && (bh != head || !block_start);
1103                 block_start = block_end, bh = next)
1104         {
1105                 next = bh->b_this_page;
1106                 block_end = block_start + blocksize;
1107                 if (block_end <= from || block_start >= to) {
1108                         if (partial && !buffer_uptodate(bh))
1109                                 *partial = 1;
1110                         continue;
1111                 }
1112                 err = (*fn)(handle, bh);
1113                 if (!ret)
1114                         ret = err;
1115         }
1116         return ret;
1117 }
1118
1119 /*
1120  * To preserve ordering, it is essential that the hole instantiation and
1121  * the data write be encapsulated in a single transaction.  We cannot
1122  * close off a transaction and start a new one between the ext4_get_block()
1123  * and the commit_write().  So doing the jbd2_journal_start at the start of
1124  * prepare_write() is the right place.
1125  *
1126  * Also, this function can nest inside ext4_writepage() ->
1127  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1128  * has generated enough buffer credits to do the whole page.  So we won't
1129  * block on the journal in that case, which is good, because the caller may
1130  * be PF_MEMALLOC.
1131  *
1132  * By accident, ext4 can be reentered when a transaction is open via
1133  * quota file writes.  If we were to commit the transaction while thus
1134  * reentered, there can be a deadlock - we would be holding a quota
1135  * lock, and the commit would never complete if another thread had a
1136  * transaction open and was blocking on the quota lock - a ranking
1137  * violation.
1138  *
1139  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1140  * will _not_ run commit under these circumstances because handle->h_ref
1141  * is elevated.  We'll still have enough credits for the tiny quotafile
1142  * write.
1143  */
1144 static int do_journal_get_write_access(handle_t *handle,
1145                                         struct buffer_head *bh)
1146 {
1147         if (!buffer_mapped(bh) || buffer_freed(bh))
1148                 return 0;
1149         return ext4_journal_get_write_access(handle, bh);
1150 }
1151
1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153                                 loff_t pos, unsigned len, unsigned flags,
1154                                 struct page **pagep, void **fsdata)
1155 {
1156         struct inode *inode = mapping->host;
1157         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1158         handle_t *handle;
1159         int retries = 0;
1160         struct page *page;
1161         pgoff_t index;
1162         unsigned from, to;
1163
1164         index = pos >> PAGE_CACHE_SHIFT;
1165         from = pos & (PAGE_CACHE_SIZE - 1);
1166         to = from + len;
1167
1168 retry:
1169         page = __grab_cache_page(mapping, index);
1170         if (!page)
1171                 return -ENOMEM;
1172         *pagep = page;
1173
1174         handle = ext4_journal_start(inode, needed_blocks);
1175         if (IS_ERR(handle)) {
1176                 unlock_page(page);
1177                 page_cache_release(page);
1178                 ret = PTR_ERR(handle);
1179                 goto out;
1180         }
1181
1182         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1183                                                         ext4_get_block);
1184
1185         if (!ret && ext4_should_journal_data(inode)) {
1186                 ret = walk_page_buffers(handle, page_buffers(page),
1187                                 from, to, NULL, do_journal_get_write_access);
1188         }
1189
1190         if (ret) {
1191                 ext4_journal_stop(handle);
1192                 unlock_page(page);
1193                 page_cache_release(page);
1194         }
1195
1196         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1197                 goto retry;
1198 out:
1199         return ret;
1200 }
1201
1202 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1203 {
1204         int err = jbd2_journal_dirty_data(handle, bh);
1205         if (err)
1206                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1207                                                 bh, handle, err);
1208         return err;
1209 }
1210
1211 /* For write_end() in data=journal mode */
1212 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1213 {
1214         if (!buffer_mapped(bh) || buffer_freed(bh))
1215                 return 0;
1216         set_buffer_uptodate(bh);
1217         return ext4_journal_dirty_metadata(handle, bh);
1218 }
1219
1220 /*
1221  * Generic write_end handler for ordered and writeback ext4 journal modes.
1222  * We can't use generic_write_end, because that unlocks the page and we need to
1223  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1224  * after block_write_end.
1225  */
1226 static int ext4_generic_write_end(struct file *file,
1227                                 struct address_space *mapping,
1228                                 loff_t pos, unsigned len, unsigned copied,
1229                                 struct page *page, void *fsdata)
1230 {
1231         struct inode *inode = file->f_mapping->host;
1232
1233         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1234
1235         if (pos+copied > inode->i_size) {
1236                 i_size_write(inode, pos+copied);
1237                 mark_inode_dirty(inode);
1238         }
1239
1240         return copied;
1241 }
1242
1243 /*
1244  * We need to pick up the new inode size which generic_commit_write gave us
1245  * `file' can be NULL - eg, when called from page_symlink().
1246  *
1247  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1248  * buffers are managed internally.
1249  */
1250 static int ext4_ordered_write_end(struct file *file,
1251                                 struct address_space *mapping,
1252                                 loff_t pos, unsigned len, unsigned copied,
1253                                 struct page *page, void *fsdata)
1254 {
1255         handle_t *handle = ext4_journal_current_handle();
1256         struct inode *inode = file->f_mapping->host;
1257         unsigned from, to;
1258         int ret = 0, ret2;
1259
1260         from = pos & (PAGE_CACHE_SIZE - 1);
1261         to = from + len;
1262
1263         ret = walk_page_buffers(handle, page_buffers(page),
1264                 from, to, NULL, ext4_journal_dirty_data);
1265
1266         if (ret == 0) {
1267                 /*
1268                  * generic_write_end() will run mark_inode_dirty() if i_size
1269                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1270                  * into that.
1271                  */
1272                 loff_t new_i_size;
1273
1274                 new_i_size = pos + copied;
1275                 if (new_i_size > EXT4_I(inode)->i_disksize)
1276                         EXT4_I(inode)->i_disksize = new_i_size;
1277                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1278                                                         page, fsdata);
1279                 if (copied < 0)
1280                         ret = copied;
1281         }
1282         ret2 = ext4_journal_stop(handle);
1283         if (!ret)
1284                 ret = ret2;
1285         unlock_page(page);
1286         page_cache_release(page);
1287
1288         return ret ? ret : copied;
1289 }
1290
1291 static int ext4_writeback_write_end(struct file *file,
1292                                 struct address_space *mapping,
1293                                 loff_t pos, unsigned len, unsigned copied,
1294                                 struct page *page, void *fsdata)
1295 {
1296         handle_t *handle = ext4_journal_current_handle();
1297         struct inode *inode = file->f_mapping->host;
1298         int ret = 0, ret2;
1299         loff_t new_i_size;
1300
1301         new_i_size = pos + copied;
1302         if (new_i_size > EXT4_I(inode)->i_disksize)
1303                 EXT4_I(inode)->i_disksize = new_i_size;
1304
1305         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1306                                                         page, fsdata);
1307         if (copied < 0)
1308                 ret = copied;
1309
1310         ret2 = ext4_journal_stop(handle);
1311         if (!ret)
1312                 ret = ret2;
1313         unlock_page(page);
1314         page_cache_release(page);
1315
1316         return ret ? ret : copied;
1317 }
1318
1319 static int ext4_journalled_write_end(struct file *file,
1320                                 struct address_space *mapping,
1321                                 loff_t pos, unsigned len, unsigned copied,
1322                                 struct page *page, void *fsdata)
1323 {
1324         handle_t *handle = ext4_journal_current_handle();
1325         struct inode *inode = mapping->host;
1326         int ret = 0, ret2;
1327         int partial = 0;
1328         unsigned from, to;
1329
1330         from = pos & (PAGE_CACHE_SIZE - 1);
1331         to = from + len;
1332
1333         if (copied < len) {
1334                 if (!PageUptodate(page))
1335                         copied = 0;
1336                 page_zero_new_buffers(page, from+copied, to);
1337         }
1338
1339         ret = walk_page_buffers(handle, page_buffers(page), from,
1340                                 to, &partial, write_end_fn);
1341         if (!partial)
1342                 SetPageUptodate(page);
1343         if (pos+copied > inode->i_size)
1344                 i_size_write(inode, pos+copied);
1345         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1346         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1347                 EXT4_I(inode)->i_disksize = inode->i_size;
1348                 ret2 = ext4_mark_inode_dirty(handle, inode);
1349                 if (!ret)
1350                         ret = ret2;
1351         }
1352
1353         ret2 = ext4_journal_stop(handle);
1354         if (!ret)
1355                 ret = ret2;
1356         unlock_page(page);
1357         page_cache_release(page);
1358
1359         return ret ? ret : copied;
1360 }
1361
1362 /*
1363  * bmap() is special.  It gets used by applications such as lilo and by
1364  * the swapper to find the on-disk block of a specific piece of data.
1365  *
1366  * Naturally, this is dangerous if the block concerned is still in the
1367  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1368  * filesystem and enables swap, then they may get a nasty shock when the
1369  * data getting swapped to that swapfile suddenly gets overwritten by
1370  * the original zero's written out previously to the journal and
1371  * awaiting writeback in the kernel's buffer cache.
1372  *
1373  * So, if we see any bmap calls here on a modified, data-journaled file,
1374  * take extra steps to flush any blocks which might be in the cache.
1375  */
1376 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1377 {
1378         struct inode *inode = mapping->host;
1379         journal_t *journal;
1380         int err;
1381
1382         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1383                 /*
1384                  * This is a REALLY heavyweight approach, but the use of
1385                  * bmap on dirty files is expected to be extremely rare:
1386                  * only if we run lilo or swapon on a freshly made file
1387                  * do we expect this to happen.
