]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = sbi->meta_inode->i_mapping;
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = sbi->meta_inode->i_mapping;
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_readpage(sbi, page, index, READ_SYNC))
65                 goto repeat;
66
67         lock_page(page);
68         if (page->mapping != mapping) {
69                 f2fs_put_page(page, 1);
70                 goto repeat;
71         }
72 out:
73         mark_page_accessed(page);
74         return page;
75 }
76
77 static int f2fs_write_meta_page(struct page *page,
78                                 struct writeback_control *wbc)
79 {
80         struct inode *inode = page->mapping->host;
81         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82
83         /* Should not write any meta pages, if any IO error was occurred */
84         if (wbc->for_reclaim ||
85                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86                 dec_page_count(sbi, F2FS_DIRTY_META);
87                 wbc->pages_skipped++;
88                 set_page_dirty(page);
89                 return AOP_WRITEPAGE_ACTIVATE;
90         }
91
92         wait_on_page_writeback(page);
93
94         write_meta_page(sbi, page);
95         dec_page_count(sbi, F2FS_DIRTY_META);
96         unlock_page(page);
97         return 0;
98 }
99
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101                                 struct writeback_control *wbc)
102 {
103         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104         struct block_device *bdev = sbi->sb->s_bdev;
105         long written;
106
107         if (wbc->for_kupdate)
108                 return 0;
109
110         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111                 return 0;
112
113         /* if mounting is failed, skip writing node pages */
114         mutex_lock(&sbi->cp_mutex);
115         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116         mutex_unlock(&sbi->cp_mutex);
117         wbc->nr_to_write -= written;
118         return 0;
119 }
120
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122                                                 long nr_to_write)
123 {
124         struct address_space *mapping = sbi->meta_inode->i_mapping;
125         pgoff_t index = 0, end = LONG_MAX;
126         struct pagevec pvec;
127         long nwritten = 0;
128         struct writeback_control wbc = {
129                 .for_reclaim = 0,
130         };
131
132         pagevec_init(&pvec, 0);
133
134         while (index <= end) {
135                 int i, nr_pages;
136                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137                                 PAGECACHE_TAG_DIRTY,
138                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139                 if (nr_pages == 0)
140                         break;
141
142                 for (i = 0; i < nr_pages; i++) {
143                         struct page *page = pvec.pages[i];
144                         lock_page(page);
145                         BUG_ON(page->mapping != mapping);
146                         BUG_ON(!PageDirty(page));
147                         clear_page_dirty_for_io(page);
148                         if (f2fs_write_meta_page(page, &wbc)) {
149                                 unlock_page(page);
150                                 break;
151                         }
152                         if (nwritten++ >= nr_to_write)
153                                 break;
154                 }
155                 pagevec_release(&pvec);
156                 cond_resched();
157         }
158
159         if (nwritten)
160                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162         return nwritten;
163 }
164
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167         struct address_space *mapping = page->mapping;
168         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
170         SetPageUptodate(page);
171         if (!PageDirty(page)) {
172                 __set_page_dirty_nobuffers(page);
173                 inc_page_count(sbi, F2FS_DIRTY_META);
174                 return 1;
175         }
176         return 0;
177 }
178
179 const struct address_space_operations f2fs_meta_aops = {
180         .writepage      = f2fs_write_meta_page,
181         .writepages     = f2fs_write_meta_pages,
182         .set_page_dirty = f2fs_set_meta_page_dirty,
183 };
184
185 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
186 {
187         unsigned int max_orphans;
188         int err = 0;
189
190         /*
191          * considering 512 blocks in a segment 5 blocks are needed for cp
192          * and log segment summaries. Remaining blocks are used to keep
193          * orphan entries with the limitation one reserved segment
194          * for cp pack we can have max 1020*507 orphan entries
195          */
196         max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197         mutex_lock(&sbi->orphan_inode_mutex);
198         if (sbi->n_orphans >= max_orphans)
199                 err = -ENOSPC;
200         else
201                 sbi->n_orphans++;
202         mutex_unlock(&sbi->orphan_inode_mutex);
203         return err;
204 }
205
206 void release_orphan_inode(struct f2fs_sb_info *sbi)
207 {
208         mutex_lock(&sbi->orphan_inode_mutex);
209         sbi->n_orphans--;
210         mutex_unlock(&sbi->orphan_inode_mutex);
211 }
212
213 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
214 {
215         struct list_head *head, *this;
216         struct orphan_inode_entry *new = NULL, *orphan = NULL;
217
218         mutex_lock(&sbi->orphan_inode_mutex);
219         head = &sbi->orphan_inode_list;
220         list_for_each(this, head) {
