]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
1f52b70ff9d19575b18d8ea24f80ec9023490e43
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_submit_page_bio(sbi, page, index,
65                                 READ_SYNC | REQ_META | REQ_PRIO))
66                 goto repeat;
67
68         lock_page(page);
69         if (unlikely(page->mapping != mapping)) {
70                 f2fs_put_page(page, 1);
71                 goto repeat;
72         }
73 out:
74         mark_page_accessed(page);
75         return page;
76 }
77
78 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 {
80         switch (type) {
81         case META_NAT:
82                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
83         case META_SIT:
84                 return SIT_BLK_CNT(sbi);
85         case META_SSA:
86         case META_CP:
87                 return 0;
88         default:
89                 BUG();
90         }
91 }
92
93 /*
94  * Readahead CP/NAT/SIT/SSA pages
95  */
96 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
97 {
98         block_t prev_blk_addr = 0;
99         struct page *page;
100         int blkno = start;
101         int max_blks = get_max_meta_blks(sbi, type);
102
103         struct f2fs_io_info fio = {
104                 .type = META,
105                 .rw = READ_SYNC | REQ_META | REQ_PRIO
106         };
107
108         for (; nrpages-- > 0; blkno++) {
109                 block_t blk_addr;
110
111                 switch (type) {
112                 case META_NAT:
113                         /* get nat block addr */
114                         if (unlikely(blkno >= max_blks))
115                                 blkno = 0;
116                         blk_addr = current_nat_addr(sbi,
117                                         blkno * NAT_ENTRY_PER_BLOCK);
118                         break;
119                 case META_SIT:
120                         /* get sit block addr */
121                         if (unlikely(blkno >= max_blks))
122                                 goto out;
123                         blk_addr = current_sit_addr(sbi,
124                                         blkno * SIT_ENTRY_PER_BLOCK);
125                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
126                                 goto out;
127                         prev_blk_addr = blk_addr;
128                         break;
129                 case META_SSA:
130                 case META_CP:
131                         /* get ssa/cp block addr */
132                         blk_addr = blkno;
133                         break;
134                 default:
135                         BUG();
136                 }
137
138                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
139                 if (!page)
140                         continue;
141                 if (PageUptodate(page)) {
142                         mark_page_accessed(page);
143                         f2fs_put_page(page, 1);
144                         continue;
145                 }
146
147                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
148                 mark_page_accessed(page);
149                 f2fs_put_page(page, 0);
150         }
151 out:
152         f2fs_submit_merged_bio(sbi, META, READ);
153         return blkno - start;
154 }
155
156 static int f2fs_write_meta_page(struct page *page,
157                                 struct writeback_control *wbc)
158 {
159         struct inode *inode = page->mapping->host;
160         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
161
162         if (unlikely(sbi->por_doing))
163                 goto redirty_out;
164         if (wbc->for_reclaim)
165                 goto redirty_out;
166
167         /* Should not write any meta pages, if any IO error was occurred */
168         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
169                 goto no_write;
170
171         wait_on_page_writeback(page);
172         write_meta_page(sbi, page);
173 no_write:
174         dec_page_count(sbi, F2FS_DIRTY_META);
175         unlock_page(page);
176         return 0;
177
178 redirty_out:
179         dec_page_count(sbi, F2FS_DIRTY_META);
180         wbc->pages_skipped++;
181         account_page_redirty(page);
182         set_page_dirty(page);
183         return AOP_WRITEPAGE_ACTIVATE;
184 }
185
186 static int f2fs_write_meta_pages(struct address_space *mapping,
187                                 struct writeback_control *wbc)
188 {
189         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
190         int nrpages = nr_pages_to_skip(sbi, META);
191         long written;
192
193         if (wbc->for_kupdate)
194                 return 0;
195
196         /* collect a number of dirty meta pages and write together */
197         if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
198                 return 0;
199
200         /* if mounting is failed, skip writing node pages */
201         mutex_lock(&sbi->cp_mutex);
202         written = sync_meta_pages(sbi, META, nrpages);
203         mutex_unlock(&sbi->cp_mutex);
204         wbc->nr_to_write -= written;
205         return 0;
206 }
207
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209                                                 long nr_to_write)
210 {
211         struct address_space *mapping = META_MAPPING(sbi);
212         pgoff_t index = 0, end = LONG_MAX;
213         struct pagevec pvec;
214         long nwritten = 0;
215         struct writeback_control wbc = {
216                 .for_reclaim = 0,
217         };
218
219         pagevec_init(&pvec, 0);
220
221         while (index <= end) {
222                 int i, nr_pages;
