]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
arm: imx: tx6: mfgtool defconfig
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77         switch (type) {
78         case META_NAT:
79                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80         case META_SIT:
81                 return SIT_BLK_CNT(sbi);
82         case META_SSA:
83         case META_CP:
84                 return 0;
85         default:
86                 BUG();
87         }
88 }
89
90 /*
91  * Readahead CP/NAT/SIT/SSA pages
92  */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95         block_t prev_blk_addr = 0;
96         struct page *page;
97         int blkno = start;
98         int max_blks = get_max_meta_blks(sbi, type);
99
100         struct f2fs_io_info fio = {
101                 .type = META,
102                 .rw = READ_SYNC | REQ_META | REQ_PRIO
103         };
104
105         for (; nrpages-- > 0; blkno++) {
106                 block_t blk_addr;
107
108                 switch (type) {
109                 case META_NAT:
110                         /* get nat block addr */
111                         if (unlikely(blkno >= max_blks))
112                                 blkno = 0;
113                         blk_addr = current_nat_addr(sbi,
114                                         blkno * NAT_ENTRY_PER_BLOCK);
115                         break;
116                 case META_SIT:
117                         /* get sit block addr */
118                         if (unlikely(blkno >= max_blks))
119                                 goto out;
120                         blk_addr = current_sit_addr(sbi,
121                                         blkno * SIT_ENTRY_PER_BLOCK);
122                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
123                                 goto out;
124                         prev_blk_addr = blk_addr;
125                         break;
126                 case META_SSA:
127                 case META_CP:
128                         /* get ssa/cp block addr */
129                         blk_addr = blkno;
130                         break;
131                 default:
132                         BUG();
133                 }
134
135                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136                 if (!page)
137                         continue;
138                 if (PageUptodate(page)) {
139                         f2fs_put_page(page, 1);
140                         continue;
141                 }
142
143                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144                 f2fs_put_page(page, 0);
145         }
146 out:
147         f2fs_submit_merged_bio(sbi, META, READ);
148         return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152                                 struct writeback_control *wbc)
153 {
154         struct inode *inode = page->mapping->host;
155         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157         trace_f2fs_writepage(page, META);
158
159         if (unlikely(sbi->por_doing))
160                 goto redirty_out;
161         if (wbc->for_reclaim)
162                 goto redirty_out;
163
164         /* Should not write any meta pages, if any IO error was occurred */
165         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
166                 goto no_write;
167
168         f2fs_wait_on_page_writeback(page, META);
169         write_meta_page(sbi, page);
170 no_write:
171         dec_page_count(sbi, F2FS_DIRTY_META);
172         unlock_page(page);
173         return 0;
174
175 redirty_out:
176         redirty_page_for_writepage(wbc, page);
177         return AOP_WRITEPAGE_ACTIVATE;
178 }
179
180 static int f2fs_write_meta_pages(struct address_space *mapping,
181                                 struct writeback_control *wbc)
182 {
183         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
184         long diff, written;
185
186         trace_f2fs_writepages(mapping->host, wbc, META);
187
188         /* collect a number of dirty meta pages and write together */
189         if (wbc->for_kupdate ||
190                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
191                 goto skip_write;
192
193         /* if mounting is failed, skip writing node pages */
194         mutex_lock(&sbi->cp_mutex);
195         diff = nr_pages_to_write(sbi, META, wbc);
196         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
197         mutex_unlock(&sbi->cp_mutex);
198         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
199         return 0;
200
201 skip_write:
202         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
203         return 0;
204 }
205
206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
207                                                 long nr_to_write)
208 {
209         struct address_space *mapping = META_MAPPING(sbi);
210         pgoff_t index = 0, end = LONG_MAX;
211         struct pagevec pvec;
212         long nwritten = 0;
213         struct writeback_control wbc = {
214                 .for_reclaim = 0,
215         };
216
217         pagevec_init(&pvec, 0);
218
219         while (index <= end) {
220                 int i, nr_pages;
221                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
222                                 PAGECACHE_TAG_DIRTY,
223                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
224                 if (unlikely(nr_pages == 0))