221                 orphan = list_entry(this, struct orphan_inode_entry, list);
222                 if (orphan->ino == ino)
223                         goto out;
224                 if (orphan->ino > ino)
225                         break;
226                 orphan = NULL;
227         }
228 retry:
229         new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
230         if (!new) {
231                 cond_resched();
232                 goto retry;
233         }
234         new->ino = ino;
235
236         /* add new_oentry into list which is sorted by inode number */
237         if (orphan)
238                 list_add(&new->list, this->prev);
239         else
240                 list_add_tail(&new->list, head);
241 out:
242         mutex_unlock(&sbi->orphan_inode_mutex);
243 }
244
245 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
246 {
247         struct list_head *head;
248         struct orphan_inode_entry *orphan;
249
250         mutex_lock(&sbi->orphan_inode_mutex);
251         head = &sbi->orphan_inode_list;
252         list_for_each_entry(orphan, head, list) {
253                 if (orphan->ino == ino) {
254                         list_del(&orphan->list);
255                         kmem_cache_free(orphan_entry_slab, orphan);
256                         sbi->n_orphans--;
257                         break;
258                 }
259         }
260         mutex_unlock(&sbi->orphan_inode_mutex);
261 }
262
263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
264 {
265         struct inode *inode = f2fs_iget(sbi->sb, ino);
266         BUG_ON(IS_ERR(inode));
267         clear_nlink(inode);
268
269         /* truncate all the data during iput */
270         iput(inode);
271 }
272
273 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
274 {
275         block_t start_blk, orphan_blkaddr, i, j;
276
277         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
278                 return 0;
279
280         sbi->por_doing = 1;
281         start_blk = __start_cp_addr(sbi) + 1;
282         orphan_blkaddr = __start_sum_addr(sbi) - 1;
283
284         for (i = 0; i < orphan_blkaddr; i++) {
285                 struct page *page = get_meta_page(sbi, start_blk + i);
286                 struct f2fs_orphan_block *orphan_blk;
287
288                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
289                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
290                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
291                         recover_orphan_inode(sbi, ino);
292                 }
293                 f2fs_put_page(page, 1);
294         }
295         /* clear Orphan Flag */
296         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
297         sbi->por_doing = 0;
298         return 0;
299 }
300
301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
302 {
303         struct list_head *head, *this, *next;
304         struct f2fs_orphan_block *orphan_blk = NULL;
305         struct page *page = NULL;
306         unsigned int nentries = 0;
307         unsigned short index = 1;
308         unsigned short orphan_blocks;
309
310         orphan_blocks = (unsigned short)((sbi->n_orphans +
311                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
312
313         mutex_lock(&sbi->orphan_inode_mutex);
314         head = &sbi->orphan_inode_list;
315
316         /* loop for each orphan inode entry and write them in Jornal block */
317         list_for_each_safe(this, next, head) {
318                 struct orphan_inode_entry *orphan;
319
320                 orphan = list_entry(this, struct orphan_inode_entry, list);
321
322                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
323                         /*
324                          * an orphan block is full of 1020 entries,
325                          * then we need to flush current orphan blocks
326                          * and bring another one in memory
327                          */
328                         orphan_blk->blk_addr = cpu_to_le16(index);
329                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
330                         orphan_blk->entry_count = cpu_to_le32(nentries);
331                         set_page_dirty(page);
332                         f2fs_put_page(page, 1);
333                         index++;
334                         start_blk++;
335                         nentries = 0;
336                         page = NULL;
337                 }
338                 if (page)
339                         goto page_exist;
340
341                 page = grab_meta_page(sbi, start_blk);
342                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
343                 memset(orphan_blk, 0, sizeof(*orphan_blk));
344 page_exist:
345                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
346         }
347         if (!page)
348                 goto end;
349
350         orphan_blk->blk_addr = cpu_to_le16(index);
351         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
352         orphan_blk->entry_count = cpu_to_le32(nentries);
353         set_page_dirty(page);
354         f2fs_put_page(page, 1);
355 end:
356         mutex_unlock(&sbi->orphan_inode_mutex);
357 }
358
359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
360                                 block_t cp_addr, unsigned long long *version)
361 {
362         struct page *cp_page_1, *cp_page_2 = NULL;
363         unsigned long blk_size = sbi->blocksize;
364         struct f2fs_checkpoint *cp_block;
365         unsigned long long cur_version = 0, pre_version = 0;
366         size_t crc_offset;
367         __u32 crc = 0;
368
369         /* Read the 1st cp block in this CP pack */
370         cp_page_1 = get_meta_page(sbi, cp_addr);
371