223                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224                                 PAGECACHE_TAG_DIRTY,
225                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226                 if (unlikely(nr_pages == 0))
227                         break;
228
229                 for (i = 0; i < nr_pages; i++) {
230                         struct page *page = pvec.pages[i];
231
232                         lock_page(page);
233
234                         if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236                                 unlock_page(page);
237                                 continue;
238                         }
239                         if (!PageDirty(page)) {
240                                 /* someone wrote it for us */
241                                 goto continue_unlock;
242                         }
243
244                         if (!clear_page_dirty_for_io(page))
245                                 goto continue_unlock;
246
247                         if (f2fs_write_meta_page(page, &wbc)) {
248                                 unlock_page(page);
249                                 break;
250                         }
251                         nwritten++;
252                         if (unlikely(nwritten >= nr_to_write))
253                                 break;
254                 }
255                 pagevec_release(&pvec);
256                 cond_resched();
257         }
258
259         if (nwritten)
260                 f2fs_submit_merged_bio(sbi, type, WRITE);
261
262         return nwritten;
263 }
264
265 static int f2fs_set_meta_page_dirty(struct page *page)
266 {
267         struct address_space *mapping = page->mapping;
268         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270         trace_f2fs_set_page_dirty(page, META);
271
272         SetPageUptodate(page);
273         if (!PageDirty(page)) {
274                 __set_page_dirty_nobuffers(page);
275                 inc_page_count(sbi, F2FS_DIRTY_META);
276                 return 1;
277         }
278         return 0;
279 }
280
281 const struct address_space_operations f2fs_meta_aops = {
282         .writepage      = f2fs_write_meta_page,
283         .writepages     = f2fs_write_meta_pages,
284         .set_page_dirty = f2fs_set_meta_page_dirty,
285 };
286
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288 {
289         int err = 0;
290
291         spin_lock(&sbi->orphan_inode_lock);
292         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293                 err = -ENOSPC;
294         else
295                 sbi->n_orphans++;
296         spin_unlock(&sbi->orphan_inode_lock);
297
298         return err;
299 }
300
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
302 {
303         spin_lock(&sbi->orphan_inode_lock);
304         f2fs_bug_on(sbi->n_orphans == 0);
305         sbi->n_orphans--;
306         spin_unlock(&sbi->orphan_inode_lock);
307 }
308
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310 {
311         struct list_head *head, *this;
312         struct orphan_inode_entry *new = NULL, *orphan = NULL;
313
314         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315         new->ino = ino;
316
317         spin_lock(&sbi->orphan_inode_lock);
318         head = &sbi->orphan_inode_list;
319         list_for_each(this, head) {
320                 orphan = list_entry(this, struct orphan_inode_entry, list);
321                 if (orphan->ino == ino) {
322                         spin_unlock(&sbi->orphan_inode_lock);
323                         kmem_cache_free(orphan_entry_slab, new);
324                         return;
325                 }
326
327                 if (orphan->ino > ino)
328                         break;
329                 orphan = NULL;
330         }
331
332         /* add new_oentry into list which is sorted by inode number */
333         if (orphan)
334                 list_add(&new->list, this->prev);
335         else
336                 list_add_tail(&new->list, head);
337         spin_unlock(&sbi->orphan_inode_lock);
338 }
339
340 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
341 {
342         struct list_head *head;
343         struct orphan_inode_entry *orphan;
344
345         spin_lock(&sbi->orphan_inode_lock);
346         head = &sbi->orphan_inode_list;
347         list_for_each_entry(orphan, head, list) {
348                 if (orphan->ino == ino) {
349                         list_del(&orphan->list);
350                         kmem_cache_free(orphan_entry_slab, orphan);
351                         f2fs_bug_on(sbi->n_orphans == 0);
352                         sbi->n_orphans--;
353                         break;
354                 }
355         }
356         spin_unlock(&sbi->orphan_inode_lock);
357 }
358
359 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
360 {
361         struct inode *inode = f2fs_iget(sbi->sb, ino);
362         f2fs_bug_on(IS_ERR(inode));
363         clear_nlink(inode);
364
365         /* truncate all the data during iput */
366         iput(inode);
367 }
368
369 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
370 {
371         block_t start_blk, orphan_blkaddr, i, j;
372
373         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
374                 return;
375
376         sbi->por_doing = true;
377         start_blk = __start_cp_addr(sbi) + 1;
378         orphan_blkaddr = __start_sum_addr(sbi) - 1;
379
380         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
381
382         for (i = 0; i < orphan_blkaddr; i++) {
383                 struct page *page = get_meta_page(sbi, start_blk + i);
384                 struct f2fs_orphan_block *orphan_blk;
385
386                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