1388                  *
1389                  * (bmap requires CAP_SYS_RAWIO so this does not
1390                  * represent an unprivileged user DOS attack --- we'd be
1391                  * in trouble if mortal users could trigger this path at
1392                  * will.)
1393                  *
1394                  * NB. EXT4_STATE_JDATA is not set on files other than
1395                  * regular files.  If somebody wants to bmap a directory
1396                  * or symlink and gets confused because the buffer
1397                  * hasn't yet been flushed to disk, they deserve
1398                  * everything they get.
1399                  */
1400
1401                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1402                 journal = EXT4_JOURNAL(inode);
1403                 jbd2_journal_lock_updates(journal);
1404                 err = jbd2_journal_flush(journal);
1405                 jbd2_journal_unlock_updates(journal);
1406
1407                 if (err)
1408                         return 0;
1409         }
1410
1411         return generic_block_bmap(mapping,block,ext4_get_block);
1412 }
1413
1414 static int bget_one(handle_t *handle, struct buffer_head *bh)
1415 {
1416         get_bh(bh);
1417         return 0;
1418 }
1419
1420 static int bput_one(handle_t *handle, struct buffer_head *bh)
1421 {
1422         put_bh(bh);
1423         return 0;
1424 }
1425
1426 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1427 {
1428         if (buffer_mapped(bh))
1429                 return ext4_journal_dirty_data(handle, bh);
1430         return 0;
1431 }
1432
1433 /*
1434  * Note that we always start a transaction even if we're not journalling
1435  * data.  This is to preserve ordering: any hole instantiation within
1436  * __block_write_full_page -> ext4_get_block() should be journalled
1437  * along with the data so we don't crash and then get metadata which
1438  * refers to old data.
1439  *
1440  * In all journalling modes block_write_full_page() will start the I/O.
1441  *
1442  * Problem:
1443  *
1444  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1445  *              ext4_writepage()
1446  *
1447  * Similar for:
1448  *
1449  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1450  *
1451  * Same applies to ext4_get_block().  We will deadlock on various things like
1452  * lock_journal and i_truncate_mutex.
1453  *
1454  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1455  * allocations fail.
1456  *
1457  * 16May01: If we're reentered then journal_current_handle() will be
1458  *          non-zero. We simply *return*.
1459  *
1460  * 1 July 2001: @@@ FIXME:
1461  *   In journalled data mode, a data buffer may be metadata against the
1462  *   current transaction.  But the same file is part of a shared mapping
1463  *   and someone does a writepage() on it.
1464  *
1465  *   We will move the buffer onto the async_data list, but *after* it has
1466  *   been dirtied. So there's a small window where we have dirty data on
1467  *   BJ_Metadata.
1468  *
1469  *   Note that this only applies to the last partial page in the file.  The
1470  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1471  *   broken code anyway: it's wrong for msync()).
1472  *
1473  *   It's a rare case: affects the final partial page, for journalled data
1474  *   where the file is subject to bith write() and writepage() in the same
1475  *   transction.  To fix it we'll need a custom block_write_full_page().
1476  *   We'll probably need that anyway for journalling writepage() output.
1477  *
1478  * We don't honour synchronous mounts for writepage().  That would be
1479  * disastrous.  Any write() or metadata operation will sync the fs for
1480  * us.
1481  *
1482  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1483  * we don't need to open a transaction here.
1484  */
1485 static int ext4_ordered_writepage(struct page *page,
1486                                 struct writeback_control *wbc)
1487 {
1488         struct inode *inode = page->mapping->host;
1489         struct buffer_head *page_bufs;
1490         handle_t *handle = NULL;
1491         int ret = 0;
1492         int err;
1493
1494         J_ASSERT(PageLocked(page));
1495
1496         /*
1497          * We give up here if we're reentered, because it might be for a
1498          * different filesystem.
1499          */
1500         if (ext4_journal_current_handle())
1501                 goto out_fail;
1502
1503         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1504
1505         if (IS_ERR(handle)) {
1506                 ret = PTR_ERR(handle);
1507                 goto out_fail;
1508         }
1509
1510         if (!page_has_buffers(page)) {
1511                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1512                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1513         }
1514         page_bufs = page_buffers(page);
1515         walk_page_buffers(handle, page_bufs, 0,
1516                         PAGE_CACHE_SIZE, NULL, bget_one);
1517
1518         ret = block_write_full_page(page, ext4_get_block, wbc);
1519
1520         /*
1521          * The page can become unlocked at any point now, and
1522          * truncate can then come in and change things.  So we
1523          * can't touch *page from now on.  But *page_bufs is
1524          * safe due to elevated refcount.
1525          */
1526
1527         /*
1528          * And attach them to the current transaction.  But only if
1529          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1530          * and generally junk.
1531          */
1532         if (ret == 0) {
1533                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1534                                         NULL, jbd2_journal_dirty_data_fn);
1535                 if (!ret)
1536                         ret = err;
1537         }
1538         walk_page_buffers(handle, page_bufs, 0,
1539                         PAGE_CACHE_SIZE, NULL, bput_one);
1540         err = ext4_journal_stop(handle);
1541         if (!ret)
1542                 ret = err;
1543         return ret;
1544
1545 out_fail:
1546         redirty_page_for_writepage(wbc, page);
1547         unlock_page(page);
1548         return ret;
1549 }
1550
1551 static int ext4_writeback_writepage(struct page *page,
1552                                 struct writeback_control *wbc)
1553 {
1554         struct inode *inode = page->mapping->host;
1555         handle_t *handle = NULL;
1556         int ret = 0;
1557         int err;
1558
1559         if (ext4_journal_current_handle())
1560                 goto out_fail;
1561
1562         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1563         if (IS_ERR(handle)) {
1564                 ret = PTR_ERR(handle);
1565                 goto out_fail;
1566         }
1567
1568         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1569                 ret = nobh_writepage(page, ext4_get_block, wbc);
1570         else
1571                 ret = block_write_full_page(page, ext4_get_block, wbc);
1572
1573         err = ext4_journal_stop(handle);
1574         if (!ret)
1575                 ret = err;
1576         return ret;
1577
1578 out_fail:
1579         redirty_page_for_writepage(wbc, page);
1580         unlock_page(page);
1581         return ret;
1582 }
1583
1584 static int ext4_journalled_writepage(struct page *page,
1585                                 struct writeback_control *wbc)
1586 {
1587         struct inode *inode = page->mapping->host;
1588         handle_t *handle = NULL;
1589         int ret = 0;
1590         int err;
1591
1592         if (ext4_journal_current_handle())
1593                 goto no_write;
1594
1595         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1596         if (IS_ERR(handle)) {
1597                 ret = PTR_ERR(handle);
1598                 goto no_write;
1599         }
1600
1601         if (!page_has_buffers(page) || PageChecked(page)) {
1602                 /*
1603                  * It's mmapped pagecache.  Add buffers and journal it.  There
1604                  * doesn't seem much point in redirtying the page here.
1605                  */
1606                 ClearPageChecked(page);
1607                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1608                                         ext4_get_block);
1609                 if (ret != 0) {
1610                         ext4_journal_stop(handle);
1611                         goto out_unlock;
1612                 }
1613                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1614                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1615
1616                 err = walk_page_buffers(handle, page_buffers(page), 0,
1617                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1618                 if (ret == 0)
1619                         ret = err;
1620                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1621                 unlock_page(page);
1622         } else {
1623                 /*
1624                  * It may be a page full of checkpoint-mode buffers.  We don't
1625                  * really know unless we go poke around in the buffer_heads.
1626                  * But block_write_full_page will do the right thing.
1627                  */
1628                 ret = block_write_full_page(page, ext4_get_block, wbc);
1629         }
1630         err = ext4_journal_stop(handle);
1631         if (!ret)
1632                 ret = err;
1633 out:
1634         return ret;
1635
1636 no_write:
1637         redirty_page_for_writepage(wbc, page);
1638 out_unlock:
1639         unlock_page(page);
1640         goto out;
1641 }
1642
1643 static int ext4_readpage(struct file *file, struct page *page)
1644 {
1645         return mpage_readpage(page, ext4_get_block);
1646 }
1647
1648 static int
1649 ext4_readpages(struct file *file, struct address_space *mapping,
1650                 struct list_head *pages, unsigned nr_pages)
1651 {
1652         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1653 }
1654
1655 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1656 {
1657         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1658
1659         /*
1660          * If it's a full truncate we just forget about the pending dirtying
1661          */
1662         if (offset == 0)
1663                 ClearPageChecked(page);
1664
1665         jbd2_journal_invalidatepage(journal, page, offset);
1666 }
1667
1668 static int ext4_releasepage(struct page *page, gfp_t wait)
1669 {
1670         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1671
1672         WARN_ON(PageChecked(page));
1673         if (!page_has_buffers(page))
1674                 return 0;
1675         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1676 }
1677
1678 /*
1679  * If the O_DIRECT write will extend the file then add this inode to the
1680  * orphan list.  So recovery will truncate it back to the original size
1681  * if the machine crashes during the write.
1682  *
1683  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1684  * crashes then stale disk data _may_ be exposed inside the file.
