]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/checkpoint.c
1346ce916b8484a0c2304817911e83bf19609373
[linux-beck.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         mark_page_accessed(page);
73         return page;
74 }
75
76 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77 {
78         switch (type) {
79         case META_NAT:
80                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81         case META_SIT:
82                 return SIT_BLK_CNT(sbi);
83         case META_SSA:
84         case META_CP:
85                 return 0;
86         default:
87                 BUG();
88         }
89 }
90
91 /*
92  * Readahead CP/NAT/SIT/SSA pages
93  */
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 {
96         block_t prev_blk_addr = 0;
97         struct page *page;
98         int blkno = start;
99         int max_blks = get_max_meta_blks(sbi, type);
100
101         struct f2fs_io_info fio = {
102                 .type = META,
103                 .rw = READ_SYNC | REQ_META | REQ_PRIO
104         };
105
106         for (; nrpages-- > 0; blkno++) {
107                 block_t blk_addr;
108
109                 switch (type) {
110                 case META_NAT:
111                         /* get nat block addr */
112                         if (unlikely(blkno >= max_blks))
113                                 blkno = 0;
114                         blk_addr = current_nat_addr(sbi,
115                                         blkno * NAT_ENTRY_PER_BLOCK);
116                         break;
117                 case META_SIT:
118                         /* get sit block addr */
119                         if (unlikely(blkno >= max_blks))
120                                 goto out;
121                         blk_addr = current_sit_addr(sbi,
122                                         blkno * SIT_ENTRY_PER_BLOCK);
123                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
124                                 goto out;
125                         prev_blk_addr = blk_addr;
126                         break;
127                 case META_SSA:
128                 case META_CP:
129                         /* get ssa/cp block addr */
130                         blk_addr = blkno;
131                         break;
132                 default:
133                         BUG();
134                 }
135
136                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137                 if (!page)
138                         continue;
139                 if (PageUptodate(page)) {
140                         mark_page_accessed(page);
141                         f2fs_put_page(page, 1);
142                         continue;
143                 }
144
145                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146                 mark_page_accessed(page);
147                 f2fs_put_page(page, 0);
148         }
149 out:
150         f2fs_submit_merged_bio(sbi, META, READ);
151         return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155                                 struct writeback_control *wbc)
156 {
157         struct inode *inode = page->mapping->host;
158         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160         if (unlikely(sbi->por_doing))
161                 goto redirty_out;
162         if (wbc->for_reclaim)
163                 goto redirty_out;
164
165         /* Should not write any meta pages, if any IO error was occurred */
166         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167                 goto no_write;
168
169         f2fs_wait_on_page_writeback(page, META);
170         write_meta_page(sbi, page);
171 no_write:
172         dec_page_count(sbi, F2FS_DIRTY_META);
173         unlock_page(page);
174         return 0;
175
176 redirty_out:
177         redirty_page_for_writepage(wbc, page);
178         return AOP_WRITEPAGE_ACTIVATE;
179 }
180
181 static int f2fs_write_meta_pages(struct address_space *mapping,
182                                 struct writeback_control *wbc)
183 {
184         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
185         long diff, written;
186
187         /* collect a number of dirty meta pages and write together */
188         if (wbc->for_kupdate ||
189                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
190                 goto skip_write;
191
192         /* if mounting is failed, skip writing node pages */
193         mutex_lock(&sbi->cp_mutex);
194         diff = nr_pages_to_write(sbi, META, wbc);
195         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
196         mutex_unlock(&sbi->cp_mutex);
197         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
198         return 0;
199
200 skip_write:
201         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
202         return 0;
203 }
204
205 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
206                                                 long nr_to_write)
207 {
208         struct address_space *mapping = META_MAPPING(sbi);
209         pgoff_t index = 0, end = LONG_MAX;
210         struct pagevec pvec;
211         long nwritten = 0;
212         struct writeback_control wbc = {
213                 .for_reclaim = 0,
214         };
215
216         pagevec_init(&pvec, 0);
217
218         while (index <= end) {
219                 int i, nr_pages;
