]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge remote-tracking branch 'tty/tty-next'
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META, true);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .blk_addr = index,
60                 .encrypted_page = NULL,
61         };
62
63         if (unlikely(!is_meta))
64                 fio.rw &= ~REQ_META;
65 repeat:
66         page = grab_cache_page(mapping, index);
67         if (!page) {
68                 cond_resched();
69                 goto repeat;
70         }
71         if (PageUptodate(page))
72                 goto out;
73
74         fio.page = page;
75
76         if (f2fs_submit_page_bio(&fio)) {
77                 f2fs_put_page(page, 1);
78                 goto repeat;
79         }
80
81         lock_page(page);
82         if (unlikely(page->mapping != mapping)) {
83                 f2fs_put_page(page, 1);
84                 goto repeat;
85         }
86
87         /*
88          * if there is any IO error when accessing device, make our filesystem
89          * readonly and make sure do not write checkpoint with non-uptodate
90          * meta page.
91          */
92         if (unlikely(!PageUptodate(page)))
93                 f2fs_stop_checkpoint(sbi);
94 out:
95         return page;
96 }
97
98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
99 {
100         return __get_meta_page(sbi, index, true);
101 }
102
103 /* for POR only */
104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
105 {
106         return __get_meta_page(sbi, index, false);
107 }
108
109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
110 {
111         switch (type) {
112         case META_NAT:
113                 break;
114         case META_SIT:
115                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
116                         return false;
117                 break;
118         case META_SSA:
119                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
120                         blkaddr < SM_I(sbi)->ssa_blkaddr))
121                         return false;
122                 break;
123         case META_CP:
124                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
125                         blkaddr < __start_cp_addr(sbi)))
126                         return false;
127                 break;
128         case META_POR:
129                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
130                         blkaddr < MAIN_BLKADDR(sbi)))
131                         return false;
132                 break;
133         default:
134                 BUG();
135         }
136
137         return true;
138 }
139
140 /*
141  * Readahead CP/NAT/SIT/SSA pages
142  */
143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
144                                                         int type, bool sync)
145 {
146         block_t prev_blk_addr = 0;
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155
156         if (unlikely(type == META_POR))
157                 fio.rw &= ~REQ_META;
158
159         for (; nrpages-- > 0; blkno++) {
160
161                 if (!is_valid_blkaddr(sbi, blkno, type))
162                         goto out;
163
164                 switch (type) {
165                 case META_NAT:
166                         if (unlikely(blkno >=
167                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
168                                 blkno = 0;
169                         /* get nat block addr */
170                         fio.blk_addr = current_nat_addr(sbi,
171                                         blkno * NAT_ENTRY_PER_BLOCK);
172                         break;
173                 case META_SIT:
174                         /* get sit block addr */
175                         fio.blk_addr = current_sit_addr(sbi,
176                                         blkno * SIT_ENTRY_PER_BLOCK);
177                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
178                                 goto out;
179                         prev_blk_addr = fio.blk_addr;
180                         break;
181                 case META_SSA:
182                 case META_CP:
183                 case META_POR:
184                         fio.blk_addr = blkno;
185                         break;
186                 default:
187                         BUG();
188                 }
189
190                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
191                 if (!page)
192                         continue;
193                 if (PageUptodate(page)) {
194                         f2fs_put_page(page, 1);
195                         continue;
196                 }
197
198                 fio.page = page;
199                 f2fs_submit_page_mbio(&fio);
200                 f2fs_put_page(page, 0);
201         }
202 out:
203         f2fs_submit_merged_bio(sbi, META, READ);
204         return blkno - start;
205 }
206
207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
208 {
209         struct page *page;
210         bool readahead = false;
211
212         page = find_get_page(META_MAPPING(sbi), index);
213         if (!page || (page && !PageUptodate(page)))
