]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
efc530cb74a9474bed05bbd717dc5082717db689
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
76 {
77         bool readahead = false;
78         struct page *page;
79
80         page = find_get_page(META_MAPPING(sbi), index);
81         if (!page || (page && !PageUptodate(page)))
82                 readahead = true;
83         f2fs_put_page(page, 0);
84
85         if (readahead)
86                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
87         return get_meta_page(sbi, index);
88 }
89
90 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
91 {
92         switch (type) {
93         case META_NAT:
94                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
95         case META_SIT:
96                 return SIT_BLK_CNT(sbi);
97         case META_SSA:
98         case META_CP:
99                 return 0;
100         case META_POR:
101                 return SM_I(sbi)->seg0_blkaddr + TOTAL_BLKS(sbi);
102         default:
103                 BUG();
104         }
105 }
106
107 /*
108  * Readahead CP/NAT/SIT/SSA pages
109  */
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
111 {
112         block_t prev_blk_addr = 0;
113         struct page *page;
114         block_t blkno = start;
115         block_t max_blks = get_max_meta_blks(sbi, type);
116         block_t min_blks = SM_I(sbi)->seg0_blkaddr;
117
118         struct f2fs_io_info fio = {
119                 .type = META,
120                 .rw = READ_SYNC | REQ_META | REQ_PRIO
121         };
122
123         for (; nrpages-- > 0; blkno++) {
124                 block_t blk_addr;
125
126                 switch (type) {
127                 case META_NAT:
128                         /* get nat block addr */
129                         if (unlikely(blkno >= max_blks))
130                                 blkno = 0;
131                         blk_addr = current_nat_addr(sbi,
132                                         blkno * NAT_ENTRY_PER_BLOCK);
133                         break;
134                 case META_SIT:
135                         /* get sit block addr */
136                         if (unlikely(blkno >= max_blks))
137                                 goto out;
138                         blk_addr = current_sit_addr(sbi,
139                                         blkno * SIT_ENTRY_PER_BLOCK);
140                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
141                                 goto out;
142                         prev_blk_addr = blk_addr;
143                         break;
144                 case META_SSA:
145                 case META_CP:
146                 case META_POR:
147                         if (unlikely(blkno >= max_blks))
148                                 goto out;
149                         if (unlikely(blkno < min_blks))
150                                 goto out;
151                         blk_addr = blkno;
152                         break;
153                 default:
154                         BUG();
155                 }
156
157                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
158                 if (!page)
159                         continue;
160                 if (PageUptodate(page)) {
161                         f2fs_put_page(page, 1);
162                         continue;
163                 }
164
165                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
166                 f2fs_put_page(page, 0);
167         }
168 out:
169         f2fs_submit_merged_bio(sbi, META, READ);
170         return blkno - start;
171 }
172
173 static int f2fs_write_meta_page(struct page *page,
174                                 struct writeback_control *wbc)
175 {
176         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
177
178         trace_f2fs_writepage(page, META);
179
180         if (unlikely(sbi->por_doing))
181                 goto redirty_out;
182         if (wbc->for_reclaim)
183                 goto redirty_out;
184         if (unlikely(f2fs_cp_error(sbi)))
185                 goto redirty_out;
186
187         f2fs_wait_on_page_writeback(page, META);
188         write_meta_page(sbi, page);
189         dec_page_count(sbi, F2FS_DIRTY_META);
190         unlock_page(page);
191         return 0;
192
193 redirty_out:
194         redirty_page_for_writepage(wbc, page);
195         return AOP_WRITEPAGE_ACTIVATE;
196 }
197
198 static int f2fs_write_meta_pages(struct address_space *mapping,
199                                 struct writeback_control *wbc)
200 {
201         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
202         long diff, written;
203
204         trace_f2fs_writepages(mapping->host, wbc, META);
205
206         /* collect a number of dirty meta pages and write together */
207         if (wbc->for_kupdate ||
208                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
209                 goto skip_write;
210
211         /* if mounting is failed, skip writing node pages */
212         mutex_lock(&sbi->cp_mutex);
213         diff = nr_pages_to_write(sbi, META, wbc);
214         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
215         mutex_unlock(&sbi->cp_mutex);
216         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
217         return 0;
218
219 skip_write:
220         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
221         return 0;
222 }
223
224 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
225                                                 long nr_to_write)
226 {
227         struct address_space *mapping = META_MAPPING(sbi);
228         pgoff_t index = 0, end = LONG_MAX;
229         struct pagevec pvec;
230         long nwritten = 0;
231         struct writeback_control wbc = {
232                 .for_reclaim = 0,
233         };