220                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
221                                 PAGECACHE_TAG_DIRTY,
222                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
223                 if (unlikely(nr_pages == 0))
224                         break;
225
226                 for (i = 0; i < nr_pages; i++) {
227                         struct page *page = pvec.pages[i];
228
229                         lock_page(page);
230
231                         if (unlikely(page->mapping != mapping)) {
232 continue_unlock:
233                                 unlock_page(page);
234                                 continue;
235                         }
236                         if (!PageDirty(page)) {
237                                 /* someone wrote it for us */
238                                 goto continue_unlock;
239                         }
240
241                         if (!clear_page_dirty_for_io(page))
242                                 goto continue_unlock;
243
244                         if (f2fs_write_meta_page(page, &wbc)) {
245                                 unlock_page(page);
246                                 break;
247                         }
248                         nwritten++;
249                         if (unlikely(nwritten >= nr_to_write))
250                                 break;
251                 }
252                 pagevec_release(&pvec);
253                 cond_resched();
254         }
255
256         if (nwritten)
257                 f2fs_submit_merged_bio(sbi, type, WRITE);
258
259         return nwritten;
260 }
261
262 static int f2fs_set_meta_page_dirty(struct page *page)
263 {
264         struct address_space *mapping = page->mapping;
265         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
266
267         trace_f2fs_set_page_dirty(page, META);
268
269         SetPageUptodate(page);
270         if (!PageDirty(page)) {
271                 __set_page_dirty_nobuffers(page);
272                 inc_page_count(sbi, F2FS_DIRTY_META);
273                 return 1;
274         }
275         return 0;
276 }
277
278 const struct address_space_operations f2fs_meta_aops = {
279         .writepage      = f2fs_write_meta_page,
280         .writepages     = f2fs_write_meta_pages,
281         .set_page_dirty = f2fs_set_meta_page_dirty,
282 };
283
284 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
285 {
286         int err = 0;
287
288         spin_lock(&sbi->orphan_inode_lock);
289         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
290                 err = -ENOSPC;
291         else
292                 sbi->n_orphans++;
293         spin_unlock(&sbi->orphan_inode_lock);
294
295         return err;
296 }
297
298 void release_orphan_inode(struct f2fs_sb_info *sbi)
299 {
300         spin_lock(&sbi->orphan_inode_lock);
301         f2fs_bug_on(sbi->n_orphans == 0);
302         sbi->n_orphans--;
303         spin_unlock(&sbi->orphan_inode_lock);
304 }
305
306 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
307 {
308         struct list_head *head;
309         struct orphan_inode_entry *new, *orphan;
310
311         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
312         new->ino = ino;
313
314         spin_lock(&sbi->orphan_inode_lock);
315         head = &sbi->orphan_inode_list;
316         list_for_each_entry(orphan, head, list) {
317                 if (orphan->ino == ino) {
318                         spin_unlock(&sbi->orphan_inode_lock);
319                         kmem_cache_free(orphan_entry_slab, new);
320                         return;
321                 }
322
323                 if (orphan->ino > ino)
324                         break;
325         }
326
327         /* add new orphan entry into list which is sorted by inode number */
328         list_add_tail(&new->list, &orphan->list);
329         spin_unlock(&sbi->orphan_inode_lock);
330 }
331
332 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
333 {
334         struct list_head *head;
335         struct orphan_inode_entry *orphan;
336
337         spin_lock(&sbi->orphan_inode_lock);
338         head = &sbi->orphan_inode_list;
339         list_for_each_entry(orphan, head, list) {
340                 if (orphan->ino == ino) {
341                         list_del(&orphan->list);
342                         f2fs_bug_on(sbi->n_orphans == 0);
343                         sbi->n_orphans--;
344                         spin_unlock(&sbi->orphan_inode_lock);
345                         kmem_cache_free(orphan_entry_slab, orphan);
346                         return;
347                 }
348         }
349         spin_unlock(&sbi->orphan_inode_lock);
350 }
351
352 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
353 {
354         struct inode *inode = f2fs_iget(sbi->sb, ino);
355         f2fs_bug_on(IS_ERR(inode));
356         clear_nlink(inode);
357
358         /* truncate all the data during iput */
359         iput(inode);
360 }
361
362 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
363 {
364         block_t start_blk, orphan_blkaddr, i, j;
365
366         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
367                 return;
368
369         sbi->por_doing = true;
370         start_blk = __start_cp_addr(sbi) + 1;
371         orphan_blkaddr = __start_sum_addr(sbi) - 1;
372
373         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
374