225                         break;
226
227                 for (i = 0; i < nr_pages; i++) {
228                         struct page *page = pvec.pages[i];
229
230                         lock_page(page);
231
232                         if (unlikely(page->mapping != mapping)) {
233 continue_unlock:
234                                 unlock_page(page);
235                                 continue;
236                         }
237                         if (!PageDirty(page)) {
238                                 /* someone wrote it for us */
239                                 goto continue_unlock;
240                         }
241
242                         if (!clear_page_dirty_for_io(page))
243                                 goto continue_unlock;
244
245                         if (f2fs_write_meta_page(page, &wbc)) {
246                                 unlock_page(page);
247                                 break;
248                         }
249                         nwritten++;
250                         if (unlikely(nwritten >= nr_to_write))
251                                 break;
252                 }
253                 pagevec_release(&pvec);
254                 cond_resched();
255         }
256
257         if (nwritten)
258                 f2fs_submit_merged_bio(sbi, type, WRITE);
259
260         return nwritten;
261 }
262
263 static int f2fs_set_meta_page_dirty(struct page *page)
264 {
265         struct address_space *mapping = page->mapping;
266         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
267
268         trace_f2fs_set_page_dirty(page, META);
269
270         SetPageUptodate(page);
271         if (!PageDirty(page)) {
272                 __set_page_dirty_nobuffers(page);
273                 inc_page_count(sbi, F2FS_DIRTY_META);
274                 return 1;
275         }
276         return 0;
277 }
278
279 const struct address_space_operations f2fs_meta_aops = {
280         .writepage      = f2fs_write_meta_page,
281         .writepages     = f2fs_write_meta_pages,
282         .set_page_dirty = f2fs_set_meta_page_dirty,
283 };
284
285 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
286 {
287         int err = 0;
288
289         spin_lock(&sbi->orphan_inode_lock);
290         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
291                 err = -ENOSPC;
292         else
293                 sbi->n_orphans++;
294         spin_unlock(&sbi->orphan_inode_lock);
295
296         return err;
297 }
298
299 void release_orphan_inode(struct f2fs_sb_info *sbi)
300 {
301         spin_lock(&sbi->orphan_inode_lock);
302         f2fs_bug_on(sbi->n_orphans == 0);
303         sbi->n_orphans--;
304         spin_unlock(&sbi->orphan_inode_lock);
305 }
306
307 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
308 {
309         struct list_head *head;
310         struct orphan_inode_entry *new, *orphan;
311
312         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
313         new->ino = ino;
314
315         spin_lock(&sbi->orphan_inode_lock);
316         head = &sbi->orphan_inode_list;
317         list_for_each_entry(orphan, head, list) {
318                 if (orphan->ino == ino) {
319                         spin_unlock(&sbi->orphan_inode_lock);
320                         kmem_cache_free(orphan_entry_slab, new);
321                         return;
322                 }
323
324                 if (orphan->ino > ino)
325                         break;
326         }
327
328         /* add new orphan entry into list which is sorted by inode number */
329         list_add_tail(&new->list, &orphan->list);
330         spin_unlock(&sbi->orphan_inode_lock);
331 }
332
333 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
334 {
335         struct list_head *head;
336         struct orphan_inode_entry *orphan;
337
338         spin_lock(&sbi->orphan_inode_lock);
339         head = &sbi->orphan_inode_list;
340         list_for_each_entry(orphan, head, list) {
341                 if (orphan->ino == ino) {
342                         list_del(&orphan->list);
343                         f2fs_bug_on(sbi->n_orphans == 0);
344                         sbi->n_orphans--;
345                         spin_unlock(&sbi->orphan_inode_lock);
346                         kmem_cache_free(orphan_entry_slab, orphan);
347                         return;
348                 }
349         }
350         spin_unlock(&sbi->orphan_inode_lock);
351 }
352
353 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
354 {
355         struct inode *inode = f2fs_iget(sbi->sb, ino);
356         f2fs_bug_on(IS_ERR(inode));
357         clear_nlink(inode);
358
359         /* truncate all the data during iput */
360         iput(inode);
361 }
362
363 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
364 {
365         block_t start_blk, orphan_blkaddr, i, j;
366
367         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
368                 return;
369
370         sbi->por_doing = true;
371
372         start_blk = __start_cp_addr(sbi) + 1 +
373                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
374         orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378         for (i = 0; i < orphan_blkaddr; i++) {
379                 struct page *page = get_meta_page(sbi, start_blk + i);
380                 struct f2fs_orphan_block *orphan_blk;
381