234
235         pagevec_init(&pvec, 0);
236
237         while (index <= end) {
238                 int i, nr_pages;
239                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
240                                 PAGECACHE_TAG_DIRTY,
241                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
242                 if (unlikely(nr_pages == 0))
243                         break;
244
245                 for (i = 0; i < nr_pages; i++) {
246                         struct page *page = pvec.pages[i];
247
248                         lock_page(page);
249
250                         if (unlikely(page->mapping != mapping)) {
251 continue_unlock:
252                                 unlock_page(page);
253                                 continue;
254                         }
255                         if (!PageDirty(page)) {
256                                 /* someone wrote it for us */
257                                 goto continue_unlock;
258                         }
259
260                         if (!clear_page_dirty_for_io(page))
261                                 goto continue_unlock;
262
263                         if (f2fs_write_meta_page(page, &wbc)) {
264                                 unlock_page(page);
265                                 break;
266                         }
267                         nwritten++;
268                         if (unlikely(nwritten >= nr_to_write))
269                                 break;
270                 }
271                 pagevec_release(&pvec);
272                 cond_resched();
273         }
274
275         if (nwritten)
276                 f2fs_submit_merged_bio(sbi, type, WRITE);
277
278         return nwritten;
279 }
280
281 static int f2fs_set_meta_page_dirty(struct page *page)
282 {
283         trace_f2fs_set_page_dirty(page, META);
284
285         SetPageUptodate(page);
286         if (!PageDirty(page)) {
287                 __set_page_dirty_nobuffers(page);
288                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
289                 return 1;
290         }
291         return 0;
292 }
293
294 const struct address_space_operations f2fs_meta_aops = {
295         .writepage      = f2fs_write_meta_page,
296         .writepages     = f2fs_write_meta_pages,
297         .set_page_dirty = f2fs_set_meta_page_dirty,
298 };
299
300 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
301 {
302         struct ino_entry *e;
303 retry:
304         spin_lock(&sbi->ino_lock[type]);
305
306         e = radix_tree_lookup(&sbi->ino_root[type], ino);
307         if (!e) {
308                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
309                 if (!e) {
310                         spin_unlock(&sbi->ino_lock[type]);
311                         goto retry;
312                 }
313                 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
314                         spin_unlock(&sbi->ino_lock[type]);
315                         kmem_cache_free(ino_entry_slab, e);
316                         goto retry;
317                 }
318                 memset(e, 0, sizeof(struct ino_entry));
319                 e->ino = ino;
320
321                 list_add_tail(&e->list, &sbi->ino_list[type]);
322         }
323         spin_unlock(&sbi->ino_lock[type]);
324 }
325
326 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
327 {
328         struct ino_entry *e;
329
330         spin_lock(&sbi->ino_lock[type]);
331         e = radix_tree_lookup(&sbi->ino_root[type], ino);
332         if (e) {
333                 list_del(&e->list);
334                 radix_tree_delete(&sbi->ino_root[type], ino);
335                 if (type == ORPHAN_INO)
336                         sbi->n_orphans--;
337                 spin_unlock(&sbi->ino_lock[type]);
338                 kmem_cache_free(ino_entry_slab, e);
339                 return;
340         }
341         spin_unlock(&sbi->ino_lock[type]);
342 }
343
344 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
345 {
346         /* add new dirty ino entry into list */
347         __add_ino_entry(sbi, ino, type);
348 }
349
350 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
351 {
352         /* remove dirty ino entry from list */
353         __remove_ino_entry(sbi, ino, type);
354 }
355
356 /* mode should be APPEND_INO or UPDATE_INO */
357 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
358 {
359         struct ino_entry *e;
360         spin_lock(&sbi->ino_lock[mode]);
361         e = radix_tree_lookup(&sbi->ino_root[mode], ino);
362         spin_unlock(&sbi->ino_lock[mode]);
363         return e ? true : false;
364 }
365
366 void release_dirty_inode(struct f2fs_sb_info *sbi)
367 {
368         struct ino_entry *e, *tmp;
369         int i;
370
371         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
372                 spin_lock(&sbi->ino_lock[i]);
373                 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
374                         list_del(&e->list);
375                         radix_tree_delete(&sbi->ino_root[i], e->ino);
376                         kmem_cache_free(ino_entry_slab, e);
377                 }
378                 spin_unlock(&sbi->ino_lock[i]);
379         }
380 }
381
382 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
383 {
384         int err = 0;
385
386         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
387         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
388                 err = -ENOSPC;
389         else
390                 sbi->n_orphans++;
391         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
392
393         return err;
394 }
395
396 void release_orphan_inode(struct f2fs_sb_info *sbi)
397 {
398         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
399         f2fs_bug_on(sbi, sbi->n_orphans == 0);