375         for (i = 0; i < orphan_blkaddr; i++) {
376                 struct page *page = get_meta_page(sbi, start_blk + i);
377                 struct f2fs_orphan_block *orphan_blk;
378
379                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
380                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
381                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
382                         recover_orphan_inode(sbi, ino);
383                 }
384                 f2fs_put_page(page, 1);
385         }
386         /* clear Orphan Flag */
387         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
388         sbi->por_doing = false;
389         return;
390 }
391
392 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
393 {
394         struct list_head *head;
395         struct f2fs_orphan_block *orphan_blk = NULL;
396         unsigned int nentries = 0;
397         unsigned short index;
398         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
399                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
400         struct page *page = NULL;
401         struct orphan_inode_entry *orphan = NULL;
402
403         for (index = 0; index < orphan_blocks; index++)
404                 grab_meta_page(sbi, start_blk + index);
405
406         index = 1;
407         spin_lock(&sbi->orphan_inode_lock);
408         head = &sbi->orphan_inode_list;
409
410         /* loop for each orphan inode entry and write them in Jornal block */
411         list_for_each_entry(orphan, head, list) {
412                 if (!page) {
413                         page = find_get_page(META_MAPPING(sbi), start_blk++);
414                         f2fs_bug_on(!page);
415                         orphan_blk =
416                                 (struct f2fs_orphan_block *)page_address(page);
417                         memset(orphan_blk, 0, sizeof(*orphan_blk));
418                         f2fs_put_page(page, 0);
419                 }
420
421                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
422
423                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
424                         /*
425                          * an orphan block is full of 1020 entries,
426                          * then we need to flush current orphan blocks
427                          * and bring another one in memory
428                          */
429                         orphan_blk->blk_addr = cpu_to_le16(index);
430                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
431                         orphan_blk->entry_count = cpu_to_le32(nentries);
432                         set_page_dirty(page);
433                         f2fs_put_page(page, 1);
434                         index++;
435                         nentries = 0;
436                         page = NULL;
437                 }
438         }
439
440         if (page) {
441                 orphan_blk->blk_addr = cpu_to_le16(index);
442                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
443                 orphan_blk->entry_count = cpu_to_le32(nentries);
444                 set_page_dirty(page);
445                 f2fs_put_page(page, 1);
446         }
447
448         spin_unlock(&sbi->orphan_inode_lock);
449 }
450
451 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
452                                 block_t cp_addr, unsigned long long *version)
453 {
454         struct page *cp_page_1, *cp_page_2 = NULL;
455         unsigned long blk_size = sbi->blocksize;
456         struct f2fs_checkpoint *cp_block;
457         unsigned long long cur_version = 0, pre_version = 0;
458         size_t crc_offset;
459         __u32 crc = 0;
460
461         /* Read the 1st cp block in this CP pack */
462         cp_page_1 = get_meta_page(sbi, cp_addr);
463
464         /* get the version number */
465         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
466         crc_offset = le32_to_cpu(cp_block->checksum_offset);
467         if (crc_offset >= blk_size)
468                 goto invalid_cp1;
469
470         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
471         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
472                 goto invalid_cp1;
473
474         pre_version = cur_cp_version(cp_block);
475
476         /* Read the 2nd cp block in this CP pack */
477         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
478         cp_page_2 = get_meta_page(sbi, cp_addr);
479
480         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
481         crc_offset = le32_to_cpu(cp_block->checksum_offset);
482         if (crc_offset >= blk_size)
483                 goto invalid_cp2;
484
485         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
486         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
487                 goto invalid_cp2;
488
489         cur_version = cur_cp_version(cp_block);
490
491         if (cur_version == pre_version) {
492                 *version = cur_version;
493                 f2fs_put_page(cp_page_2, 1);
494                 return cp_page_1;
495         }
496 invalid_cp2:
497         f2fs_put_page(cp_page_2, 1);
498 invalid_cp1:
499         f2fs_put_page(cp_page_1, 1);
500         return NULL;
501 }
502
503 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
504 {
505         struct f2fs_checkpoint *cp_block;