372         /* get the version number */
373         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
374         crc_offset = le32_to_cpu(cp_block->checksum_offset);
375         if (crc_offset >= blk_size)
376                 goto invalid_cp1;
377
378         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
379         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
380                 goto invalid_cp1;
381
382         pre_version = cur_cp_version(cp_block);
383
384         /* Read the 2nd cp block in this CP pack */
385         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
386         cp_page_2 = get_meta_page(sbi, cp_addr);
387
388         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
389         crc_offset = le32_to_cpu(cp_block->checksum_offset);
390         if (crc_offset >= blk_size)
391                 goto invalid_cp2;
392
393         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
394         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
395                 goto invalid_cp2;
396
397         cur_version = cur_cp_version(cp_block);
398
399         if (cur_version == pre_version) {
400                 *version = cur_version;
401                 f2fs_put_page(cp_page_2, 1);
402                 return cp_page_1;
403         }
404 invalid_cp2:
405         f2fs_put_page(cp_page_2, 1);
406 invalid_cp1:
407         f2fs_put_page(cp_page_1, 1);
408         return NULL;
409 }
410
411 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
412 {
413         struct f2fs_checkpoint *cp_block;
414         struct f2fs_super_block *fsb = sbi->raw_super;
415         struct page *cp1, *cp2, *cur_page;
416         unsigned long blk_size = sbi->blocksize;
417         unsigned long long cp1_version = 0, cp2_version = 0;
418         unsigned long long cp_start_blk_no;
419
420         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
421         if (!sbi->ckpt)
422                 return -ENOMEM;
423         /*
424          * Finding out valid cp block involves read both
425          * sets( cp pack1 and cp pack 2)
426          */
427         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
428         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
429
430         /* The second checkpoint pack should start at the next segment */
431         cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
432         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
433
434         if (cp1 && cp2) {
435                 if (ver_after(cp2_version, cp1_version))
436                         cur_page = cp2;
437                 else
438                         cur_page = cp1;
439         } else if (cp1) {
440                 cur_page = cp1;
441         } else if (cp2) {
442                 cur_page = cp2;
443         } else {
444                 goto fail_no_cp;
445         }
446
447         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
448         memcpy(sbi->ckpt, cp_block, blk_size);
449
450         f2fs_put_page(cp1, 1);
451         f2fs_put_page(cp2, 1);
452         return 0;
453
454 fail_no_cp:
455         kfree(sbi->ckpt);
456         return -EINVAL;
457 }
458
459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
460 {
461         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
462         struct list_head *head = &sbi->dir_inode_list;
463         struct list_head *this;
464
465         list_for_each(this, head) {
466                 struct dir_inode_entry *entry;
467                 entry = list_entry(this, struct dir_inode_entry, list);
468                 if (entry->inode == inode)
469                         return -EEXIST;
470         }
471         list_add_tail(&new->list, head);
472 #ifdef CONFIG_F2FS_STAT_FS
473         sbi->n_dirty_dirs++;
474 #endif
475         return 0;
476 }
477
478 void set_dirty_dir_page(struct inode *inode, struct page *page)
479 {
480         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
481         struct dir_inode_entry *new;
482
483         if (!S_ISDIR(inode->i_mode))
484                 return;
485 retry:
486         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
487         if (!new) {
488                 cond_resched();
489                 goto retry;
490         }
491         new->inode = inode;
492         INIT_LIST_HEAD(&new->list);
493
494         spin_lock(&sbi->dir_inode_lock);
495         if (__add_dirty_inode(inode, new))
496                 kmem_cache_free(inode_entry_slab, new);
497
498         inc_page_count(sbi, F2FS_DIRTY_DENTS);
499         inode_inc_dirty_dents(inode);
500         SetPagePrivate(page);
501         spin_unlock(&sbi->dir_inode_lock);
502 }
503
504 void add_dirty_dir_inode(struct inode *inode)
505 {
506         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
507         struct dir_inode_entry *new;
508 retry:
509         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
510         if (!new) {
511                 cond_resched();
512                 goto retry;
513         }
514         new->inode = inode;
515         INIT_LIST_HEAD(&new->list);
516
517         spin_lock(&sbi->dir_inode_lock);
518         if (__add_dirty_inode(inode, new))
519                 kmem_cache_free(inode_entry_slab, new);
520         spin_unlock(&sbi->dir_inode_lock);
521 }
522
523 void remove_dirty_dir_inode(struct inode *inode)
524 {
525         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
526         struct list_head *head = &sbi->dir_inode_list;
527         struct list_head *this;
528
529         if (!S_ISDIR(inode->i_mode))
530                 return;
531
532         spin_lock(&sbi->dir_inode_lock);
533         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
534                 spin_unlock(&sbi->dir_inode_lock);
535                 return;