400         sbi->n_orphans--;
401         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
402 }
403
404 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
405 {
406         /* add new orphan ino entry into list */
407         __add_ino_entry(sbi, ino, ORPHAN_INO);
408 }
409
410 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
411 {
412         /* remove orphan entry from orphan list */
413         __remove_ino_entry(sbi, ino, ORPHAN_INO);
414 }
415
416 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
417 {
418         struct inode *inode = f2fs_iget(sbi->sb, ino);
419         f2fs_bug_on(sbi, IS_ERR(inode));
420         clear_nlink(inode);
421
422         /* truncate all the data during iput */
423         iput(inode);
424 }
425
426 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
427 {
428         block_t start_blk, orphan_blkaddr, i, j;
429
430         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
431                 return;
432
433         sbi->por_doing = true;
434
435         start_blk = __start_cp_addr(sbi) + 1 +
436                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
437         orphan_blkaddr = __start_sum_addr(sbi) - 1;
438
439         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
440
441         for (i = 0; i < orphan_blkaddr; i++) {
442                 struct page *page = get_meta_page(sbi, start_blk + i);
443                 struct f2fs_orphan_block *orphan_blk;
444
445                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
446                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
447                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
448                         recover_orphan_inode(sbi, ino);
449                 }
450                 f2fs_put_page(page, 1);
451         }
452         /* clear Orphan Flag */
453         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
454         sbi->por_doing = false;
455         return;
456 }
457
458 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
459 {
460         struct list_head *head;
461         struct f2fs_orphan_block *orphan_blk = NULL;
462         unsigned int nentries = 0;
463         unsigned short index;
464         unsigned short orphan_blocks =
465                         (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
466         struct page *page = NULL;
467         struct ino_entry *orphan = NULL;
468
469         for (index = 0; index < orphan_blocks; index++)
470                 grab_meta_page(sbi, start_blk + index);
471
472         index = 1;
473         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
474         head = &sbi->ino_list[ORPHAN_INO];
475
476         /* loop for each orphan inode entry and write them in Jornal block */
477         list_for_each_entry(orphan, head, list) {
478                 if (!page) {
479                         page = find_get_page(META_MAPPING(sbi), start_blk++);
480                         f2fs_bug_on(sbi, !page);
481                         orphan_blk =
482                                 (struct f2fs_orphan_block *)page_address(page);
483                         memset(orphan_blk, 0, sizeof(*orphan_blk));
484                         f2fs_put_page(page, 0);
485                 }
486
487                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
488
489                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
490                         /*
491                          * an orphan block is full of 1020 entries,
492                          * then we need to flush current orphan blocks
493                          * and bring another one in memory
494                          */
495                         orphan_blk->blk_addr = cpu_to_le16(index);
496                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
497                         orphan_blk->entry_count = cpu_to_le32(nentries);
498                         set_page_dirty(page);
499                         f2fs_put_page(page, 1);
500                         index++;
501                         nentries = 0;
502                         page = NULL;
503                 }
504         }
505
506         if (page) {
507                 orphan_blk->blk_addr = cpu_to_le16(index);
508                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
509                 orphan_blk->entry_count = cpu_to_le32(nentries);
510                 set_page_dirty(page);
511                 f2fs_put_page(page, 1);
512         }
513
514         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
515 }
516
517 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
518                                 block_t cp_addr, unsigned long long *version)
519 {
520         struct page *cp_page_1, *cp_page_2 = NULL;
521         unsigned long blk_size = sbi->blocksize;
522         struct f2fs_checkpoint *cp_block;
523         unsigned long long cur_version = 0, pre_version = 0;
524         size_t crc_offset;
525         __u32 crc = 0;
526
527         /* Read the 1st cp block in this CP pack */
528         cp_page_1 = get_meta_page(sbi, cp_addr);
529
530         /* get the version number */
531         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
532         crc_offset = le32_to_cpu(cp_block->checksum_offset);
533         if (crc_offset >= blk_size)
534                 goto invalid_cp1;
535
536         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
537         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
538                 goto invalid_cp1;
539
540         pre_version = cur_cp_version(cp_block);
541
542         /* Read the 2nd cp block in this CP pack */
543         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
544         cp_page_2 = get_meta_page(sbi, cp_addr);
545