506         struct f2fs_super_block *fsb = sbi->raw_super;
507         struct page *cp1, *cp2, *cur_page;
508         unsigned long blk_size = sbi->blocksize;
509         unsigned long long cp1_version = 0, cp2_version = 0;
510         unsigned long long cp_start_blk_no;
511
512         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
513         if (!sbi->ckpt)
514                 return -ENOMEM;
515         /*
516          * Finding out valid cp block involves read both
517          * sets( cp pack1 and cp pack 2)
518          */
519         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
520         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
521
522         /* The second checkpoint pack should start at the next segment */
523         cp_start_blk_no += ((unsigned long long)1) <<
524                                 le32_to_cpu(fsb->log_blocks_per_seg);
525         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
526
527         if (cp1 && cp2) {
528                 if (ver_after(cp2_version, cp1_version))
529                         cur_page = cp2;
530                 else
531                         cur_page = cp1;
532         } else if (cp1) {
533                 cur_page = cp1;
534         } else if (cp2) {
535                 cur_page = cp2;
536         } else {
537                 goto fail_no_cp;
538         }
539
540         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
541         memcpy(sbi->ckpt, cp_block, blk_size);
542
543         f2fs_put_page(cp1, 1);
544         f2fs_put_page(cp2, 1);
545         return 0;
546
547 fail_no_cp:
548         kfree(sbi->ckpt);
549         return -EINVAL;
550 }
551
552 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
553 {
554         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
555
556         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
557                 return -EEXIST;
558
559         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
560         F2FS_I(inode)->dirty_dir = new;
561         list_add_tail(&new->list, &sbi->dir_inode_list);
562         stat_inc_dirty_dir(sbi);
563         return 0;
564 }
565
566 void set_dirty_dir_page(struct inode *inode, struct page *page)
567 {
568         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
569         struct dir_inode_entry *new;
570         int ret = 0;
571
572         if (!S_ISDIR(inode->i_mode))
573                 return;
574
575         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
576         new->inode = inode;
577         INIT_LIST_HEAD(&new->list);
578
579         spin_lock(&sbi->dir_inode_lock);
580         ret = __add_dirty_inode(inode, new);
581         inode_inc_dirty_dents(inode);
582         SetPagePrivate(page);
583         spin_unlock(&sbi->dir_inode_lock);
584
585         if (ret)
586                 kmem_cache_free(inode_entry_slab, new);
587 }
588
589 void add_dirty_dir_inode(struct inode *inode)
590 {
591         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
592         struct dir_inode_entry *new =
593                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
594         int ret = 0;
595
596         new->inode = inode;
597         INIT_LIST_HEAD(&new->list);
598
599         spin_lock(&sbi->dir_inode_lock);
600         ret = __add_dirty_inode(inode, new);
601         spin_unlock(&sbi->dir_inode_lock);
602
603         if (ret)
604                 kmem_cache_free(inode_entry_slab, new);
605 }
606
607 void remove_dirty_dir_inode(struct inode *inode)
608 {
609         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
610         struct dir_inode_entry *entry;
611
612         if (!S_ISDIR(inode->i_mode))
613                 return;
614
615         spin_lock(&sbi->dir_inode_lock);
616         if (get_dirty_dents(inode) ||
617                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
618                 spin_unlock(&sbi->dir_inode_lock);
619                 return;
620         }
621
622         entry = F2FS_I(inode)->dirty_dir;
623         list_del(&entry->list);
624         F2FS_I(inode)->dirty_dir = NULL;
625         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
626         stat_dec_dirty_dir(sbi);
627         spin_unlock(&sbi->dir_inode_lock);
628         kmem_cache_free(inode_entry_slab, entry);
629
630         /* Only from the recovery routine */
631         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
632                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
633                 iput(inode);
634         }
635 }
636
637 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
638 {
639         struct list_head *head;
640         struct dir_inode_entry *entry;
641         struct inode *inode;
642 retry:
643         spin_lock(&sbi->dir_inode_lock);
644
645         head = &sbi->dir_inode_list;
646         if (list_empty(head)) {
647                 spin_unlock(&sbi->dir_inode_lock);
648                 return;
649         }
650         entry = list_entry(head->next, struct dir_inode_entry, list);
651         inode = igrab(entry->inode);
652         spin_unlock(&sbi->dir_inode_lock);
653         if (inode) {
654                 filemap_fdatawrite(inode->i_mapping);
655                 iput(inode);
656         } else {
657                 /*
658                  * We should submit bio, since it exists several
659                  * wribacking dentry pages in the freeing inode.