1685  */
1686 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1687                         const struct iovec *iov, loff_t offset,
1688                         unsigned long nr_segs)
1689 {
1690         struct file *file = iocb->ki_filp;
1691         struct inode *inode = file->f_mapping->host;
1692         struct ext4_inode_info *ei = EXT4_I(inode);
1693         handle_t *handle = NULL;
1694         ssize_t ret;
1695         int orphan = 0;
1696         size_t count = iov_length(iov, nr_segs);
1697
1698         if (rw == WRITE) {
1699                 loff_t final_size = offset + count;
1700
1701                 handle = ext4_journal_start(inode, DIO_CREDITS);
1702                 if (IS_ERR(handle)) {
1703                         ret = PTR_ERR(handle);
1704                         goto out;
1705                 }
1706                 if (final_size > inode->i_size) {
1707                         ret = ext4_orphan_add(handle, inode);
1708                         if (ret)
1709                                 goto out_stop;
1710                         orphan = 1;
1711                         ei->i_disksize = inode->i_size;
1712                 }
1713         }
1714
1715         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1716                                  offset, nr_segs,
1717                                  ext4_get_block, NULL);
1718
1719         /*
1720          * Reacquire the handle: ext4_get_block() can restart the transaction
1721          */
1722         handle = ext4_journal_current_handle();
1723
1724 out_stop:
1725         if (handle) {
1726                 int err;
1727
1728                 if (orphan && inode->i_nlink)
1729                         ext4_orphan_del(handle, inode);
1730                 if (orphan && ret > 0) {
1731                         loff_t end = offset + ret;
1732                         if (end > inode->i_size) {
1733                                 ei->i_disksize = end;
1734                                 i_size_write(inode, end);
1735                                 /*
1736                                  * We're going to return a positive `ret'
1737                                  * here due to non-zero-length I/O, so there's
1738                                  * no way of reporting error returns from
1739                                  * ext4_mark_inode_dirty() to userspace.  So
1740                                  * ignore it.
1741                                  */
1742                                 ext4_mark_inode_dirty(handle, inode);
1743                         }
1744                 }
1745                 err = ext4_journal_stop(handle);
1746                 if (ret == 0)
1747                         ret = err;
1748         }
1749 out:
1750         return ret;
1751 }
1752
1753 /*
1754  * Pages can be marked dirty completely asynchronously from ext4's journalling
1755  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1756  * much here because ->set_page_dirty is called under VFS locks.  The page is
1757  * not necessarily locked.
1758  *
1759  * We cannot just dirty the page and leave attached buffers clean, because the
1760  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1761  * or jbddirty because all the journalling code will explode.
1762  *
1763  * So what we do is to mark the page "pending dirty" and next time writepage
1764  * is called, propagate that into the buffers appropriately.
1765  */
1766 static int ext4_journalled_set_page_dirty(struct page *page)
1767 {
1768         SetPageChecked(page);
1769         return __set_page_dirty_nobuffers(page);
1770 }
1771
1772 static const struct address_space_operations ext4_ordered_aops = {
1773         .readpage       = ext4_readpage,
1774         .readpages      = ext4_readpages,
1775         .writepage      = ext4_ordered_writepage,
1776         .sync_page      = block_sync_page,
1777         .write_begin    = ext4_write_begin,
1778         .write_end      = ext4_ordered_write_end,
1779         .bmap           = ext4_bmap,
1780         .invalidatepage = ext4_invalidatepage,
1781         .releasepage    = ext4_releasepage,
1782         .direct_IO      = ext4_direct_IO,
1783         .migratepage    = buffer_migrate_page,
1784 };
1785
1786 static const struct address_space_operations ext4_writeback_aops = {
1787         .readpage       = ext4_readpage,
1788         .readpages      = ext4_readpages,
1789         .writepage      = ext4_writeback_writepage,
1790         .sync_page      = block_sync_page,
1791         .write_begin    = ext4_write_begin,
1792         .write_end      = ext4_writeback_write_end,
1793         .bmap           = ext4_bmap,
1794         .invalidatepage = ext4_invalidatepage,
1795         .releasepage    = ext4_releasepage,
1796         .direct_IO      = ext4_direct_IO,
1797         .migratepage    = buffer_migrate_page,
1798 };
1799
1800 static const struct address_space_operations ext4_journalled_aops = {
1801         .readpage       = ext4_readpage,
1802         .readpages      = ext4_readpages,
1803         .writepage      = ext4_journalled_writepage,
1804         .sync_page      = block_sync_page,
1805         .write_begin    = ext4_write_begin,
1806         .write_end      = ext4_journalled_write_end,
1807         .set_page_dirty = ext4_journalled_set_page_dirty,
1808         .bmap           = ext4_bmap,
1809         .invalidatepage = ext4_invalidatepage,
1810         .releasepage    = ext4_releasepage,
1811 };
1812
1813 void ext4_set_aops(struct inode *inode)
1814 {
1815         if (ext4_should_order_data(inode))
1816                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1817         else if (ext4_should_writeback_data(inode))
1818                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1819         else
1820                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1821 }
1822
1823 /*
1824  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1825  * up to the end of the block which corresponds to `from'.
1826  * This required during truncate. We need to physically zero the tail end
1827  * of that block so it doesn't yield old data if the file is later grown.
1828  */
1829 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1830                 struct address_space *mapping, loff_t from)
1831 {
1832         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1833         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1834         unsigned blocksize, length, pos;
1835         ext4_lblk_t iblock;
1836         struct inode *inode = mapping->host;
1837         struct buffer_head *bh;
1838         int err = 0;
1839
1840         blocksize = inode->i_sb->s_blocksize;
1841         length = blocksize - (offset & (blocksize - 1));
1842         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1843
1844         /*
1845          * For "nobh" option,  we can only work if we don't need to
1846          * read-in the page - otherwise we create buffers to do the IO.
1847          */
1848         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1849              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1850                 zero_user_page(page, offset, length, KM_USER0);
1851                 set_page_dirty(page);
1852                 goto unlock;
1853         }
1854
1855         if (!page_has_buffers(page))
1856                 create_empty_buffers(page, blocksize, 0);
1857
1858         /* Find the buffer that contains "offset" */
1859         bh = page_buffers(page);
1860         pos = blocksize;
1861         while (offset >= pos) {
1862                 bh = bh->b_this_page;
1863                 iblock++;
1864                 pos += blocksize;
1865         }
1866
1867         err = 0;
1868         if (buffer_freed(bh)) {
1869                 BUFFER_TRACE(bh, "freed: skip");
1870                 goto unlock;
1871         }
1872
1873         if (!buffer_mapped(bh)) {
1874                 BUFFER_TRACE(bh, "unmapped");
1875                 ext4_get_block(inode, iblock, bh, 0);
1876                 /* unmapped? It's a hole - nothing to do */
1877                 if (!buffer_mapped(bh)) {
1878                         BUFFER_TRACE(bh, "still unmapped");
1879                         goto unlock;
1880                 }
1881         }
1882
1883         /* Ok, it's mapped. Make sure it's up-to-date */
1884         if (PageUptodate(page))
1885                 set_buffer_uptodate(bh);
1886
1887         if (!buffer_uptodate(bh)) {
1888                 err = -EIO;
1889                 ll_rw_block(READ, 1, &bh);
1890                 wait_on_buffer(bh);
1891                 /* Uhhuh. Read error. Complain and punt. */
1892                 if (!buffer_uptodate(bh))
1893                         goto unlock;
1894         }
1895
1896         if (ext4_should_journal_data(inode)) {
1897                 BUFFER_TRACE(bh, "get write access");
1898                 err = ext4_journal_get_write_access(handle, bh);
1899                 if (err)
1900                         goto unlock;
1901         }
1902
1903         zero_user_page(page, offset, length, KM_USER0);
1904
1905         BUFFER_TRACE(bh, "zeroed end of block");
1906
1907         err = 0;
1908         if (ext4_should_journal_data(inode)) {
1909                 err = ext4_journal_dirty_metadata(handle, bh);
1910         } else {
1911                 if (ext4_should_order_data(inode))
1912                         err = ext4_journal_dirty_data(handle, bh);
1913                 mark_buffer_dirty(bh);
1914         }
1915
1916 unlock:
1917         unlock_page(page);
1918         page_cache_release(page);
1919         return err;
1920 }
1921
1922 /*
1923  * Probably it should be a library function... search for first non-zero word
1924  * or memcmp with zero_page, whatever is better for particular architecture.
1925  * Linus?
1926  */
1927 static inline int all_zeroes(__le32 *p, __le32 *q)
1928 {
1929         while (p < q)
1930                 if (*p++)
1931                         return 0;
1932         return 1;
1933 }
1934
1935 /**
1936  *      ext4_find_shared - find the indirect blocks for partial truncation.
1937  *      @inode:   inode in question
1938  *      @depth:   depth of the affected branch
1939  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1940  *      @chain:   place to store the pointers to partial indirect blocks
1941  *      @top:     place to the (detached) top of branch
1942  *
1943  *      This is a helper function used by ext4_truncate().
1944  *
1945  *      When we do truncate() we may have to clean the ends of several
1946  *      indirect blocks but leave the blocks themselves alive. Block is
1947  *      partially truncated if some data below the new i_size is refered
1948  *      from it (and it is on the path to the first completely truncated
1949  *      data block, indeed).  We have to free the top of that path along
1950  *      with everything to the right of the path. Since no allocation
1951  *      past the truncation point is possible until ext4_truncate()
1952  *      finishes, we may safely do the latter, but top of branch may
1953  *      require special attention - pageout below the truncation point
1954  *      might try to populate it.
1955  *
1956  *      We atomically detach the top of branch from the tree, store the
1957  *      block number of its root in *@top, pointers to buffer_heads of
1958  *      partially truncated blocks - in @chain[].bh and pointers to
1959  *      their last elements that should not be removed - in
1960  *      @chain[].p. Return value is the pointer to last filled element
1961  *      of @chain.