387                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
388                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
389                         recover_orphan_inode(sbi, ino);
390                 }
391                 f2fs_put_page(page, 1);
392         }
393         /* clear Orphan Flag */
394         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
395         sbi->por_doing = false;
396         return;
397 }
398
399 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
400 {
401         struct list_head *head;
402         struct f2fs_orphan_block *orphan_blk = NULL;
403         unsigned int nentries = 0;
404         unsigned short index;
405         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
406                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
407         struct page *page = NULL;
408         struct orphan_inode_entry *orphan = NULL;
409
410         for (index = 0; index < orphan_blocks; index++)
411                 grab_meta_page(sbi, start_blk + index);
412
413         index = 1;
414         spin_lock(&sbi->orphan_inode_lock);
415         head = &sbi->orphan_inode_list;
416
417         /* loop for each orphan inode entry and write them in Jornal block */
418         list_for_each_entry(orphan, head, list) {
419                 if (!page) {
420                         page = find_get_page(META_MAPPING(sbi), start_blk++);
421                         f2fs_bug_on(!page);
422                         orphan_blk =
423                                 (struct f2fs_orphan_block *)page_address(page);
424                         memset(orphan_blk, 0, sizeof(*orphan_blk));
425                         f2fs_put_page(page, 0);
426                 }
427
428                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
429
430                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
431                         /*
432                          * an orphan block is full of 1020 entries,
433                          * then we need to flush current orphan blocks
434                          * and bring another one in memory
435                          */
436                         orphan_blk->blk_addr = cpu_to_le16(index);
437                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
438                         orphan_blk->entry_count = cpu_to_le32(nentries);
439                         set_page_dirty(page);
440                         f2fs_put_page(page, 1);
441                         index++;
442                         nentries = 0;
443                         page = NULL;
444                 }
445         }
446
447         if (page) {
448                 orphan_blk->blk_addr = cpu_to_le16(index);
449                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
450                 orphan_blk->entry_count = cpu_to_le32(nentries);
451                 set_page_dirty(page);
452                 f2fs_put_page(page, 1);
453         }
454
455         spin_unlock(&sbi->orphan_inode_lock);
456 }
457
458 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
459                                 block_t cp_addr, unsigned long long *version)
460 {
461         struct page *cp_page_1, *cp_page_2 = NULL;
462         unsigned long blk_size = sbi->blocksize;
463         struct f2fs_checkpoint *cp_block;
464         unsigned long long cur_version = 0, pre_version = 0;
465         size_t crc_offset;
466         __u32 crc = 0;
467
468         /* Read the 1st cp block in this CP pack */
469         cp_page_1 = get_meta_page(sbi, cp_addr);
470
471         /* get the version number */
472         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
473         crc_offset = le32_to_cpu(cp_block->checksum_offset);
474         if (crc_offset >= blk_size)
475                 goto invalid_cp1;
476
477         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
478         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
479                 goto invalid_cp1;
480
481         pre_version = cur_cp_version(cp_block);
482
483         /* Read the 2nd cp block in this CP pack */
484         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
485         cp_page_2 = get_meta_page(sbi, cp_addr);
486
487         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
488         crc_offset = le32_to_cpu(cp_block->checksum_offset);
489         if (crc_offset >= blk_size)
490                 goto invalid_cp2;
491
492         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
493         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
494                 goto invalid_cp2;
495
496         cur_version = cur_cp_version(cp_block);
497
498         if (cur_version == pre_version) {
499                 *version = cur_version;
500                 f2fs_put_page(cp_page_2, 1);
501                 return cp_page_1;
502         }
503 invalid_cp2:
504         f2fs_put_page(cp_page_2, 1);
505 invalid_cp1:
506         f2fs_put_page(cp_page_1, 1);
507         return NULL;
508 }
509
510 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
511 {
512         struct f2fs_checkpoint *cp_block;
513         struct f2fs_super_block *fsb = sbi->raw_super;
514         struct page *cp1, *cp2, *cur_page;
515         unsigned long blk_size = sbi->blocksize;
516         unsigned long long cp1_version = 0, cp2_version = 0;
517         unsigned long long cp_start_blk_no;
518
519         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
520         if (!sbi->ckpt)
521                 return -ENOMEM;
522         /*
523          * Finding out valid cp block involves read both
524          * sets( cp pack1 and cp pack 2)
525          */