214                 readahead = true;
215         f2fs_put_page(page, 0);
216
217         if (readahead)
218                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
219 }
220
221 static int f2fs_write_meta_page(struct page *page,
222                                 struct writeback_control *wbc)
223 {
224         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
225
226         trace_f2fs_writepage(page, META);
227
228         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
229                 goto redirty_out;
230         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
231                 goto redirty_out;
232         if (unlikely(f2fs_cp_error(sbi)))
233                 goto redirty_out;
234
235         write_meta_page(sbi, page);
236         dec_page_count(sbi, F2FS_DIRTY_META);
237
238         if (wbc->for_reclaim)
239                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
240
241         unlock_page(page);
242
243         if (unlikely(f2fs_cp_error(sbi)))
244                 f2fs_submit_merged_bio(sbi, META, WRITE);
245
246         return 0;
247
248 redirty_out:
249         redirty_page_for_writepage(wbc, page);
250         return AOP_WRITEPAGE_ACTIVATE;
251 }
252
253 static int f2fs_write_meta_pages(struct address_space *mapping,
254                                 struct writeback_control *wbc)
255 {
256         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
257         long diff, written;
258
259         /* collect a number of dirty meta pages and write together */
260         if (wbc->for_kupdate ||
261                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
262                 goto skip_write;
263
264         trace_f2fs_writepages(mapping->host, wbc, META);
265
266         /* if mounting is failed, skip writing node pages */
267         mutex_lock(&sbi->cp_mutex);
268         diff = nr_pages_to_write(sbi, META, wbc);
269         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
270         mutex_unlock(&sbi->cp_mutex);
271         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
272         return 0;
273
274 skip_write:
275         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
276         trace_f2fs_writepages(mapping->host, wbc, META);
277         return 0;
278 }
279
280 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
281                                                 long nr_to_write)
282 {
283         struct address_space *mapping = META_MAPPING(sbi);
284         pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
285         struct pagevec pvec;
286         long nwritten = 0;
287         struct writeback_control wbc = {
288                 .for_reclaim = 0,
289         };
290
291         pagevec_init(&pvec, 0);
292
293         while (index <= end) {
294                 int i, nr_pages;
295                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
296                                 PAGECACHE_TAG_DIRTY,
297                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
298                 if (unlikely(nr_pages == 0))
299                         break;
300
301                 for (i = 0; i < nr_pages; i++) {
302                         struct page *page = pvec.pages[i];
303
304                         if (prev == LONG_MAX)
305                                 prev = page->index - 1;
306                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
307                                 pagevec_release(&pvec);
308                                 goto stop;
309                         }
310
311                         lock_page(page);
312
313                         if (unlikely(page->mapping != mapping)) {
314 continue_unlock:
315                                 unlock_page(page);
316                                 continue;
317                         }
318                         if (!PageDirty(page)) {
319                                 /* someone wrote it for us */
320                                 goto continue_unlock;
321                         }
322
323                         f2fs_wait_on_page_writeback(page, META, true);
324
325                         BUG_ON(PageWriteback(page));
326                         if (!clear_page_dirty_for_io(page))
327                                 goto continue_unlock;
328
329                         if (mapping->a_ops->writepage(page, &wbc)) {
330                                 unlock_page(page);
331                                 break;
332                         }
333                         nwritten++;
334                         prev = page->index;
335                         if (unlikely(nwritten >= nr_to_write))
336                                 break;
337                 }
338                 pagevec_release(&pvec);
339                 cond_resched();
340         }
341 stop:
342         if (nwritten)
343                 f2fs_submit_merged_bio(sbi, type, WRITE);
344
345         return nwritten;
346 }
347
348 static int f2fs_set_meta_page_dirty(struct page *page)
349 {
350         trace_f2fs_set_page_dirty(page, META);
351
352         SetPageUptodate(page);
353         if (!PageDirty(page)) {