1962  *
1963  *      The work left to caller to do the actual freeing of subtrees:
1964  *              a) free the subtree starting from *@top
1965  *              b) free the subtrees whose roots are stored in
1966  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1967  *              c) free the subtrees growing from the inode past the @chain[0].
1968  *                      (no partially truncated stuff there).  */
1969
1970 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1971                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1972 {
1973         Indirect *partial, *p;
1974         int k, err;
1975
1976         *top = 0;
1977         /* Make k index the deepest non-null offest + 1 */
1978         for (k = depth; k > 1 && !offsets[k-1]; k--)
1979                 ;
1980         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1981         /* Writer: pointers */
1982         if (!partial)
1983                 partial = chain + k-1;
1984         /*
1985          * If the branch acquired continuation since we've looked at it -
1986          * fine, it should all survive and (new) top doesn't belong to us.
1987          */
1988         if (!partial->key && *partial->p)
1989                 /* Writer: end */
1990                 goto no_top;
1991         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1992                 ;
1993         /*
1994          * OK, we've found the last block that must survive. The rest of our
1995          * branch should be detached before unlocking. However, if that rest
1996          * of branch is all ours and does not grow immediately from the inode
1997          * it's easier to cheat and just decrement partial->p.
1998          */
1999         if (p == chain + k - 1 && p > chain) {
2000                 p->p--;
2001         } else {
2002                 *top = *p->p;
2003                 /* Nope, don't do this in ext4.  Must leave the tree intact */
2004 #if 0
2005                 *p->p = 0;
2006 #endif
2007         }
2008         /* Writer: end */
2009
2010         while(partial > p) {
2011                 brelse(partial->bh);
2012                 partial--;
2013         }
2014 no_top:
2015         return partial;
2016 }
2017
2018 /*
2019  * Zero a number of block pointers in either an inode or an indirect block.
2020  * If we restart the transaction we must again get write access to the
2021  * indirect block for further modification.
2022  *
2023  * We release `count' blocks on disk, but (last - first) may be greater
2024  * than `count' because there can be holes in there.
2025  */
2026 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2027                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2028                 unsigned long count, __le32 *first, __le32 *last)
2029 {
2030         __le32 *p;
2031         if (try_to_extend_transaction(handle, inode)) {
2032                 if (bh) {
2033                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2034                         ext4_journal_dirty_metadata(handle, bh);
2035                 }
2036                 ext4_mark_inode_dirty(handle, inode);
2037                 ext4_journal_test_restart(handle, inode);
2038                 if (bh) {
2039                         BUFFER_TRACE(bh, "retaking write access");
2040                         ext4_journal_get_write_access(handle, bh);
2041                 }
2042         }
2043
2044         /*
2045          * Any buffers which are on the journal will be in memory. We find
2046          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2047          * on them.  We've already detached each block from the file, so
2048          * bforget() in jbd2_journal_forget() should be safe.
2049          *
2050          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2051          */
2052         for (p = first; p < last; p++) {
2053                 u32 nr = le32_to_cpu(*p);
2054                 if (nr) {
2055                         struct buffer_head *bh;
2056
2057                         *p = 0;
2058                         bh = sb_find_get_block(inode->i_sb, nr);
2059                         ext4_forget(handle, 0, inode, bh, nr);
2060                 }
2061         }
2062
2063         ext4_free_blocks(handle, inode, block_to_free, count);
2064 }
2065
2066 /**
2067  * ext4_free_data - free a list of data blocks
2068  * @handle:     handle for this transaction
2069  * @inode:      inode we are dealing with
2070  * @this_bh:    indirect buffer_head which contains *@first and *@last
2071  * @first:      array of block numbers
2072  * @last:       points immediately past the end of array
2073  *
2074  * We are freeing all blocks refered from that array (numbers are stored as
2075  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2076  *
2077  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2078  * blocks are contiguous then releasing them at one time will only affect one
2079  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2080  * actually use a lot of journal space.
2081  *
2082  * @this_bh will be %NULL if @first and @last point into the inode's direct
2083  * block pointers.
2084  */
2085 static void ext4_free_data(handle_t *handle, struct inode *inode,
2086                            struct buffer_head *this_bh,
2087                            __le32 *first, __le32 *last)
2088 {
2089         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2090         unsigned long count = 0;            /* Number of blocks in the run */
2091         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2092                                                corresponding to
2093                                                block_to_free */
2094         ext4_fsblk_t nr;                    /* Current block # */
2095         __le32 *p;                          /* Pointer into inode/ind
2096                                                for current block */
2097         int err;
2098
2099         if (this_bh) {                          /* For indirect block */
2100                 BUFFER_TRACE(this_bh, "get_write_access");
2101                 err = ext4_journal_get_write_access(handle, this_bh);
2102                 /* Important: if we can't update the indirect pointers
2103                  * to the blocks, we can't free them. */
2104                 if (err)
2105                         return;
2106         }
2107
2108         for (p = first; p < last; p++) {
2109                 nr = le32_to_cpu(*p);
2110                 if (nr) {
2111                         /* accumulate blocks to free if they're contiguous */
2112                         if (count == 0) {
2113                                 block_to_free = nr;
2114                                 block_to_free_p = p;
2115                                 count = 1;
2116                         } else if (nr == block_to_free + count) {
2117                                 count++;
2118                         } else {
2119                                 ext4_clear_blocks(handle, inode, this_bh,
2120                                                   block_to_free,
2121                                                   count, block_to_free_p, p);
2122                                 block_to_free = nr;
2123                                 block_to_free_p = p;
2124                                 count = 1;
2125                         }
2126                 }
2127         }
2128
2129         if (count > 0)
2130                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2131                                   count, block_to_free_p, p);
2132
2133         if (this_bh) {
2134                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2135                 ext4_journal_dirty_metadata(handle, this_bh);
2136         }
2137 }
2138
2139 /**
2140  *      ext4_free_branches - free an array of branches
2141  *      @handle: JBD handle for this transaction
2142  *      @inode: inode we are dealing with
2143  *      @parent_bh: the buffer_head which contains *@first and *@last
2144  *      @first: array of block numbers
2145  *      @last:  pointer immediately past the end of array
2146  *      @depth: depth of the branches to free
2147  *
2148  *      We are freeing all blocks refered from these branches (numbers are
2149  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2150  *      appropriately.
2151  */
2152 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2153                                struct buffer_head *parent_bh,
2154                                __le32 *first, __le32 *last, int depth)
2155 {
2156         ext4_fsblk_t nr;
2157         __le32 *p;
2158
2159         if (is_handle_aborted(handle))
2160                 return;
2161
2162         if (depth--) {
2163                 struct buffer_head *bh;
2164                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2165                 p = last;
2166                 while (--p >= first) {
2167                         nr = le32_to_cpu(*p);
2168                         if (!nr)
2169                                 continue;               /* A hole */
2170
2171                         /* Go read the buffer for the next level down */
2172                         bh = sb_bread(inode->i_sb, nr);
2173
2174                         /*
2175                          * A read failure? Report error and clear slot
2176                          * (should be rare).
2177                          */
2178                         if (!bh) {
2179                                 ext4_error(inode->i_sb, "ext4_free_branches",
2180                                            "Read failure, inode=%lu, block=%llu",
2181                                            inode->i_ino, nr);
2182                                 continue;
2183                         }
2184
2185                         /* This zaps the entire block.  Bottom up. */
2186                         BUFFER_TRACE(bh, "free child branches");
2187                         ext4_free_branches(handle, inode, bh,
2188                                            (__le32*)bh->b_data,
2189                                            (__le32*)bh->b_data + addr_per_block,
2190                                            depth);
2191
2192                         /*
2193                          * We've probably journalled the indirect block several
2194                          * times during the truncate.  But it's no longer
2195                          * needed and we now drop it from the transaction via
2196                          * jbd2_journal_revoke().
2197                          *
2198                          * That's easy if it's exclusively part of this
2199                          * transaction.  But if it's part of the committing
2200                          * transaction then jbd2_journal_forget() will simply
2201                          * brelse() it.  That means that if the underlying
2202                          * block is reallocated in ext4_get_block(),
2203                          * unmap_underlying_metadata() will find this block
2204                          * and will try to get rid of it.  damn, damn.
2205                          *
2206                          * If this block has already been committed to the
2207                          * journal, a revoke record will be written.  And
2208                          * revoke records must be emitted *before* clearing
2209                          * this block's bit in the bitmaps.
2210                          */
2211                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2212
2213                         /*
2214                          * Everything below this this pointer has been
2215                          * released.  Now let this top-of-subtree go.
2216                          *
2217                          * We want the freeing of this indirect block to be
2218                          * atomic in the journal with the updating of the
2219                          * bitmap block which owns it.  So make some room in
2220                          * the journal.
2221                          *
2222                          * We zero the parent pointer *after* freeing its
2223                          * pointee in the bitmaps, so if extend_transaction()
2224                          * for some reason fails to put the bitmap changes and
2225                          * the release into the same transaction, recovery
2226                          * will merely complain about releasing a free block,
2227                          * rather than leaking blocks.