526         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
527         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
528
529         /* The second checkpoint pack should start at the next segment */
530         cp_start_blk_no += ((unsigned long long)1) <<
531                                 le32_to_cpu(fsb->log_blocks_per_seg);
532         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
533
534         if (cp1 && cp2) {
535                 if (ver_after(cp2_version, cp1_version))
536                         cur_page = cp2;
537                 else
538                         cur_page = cp1;
539         } else if (cp1) {
540                 cur_page = cp1;
541         } else if (cp2) {
542                 cur_page = cp2;
543         } else {
544                 goto fail_no_cp;
545         }
546
547         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
548         memcpy(sbi->ckpt, cp_block, blk_size);
549
550         f2fs_put_page(cp1, 1);
551         f2fs_put_page(cp2, 1);
552         return 0;
553
554 fail_no_cp:
555         kfree(sbi->ckpt);
556         return -EINVAL;
557 }
558
559 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
560 {
561         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
562         struct list_head *head = &sbi->dir_inode_list;
563         struct list_head *this;
564
565         list_for_each(this, head) {
566                 struct dir_inode_entry *entry;
567                 entry = list_entry(this, struct dir_inode_entry, list);
568                 if (unlikely(entry->inode == inode))
569                         return -EEXIST;
570         }
571         list_add_tail(&new->list, head);
572         stat_inc_dirty_dir(sbi);
573         return 0;
574 }
575
576 void set_dirty_dir_page(struct inode *inode, struct page *page)
577 {
578         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
579         struct dir_inode_entry *new;
580
581         if (!S_ISDIR(inode->i_mode))
582                 return;
583
584         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
585         new->inode = inode;
586         INIT_LIST_HEAD(&new->list);
587
588         spin_lock(&sbi->dir_inode_lock);
589         if (__add_dirty_inode(inode, new))
590                 kmem_cache_free(inode_entry_slab, new);
591
592         inode_inc_dirty_dents(inode);
593         SetPagePrivate(page);
594         spin_unlock(&sbi->dir_inode_lock);
595 }
596
597 void add_dirty_dir_inode(struct inode *inode)
598 {
599         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
600         struct dir_inode_entry *new =
601                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
602
603         new->inode = inode;
604         INIT_LIST_HEAD(&new->list);
605
606         spin_lock(&sbi->dir_inode_lock);
607         if (__add_dirty_inode(inode, new))
608                 kmem_cache_free(inode_entry_slab, new);
609         spin_unlock(&sbi->dir_inode_lock);
610 }
611
612 void remove_dirty_dir_inode(struct inode *inode)
613 {
614         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
615
616         struct list_head *this, *head;
617
618         if (!S_ISDIR(inode->i_mode))
619                 return;
620
621         spin_lock(&sbi->dir_inode_lock);
622         if (get_dirty_dents(inode)) {
623                 spin_unlock(&sbi->dir_inode_lock);
624                 return;
625         }
626
627         head = &sbi->dir_inode_list;
628         list_for_each(this, head) {
629                 struct dir_inode_entry *entry;
630                 entry = list_entry(this, struct dir_inode_entry, list);
631                 if (entry->inode == inode) {
632                         list_del(&entry->list);
633                         kmem_cache_free(inode_entry_slab, entry);
634                         stat_dec_dirty_dir(sbi);
635                         break;
636                 }
637         }
638         spin_unlock(&sbi->dir_inode_lock);
639
640         /* Only from the recovery routine */
641         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
642                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
643                 iput(inode);
644         }
645 }
646
647 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
648 {
649
650         struct list_head *this, *head;
651         struct inode *inode = NULL;
652
653         spin_lock(&sbi->dir_inode_lock);
654
655         head = &sbi->dir_inode_list;
656         list_for_each(this, head) {
657                 struct dir_inode_entry *entry;
658                 entry = list_entry(this, struct dir_inode_entry, list);
659                 if (entry->inode->i_ino == ino) {
660                         inode = entry->inode;
661                         break;
662                 }
663         }
664         spin_unlock(&sbi->dir_inode_lock);
665         return inode;
666 }
667
668 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
669 {
670         struct list_head *head;
671         struct dir_inode_entry *entry;
672         struct inode *inode;
673 retry:
674         spin_lock(&sbi->dir_inode_lock);
675
676         head = &sbi->dir_inode_list;
677         if (list_empty(head)) {
678                 spin_unlock(&sbi->dir_inode_lock);
679                 return;
680         }
681         entry = list_entry(head->next, struct dir_inode_entry, list);
682         inode = igrab(entry->inode);
683         spin_unlock(&sbi->dir_inode_lock);
684         if (inode) {
685                 filemap_fdatawrite(inode->i_mapping);
686                 iput(inode);
687         } else {
688                 /*
689                  * We should submit bio, since it exists several
690                  * wribacking dentry pages in the freeing inode.