354                 __set_page_dirty_nobuffers(page);
355                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
356                 SetPagePrivate(page);
357                 f2fs_trace_pid(page);
358                 return 1;
359         }
360         return 0;
361 }
362
363 const struct address_space_operations f2fs_meta_aops = {
364         .writepage      = f2fs_write_meta_page,
365         .writepages     = f2fs_write_meta_pages,
366         .set_page_dirty = f2fs_set_meta_page_dirty,
367         .invalidatepage = f2fs_invalidate_page,
368         .releasepage    = f2fs_release_page,
369 };
370
371 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
372 {
373         struct inode_management *im = &sbi->im[type];
374         struct ino_entry *e, *tmp;
375
376         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
377 retry:
378         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
379
380         spin_lock(&im->ino_lock);
381         e = radix_tree_lookup(&im->ino_root, ino);
382         if (!e) {
383                 e = tmp;
384                 if (radix_tree_insert(&im->ino_root, ino, e)) {
385                         spin_unlock(&im->ino_lock);
386                         radix_tree_preload_end();
387                         goto retry;
388                 }
389                 memset(e, 0, sizeof(struct ino_entry));
390                 e->ino = ino;
391
392                 list_add_tail(&e->list, &im->ino_list);
393                 if (type != ORPHAN_INO)
394                         im->ino_num++;
395         }
396         spin_unlock(&im->ino_lock);
397         radix_tree_preload_end();
398
399         if (e != tmp)
400                 kmem_cache_free(ino_entry_slab, tmp);
401 }
402
403 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
404 {
405         struct inode_management *im = &sbi->im[type];
406         struct ino_entry *e;
407
408         spin_lock(&im->ino_lock);
409         e = radix_tree_lookup(&im->ino_root, ino);
410         if (e) {
411                 list_del(&e->list);
412                 radix_tree_delete(&im->ino_root, ino);
413                 im->ino_num--;
414                 spin_unlock(&im->ino_lock);
415                 kmem_cache_free(ino_entry_slab, e);
416                 return;
417         }
418         spin_unlock(&im->ino_lock);
419 }
420
421 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
422 {
423         /* add new dirty ino entry into list */
424         __add_ino_entry(sbi, ino, type);
425 }
426
427 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429         /* remove dirty ino entry from list */
430         __remove_ino_entry(sbi, ino, type);
431 }
432
433 /* mode should be APPEND_INO or UPDATE_INO */
434 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
435 {
436         struct inode_management *im = &sbi->im[mode];
437         struct ino_entry *e;
438
439         spin_lock(&im->ino_lock);
440         e = radix_tree_lookup(&im->ino_root, ino);
441         spin_unlock(&im->ino_lock);
442         return e ? true : false;
443 }
444
445 void release_ino_entry(struct f2fs_sb_info *sbi)
446 {
447         struct ino_entry *e, *tmp;
448         int i;
449
450         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
451                 struct inode_management *im = &sbi->im[i];
452
453                 spin_lock(&im->ino_lock);
454                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
455                         list_del(&e->list);
456                         radix_tree_delete(&im->ino_root, e->ino);
457                         kmem_cache_free(ino_entry_slab, e);
458                         im->ino_num--;
459                 }
460                 spin_unlock(&im->ino_lock);
461         }
462 }
463
464 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
465 {
466         struct inode_management *im = &sbi->im[ORPHAN_INO];
467         int err = 0;
468
469         spin_lock(&im->ino_lock);
470         if (unlikely(im->ino_num >= sbi->max_orphans))
471                 err = -ENOSPC;
472         else
473                 im->ino_num++;
474         spin_unlock(&im->ino_lock);
475
476         return err;
477 }
478
479 void release_orphan_inode(struct f2fs_sb_info *sbi)
480 {
481         struct inode_management *im = &sbi->im[ORPHAN_INO];
482
483         spin_lock(&im->ino_lock);
484         f2fs_bug_on(sbi, im->ino_num == 0);
485         im->ino_num--;
486         spin_unlock(&im->ino_lock);
487 }
488
489 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
490 {
491         /* add new orphan ino entry into list */
492         __add_ino_entry(sbi, ino, ORPHAN_INO);
493 }
494
495 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
496 {
497         /* remove orphan entry from orphan list */
498         __remove_ino_entry(sbi, ino, ORPHAN_INO);
499 }
500
501 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
502 {
503         struct inode *inode;
504
505         inode = f2fs_iget(sbi->sb, ino);
506         if (IS_ERR(inode)) {
507                 /*
508                  * there should be a bug that we can't find the entry
509                  * to orphan inode.