660                  */
661                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
662         }
663         goto retry;
664 }
665
666 /*
667  * Freeze all the FS-operations for checkpoint.
668  */
669 static void block_operations(struct f2fs_sb_info *sbi)
670 {
671         struct writeback_control wbc = {
672                 .sync_mode = WB_SYNC_ALL,
673                 .nr_to_write = LONG_MAX,
674                 .for_reclaim = 0,
675         };
676         struct blk_plug plug;
677
678         blk_start_plug(&plug);
679
680 retry_flush_dents:
681         f2fs_lock_all(sbi);
682         /* write all the dirty dentry pages */
683         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
684                 f2fs_unlock_all(sbi);
685                 sync_dirty_dir_inodes(sbi);
686                 goto retry_flush_dents;
687         }
688
689         /*
690          * POR: we should ensure that there is no dirty node pages
691          * until finishing nat/sit flush.
692          */
693 retry_flush_nodes:
694         mutex_lock(&sbi->node_write);
695
696         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
697                 mutex_unlock(&sbi->node_write);
698                 sync_node_pages(sbi, 0, &wbc);
699                 goto retry_flush_nodes;
700         }
701         blk_finish_plug(&plug);
702 }
703
704 static void unblock_operations(struct f2fs_sb_info *sbi)
705 {
706         mutex_unlock(&sbi->node_write);
707         f2fs_unlock_all(sbi);
708 }
709
710 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
711 {
712         DEFINE_WAIT(wait);
713
714         for (;;) {
715                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
716
717                 if (!get_pages(sbi, F2FS_WRITEBACK))
718                         break;
719
720                 io_schedule();
721         }
722         finish_wait(&sbi->cp_wait, &wait);
723 }
724
725 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
726 {
727         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
728         nid_t last_nid = 0;
729         block_t start_blk;
730         struct page *cp_page;
731         unsigned int data_sum_blocks, orphan_blocks;
732         __u32 crc32 = 0;
733         void *kaddr;
734         int i;
735
736         /*
737          * This avoids to conduct wrong roll-forward operations and uses
738          * metapages, so should be called prior to sync_meta_pages below.
739          */
740         discard_next_dnode(sbi);
741
742         /* Flush all the NAT/SIT pages */
743         while (get_pages(sbi, F2FS_DIRTY_META))
744                 sync_meta_pages(sbi, META, LONG_MAX);
745
746         next_free_nid(sbi, &last_nid);
747
748         /*
749          * modify checkpoint
750          * version number is already updated
751          */
752         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
753         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
754         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
755         for (i = 0; i < 3; i++) {
756                 ckpt->cur_node_segno[i] =
757                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
758                 ckpt->cur_node_blkoff[i] =
759                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
760                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
761                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
762         }
763         for (i = 0; i < 3; i++) {
764                 ckpt->cur_data_segno[i] =
765                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
766                 ckpt->cur_data_blkoff[i] =
767                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
768                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
769                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
770         }
771
772         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
773         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
774         ckpt->next_free_nid = cpu_to_le32(last_nid);
775
776         /* 2 cp  + n data seg summary + orphan inode blocks */
777         data_sum_blocks = npages_for_summary_flush(sbi);
778         if (data_sum_blocks < 3)
779                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
780         else
781                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
782
783         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
784                                         / F2FS_ORPHANS_PER_BLOCK;
785         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
786
787         if (is_umount) {
788                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
789                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
790                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
791         } else {
792                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
793                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
794                         data_sum_blocks + orphan_blocks);
795         }
796
797         if (sbi->n_orphans)