691                  */
692                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
693         }
694         goto retry;
695 }
696
697 /*
698  * Freeze all the FS-operations for checkpoint.
699  */
700 static void block_operations(struct f2fs_sb_info *sbi)
701 {
702         struct writeback_control wbc = {
703                 .sync_mode = WB_SYNC_ALL,
704                 .nr_to_write = LONG_MAX,
705                 .for_reclaim = 0,
706         };
707         struct blk_plug plug;
708
709         blk_start_plug(&plug);
710
711 retry_flush_dents:
712         f2fs_lock_all(sbi);
713         /* write all the dirty dentry pages */
714         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
715                 f2fs_unlock_all(sbi);
716                 sync_dirty_dir_inodes(sbi);
717                 goto retry_flush_dents;
718         }
719
720         /*
721          * POR: we should ensure that there is no dirty node pages
722          * until finishing nat/sit flush.
723          */
724 retry_flush_nodes:
725         mutex_lock(&sbi->node_write);
726
727         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
728                 mutex_unlock(&sbi->node_write);
729                 sync_node_pages(sbi, 0, &wbc);
730                 goto retry_flush_nodes;
731         }
732         blk_finish_plug(&plug);
733 }
734
735 static void unblock_operations(struct f2fs_sb_info *sbi)
736 {
737         mutex_unlock(&sbi->node_write);
738         f2fs_unlock_all(sbi);
739 }
740
741 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
742 {
743         DEFINE_WAIT(wait);
744
745         for (;;) {
746                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
747
748                 if (!get_pages(sbi, F2FS_WRITEBACK))
749                         break;
750
751                 io_schedule();
752         }
753         finish_wait(&sbi->cp_wait, &wait);
754 }
755
756 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
757 {
758         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
759         nid_t last_nid = 0;
760         block_t start_blk;
761         struct page *cp_page;
762         unsigned int data_sum_blocks, orphan_blocks;
763         __u32 crc32 = 0;
764         void *kaddr;
765         int i;
766
767         /* Flush all the NAT/SIT pages */
768         while (get_pages(sbi, F2FS_DIRTY_META))
769                 sync_meta_pages(sbi, META, LONG_MAX);
770
771         next_free_nid(sbi, &last_nid);
772
773         /*
774          * modify checkpoint
775          * version number is already updated
776          */
777         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
778         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
779         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
780         for (i = 0; i < 3; i++) {
781                 ckpt->cur_node_segno[i] =
782                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
783                 ckpt->cur_node_blkoff[i] =
784                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
785                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
786                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
787         }
788         for (i = 0; i < 3; i++) {
789                 ckpt->cur_data_segno[i] =
790                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
791                 ckpt->cur_data_blkoff[i] =
792                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
793                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
794                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
795         }
796
797         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
798         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
799         ckpt->next_free_nid = cpu_to_le32(last_nid);
800
801         /* 2 cp  + n data seg summary + orphan inode blocks */
802         data_sum_blocks = npages_for_summary_flush(sbi);
803         if (data_sum_blocks < 3)
804                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805         else
806                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
807
808         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
809                                         / F2FS_ORPHANS_PER_BLOCK;
810         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
811
812         if (is_umount) {
813                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
814                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
815                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
816         } else {
817                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
818                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
819                         data_sum_blocks + orphan_blocks);
820         }
821
822         if (sbi->n_orphans)
823                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824         else