510                  */
511                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
512                 return PTR_ERR(inode);
513         }
514
515         clear_nlink(inode);
516
517         /* truncate all the data during iput */
518         iput(inode);
519         return 0;
520 }
521
522 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
523 {
524         block_t start_blk, orphan_blocks, i, j;
525         int err;
526
527         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
528                 return 0;
529
530         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
531         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
532
533         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
534
535         for (i = 0; i < orphan_blocks; i++) {
536                 struct page *page = get_meta_page(sbi, start_blk + i);
537                 struct f2fs_orphan_block *orphan_blk;
538
539                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
540                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
541                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
542                         err = recover_orphan_inode(sbi, ino);
543                         if (err) {
544                                 f2fs_put_page(page, 1);
545                                 return err;
546                         }
547                 }
548                 f2fs_put_page(page, 1);
549         }
550         /* clear Orphan Flag */
551         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
552         return 0;
553 }
554
555 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
556 {
557         struct list_head *head;
558         struct f2fs_orphan_block *orphan_blk = NULL;
559         unsigned int nentries = 0;
560         unsigned short index = 1;
561         unsigned short orphan_blocks;
562         struct page *page = NULL;
563         struct ino_entry *orphan = NULL;
564         struct inode_management *im = &sbi->im[ORPHAN_INO];
565
566         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
567
568         /*
569          * we don't need to do spin_lock(&im->ino_lock) here, since all the
570          * orphan inode operations are covered under f2fs_lock_op().
571          * And, spin_lock should be avoided due to page operations below.
572          */
573         head = &im->ino_list;
574
575         /* loop for each orphan inode entry and write them in Jornal block */
576         list_for_each_entry(orphan, head, list) {
577                 if (!page) {
578                         page = grab_meta_page(sbi, start_blk++);
579                         orphan_blk =
580                                 (struct f2fs_orphan_block *)page_address(page);
581                         memset(orphan_blk, 0, sizeof(*orphan_blk));
582                 }
583
584                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
585
586                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
587                         /*
588                          * an orphan block is full of 1020 entries,
589                          * then we need to flush current orphan blocks
590                          * and bring another one in memory
591                          */
592                         orphan_blk->blk_addr = cpu_to_le16(index);
593                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
594                         orphan_blk->entry_count = cpu_to_le32(nentries);
595                         set_page_dirty(page);
596                         f2fs_put_page(page, 1);
597                         index++;
598                         nentries = 0;
599                         page = NULL;
600                 }
601         }
602
603         if (page) {
604                 orphan_blk->blk_addr = cpu_to_le16(index);
605                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
606                 orphan_blk->entry_count = cpu_to_le32(nentries);
607                 set_page_dirty(page);
608                 f2fs_put_page(page, 1);
609         }
610 }
611
612 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
613                                 block_t cp_addr, unsigned long long *version)
614 {
615         struct page *cp_page_1, *cp_page_2 = NULL;
616         unsigned long blk_size = sbi->blocksize;
617         struct f2fs_checkpoint *cp_block;
618         unsigned long long cur_version = 0, pre_version = 0;
619         size_t crc_offset;
620         __u32 crc = 0;
621
622         /* Read the 1st cp block in this CP pack */
623         cp_page_1 = get_meta_page(sbi, cp_addr);
624
625         /* get the version number */
626         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
627         crc_offset = le32_to_cpu(cp_block->checksum_offset);
628         if (crc_offset >= blk_size)
629                 goto invalid_cp1;
630
631         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
632         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
633                 goto invalid_cp1;
634
635         pre_version = cur_cp_version(cp_block);
636
637         /* Read the 2nd cp block in this CP pack */
638         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
639         cp_page_2 = get_meta_page(sbi, cp_addr);
640
641         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
642         crc_offset = le32_to_cpu(cp_block->checksum_offset);
643         if (crc_offset >= blk_size)
644                 goto invalid_cp2;
645
646         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
647         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
648                 goto invalid_cp2;
649
650         cur_version = cur_cp_version(cp_block);
651
652         if (cur_version == pre_version) {