536         }
537
538         list_for_each(this, head) {
539                 struct dir_inode_entry *entry;
540                 entry = list_entry(this, struct dir_inode_entry, list);
541                 if (entry->inode == inode) {
542                         list_del(&entry->list);
543                         kmem_cache_free(inode_entry_slab, entry);
544 #ifdef CONFIG_F2FS_STAT_FS
545                         sbi->n_dirty_dirs--;
546 #endif
547                         break;
548                 }
549         }
550         spin_unlock(&sbi->dir_inode_lock);
551
552         /* Only from the recovery routine */
553         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
554                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
555                 iput(inode);
556         }
557 }
558
559 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
560 {
561         struct list_head *head = &sbi->dir_inode_list;
562         struct list_head *this;
563         struct inode *inode = NULL;
564
565         spin_lock(&sbi->dir_inode_lock);
566         list_for_each(this, head) {
567                 struct dir_inode_entry *entry;
568                 entry = list_entry(this, struct dir_inode_entry, list);
569                 if (entry->inode->i_ino == ino) {
570                         inode = entry->inode;
571                         break;
572                 }
573         }
574         spin_unlock(&sbi->dir_inode_lock);
575         return inode;
576 }
577
578 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
579 {
580         struct list_head *head = &sbi->dir_inode_list;
581         struct dir_inode_entry *entry;
582         struct inode *inode;
583 retry:
584         spin_lock(&sbi->dir_inode_lock);
585         if (list_empty(head)) {
586                 spin_unlock(&sbi->dir_inode_lock);
587                 return;
588         }
589         entry = list_entry(head->next, struct dir_inode_entry, list);
590         inode = igrab(entry->inode);
591         spin_unlock(&sbi->dir_inode_lock);
592         if (inode) {
593                 filemap_flush(inode->i_mapping);
594                 iput(inode);
595         } else {
596                 /*
597                  * We should submit bio, since it exists several
598                  * wribacking dentry pages in the freeing inode.
599                  */
600                 f2fs_submit_bio(sbi, DATA, true);
601         }
602         goto retry;
603 }
604
605 /*
606  * Freeze all the FS-operations for checkpoint.
607  */
608 static void block_operations(struct f2fs_sb_info *sbi)
609 {
610         struct writeback_control wbc = {
611                 .sync_mode = WB_SYNC_ALL,
612                 .nr_to_write = LONG_MAX,
613                 .for_reclaim = 0,
614         };
615         struct blk_plug plug;
616
617         blk_start_plug(&plug);
618
619 retry_flush_dents:
620         mutex_lock_all(sbi);
621
622         /* write all the dirty dentry pages */
623         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
624                 mutex_unlock_all(sbi);
625                 sync_dirty_dir_inodes(sbi);
626                 goto retry_flush_dents;
627         }
628
629         /*
630          * POR: we should ensure that there is no dirty node pages
631          * until finishing nat/sit flush.
632          */
633 retry_flush_nodes:
634         mutex_lock(&sbi->node_write);
635
636         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
637                 mutex_unlock(&sbi->node_write);
638                 sync_node_pages(sbi, 0, &wbc);
639                 goto retry_flush_nodes;
640         }
641         blk_finish_plug(&plug);
642 }
643
644 static void unblock_operations(struct f2fs_sb_info *sbi)
645 {
646         mutex_unlock(&sbi->node_write);
647         mutex_unlock_all(sbi);
648 }
649
650 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
651 {
652         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
653         nid_t last_nid = 0;
654         block_t start_blk;
655         struct page *cp_page;
656         unsigned int data_sum_blocks, orphan_blocks;
657         __u32 crc32 = 0;
658         void *kaddr;
659         int i;
660
661         /* Flush all the NAT/SIT pages */
662         while (get_pages(sbi, F2FS_DIRTY_META))
663                 sync_meta_pages(sbi, META, LONG_MAX);
664
665         next_free_nid(sbi, &last_nid);
666
667         /*
668          * modify checkpoint
669          * version number is already updated
670          */
671         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
672         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
673         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
674         for (i = 0; i < 3; i++) {
675                 ckpt->cur_node_segno[i] =
676                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
677                 ckpt->cur_node_blkoff[i] =
678                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
679                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
680                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
681         }
682         for (i = 0; i < 3; i++) {
683                 ckpt->cur_data_segno[i] =
684                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
685                 ckpt->cur_data_blkoff[i] =
686                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
687                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
688                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
689         }
690
691         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
692         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
693         ckpt->next_free_nid = cpu_to_le32(last_nid);
694