382                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385                         recover_orphan_inode(sbi, ino);
386                 }
387                 f2fs_put_page(page, 1);
388         }
389         /* clear Orphan Flag */
390         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391         sbi->por_doing = false;
392         return;
393 }
394
395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396 {
397         struct list_head *head;
398         struct f2fs_orphan_block *orphan_blk = NULL;
399         unsigned int nentries = 0;
400         unsigned short index;
401         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403         struct page *page = NULL;
404         struct orphan_inode_entry *orphan = NULL;
405
406         for (index = 0; index < orphan_blocks; index++)
407                 grab_meta_page(sbi, start_blk + index);
408
409         index = 1;
410         spin_lock(&sbi->orphan_inode_lock);
411         head = &sbi->orphan_inode_list;
412
413         /* loop for each orphan inode entry and write them in Jornal block */
414         list_for_each_entry(orphan, head, list) {
415                 if (!page) {
416                         page = find_get_page(META_MAPPING(sbi), start_blk++);
417                         f2fs_bug_on(!page);
418                         orphan_blk =
419                                 (struct f2fs_orphan_block *)page_address(page);
420                         memset(orphan_blk, 0, sizeof(*orphan_blk));
421                         f2fs_put_page(page, 0);
422                 }
423
424                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427                         /*
428                          * an orphan block is full of 1020 entries,
429                          * then we need to flush current orphan blocks
430                          * and bring another one in memory
431                          */
432                         orphan_blk->blk_addr = cpu_to_le16(index);
433                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434                         orphan_blk->entry_count = cpu_to_le32(nentries);
435                         set_page_dirty(page);
436                         f2fs_put_page(page, 1);
437                         index++;
438                         nentries = 0;
439                         page = NULL;
440                 }
441         }
442
443         if (page) {
444                 orphan_blk->blk_addr = cpu_to_le16(index);
445                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446                 orphan_blk->entry_count = cpu_to_le32(nentries);
447                 set_page_dirty(page);
448                 f2fs_put_page(page, 1);
449         }
450
451         spin_unlock(&sbi->orphan_inode_lock);
452 }
453
454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455                                 block_t cp_addr, unsigned long long *version)
456 {
457         struct page *cp_page_1, *cp_page_2 = NULL;
458         unsigned long blk_size = sbi->blocksize;
459         struct f2fs_checkpoint *cp_block;
460         unsigned long long cur_version = 0, pre_version = 0;
461         size_t crc_offset;
462         __u32 crc = 0;
463
464         /* Read the 1st cp block in this CP pack */
465         cp_page_1 = get_meta_page(sbi, cp_addr);
466
467         /* get the version number */
468         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469         crc_offset = le32_to_cpu(cp_block->checksum_offset);
470         if (crc_offset >= blk_size)
471                 goto invalid_cp1;
472
473         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475                 goto invalid_cp1;
476
477         pre_version = cur_cp_version(cp_block);
478
479         /* Read the 2nd cp block in this CP pack */
480         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481         cp_page_2 = get_meta_page(sbi, cp_addr);
482
483         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484         crc_offset = le32_to_cpu(cp_block->checksum_offset);
485         if (crc_offset >= blk_size)
486                 goto invalid_cp2;
487
488         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490                 goto invalid_cp2;
491
492         cur_version = cur_cp_version(cp_block);
493
494         if (cur_version == pre_version) {
495                 *version = cur_version;
496                 f2fs_put_page(cp_page_2, 1);
497                 return cp_page_1;
498         }
499 invalid_cp2:
500         f2fs_put_page(cp_page_2, 1);
501 invalid_cp1:
502         f2fs_put_page(cp_page_1, 1);
503         return NULL;
504 }
505
506 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507 {
508         struct f2fs_checkpoint *cp_block;
509         struct f2fs_super_block *fsb = sbi->raw_super;
510         struct page *cp1, *cp2, *cur_page;
511         unsigned long blk_size = sbi->blocksize;
512         unsigned long long cp1_version = 0, cp2_version = 0;
513         unsigned long long cp_start_blk_no;
514         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
515         block_t cp_blk_no;
516         int i;
517
518         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
519         if (!sbi->ckpt)
520                 return -ENOMEM;
521         /*
522          * Finding out valid cp block involves read both
523          * sets( cp pack1 and cp pack 2)
524          */
525         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
526         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