825                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
826
827         /* update SIT/NAT bitmap */
828         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
829         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
830
831         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
832         *((__le32 *)((unsigned char *)ckpt +
833                                 le32_to_cpu(ckpt->checksum_offset)))
834                                 = cpu_to_le32(crc32);
835
836         start_blk = __start_cp_addr(sbi);
837
838         /* write out checkpoint buffer at block 0 */
839         cp_page = grab_meta_page(sbi, start_blk++);
840         kaddr = page_address(cp_page);
841         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
842         set_page_dirty(cp_page);
843         f2fs_put_page(cp_page, 1);
844
845         if (sbi->n_orphans) {
846                 write_orphan_inodes(sbi, start_blk);
847                 start_blk += orphan_blocks;
848         }
849
850         write_data_summaries(sbi, start_blk);
851         start_blk += data_sum_blocks;
852         if (is_umount) {
853                 write_node_summaries(sbi, start_blk);
854                 start_blk += NR_CURSEG_NODE_TYPE;
855         }
856
857         /* writeout checkpoint block */
858         cp_page = grab_meta_page(sbi, start_blk);
859         kaddr = page_address(cp_page);
860         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
861         set_page_dirty(cp_page);
862         f2fs_put_page(cp_page, 1);
863
864         /* wait for previous submitted node/meta pages writeback */
865         wait_on_all_pages_writeback(sbi);
866
867         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
868         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
869
870         /* update user_block_counts */
871         sbi->last_valid_block_count = sbi->total_valid_block_count;
872         sbi->alloc_valid_block_count = 0;
873
874         /* Here, we only have one bio having CP pack */
875         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
876
877         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
878                 clear_prefree_segments(sbi);
879                 F2FS_RESET_SB_DIRT(sbi);
880         }
881 }
882
883 /*
884  * We guarantee that this checkpoint procedure should not fail.
885  */
886 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
887 {
888         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
889         unsigned long long ckpt_ver;
890
891         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
892
893         mutex_lock(&sbi->cp_mutex);
894         block_operations(sbi);
895
896         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
897
898         f2fs_submit_merged_bio(sbi, DATA, WRITE);
899         f2fs_submit_merged_bio(sbi, NODE, WRITE);
900         f2fs_submit_merged_bio(sbi, META, WRITE);
901
902         /*
903          * update checkpoint pack index
904          * Increase the version number so that
905          * SIT entries and seg summaries are written at correct place
906          */
907         ckpt_ver = cur_cp_version(ckpt);
908         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
909
910         /* write cached NAT/SIT entries to NAT/SIT area */
911         flush_nat_entries(sbi);
912         flush_sit_entries(sbi);
913
914         /* unlock all the fs_lock[] in do_checkpoint() */
915         do_checkpoint(sbi, is_umount);
916
917         unblock_operations(sbi);
918         mutex_unlock(&sbi->cp_mutex);
919
920         stat_inc_cp_count(sbi->stat_info);
921         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
922 }
923
924 void init_orphan_info(struct f2fs_sb_info *sbi)
925 {
926         spin_lock_init(&sbi->orphan_inode_lock);
927         INIT_LIST_HEAD(&sbi->orphan_inode_list);
928         sbi->n_orphans = 0;
929         /*
930          * considering 512 blocks in a segment 8 blocks are needed for cp
931          * and log segment summaries. Remaining blocks are used to keep
932          * orphan entries with the limitation one reserved segment
933          * for cp pack we can have max 1020*504 orphan entries
934          */
935         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
936                                 * F2FS_ORPHANS_PER_BLOCK;
937 }
938
939 int __init create_checkpoint_caches(void)
940 {
941         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
942                         sizeof(struct orphan_inode_entry));
943         if (!orphan_entry_slab)
944                 return -ENOMEM;
945         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
946                         sizeof(struct dir_inode_entry));
947         if (!inode_entry_slab) {
948                 kmem_cache_destroy(orphan_entry_slab);
949                 return -ENOMEM;
950         }
951         return 0;
952 }
953
954 void destroy_checkpoint_caches(void)
955 {
956         kmem_cache_destroy(orphan_entry_slab);
957         kmem_cache_destroy(inode_entry_slab);
958 }