653                 *version = cur_version;
654                 f2fs_put_page(cp_page_2, 1);
655                 return cp_page_1;
656         }
657 invalid_cp2:
658         f2fs_put_page(cp_page_2, 1);
659 invalid_cp1:
660         f2fs_put_page(cp_page_1, 1);
661         return NULL;
662 }
663
664 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
665 {
666         struct f2fs_checkpoint *cp_block;
667         struct f2fs_super_block *fsb = sbi->raw_super;
668         struct page *cp1, *cp2, *cur_page;
669         unsigned long blk_size = sbi->blocksize;
670         unsigned long long cp1_version = 0, cp2_version = 0;
671         unsigned long long cp_start_blk_no;
672         unsigned int cp_blks = 1 + __cp_payload(sbi);
673         block_t cp_blk_no;
674         int i;
675
676         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
677         if (!sbi->ckpt)
678                 return -ENOMEM;
679         /*
680          * Finding out valid cp block involves read both
681          * sets( cp pack1 and cp pack 2)
682          */
683         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
684         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
685
686         /* The second checkpoint pack should start at the next segment */
687         cp_start_blk_no += ((unsigned long long)1) <<
688                                 le32_to_cpu(fsb->log_blocks_per_seg);
689         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
690
691         if (cp1 && cp2) {
692                 if (ver_after(cp2_version, cp1_version))
693                         cur_page = cp2;
694                 else
695                         cur_page = cp1;
696         } else if (cp1) {
697                 cur_page = cp1;
698         } else if (cp2) {
699                 cur_page = cp2;
700         } else {
701                 goto fail_no_cp;
702         }
703
704         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
705         memcpy(sbi->ckpt, cp_block, blk_size);
706
707         if (cp_blks <= 1)
708                 goto done;
709
710         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
711         if (cur_page == cp2)
712                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
713
714         for (i = 1; i < cp_blks; i++) {
715                 void *sit_bitmap_ptr;
716                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
717
718                 cur_page = get_meta_page(sbi, cp_blk_no + i);
719                 sit_bitmap_ptr = page_address(cur_page);
720                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
721                 f2fs_put_page(cur_page, 1);
722         }
723 done:
724         f2fs_put_page(cp1, 1);
725         f2fs_put_page(cp2, 1);
726         return 0;
727
728 fail_no_cp:
729         kfree(sbi->ckpt);
730         return -EINVAL;
731 }
732
733 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
734 {
735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736         struct f2fs_inode_info *fi = F2FS_I(inode);
737         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
738
739         if (is_inode_flag_set(fi, flag))
740                 return;
741
742         set_inode_flag(fi, flag);
743         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
744         stat_inc_dirty_inode(sbi, type);
745 }
746
747 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
748 {
749         struct f2fs_inode_info *fi = F2FS_I(inode);
750         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
751
752         if (get_dirty_pages(inode) ||
753                         !is_inode_flag_set(F2FS_I(inode), flag))
754                 return;
755
756         list_del_init(&fi->dirty_list);
757         clear_inode_flag(fi, flag);
758         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
759 }
760
761 void update_dirty_page(struct inode *inode, struct page *page)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
765
766         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
767                         !S_ISLNK(inode->i_mode))
768                 return;
769
770         spin_lock(&sbi->inode_lock[type]);
771         __add_dirty_inode(inode, type);
772         inode_inc_dirty_pages(inode);
773         spin_unlock(&sbi->inode_lock[type]);
774
775         SetPagePrivate(page);
776         f2fs_trace_pid(page);
777 }
778
779 void add_dirty_dir_inode(struct inode *inode)
780 {
781         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
782
783         spin_lock(&sbi->inode_lock[DIR_INODE]);
784         __add_dirty_inode(inode, DIR_INODE);
785         spin_unlock(&sbi->inode_lock[DIR_INODE]);
786 }
787
788 void remove_dirty_inode(struct inode *inode)
789 {
790         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
791         struct f2fs_inode_info *fi = F2FS_I(inode);
792         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
793
794         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
795                         !S_ISLNK(inode->i_mode))
796                 return;
797
798         spin_lock(&sbi->inode_lock[type]);
799         __remove_dirty_inode(inode, type);
800         spin_unlock(&sbi->inode_lock[type]);
801
802         /* Only from the recovery routine */
803         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
804                 clear_inode_flag(fi, FI_DELAY_IPUT);
805                 iput(inode);
806         }
807 }
808
809 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
810 {
811         struct list_head *head;
812         struct inode *inode;
813         struct f2fs_inode_info *fi;
814         bool is_dir = (type == DIR_INODE);
815
816         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
817                                 get_pages(sbi, is_dir ?