2228                          */
2229                         if (is_handle_aborted(handle))
2230                                 return;
2231                         if (try_to_extend_transaction(handle, inode)) {
2232                                 ext4_mark_inode_dirty(handle, inode);
2233                                 ext4_journal_test_restart(handle, inode);
2234                         }
2235
2236                         ext4_free_blocks(handle, inode, nr, 1);
2237
2238                         if (parent_bh) {
2239                                 /*
2240                                  * The block which we have just freed is
2241                                  * pointed to by an indirect block: journal it
2242                                  */
2243                                 BUFFER_TRACE(parent_bh, "get_write_access");
2244                                 if (!ext4_journal_get_write_access(handle,
2245                                                                    parent_bh)){
2246                                         *p = 0;
2247                                         BUFFER_TRACE(parent_bh,
2248                                         "call ext4_journal_dirty_metadata");
2249                                         ext4_journal_dirty_metadata(handle,
2250                                                                     parent_bh);
2251                                 }
2252                         }
2253                 }
2254         } else {
2255                 /* We have reached the bottom of the tree. */
2256                 BUFFER_TRACE(parent_bh, "free data blocks");
2257                 ext4_free_data(handle, inode, parent_bh, first, last);
2258         }
2259 }
2260
2261 /*
2262  * ext4_truncate()
2263  *
2264  * We block out ext4_get_block() block instantiations across the entire
2265  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2266  * simultaneously on behalf of the same inode.
2267  *
2268  * As we work through the truncate and commmit bits of it to the journal there
2269  * is one core, guiding principle: the file's tree must always be consistent on
2270  * disk.  We must be able to restart the truncate after a crash.
2271  *
2272  * The file's tree may be transiently inconsistent in memory (although it
2273  * probably isn't), but whenever we close off and commit a journal transaction,
2274  * the contents of (the filesystem + the journal) must be consistent and
2275  * restartable.  It's pretty simple, really: bottom up, right to left (although
2276  * left-to-right works OK too).
2277  *
2278  * Note that at recovery time, journal replay occurs *before* the restart of
2279  * truncate against the orphan inode list.
2280  *
2281  * The committed inode has the new, desired i_size (which is the same as
2282  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2283  * that this inode's truncate did not complete and it will again call
2284  * ext4_truncate() to have another go.  So there will be instantiated blocks
2285  * to the right of the truncation point in a crashed ext4 filesystem.  But
2286  * that's fine - as long as they are linked from the inode, the post-crash
2287  * ext4_truncate() run will find them and release them.
2288  */
2289 void ext4_truncate(struct inode *inode)
2290 {
2291         handle_t *handle;
2292         struct ext4_inode_info *ei = EXT4_I(inode);
2293         __le32 *i_data = ei->i_data;
2294         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2295         struct address_space *mapping = inode->i_mapping;
2296         ext4_lblk_t offsets[4];
2297         Indirect chain[4];
2298         Indirect *partial;
2299         __le32 nr = 0;
2300         int n;
2301         ext4_lblk_t last_block;
2302         unsigned blocksize = inode->i_sb->s_blocksize;
2303         struct page *page;
2304
2305         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2306             S_ISLNK(inode->i_mode)))
2307                 return;
2308         if (ext4_inode_is_fast_symlink(inode))
2309                 return;
2310         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2311                 return;
2312
2313         /*
2314          * We have to lock the EOF page here, because lock_page() nests
2315          * outside jbd2_journal_start().
2316          */
2317         if ((inode->i_size & (blocksize - 1)) == 0) {
2318                 /* Block boundary? Nothing to do */
2319                 page = NULL;
2320         } else {
2321                 page = grab_cache_page(mapping,
2322                                 inode->i_size >> PAGE_CACHE_SHIFT);
2323                 if (!page)
2324                         return;
2325         }
2326
2327         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2328                 return ext4_ext_truncate(inode, page);
2329
2330         handle = start_transaction(inode);
2331         if (IS_ERR(handle)) {
2332                 if (page) {
2333                         clear_highpage(page);
2334                         flush_dcache_page(page);
2335                         unlock_page(page);
2336                         page_cache_release(page);
2337                 }
2338                 return;         /* AKPM: return what? */
2339         }
2340
2341         last_block = (inode->i_size + blocksize-1)
2342                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2343
2344         if (page)
2345                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2346
2347         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2348         if (n == 0)
2349                 goto out_stop;  /* error */
2350
2351         /*
2352          * OK.  This truncate is going to happen.  We add the inode to the
2353          * orphan list, so that if this truncate spans multiple transactions,
2354          * and we crash, we will resume the truncate when the filesystem
2355          * recovers.  It also marks the inode dirty, to catch the new size.
2356          *
2357          * Implication: the file must always be in a sane, consistent
2358          * truncatable state while each transaction commits.
2359          */
2360         if (ext4_orphan_add(handle, inode))
2361                 goto out_stop;
2362
2363         /*
2364          * The orphan list entry will now protect us from any crash which
2365          * occurs before the truncate completes, so it is now safe to propagate
2366          * the new, shorter inode size (held for now in i_size) into the
2367          * on-disk inode. We do this via i_disksize, which is the value which
2368          * ext4 *really* writes onto the disk inode.
2369          */
2370         ei->i_disksize = inode->i_size;
2371
2372         /*
2373          * From here we block out all ext4_get_block() callers who want to
2374          * modify the block allocation tree.
2375          */
2376         mutex_lock(&ei->truncate_mutex);
2377
2378         if (n == 1) {           /* direct blocks */
2379                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2380                                i_data + EXT4_NDIR_BLOCKS);
2381                 goto do_indirects;
2382         }
2383
2384         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2385         /* Kill the top of shared branch (not detached) */
2386         if (nr) {
2387                 if (partial == chain) {
2388                         /* Shared branch grows from the inode */
2389                         ext4_free_branches(handle, inode, NULL,
2390                                            &nr, &nr+1, (chain+n-1) - partial);
2391                         *partial->p = 0;
2392                         /*
2393                          * We mark the inode dirty prior to restart,
2394                          * and prior to stop.  No need for it here.
2395                          */
2396                 } else {
2397                         /* Shared branch grows from an indirect block */
2398                         BUFFER_TRACE(partial->bh, "get_write_access");
2399                         ext4_free_branches(handle, inode, partial->bh,
2400                                         partial->p,
2401                                         partial->p+1, (chain+n-1) - partial);
2402                 }
2403         }
2404         /* Clear the ends of indirect blocks on the shared branch */
2405         while (partial > chain) {
2406                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2407                                    (__le32*)partial->bh->b_data+addr_per_block,
2408                                    (chain+n-1) - partial);
2409                 BUFFER_TRACE(partial->bh, "call brelse");
2410                 brelse (partial->bh);
2411                 partial--;
2412         }
2413 do_indirects:
2414         /* Kill the remaining (whole) subtrees */
2415         switch (offsets[0]) {
2416         default:
2417                 nr = i_data[EXT4_IND_BLOCK];
2418                 if (nr) {
2419                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2420                         i_data[EXT4_IND_BLOCK] = 0;
2421                 }
2422         case EXT4_IND_BLOCK:
2423                 nr = i_data[EXT4_DIND_BLOCK];
2424                 if (nr) {
2425                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2426                         i_data[EXT4_DIND_BLOCK] = 0;
2427                 }
2428         case EXT4_DIND_BLOCK:
2429                 nr = i_data[EXT4_TIND_BLOCK];
2430                 if (nr) {
2431                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2432                         i_data[EXT4_TIND_BLOCK] = 0;
2433                 }
2434         case EXT4_TIND_BLOCK:
2435                 ;
2436         }
2437
2438         ext4_discard_reservation(inode);
2439
2440         mutex_unlock(&ei->truncate_mutex);
2441         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2442         ext4_mark_inode_dirty(handle, inode);
2443
2444         /*
2445          * In a multi-transaction truncate, we only make the final transaction
2446          * synchronous
2447          */
2448         if (IS_SYNC(inode))
2449                 handle->h_sync = 1;
2450 out_stop:
2451         /*
2452          * If this was a simple ftruncate(), and the file will remain alive
2453          * then we need to clear up the orphan record which we created above.
2454          * However, if this was a real unlink then we were called by
2455          * ext4_delete_inode(), and we allow that function to clean up the
2456          * orphan info for us.
2457          */
2458         if (inode->i_nlink)
2459                 ext4_orphan_del(handle, inode);
2460
2461         ext4_journal_stop(handle);
2462 }
2463
2464 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2465                 unsigned long ino, struct ext4_iloc *iloc)
2466 {
2467         unsigned long desc, group_desc;
2468         ext4_group_t block_group;
2469         unsigned long offset;
2470         ext4_fsblk_t block;
2471         struct buffer_head *bh;
2472         struct ext4_group_desc * gdp;
2473
2474         if (!ext4_valid_inum(sb, ino)) {
2475                 /*
2476                  * This error is already checked for in namei.c unless we are
2477                  * looking at an NFS filehandle, in which case no error
2478                  * report is needed
2479                  */
2480                 return 0;
2481         }
2482
2483         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2484         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2485                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2486                 return 0;
2487         }
2488         smp_rmb();
2489         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2490         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2491         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2492         if (!bh) {
2493                 ext4_error (sb, "ext4_get_inode_block",
2494                             "Descriptor not loaded");
2495                 return 0;
2496         }
2497
2498         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2499                 desc * EXT4_DESC_SIZE(sb));
2500         /*
2501          * Figure out the offset within the block group inode table
2502          */
2503         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2504                 EXT4_INODE_SIZE(sb);
2505         block = ext4_inode_table(sb, gdp) +
2506                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2507
2508         iloc->block_group = block_group;
2509         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2510         return block;
2511 }
2512
2513 /*
2514  * ext4_get_inode_loc returns with an extra refcount against the inode's
2515  * underlying buffer_head on success. If 'in_mem' is true, we have all
2516  * data in memory that is needed to recreate the on-disk version of this
2517  * inode.