527
528         /* The second checkpoint pack should start at the next segment */
529         cp_start_blk_no += ((unsigned long long)1) <<
530                                 le32_to_cpu(fsb->log_blocks_per_seg);
531         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
532
533         if (cp1 && cp2) {
534                 if (ver_after(cp2_version, cp1_version))
535                         cur_page = cp2;
536                 else
537                         cur_page = cp1;
538         } else if (cp1) {
539                 cur_page = cp1;
540         } else if (cp2) {
541                 cur_page = cp2;
542         } else {
543                 goto fail_no_cp;
544         }
545
546         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
547         memcpy(sbi->ckpt, cp_block, blk_size);
548
549         if (cp_blks <= 1)
550                 goto done;
551
552         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
553         if (cur_page == cp2)
554                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
555
556         for (i = 1; i < cp_blks; i++) {
557                 void *sit_bitmap_ptr;
558                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
559
560                 cur_page = get_meta_page(sbi, cp_blk_no + i);
561                 sit_bitmap_ptr = page_address(cur_page);
562                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
563                 f2fs_put_page(cur_page, 1);
564         }
565 done:
566         f2fs_put_page(cp1, 1);
567         f2fs_put_page(cp2, 1);
568         return 0;
569
570 fail_no_cp:
571         kfree(sbi->ckpt);
572         return -EINVAL;
573 }
574
575 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
576 {
577         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
578
579         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
580                 return -EEXIST;
581
582         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
583         F2FS_I(inode)->dirty_dir = new;
584         list_add_tail(&new->list, &sbi->dir_inode_list);
585         stat_inc_dirty_dir(sbi);
586         return 0;
587 }
588
589 void set_dirty_dir_page(struct inode *inode, struct page *page)
590 {
591         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
592         struct dir_inode_entry *new;
593         int ret = 0;
594
595         if (!S_ISDIR(inode->i_mode))
596                 return;
597
598         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
599         new->inode = inode;
600         INIT_LIST_HEAD(&new->list);
601
602         spin_lock(&sbi->dir_inode_lock);
603         ret = __add_dirty_inode(inode, new);
604         inode_inc_dirty_dents(inode);
605         SetPagePrivate(page);
606         spin_unlock(&sbi->dir_inode_lock);
607
608         if (ret)
609                 kmem_cache_free(inode_entry_slab, new);
610 }
611
612 void add_dirty_dir_inode(struct inode *inode)
613 {
614         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
615         struct dir_inode_entry *new =
616                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
617         int ret = 0;
618
619         new->inode = inode;
620         INIT_LIST_HEAD(&new->list);
621
622         spin_lock(&sbi->dir_inode_lock);
623         ret = __add_dirty_inode(inode, new);
624         spin_unlock(&sbi->dir_inode_lock);
625
626         if (ret)
627                 kmem_cache_free(inode_entry_slab, new);
628 }
629
630 void remove_dirty_dir_inode(struct inode *inode)
631 {
632         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
633         struct dir_inode_entry *entry;
634
635         if (!S_ISDIR(inode->i_mode))
636                 return;
637
638         spin_lock(&sbi->dir_inode_lock);
639         if (get_dirty_dents(inode) ||
640                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
641                 spin_unlock(&sbi->dir_inode_lock);
642                 return;
643         }
644
645         entry = F2FS_I(inode)->dirty_dir;
646         list_del(&entry->list);
647         F2FS_I(inode)->dirty_dir = NULL;
648         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
649         stat_dec_dirty_dir(sbi);
650         spin_unlock(&sbi->dir_inode_lock);
651         kmem_cache_free(inode_entry_slab, entry);
652
653         /* Only from the recovery routine */
654         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
655                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
656                 iput(inode);
657         }
658 }
659
660 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
661 {
662         struct list_head *head;
663         struct dir_inode_entry *entry;
664         struct inode *inode;
665 retry:
666         spin_lock(&sbi->dir_inode_lock);
667
668         head = &sbi->dir_inode_list;
669         if (list_empty(head)) {
670                 spin_unlock(&sbi->dir_inode_lock);
671                 return;
672         }
673         entry = list_entry(head->next, struct dir_inode_entry, list);
674         inode = igrab(entry->inode);
675         spin_unlock(&sbi->dir_inode_lock);
676         if (inode) {
677                 filemap_fdatawrite(inode->i_mapping);
678                 iput(inode);
679         } else {
680                 /*
681                  * We should submit bio, since it exists several
682                  * wribacking dentry pages in the freeing inode.