818                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
819 retry:
820         if (unlikely(f2fs_cp_error(sbi)))
821                 return -EIO;
822
823         spin_lock(&sbi->inode_lock[type]);
824
825         head = &sbi->inode_list[type];
826         if (list_empty(head)) {
827                 spin_unlock(&sbi->inode_lock[type]);
828                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
829                                 get_pages(sbi, is_dir ?
830                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
831                 return 0;
832         }
833         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
834         inode = igrab(&fi->vfs_inode);
835         spin_unlock(&sbi->inode_lock[type]);
836         if (inode) {
837                 filemap_fdatawrite(inode->i_mapping);
838                 iput(inode);
839         } else {
840                 /*
841                  * We should submit bio, since it exists several
842                  * wribacking dentry pages in the freeing inode.
843                  */
844                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
845                 cond_resched();
846         }
847         goto retry;
848 }
849
850 /*
851  * Freeze all the FS-operations for checkpoint.
852  */
853 static int block_operations(struct f2fs_sb_info *sbi)
854 {
855         struct writeback_control wbc = {
856                 .sync_mode = WB_SYNC_ALL,
857                 .nr_to_write = LONG_MAX,
858                 .for_reclaim = 0,
859         };
860         struct blk_plug plug;
861         int err = 0;
862
863         blk_start_plug(&plug);
864
865 retry_flush_dents:
866         f2fs_lock_all(sbi);
867         /* write all the dirty dentry pages */
868         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
869                 f2fs_unlock_all(sbi);
870                 err = sync_dirty_inodes(sbi, DIR_INODE);
871                 if (err)
872                         goto out;
873                 goto retry_flush_dents;
874         }
875
876         /*
877          * POR: we should ensure that there are no dirty node pages
878          * until finishing nat/sit flush.
879          */
880 retry_flush_nodes:
881         down_write(&sbi->node_write);
882
883         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
884                 up_write(&sbi->node_write);
885                 err = sync_node_pages(sbi, 0, &wbc);
886                 if (err) {
887                         f2fs_unlock_all(sbi);
888                         goto out;
889                 }
890                 goto retry_flush_nodes;
891         }
892 out:
893         blk_finish_plug(&plug);
894         return err;
895 }
896
897 static void unblock_operations(struct f2fs_sb_info *sbi)
898 {
899         up_write(&sbi->node_write);
900         f2fs_unlock_all(sbi);
901 }
902
903 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
904 {
905         DEFINE_WAIT(wait);
906
907         for (;;) {
908                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
909
910                 if (!get_pages(sbi, F2FS_WRITEBACK))
911                         break;
912
913                 io_schedule();
914         }
915         finish_wait(&sbi->cp_wait, &wait);
916 }
917
918 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
919 {
920         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
921         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
922         struct f2fs_nm_info *nm_i = NM_I(sbi);
923         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
924         nid_t last_nid = nm_i->next_scan_nid;
925         block_t start_blk;
926         unsigned int data_sum_blocks, orphan_blocks;
927         __u32 crc32 = 0;
928         int i;
929         int cp_payload_blks = __cp_payload(sbi);
930         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
931         bool invalidate = false;
932         struct super_block *sb = sbi->sb;
933         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
934         u64 kbytes_written;
935
936         /*
937          * This avoids to conduct wrong roll-forward operations and uses
938          * metapages, so should be called prior to sync_meta_pages below.