2518  */
2519 static int __ext4_get_inode_loc(struct inode *inode,
2520                                 struct ext4_iloc *iloc, int in_mem)
2521 {
2522         ext4_fsblk_t block;
2523         struct buffer_head *bh;
2524
2525         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2526         if (!block)
2527                 return -EIO;
2528
2529         bh = sb_getblk(inode->i_sb, block);
2530         if (!bh) {
2531                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2532                                 "unable to read inode block - "
2533                                 "inode=%lu, block=%llu",
2534                                  inode->i_ino, block);
2535                 return -EIO;
2536         }
2537         if (!buffer_uptodate(bh)) {
2538                 lock_buffer(bh);
2539                 if (buffer_uptodate(bh)) {
2540                         /* someone brought it uptodate while we waited */
2541                         unlock_buffer(bh);
2542                         goto has_buffer;
2543                 }
2544
2545                 /*
2546                  * If we have all information of the inode in memory and this
2547                  * is the only valid inode in the block, we need not read the
2548                  * block.
2549                  */
2550                 if (in_mem) {
2551                         struct buffer_head *bitmap_bh;
2552                         struct ext4_group_desc *desc;
2553                         int inodes_per_buffer;
2554                         int inode_offset, i;
2555                         ext4_group_t block_group;
2556                         int start;
2557
2558                         block_group = (inode->i_ino - 1) /
2559                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2560                         inodes_per_buffer = bh->b_size /
2561                                 EXT4_INODE_SIZE(inode->i_sb);
2562                         inode_offset = ((inode->i_ino - 1) %
2563                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2564                         start = inode_offset & ~(inodes_per_buffer - 1);
2565
2566                         /* Is the inode bitmap in cache? */
2567                         desc = ext4_get_group_desc(inode->i_sb,
2568                                                 block_group, NULL);
2569                         if (!desc)
2570                                 goto make_io;
2571
2572                         bitmap_bh = sb_getblk(inode->i_sb,
2573                                 ext4_inode_bitmap(inode->i_sb, desc));
2574                         if (!bitmap_bh)
2575                                 goto make_io;
2576
2577                         /*
2578                          * If the inode bitmap isn't in cache then the
2579                          * optimisation may end up performing two reads instead
2580                          * of one, so skip it.
2581                          */
2582                         if (!buffer_uptodate(bitmap_bh)) {
2583                                 brelse(bitmap_bh);
2584                                 goto make_io;
2585                         }
2586                         for (i = start; i < start + inodes_per_buffer; i++) {
2587                                 if (i == inode_offset)
2588                                         continue;
2589                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2590                                         break;
2591                         }
2592                         brelse(bitmap_bh);
2593                         if (i == start + inodes_per_buffer) {
2594                                 /* all other inodes are free, so skip I/O */
2595                                 memset(bh->b_data, 0, bh->b_size);
2596                                 set_buffer_uptodate(bh);
2597                                 unlock_buffer(bh);
2598                                 goto has_buffer;
2599                         }
2600                 }
2601
2602 make_io:
2603                 /*
2604                  * There are other valid inodes in the buffer, this inode
2605                  * has in-inode xattrs, or we don't have this inode in memory.
2606                  * Read the block from disk.
2607                  */
2608                 get_bh(bh);
2609                 bh->b_end_io = end_buffer_read_sync;
2610                 submit_bh(READ_META, bh);
2611                 wait_on_buffer(bh);
2612                 if (!buffer_uptodate(bh)) {
2613                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2614                                         "unable to read inode block - "
2615                                         "inode=%lu, block=%llu",
2616                                         inode->i_ino, block);
2617                         brelse(bh);
2618                         return -EIO;
2619                 }
2620         }
2621 has_buffer:
2622         iloc->bh = bh;
2623         return 0;
2624 }
2625
2626 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2627 {
2628         /* We have all inode data except xattrs in memory here. */
2629         return __ext4_get_inode_loc(inode, iloc,
2630                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2631 }
2632
2633 void ext4_set_inode_flags(struct inode *inode)
2634 {
2635         unsigned int flags = EXT4_I(inode)->i_flags;
2636
2637         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2638         if (flags & EXT4_SYNC_FL)
2639                 inode->i_flags |= S_SYNC;
2640         if (flags & EXT4_APPEND_FL)
2641                 inode->i_flags |= S_APPEND;
2642         if (flags & EXT4_IMMUTABLE_FL)
2643                 inode->i_flags |= S_IMMUTABLE;
2644         if (flags & EXT4_NOATIME_FL)
2645                 inode->i_flags |= S_NOATIME;
2646         if (flags & EXT4_DIRSYNC_FL)
2647                 inode->i_flags |= S_DIRSYNC;
2648 }
2649
2650 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2651 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2652 {
2653         unsigned int flags = ei->vfs_inode.i_flags;
2654
2655         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2656                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2657         if (flags & S_SYNC)
2658                 ei->i_flags |= EXT4_SYNC_FL;
2659         if (flags & S_APPEND)
2660                 ei->i_flags |= EXT4_APPEND_FL;
2661         if (flags & S_IMMUTABLE)
2662                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2663         if (flags & S_NOATIME)
2664                 ei->i_flags |= EXT4_NOATIME_FL;
2665         if (flags & S_DIRSYNC)
2666                 ei->i_flags |= EXT4_DIRSYNC_FL;
2667 }
2668
2669 void ext4_read_inode(struct inode * inode)
2670 {
2671         struct ext4_iloc iloc;
2672         struct ext4_inode *raw_inode;
2673         struct ext4_inode_info *ei = EXT4_I(inode);
2674         struct buffer_head *bh;
2675         int block;
2676
2677 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2678         ei->i_acl = EXT4_ACL_NOT_CACHED;
2679         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2680 #endif
2681         ei->i_block_alloc_info = NULL;
2682
2683         if (__ext4_get_inode_loc(inode, &iloc, 0))
2684                 goto bad_inode;
2685         bh = iloc.bh;
2686         raw_inode = ext4_raw_inode(&iloc);
2687         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2688         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2689         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2690         if(!(test_opt (inode->i_sb, NO_UID32))) {
2691                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2692                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2693         }
2694         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2695         inode->i_size = le32_to_cpu(raw_inode->i_size);
2696
2697         ei->i_state = 0;
2698         ei->i_dir_start_lookup = 0;
2699         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2700         /* We now have enough fields to check if the inode was active or not.
2701          * This is needed because nfsd might try to access dead inodes
2702          * the test is that same one that e2fsck uses
2703          * NeilBrown 1999oct15
2704          */
2705         if (inode->i_nlink == 0) {
2706                 if (inode->i_mode == 0 ||
2707                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2708                         /* this inode is deleted */
2709                         brelse (bh);
2710                         goto bad_inode;
2711                 }
2712                 /* The only unlinked inodes we let through here have
2713                  * valid i_mode and are being read by the orphan
2714                  * recovery code: that's fine, we're about to complete
2715                  * the process of deleting those. */
2716         }
2717         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2718         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2719         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2720         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2721             cpu_to_le32(EXT4_OS_HURD))
2722                 ei->i_file_acl |=
2723                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2724         if (!S_ISREG(inode->i_mode)) {
2725                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2726         } else {
2727                 inode->i_size |=
2728                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2729         }
2730         ei->i_disksize = inode->i_size;
2731         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2732         ei->i_block_group = iloc.block_group;
2733         /*
2734          * NOTE! The in-memory inode i_data array is in little-endian order
2735          * even on big-endian machines: we do NOT byteswap the block numbers!
2736          */
2737         for (block = 0; block < EXT4_N_BLOCKS; block++)
2738                 ei->i_data[block] = raw_inode->i_block[block];
2739         INIT_LIST_HEAD(&ei->i_orphan);
2740
2741         if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2742             EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2743                 /*
2744                  * When mke2fs creates big inodes it does not zero out
2745                  * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2746                  * so ignore those first few inodes.
2747                  */
2748                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2749                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2750                     EXT4_INODE_SIZE(inode->i_sb)) {
2751                         brelse (bh);
2752                         goto bad_inode;
2753                 }
2754                 if (ei->i_extra_isize == 0) {
2755                         /* The extra space is currently unused. Use it. */
2756                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2757                                             EXT4_GOOD_OLD_INODE_SIZE;
2758                 } else {
2759                         __le32 *magic = (void *)raw_inode +
2760                                         EXT4_GOOD_OLD_INODE_SIZE +
2761                                         ei->i_extra_isize;
2762                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2763                                  ei->i_state |= EXT4_STATE_XATTR;
2764                 }
2765         } else
2766                 ei->i_extra_isize = 0;
2767
2768         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2769         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2770         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2771         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2772
2773         if (S_ISREG(inode->i_mode)) {
2774                 inode->i_op = &ext4_file_inode_operations;
2775                 inode->i_fop = &ext4_file_operations;
2776                 ext4_set_aops(inode);
2777         } else if (S_ISDIR(inode->i_mode)) {
2778                 inode->i_op = &ext4_dir_inode_operations;
2779                 inode->i_fop = &ext4_dir_operations;
2780         } else if (S_ISLNK(inode->i_mode)) {
2781                 if (ext4_inode_is_fast_symlink(inode))
2782                         inode->i_op = &ext4_fast_symlink_inode_operations;
2783                 else {
2784                         inode->i_op = &ext4_symlink_inode_operations;
2785                         ext4_set_aops(inode);
2786                 }
2787         } else {
2788                 inode->i_op = &ext4_special_inode_operations;
2789                 if (raw_inode->i_block[0])
2790                         init_special_inode(inode, inode->i_mode,
2791                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2792                 else
2793                         init_special_inode(inode, inode->i_mode,
2794                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2795         }
2796         brelse (iloc.bh);
2797         ext4_set_inode_flags(inode);
2798         return;
2799
2800 bad_inode:
2801         make_bad_inode(inode);
2802         return;
2803 }
2804
2805 /*
2806  * Post the struct inode info into an on-disk inode location in the
2807  * buffer-cache.  This gobbles the caller's reference to the
2808  * buffer_head in the inode location struct.