683                  */
684                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
685         }
686         goto retry;
687 }
688
689 /*
690  * Freeze all the FS-operations for checkpoint.
691  */
692 static void block_operations(struct f2fs_sb_info *sbi)
693 {
694         struct writeback_control wbc = {
695                 .sync_mode = WB_SYNC_ALL,
696                 .nr_to_write = LONG_MAX,
697                 .for_reclaim = 0,
698         };
699         struct blk_plug plug;
700
701         blk_start_plug(&plug);
702
703 retry_flush_dents:
704         f2fs_lock_all(sbi);
705         /* write all the dirty dentry pages */
706         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
707                 f2fs_unlock_all(sbi);
708                 sync_dirty_dir_inodes(sbi);
709                 goto retry_flush_dents;
710         }
711
712         /*
713          * POR: we should ensure that there is no dirty node pages
714          * until finishing nat/sit flush.
715          */
716 retry_flush_nodes:
717         mutex_lock(&sbi->node_write);
718
719         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
720                 mutex_unlock(&sbi->node_write);
721                 sync_node_pages(sbi, 0, &wbc);
722                 goto retry_flush_nodes;
723         }
724         blk_finish_plug(&plug);
725 }
726
727 static void unblock_operations(struct f2fs_sb_info *sbi)
728 {
729         mutex_unlock(&sbi->node_write);
730         f2fs_unlock_all(sbi);
731 }
732
733 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
734 {
735         DEFINE_WAIT(wait);
736
737         for (;;) {
738                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
739
740                 if (!get_pages(sbi, F2FS_WRITEBACK))
741                         break;
742
743                 io_schedule();
744         }
745         finish_wait(&sbi->cp_wait, &wait);
746 }
747
748 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
749 {
750         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
751         nid_t last_nid = 0;
752         block_t start_blk;
753         struct page *cp_page;
754         unsigned int data_sum_blocks, orphan_blocks;
755         __u32 crc32 = 0;
756         void *kaddr;
757         int i;
758         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
759
760         /*
761          * This avoids to conduct wrong roll-forward operations and uses
762          * metapages, so should be called prior to sync_meta_pages below.
763          */
764         discard_next_dnode(sbi);
765
766         /* Flush all the NAT/SIT pages */
767         while (get_pages(sbi, F2FS_DIRTY_META))
768                 sync_meta_pages(sbi, META, LONG_MAX);
769
770         next_free_nid(sbi, &last_nid);
771
772         /*
773          * modify checkpoint
774          * version number is already updated
775          */
776         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
777         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
778         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
779         for (i = 0; i < 3; i++) {
780                 ckpt->cur_node_segno[i] =
781                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
782                 ckpt->cur_node_blkoff[i] =
783                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
784                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
785                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
786         }
787         for (i = 0; i < 3; i++) {
788                 ckpt->cur_data_segno[i] =
789                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
790                 ckpt->cur_data_blkoff[i] =
791                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
792                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
793                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
794         }
795
796         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
797         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
798         ckpt->next_free_nid = cpu_to_le32(last_nid);
799
800         /* 2 cp  + n data seg summary + orphan inode blocks */
801         data_sum_blocks = npages_for_summary_flush(sbi);
802         if (data_sum_blocks < 3)
803                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
804         else
805                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
806
807         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
808                                         / F2FS_ORPHANS_PER_BLOCK;
809         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
810                         orphan_blocks);
811
812         if (is_umount) {
813                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
814                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
815                                 cp_payload_blks + data_sum_blocks +
816                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
817         } else {
818                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
819                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
820                                 cp_payload_blks + data_sum_blocks +
821                                 orphan_blocks);
822         }
823
824         if (sbi->n_orphans)
825                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
826         else