939          */
940         if (discard_next_dnode(sbi, discard_blk))
941                 invalidate = true;
942
943         /* Flush all the NAT/SIT pages */
944         while (get_pages(sbi, F2FS_DIRTY_META)) {
945                 sync_meta_pages(sbi, META, LONG_MAX);
946                 if (unlikely(f2fs_cp_error(sbi)))
947                         return -EIO;
948         }
949
950         next_free_nid(sbi, &last_nid);
951
952         /*
953          * modify checkpoint
954          * version number is already updated
955          */
956         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
957         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
958         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
959         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
960                 ckpt->cur_node_segno[i] =
961                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
962                 ckpt->cur_node_blkoff[i] =
963                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
964                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
965                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
966         }
967         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
968                 ckpt->cur_data_segno[i] =
969                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
970                 ckpt->cur_data_blkoff[i] =
971                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
972                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
973                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
974         }
975
976         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
977         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
978         ckpt->next_free_nid = cpu_to_le32(last_nid);
979
980         /* 2 cp  + n data seg summary + orphan inode blocks */
981         data_sum_blocks = npages_for_summary_flush(sbi, false);
982         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
983                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
984         else
985                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
986
987         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
988         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
989                         orphan_blocks);
990
991         if (__remain_node_summaries(cpc->reason))
992                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
993                                 cp_payload_blks + data_sum_blocks +
994                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
995         else
996                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
997                                 cp_payload_blks + data_sum_blocks +
998                                 orphan_blocks);
999
1000         if (cpc->reason == CP_UMOUNT)
1001                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1002         else
1003                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1004
1005         if (cpc->reason == CP_FASTBOOT)
1006                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1007         else
1008                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1009
1010         if (orphan_num)
1011                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1012         else
1013                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1014
1015         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1016                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1017
1018         /* update SIT/NAT bitmap */
1019         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1020         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1021
1022         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1023         *((__le32 *)((unsigned char *)ckpt +
1024                                 le32_to_cpu(ckpt->checksum_offset)))
1025                                 = cpu_to_le32(crc32);
1026
1027         start_blk = __start_cp_addr(sbi);
1028
1029         /* need to wait for end_io results */
1030         wait_on_all_pages_writeback(sbi);
1031         if (unlikely(f2fs_cp_error(sbi)))
1032                 return -EIO;
1033
1034         /* write out checkpoint buffer at block 0 */
1035         update_meta_page(sbi, ckpt, start_blk++);
1036
1037         for (i = 1; i < 1 + cp_payload_blks; i++)
1038                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1039                                                         start_blk++);
1040
1041         if (orphan_num) {
1042                 write_orphan_inodes(sbi, start_blk);
1043                 start_blk += orphan_blocks;
1044         }
1045
1046         write_data_summaries(sbi, start_blk);
1047         start_blk += data_sum_blocks;
1048
1049         /* Record write statistics in the hot node summary */
1050         kbytes_written = sbi->kbytes_written;
1051         if (sb->s_bdev->bd_part)
1052                 kbytes_written += BD_PART_WRITTEN(sbi);
1053
1054         seg_i->sum_blk->info.kbytes_written = cpu_to_le64(kbytes_written);
1055
1056         if (__remain_node_summaries(cpc->reason)) {
1057                 write_node_summaries(sbi, start_blk);
1058                 start_blk += NR_CURSEG_NODE_TYPE;
1059         }
1060
1061         /* writeout checkpoint block */
1062         update_meta_page(sbi, ckpt, start_blk);
1063
1064         /* wait for previous submitted node/meta pages writeback */
1065         wait_on_all_pages_writeback(sbi);
1066
1067         if (unlikely(f2fs_cp_error(sbi)))
1068                 return -EIO;
1069
1070         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1071         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1072
1073         /* update user_block_counts */
1074         sbi->last_valid_block_count = sbi->total_valid_block_count;
1075         sbi->alloc_valid_block_count = 0;
1076
1077         /* Here, we only have one bio having CP pack */
1078         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1079
1080         /* wait for previous submitted meta pages writeback */
1081         wait_on_all_pages_writeback(sbi);
1082
1083         /*
1084          * invalidate meta page which is used temporarily for zeroing out
1085          * block at the end of warm node chain.