2809  *
2810  * The caller must have write access to iloc->bh.
2811  */
2812 static int ext4_do_update_inode(handle_t *handle,
2813                                 struct inode *inode,
2814                                 struct ext4_iloc *iloc)
2815 {
2816         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2817         struct ext4_inode_info *ei = EXT4_I(inode);
2818         struct buffer_head *bh = iloc->bh;
2819         int err = 0, rc, block;
2820
2821         /* For fields not not tracking in the in-memory inode,
2822          * initialise them to zero for new inodes. */
2823         if (ei->i_state & EXT4_STATE_NEW)
2824                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2825
2826         ext4_get_inode_flags(ei);
2827         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2828         if(!(test_opt(inode->i_sb, NO_UID32))) {
2829                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2830                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2831 /*
2832  * Fix up interoperability with old kernels. Otherwise, old inodes get
2833  * re-used with the upper 16 bits of the uid/gid intact
2834  */
2835                 if(!ei->i_dtime) {
2836                         raw_inode->i_uid_high =
2837                                 cpu_to_le16(high_16_bits(inode->i_uid));
2838                         raw_inode->i_gid_high =
2839                                 cpu_to_le16(high_16_bits(inode->i_gid));
2840                 } else {
2841                         raw_inode->i_uid_high = 0;
2842                         raw_inode->i_gid_high = 0;
2843                 }
2844         } else {
2845                 raw_inode->i_uid_low =
2846                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2847                 raw_inode->i_gid_low =
2848                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2849                 raw_inode->i_uid_high = 0;
2850                 raw_inode->i_gid_high = 0;
2851         }
2852         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2853         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2854
2855         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2856         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2857         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2858         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2859
2860         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2861         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2862         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2863         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2864             cpu_to_le32(EXT4_OS_HURD))
2865                 raw_inode->i_file_acl_high =
2866                         cpu_to_le16(ei->i_file_acl >> 32);
2867         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2868         if (!S_ISREG(inode->i_mode)) {
2869                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2870         } else {
2871                 raw_inode->i_size_high =
2872                         cpu_to_le32(ei->i_disksize >> 32);
2873                 if (ei->i_disksize > 0x7fffffffULL) {
2874                         struct super_block *sb = inode->i_sb;
2875                         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2876                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2877                             EXT4_SB(sb)->s_es->s_rev_level ==
2878                                         cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2879                                /* If this is the first large file
2880                                 * created, add a flag to the superblock.
2881                                 */
2882                                 err = ext4_journal_get_write_access(handle,
2883                                                 EXT4_SB(sb)->s_sbh);
2884                                 if (err)
2885                                         goto out_brelse;
2886                                 ext4_update_dynamic_rev(sb);
2887                                 EXT4_SET_RO_COMPAT_FEATURE(sb,
2888                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2889                                 sb->s_dirt = 1;
2890                                 handle->h_sync = 1;
2891                                 err = ext4_journal_dirty_metadata(handle,
2892                                                 EXT4_SB(sb)->s_sbh);
2893                         }
2894                 }
2895         }
2896         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2897         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2898                 if (old_valid_dev(inode->i_rdev)) {
2899                         raw_inode->i_block[0] =
2900                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2901                         raw_inode->i_block[1] = 0;
2902                 } else {
2903                         raw_inode->i_block[0] = 0;
2904                         raw_inode->i_block[1] =
2905                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2906                         raw_inode->i_block[2] = 0;
2907                 }
2908         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2909                 raw_inode->i_block[block] = ei->i_data[block];
2910
2911         if (ei->i_extra_isize)
2912                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2913
2914         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2915         rc = ext4_journal_dirty_metadata(handle, bh);
2916         if (!err)
2917                 err = rc;
2918         ei->i_state &= ~EXT4_STATE_NEW;
2919
2920 out_brelse:
2921         brelse (bh);
2922         ext4_std_error(inode->i_sb, err);
2923         return err;
2924 }
2925
2926 /*
2927  * ext4_write_inode()
2928  *
2929  * We are called from a few places:
2930  *
2931  * - Within generic_file_write() for O_SYNC files.
2932  *   Here, there will be no transaction running. We wait for any running
2933  *   trasnaction to commit.
2934  *
2935  * - Within sys_sync(), kupdate and such.
2936  *   We wait on commit, if tol to.
2937  *
2938  * - Within prune_icache() (PF_MEMALLOC == true)
2939  *   Here we simply return.  We can't afford to block kswapd on the
2940  *   journal commit.
2941  *
2942  * In all cases it is actually safe for us to return without doing anything,
2943  * because the inode has been copied into a raw inode buffer in
2944  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2945  * knfsd.
2946  *
2947  * Note that we are absolutely dependent upon all inode dirtiers doing the
2948  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2949  * which we are interested.
2950  *
2951  * It would be a bug for them to not do this.  The code:
2952  *
2953  *      mark_inode_dirty(inode)
2954  *      stuff();
2955  *      inode->i_size = expr;
2956  *
2957  * is in error because a kswapd-driven write_inode() could occur while
2958  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2959  * will no longer be on the superblock's dirty inode list.
2960  */
2961 int ext4_write_inode(struct inode *inode, int wait)
2962 {
2963         if (current->flags & PF_MEMALLOC)
2964                 return 0;
2965
2966         if (ext4_journal_current_handle()) {
2967                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2968                 dump_stack();
2969                 return -EIO;
2970         }
2971
2972         if (!wait)
2973                 return 0;
2974
2975         return ext4_force_commit(inode->i_sb);
2976 }
2977
2978 /*
2979  * ext4_setattr()
2980  *
2981  * Called from notify_change.
2982  *
2983  * We want to trap VFS attempts to truncate the file as soon as
2984  * possible.  In particular, we want to make sure that when the VFS
2985  * shrinks i_size, we put the inode on the orphan list and modify
2986  * i_disksize immediately, so that during the subsequent flushing of
2987  * dirty pages and freeing of disk blocks, we can guarantee that any
2988  * commit will leave the blocks being flushed in an unused state on
2989  * disk.  (On recovery, the inode will get truncated and the blocks will
2990  * be freed, so we have a strong guarantee that no future commit will
2991  * leave these blocks visible to the user.)
2992  *
2993  * Called with inode->sem down.
2994  */
2995 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2996 {
2997         struct inode *inode = dentry->d_inode;
2998         int error, rc = 0;
2999         const unsigned int ia_valid = attr->ia_valid;
3000
3001         error = inode_change_ok(inode, attr);
3002         if (error)
3003                 return error;
3004
3005         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3006                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3007                 handle_t *handle;
3008
3009                 /* (user+group)*(old+new) structure, inode write (sb,
3010                  * inode block, ? - but truncate inode update has it) */
3011                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3012                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3013                 if (IS_ERR(handle)) {
3014                         error = PTR_ERR(handle);
3015                         goto err_out;
3016                 }
3017                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3018                 if (error) {
3019                         ext4_journal_stop(handle);
3020                         return error;
3021                 }
3022                 /* Update corresponding info in inode so that everything is in
3023                  * one transaction */
3024                 if (attr->ia_valid & ATTR_UID)
3025                         inode->i_uid = attr->ia_uid;
3026                 if (attr->ia_valid & ATTR_GID)
3027                         inode->i_gid = attr->ia_gid;
3028                 error = ext4_mark_inode_dirty(handle, inode);
3029                 ext4_journal_stop(handle);
3030         }
3031
3032         if (S_ISREG(inode->i_mode) &&
3033             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3034                 handle_t *handle;
3035
3036                 handle = ext4_journal_start(inode, 3);
3037                 if (IS_ERR(handle)) {
3038                         error = PTR_ERR(handle);
3039                         goto err_out;
3040                 }
3041
3042                 error = ext4_orphan_add(handle, inode);
3043                 EXT4_I(inode)->i_disksize = attr->ia_size;
3044                 rc = ext4_mark_inode_dirty(handle, inode);
3045                 if (!error)
3046                         error = rc;
3047                 ext4_journal_stop(handle);
3048         }
3049
3050         rc = inode_setattr(inode, attr);
3051
3052         /* If inode_setattr's call to ext4_truncate failed to get a
3053          * transaction handle at all, we need to clean up the in-core
3054          * orphan list manually. */
3055         if (inode->i_nlink)
3056                 ext4_orphan_del(NULL, inode);
3057
3058         if (!rc && (ia_valid & ATTR_MODE))
3059                 rc = ext4_acl_chmod(inode);
3060
3061 err_out:
3062         ext4_std_error(inode->i_sb, error);
3063         if (!error)
3064                 error = rc;
3065         return error;
3066 }
3067
3068
3069 /*
3070  * How many blocks doth make a writepage()?
3071  *
3072  * With N blocks per page, it may be:
3073  * N data blocks
3074  * 2 indirect block
3075  * 2 dindirect
3076  * 1 tindirect
3077  * N+5 bitmap blocks (from the above)
3078  * N+5 group descriptor summary blocks
3079  * 1 inode block
3080  * 1 superblock.