827                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
828
829         /* update SIT/NAT bitmap */
830         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
831         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
832
833         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
834         *((__le32 *)((unsigned char *)ckpt +
835                                 le32_to_cpu(ckpt->checksum_offset)))
836                                 = cpu_to_le32(crc32);
837
838         start_blk = __start_cp_addr(sbi);
839
840         /* write out checkpoint buffer at block 0 */
841         cp_page = grab_meta_page(sbi, start_blk++);
842         kaddr = page_address(cp_page);
843         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
844         set_page_dirty(cp_page);
845         f2fs_put_page(cp_page, 1);
846
847         for (i = 1; i < 1 + cp_payload_blks; i++) {
848                 cp_page = grab_meta_page(sbi, start_blk++);
849                 kaddr = page_address(cp_page);
850                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
851                                 (1 << sbi->log_blocksize));
852                 set_page_dirty(cp_page);
853                 f2fs_put_page(cp_page, 1);
854         }
855
856         if (sbi->n_orphans) {
857                 write_orphan_inodes(sbi, start_blk);
858                 start_blk += orphan_blocks;
859         }
860
861         write_data_summaries(sbi, start_blk);
862         start_blk += data_sum_blocks;
863         if (is_umount) {
864                 write_node_summaries(sbi, start_blk);
865                 start_blk += NR_CURSEG_NODE_TYPE;
866         }
867
868         /* writeout checkpoint block */
869         cp_page = grab_meta_page(sbi, start_blk);
870         kaddr = page_address(cp_page);
871         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
872         set_page_dirty(cp_page);
873         f2fs_put_page(cp_page, 1);
874
875         /* wait for previous submitted node/meta pages writeback */
876         wait_on_all_pages_writeback(sbi);
877
878         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
879         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
880
881         /* update user_block_counts */
882         sbi->last_valid_block_count = sbi->total_valid_block_count;
883         sbi->alloc_valid_block_count = 0;
884
885         /* Here, we only have one bio having CP pack */
886         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
887
888         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
889                 clear_prefree_segments(sbi);
890                 F2FS_RESET_SB_DIRT(sbi);
891         }
892 }
893
894 /*
895  * We guarantee that this checkpoint procedure should not fail.
896  */
897 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
898 {
899         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
900         unsigned long long ckpt_ver;
901
902         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
903
904         mutex_lock(&sbi->cp_mutex);
905         block_operations(sbi);
906
907         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
908
909         f2fs_submit_merged_bio(sbi, DATA, WRITE);
910         f2fs_submit_merged_bio(sbi, NODE, WRITE);
911         f2fs_submit_merged_bio(sbi, META, WRITE);
912
913         /*
914          * update checkpoint pack index
915          * Increase the version number so that
916          * SIT entries and seg summaries are written at correct place
917          */
918         ckpt_ver = cur_cp_version(ckpt);
919         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
920
921         /* write cached NAT/SIT entries to NAT/SIT area */
922         flush_nat_entries(sbi);
923         flush_sit_entries(sbi);
924
925         /* unlock all the fs_lock[] in do_checkpoint() */
926         do_checkpoint(sbi, is_umount);
927
928         unblock_operations(sbi);
929         mutex_unlock(&sbi->cp_mutex);
930
931         stat_inc_cp_count(sbi->stat_info);
932         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
933 }
934
935 void init_orphan_info(struct f2fs_sb_info *sbi)
936 {
937         spin_lock_init(&sbi->orphan_inode_lock);
938         INIT_LIST_HEAD(&sbi->orphan_inode_list);
939         sbi->n_orphans = 0;
940         /*
941          * considering 512 blocks in a segment 8 blocks are needed for cp
942          * and log segment summaries. Remaining blocks are used to keep
943          * orphan entries with the limitation one reserved segment
944          * for cp pack we can have max 1020*504 orphan entries
945          */
946         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
947                                 * F2FS_ORPHANS_PER_BLOCK;
948 }
949
950 int __init create_checkpoint_caches(void)
951 {
952         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
953                         sizeof(struct orphan_inode_entry));
954         if (!orphan_entry_slab)
955                 return -ENOMEM;
956         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
957                         sizeof(struct dir_inode_entry));
958         if (!inode_entry_slab) {
959                 kmem_cache_destroy(orphan_entry_slab);
960                 return -ENOMEM;
961         }
962         return 0;
963 }
964
965 void destroy_checkpoint_caches(void)
966 {
967         kmem_cache_destroy(orphan_entry_slab);
968         kmem_cache_destroy(inode_entry_slab);
969 }