1086          */
1087         if (invalidate)
1088                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1089                                                                 discard_blk);
1090
1091         release_ino_entry(sbi);
1092
1093         if (unlikely(f2fs_cp_error(sbi)))
1094                 return -EIO;
1095
1096         clear_prefree_segments(sbi, cpc);
1097         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1098
1099         return 0;
1100 }
1101
1102 /*
1103  * We guarantee that this checkpoint procedure will not fail.
1104  */
1105 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1106 {
1107         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1108         unsigned long long ckpt_ver;
1109         int err = 0;
1110
1111         mutex_lock(&sbi->cp_mutex);
1112
1113         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1114                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1115                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1116                 goto out;
1117         if (unlikely(f2fs_cp_error(sbi))) {
1118                 err = -EIO;
1119                 goto out;
1120         }
1121         if (f2fs_readonly(sbi->sb)) {
1122                 err = -EROFS;
1123                 goto out;
1124         }
1125
1126         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1127
1128         err = block_operations(sbi);
1129         if (err)
1130                 goto out;
1131
1132         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1133
1134         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1135         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1136         f2fs_submit_merged_bio(sbi, META, WRITE);
1137
1138         /*
1139          * update checkpoint pack index
1140          * Increase the version number so that
1141          * SIT entries and seg summaries are written at correct place
1142          */
1143         ckpt_ver = cur_cp_version(ckpt);
1144         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1145
1146         /* write cached NAT/SIT entries to NAT/SIT area */
1147         flush_nat_entries(sbi);
1148         flush_sit_entries(sbi, cpc);
1149
1150         /* unlock all the fs_lock[] in do_checkpoint() */
1151         err = do_checkpoint(sbi, cpc);
1152
1153         unblock_operations(sbi);
1154         stat_inc_cp_count(sbi->stat_info);
1155
1156         if (cpc->reason == CP_RECOVERY)
1157                 f2fs_msg(sbi->sb, KERN_NOTICE,
1158                         "checkpoint: version = %llx", ckpt_ver);
1159
1160         /* do checkpoint periodically */
1161         f2fs_update_time(sbi, CP_TIME);
1162         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1163 out:
1164         mutex_unlock(&sbi->cp_mutex);
1165         return err;
1166 }
1167
1168 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1169 {
1170         int i;
1171
1172         for (i = 0; i < MAX_INO_ENTRY; i++) {
1173                 struct inode_management *im = &sbi->im[i];
1174
1175                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1176                 spin_lock_init(&im->ino_lock);
1177                 INIT_LIST_HEAD(&im->ino_list);
1178                 im->ino_num = 0;
1179         }
1180
1181         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1182                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1183                                 F2FS_ORPHANS_PER_BLOCK;
1184 }
1185
1186 int __init create_checkpoint_caches(void)
1187 {
1188         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1189                         sizeof(struct ino_entry));
1190         if (!ino_entry_slab)
1191                 return -ENOMEM;
1192         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1193                         sizeof(struct inode_entry));
1194         if (!inode_entry_slab) {
1195                 kmem_cache_destroy(ino_entry_slab);
1196                 return -ENOMEM;
1197         }
1198         return 0;
1199 }
1200
1201 void destroy_checkpoint_caches(void)
1202 {
1203         kmem_cache_destroy(ino_entry_slab);
1204         kmem_cache_destroy(inode_entry_slab);
1205 }