3081  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3082  *
3083  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3084  *
3085  * With ordered or writeback data it's the same, less the N data blocks.
3086  *
3087  * If the inode's direct blocks can hold an integral number of pages then a
3088  * page cannot straddle two indirect blocks, and we can only touch one indirect
3089  * and dindirect block, and the "5" above becomes "3".
3090  *
3091  * This still overestimates under most circumstances.  If we were to pass the
3092  * start and end offsets in here as well we could do block_to_path() on each
3093  * block and work out the exact number of indirects which are touched.  Pah.
3094  */
3095
3096 int ext4_writepage_trans_blocks(struct inode *inode)
3097 {
3098         int bpp = ext4_journal_blocks_per_page(inode);
3099         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3100         int ret;
3101
3102         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3103                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3104
3105         if (ext4_should_journal_data(inode))
3106                 ret = 3 * (bpp + indirects) + 2;
3107         else
3108                 ret = 2 * (bpp + indirects) + 2;
3109
3110 #ifdef CONFIG_QUOTA
3111         /* We know that structure was already allocated during DQUOT_INIT so
3112          * we will be updating only the data blocks + inodes */
3113         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3114 #endif
3115
3116         return ret;
3117 }
3118
3119 /*
3120  * The caller must have previously called ext4_reserve_inode_write().
3121  * Give this, we know that the caller already has write access to iloc->bh.
3122  */
3123 int ext4_mark_iloc_dirty(handle_t *handle,
3124                 struct inode *inode, struct ext4_iloc *iloc)
3125 {
3126         int err = 0;
3127
3128         /* the do_update_inode consumes one bh->b_count */
3129         get_bh(iloc->bh);
3130
3131         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3132         err = ext4_do_update_inode(handle, inode, iloc);
3133         put_bh(iloc->bh);
3134         return err;
3135 }
3136
3137 /*
3138  * On success, We end up with an outstanding reference count against
3139  * iloc->bh.  This _must_ be cleaned up later.
3140  */
3141
3142 int
3143 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3144                          struct ext4_iloc *iloc)
3145 {
3146         int err = 0;
3147         if (handle) {
3148                 err = ext4_get_inode_loc(inode, iloc);
3149                 if (!err) {
3150                         BUFFER_TRACE(iloc->bh, "get_write_access");
3151                         err = ext4_journal_get_write_access(handle, iloc->bh);
3152                         if (err) {
3153                                 brelse(iloc->bh);
3154                                 iloc->bh = NULL;
3155                         }
3156                 }
3157         }
3158         ext4_std_error(inode->i_sb, err);
3159         return err;
3160 }
3161
3162 /*
3163  * Expand an inode by new_extra_isize bytes.
3164  * Returns 0 on success or negative error number on failure.
3165  */
3166 int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize,
3167                         struct ext4_iloc iloc, handle_t *handle)
3168 {
3169         struct ext4_inode *raw_inode;
3170         struct ext4_xattr_ibody_header *header;
3171         struct ext4_xattr_entry *entry;
3172
3173         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3174                 return 0;
3175
3176         raw_inode = ext4_raw_inode(&iloc);
3177
3178         header = IHDR(inode, raw_inode);
3179         entry = IFIRST(header);
3180
3181         /* No extended attributes present */
3182         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3183                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3184                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3185                         new_extra_isize);
3186                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3187                 return 0;
3188         }
3189
3190         /* try to expand with EAs present */
3191         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3192                                           raw_inode, handle);
3193 }
3194
3195 /*
3196  * What we do here is to mark the in-core inode as clean with respect to inode
3197  * dirtiness (it may still be data-dirty).
3198  * This means that the in-core inode may be reaped by prune_icache
3199  * without having to perform any I/O.  This is a very good thing,
3200  * because *any* task may call prune_icache - even ones which
3201  * have a transaction open against a different journal.
3202  *
3203  * Is this cheating?  Not really.  Sure, we haven't written the
3204  * inode out, but prune_icache isn't a user-visible syncing function.
3205  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3206  * we start and wait on commits.
3207  *
3208  * Is this efficient/effective?  Well, we're being nice to the system
3209  * by cleaning up our inodes proactively so they can be reaped
3210  * without I/O.  But we are potentially leaving up to five seconds'
3211  * worth of inodes floating about which prune_icache wants us to
3212  * write out.  One way to fix that would be to get prune_icache()
3213  * to do a write_super() to free up some memory.  It has the desired
3214  * effect.
3215  */
3216 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3217 {
3218         struct ext4_iloc iloc;
3219         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3220         static unsigned int mnt_count;
3221         int err, ret;
3222
3223         might_sleep();
3224         err = ext4_reserve_inode_write(handle, inode, &iloc);
3225         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3226             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3227                 /*
3228                  * We need extra buffer credits since we may write into EA block
3229                  * with this same handle. If journal_extend fails, then it will
3230                  * only result in a minor loss of functionality for that inode.
3231                  * If this is felt to be critical, then e2fsck should be run to
3232                  * force a large enough s_min_extra_isize.
3233                  */
3234                 if ((jbd2_journal_extend(handle,
3235                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3236                         ret = ext4_expand_extra_isize(inode,
3237                                                       sbi->s_want_extra_isize,
3238                                                       iloc, handle);
3239                         if (ret) {
3240                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3241                                 if (mnt_count !=
3242                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3243                                         ext4_warning(inode->i_sb, __FUNCTION__,
3244                                         "Unable to expand inode %lu. Delete"
3245                                         " some EAs or run e2fsck.",
3246                                         inode->i_ino);
3247                                         mnt_count =
3248                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3249                                 }
3250                         }
3251                 }
3252         }
3253         if (!err)
3254                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3255         return err;
3256 }
3257
3258 /*
3259  * ext4_dirty_inode() is called from __mark_inode_dirty()
3260  *
3261  * We're really interested in the case where a file is being extended.
3262  * i_size has been changed by generic_commit_write() and we thus need
3263  * to include the updated inode in the current transaction.
3264  *
3265  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3266  * are allocated to the file.
3267  *
3268  * If the inode is marked synchronous, we don't honour that here - doing
3269  * so would cause a commit on atime updates, which we don't bother doing.
3270  * We handle synchronous inodes at the highest possible level.
3271  */
3272 void ext4_dirty_inode(struct inode *inode)
3273 {
3274         handle_t *current_handle = ext4_journal_current_handle();
3275         handle_t *handle;
3276
3277         handle = ext4_journal_start(inode, 2);
3278         if (IS_ERR(handle))
3279                 goto out;
3280         if (current_handle &&
3281                 current_handle->h_transaction != handle->h_transaction) {
3282                 /* This task has a transaction open against a different fs */
3283                 printk(KERN_EMERG "%s: transactions do not match!\n",
3284                        __FUNCTION__);
3285         } else {
3286                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3287                                 current_handle);
3288                 ext4_mark_inode_dirty(handle, inode);
3289         }
3290         ext4_journal_stop(handle);
3291 out:
3292         return;
3293 }
3294
3295 #if 0
3296 /*
3297  * Bind an inode's backing buffer_head into this transaction, to prevent
3298  * it from being flushed to disk early.  Unlike
3299  * ext4_reserve_inode_write, this leaves behind no bh reference and
3300  * returns no iloc structure, so the caller needs to repeat the iloc
3301  * lookup to mark the inode dirty later.
3302  */
3303 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3304 {
3305         struct ext4_iloc iloc;
3306
3307         int err = 0;
3308         if (handle) {
3309                 err = ext4_get_inode_loc(inode, &iloc);
3310                 if (!err) {
3311                         BUFFER_TRACE(iloc.bh, "get_write_access");
3312                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3313                         if (!err)
3314                                 err = ext4_journal_dirty_metadata(handle,
3315                                                                   iloc.bh);
3316                         brelse(iloc.bh);
3317                 }
3318         }
3319         ext4_std_error(inode->i_sb, err);
3320         return err;
3321 }
3322 #endif
3323
3324 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3325 {
3326         journal_t *journal;
3327         handle_t *handle;
3328         int err;
3329
3330         /*
3331          * We have to be very careful here: changing a data block's
3332          * journaling status dynamically is dangerous.  If we write a
3333          * data block to the journal, change the status and then delete
3334          * that block, we risk forgetting to revoke the old log record
3335          * from the journal and so a subsequent replay can corrupt data.
3336          * So, first we make sure that the journal is empty and that
3337          * nobody is changing anything.
3338          */
3339
3340         journal = EXT4_JOURNAL(inode);
3341         if (is_journal_aborted(journal))
3342                 return -EROFS;
3343
3344         jbd2_journal_lock_updates(journal);
3345         jbd2_journal_flush(journal);
3346
3347         /*
3348          * OK, there are no updates running now, and all cached data is
3349          * synced to disk.  We are now in a completely consistent state
3350          * which doesn't have anything in the journal, and we know that
3351          * no filesystem updates are running, so it is safe to modify
3352          * the inode's in-core data-journaling state flag now.
3353          */
3354
3355         if (val)
3356                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3357         else
3358                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3359         ext4_set_aops(inode);
3360
3361         jbd2_journal_unlock_updates(journal);
3362
3363         /* Finally we can mark the inode as dirty. */
3364
3365         handle = ext4_journal_start(inode, 1);
3366         if (IS_ERR(handle))
3367                 return PTR_ERR(handle);
3368
3369         err = ext4_mark_inode_dirty(handle, inode);
3370         handle->h_sync = 1;
3371         ext4_journal_stop(handle);
3372         ext4_std_error(inode->i_sb, err);
3373
3374         return err;
3375 }