798                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
799         else
800                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
801
802         /* update SIT/NAT bitmap */
803         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
804         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
805
806         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
807         *((__le32 *)((unsigned char *)ckpt +
808                                 le32_to_cpu(ckpt->checksum_offset)))
809                                 = cpu_to_le32(crc32);
810
811         start_blk = __start_cp_addr(sbi);
812
813         /* write out checkpoint buffer at block 0 */
814         cp_page = grab_meta_page(sbi, start_blk++);
815         kaddr = page_address(cp_page);
816         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
817         set_page_dirty(cp_page);
818         f2fs_put_page(cp_page, 1);
819
820         if (sbi->n_orphans) {
821                 write_orphan_inodes(sbi, start_blk);
822                 start_blk += orphan_blocks;
823         }
824
825         write_data_summaries(sbi, start_blk);
826         start_blk += data_sum_blocks;
827         if (is_umount) {
828                 write_node_summaries(sbi, start_blk);
829                 start_blk += NR_CURSEG_NODE_TYPE;
830         }
831
832         /* writeout checkpoint block */
833         cp_page = grab_meta_page(sbi, start_blk);
834         kaddr = page_address(cp_page);
835         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
836         set_page_dirty(cp_page);
837         f2fs_put_page(cp_page, 1);
838
839         /* wait for previous submitted node/meta pages writeback */
840         wait_on_all_pages_writeback(sbi);
841
842         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
843         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
844
845         /* update user_block_counts */
846         sbi->last_valid_block_count = sbi->total_valid_block_count;
847         sbi->alloc_valid_block_count = 0;
848
849         /* Here, we only have one bio having CP pack */
850         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
851
852         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
853                 clear_prefree_segments(sbi);
854                 F2FS_RESET_SB_DIRT(sbi);
855         }
856 }
857
858 /*
859  * We guarantee that this checkpoint procedure should not fail.
860  */
861 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
862 {
863         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
864         unsigned long long ckpt_ver;
865
866         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
867
868         mutex_lock(&sbi->cp_mutex);
869         block_operations(sbi);
870
871         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
872
873         f2fs_submit_merged_bio(sbi, DATA, WRITE);
874         f2fs_submit_merged_bio(sbi, NODE, WRITE);
875         f2fs_submit_merged_bio(sbi, META, WRITE);
876
877         /*
878          * update checkpoint pack index
879          * Increase the version number so that
880          * SIT entries and seg summaries are written at correct place
881          */
882         ckpt_ver = cur_cp_version(ckpt);
883         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
884
885         /* write cached NAT/SIT entries to NAT/SIT area */
886         flush_nat_entries(sbi);
887         flush_sit_entries(sbi);
888
889         /* unlock all the fs_lock[] in do_checkpoint() */
890         do_checkpoint(sbi, is_umount);
891
892         unblock_operations(sbi);
893         mutex_unlock(&sbi->cp_mutex);
894
895         stat_inc_cp_count(sbi->stat_info);
896         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
897 }
898
899 void init_orphan_info(struct f2fs_sb_info *sbi)
900 {
901         spin_lock_init(&sbi->orphan_inode_lock);
902         INIT_LIST_HEAD(&sbi->orphan_inode_list);
903         sbi->n_orphans = 0;
904         /*
905          * considering 512 blocks in a segment 8 blocks are needed for cp
906          * and log segment summaries. Remaining blocks are used to keep
907          * orphan entries with the limitation one reserved segment
908          * for cp pack we can have max 1020*504 orphan entries
909          */
910         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
911                                 * F2FS_ORPHANS_PER_BLOCK;
912 }
913
914 int __init create_checkpoint_caches(void)
915 {
916         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
917                         sizeof(struct orphan_inode_entry));
918         if (!orphan_entry_slab)
919                 return -ENOMEM;
920         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
921                         sizeof(struct dir_inode_entry));
922         if (!inode_entry_slab) {
923                 kmem_cache_destroy(orphan_entry_slab);
924                 return -ENOMEM;
925         }
926         return 0;
927 }
928
929 void destroy_checkpoint_caches(void)
930 {
931         kmem_cache_destroy(orphan_entry_slab);
932         kmem_cache_destroy(inode_entry_slab);
933 }