695         /* 2 cp  + n data seg summary + orphan inode blocks */
696         data_sum_blocks = npages_for_summary_flush(sbi);
697         if (data_sum_blocks < 3)
698                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
699         else
700                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
701
702         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
703                                         / F2FS_ORPHANS_PER_BLOCK;
704         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
705
706         if (is_umount) {
707                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
708                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
709                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
710         } else {
711                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
712                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
713                         data_sum_blocks + orphan_blocks);
714         }
715
716         if (sbi->n_orphans)
717                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
718         else
719                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
720
721         /* update SIT/NAT bitmap */
722         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
723         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
724
725         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
726         *((__le32 *)((unsigned char *)ckpt +
727                                 le32_to_cpu(ckpt->checksum_offset)))
728                                 = cpu_to_le32(crc32);
729
730         start_blk = __start_cp_addr(sbi);
731
732         /* write out checkpoint buffer at block 0 */
733         cp_page = grab_meta_page(sbi, start_blk++);
734         kaddr = page_address(cp_page);
735         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
736         set_page_dirty(cp_page);
737         f2fs_put_page(cp_page, 1);
738
739         if (sbi->n_orphans) {
740                 write_orphan_inodes(sbi, start_blk);
741                 start_blk += orphan_blocks;
742         }
743
744         write_data_summaries(sbi, start_blk);
745         start_blk += data_sum_blocks;
746         if (is_umount) {
747                 write_node_summaries(sbi, start_blk);
748                 start_blk += NR_CURSEG_NODE_TYPE;
749         }
750
751         /* writeout checkpoint block */
752         cp_page = grab_meta_page(sbi, start_blk);
753         kaddr = page_address(cp_page);
754         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
755         set_page_dirty(cp_page);
756         f2fs_put_page(cp_page, 1);
757
758         /* wait for previous submitted node/meta pages writeback */
759         while (get_pages(sbi, F2FS_WRITEBACK))
760                 congestion_wait(BLK_RW_ASYNC, HZ / 50);
761
762         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
763         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
764
765         /* update user_block_counts */
766         sbi->last_valid_block_count = sbi->total_valid_block_count;
767         sbi->alloc_valid_block_count = 0;
768
769         /* Here, we only have one bio having CP pack */
770         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
771
772         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
773                 clear_prefree_segments(sbi);
774                 F2FS_RESET_SB_DIRT(sbi);
775         }
776 }
777
778 /*
779  * We guarantee that this checkpoint procedure should not fail.
780  */
781 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
782 {
783         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
784         unsigned long long ckpt_ver;
785
786         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
787
788         mutex_lock(&sbi->cp_mutex);
789         block_operations(sbi);
790
791         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
792
793         f2fs_submit_bio(sbi, DATA, true);
794         f2fs_submit_bio(sbi, NODE, true);
795         f2fs_submit_bio(sbi, META, true);
796
797         /*
798          * update checkpoint pack index
799          * Increase the version number so that
800          * SIT entries and seg summaries are written at correct place
801          */
802         ckpt_ver = cur_cp_version(ckpt);
803         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
804
805         /* write cached NAT/SIT entries to NAT/SIT area */
806         flush_nat_entries(sbi);
807         flush_sit_entries(sbi);
808
809         /* unlock all the fs_lock[] in do_checkpoint() */
810         do_checkpoint(sbi, is_umount);
811
812         unblock_operations(sbi);
813         mutex_unlock(&sbi->cp_mutex);
814
815         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
816 }
817
818 void init_orphan_info(struct f2fs_sb_info *sbi)
819 {
820         mutex_init(&sbi->orphan_inode_mutex);
821         INIT_LIST_HEAD(&sbi->orphan_inode_list);
822         sbi->n_orphans = 0;
823 }
824
825 int __init create_checkpoint_caches(void)
826 {
827         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
828                         sizeof(struct orphan_inode_entry), NULL);
829         if (unlikely(!orphan_entry_slab))
830                 return -ENOMEM;
831         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
832                         sizeof(struct dir_inode_entry), NULL);
833         if (unlikely(!inode_entry_slab)) {
834                 kmem_cache_destroy(orphan_entry_slab);
835                 return -ENOMEM;
836         }
837         return 0;
838 }
839
840 void destroy_checkpoint_caches(void)
841 {
842         kmem_cache_destroy(orphan_entry_slab);
843         kmem_cache_destroy(inode_entry_slab);
844 }