546         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
547         crc_offset = le32_to_cpu(cp_block->checksum_offset);
548         if (crc_offset >= blk_size)
549                 goto invalid_cp2;
550
551         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
552         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
553                 goto invalid_cp2;
554
555         cur_version = cur_cp_version(cp_block);
556
557         if (cur_version == pre_version) {
558                 *version = cur_version;
559                 f2fs_put_page(cp_page_2, 1);
560                 return cp_page_1;
561         }
562 invalid_cp2:
563         f2fs_put_page(cp_page_2, 1);
564 invalid_cp1:
565         f2fs_put_page(cp_page_1, 1);
566         return NULL;
567 }
568
569 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
570 {
571         struct f2fs_checkpoint *cp_block;
572         struct f2fs_super_block *fsb = sbi->raw_super;
573         struct page *cp1, *cp2, *cur_page;
574         unsigned long blk_size = sbi->blocksize;
575         unsigned long long cp1_version = 0, cp2_version = 0;
576         unsigned long long cp_start_blk_no;
577         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
578         block_t cp_blk_no;
579         int i;
580
581         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
582         if (!sbi->ckpt)
583                 return -ENOMEM;
584         /*
585          * Finding out valid cp block involves read both
586          * sets( cp pack1 and cp pack 2)
587          */
588         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
589         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
590
591         /* The second checkpoint pack should start at the next segment */
592         cp_start_blk_no += ((unsigned long long)1) <<
593                                 le32_to_cpu(fsb->log_blocks_per_seg);
594         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
595
596         if (cp1 && cp2) {
597                 if (ver_after(cp2_version, cp1_version))
598                         cur_page = cp2;
599                 else
600                         cur_page = cp1;
601         } else if (cp1) {
602                 cur_page = cp1;
603         } else if (cp2) {
604                 cur_page = cp2;
605         } else {
606                 goto fail_no_cp;
607         }
608
609         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
610         memcpy(sbi->ckpt, cp_block, blk_size);
611
612         if (cp_blks <= 1)
613                 goto done;
614
615         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
616         if (cur_page == cp2)
617                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
618
619         for (i = 1; i < cp_blks; i++) {
620                 void *sit_bitmap_ptr;
621                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
622
623                 cur_page = get_meta_page(sbi, cp_blk_no + i);
624                 sit_bitmap_ptr = page_address(cur_page);
625                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
626                 f2fs_put_page(cur_page, 1);
627         }
628 done:
629         f2fs_put_page(cp1, 1);
630         f2fs_put_page(cp2, 1);
631         return 0;
632
633 fail_no_cp:
634         kfree(sbi->ckpt);
635         return -EINVAL;
636 }
637
638 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
639 {
640         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
641
642         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
643                 return -EEXIST;
644
645         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
646         F2FS_I(inode)->dirty_dir = new;
647         list_add_tail(&new->list, &sbi->dir_inode_list);
648         stat_inc_dirty_dir(sbi);
649         return 0;
650 }
651
652 void update_dirty_page(struct inode *inode, struct page *page)
653 {
654         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
655         struct dir_inode_entry *new;
656         int ret = 0;
657
658         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
659                 return;
660
661         if (!S_ISDIR(inode->i_mode)) {
662                 inode_inc_dirty_pages(inode);
663                 goto out;
664         }
665
666         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
667         new->inode = inode;
668         INIT_LIST_HEAD(&new->list);
669
670         spin_lock(&sbi->dir_inode_lock);
671         ret = __add_dirty_inode(inode, new);
672         inode_inc_dirty_pages(inode);
673         spin_unlock(&sbi->dir_inode_lock);
674
675         if (ret)
676                 kmem_cache_free(inode_entry_slab, new);
677 out:
678         SetPagePrivate(page);
679 }
680
681 void add_dirty_dir_inode(struct inode *inode)
682 {
683         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
684         struct dir_inode_entry *new =
685                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
686         int ret = 0;
687
688         new->inode = inode;
689         INIT_LIST_HEAD(&new->list);
690
691         spin_lock(&sbi->dir_inode_lock);
692         ret = __add_dirty_inode(inode, new);
693         spin_unlock(&sbi->dir_inode_lock);
694
695         if (ret)
696                 kmem_cache_free(inode_entry_slab, new);
697 }
698
699 void remove_dirty_dir_inode(struct inode *inode)
700 {
701         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
702         struct dir_inode_entry *entry;
703
704         if (!S_ISDIR(inode->i_mode))
705                 return;
706
707         spin_lock(&sbi->dir_inode_lock);
708         if (get_dirty_pages(inode) ||
709                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
710                 spin_unlock(&sbi->dir_inode_lock);
711                 return;
712         }
713
714         entry = F2FS_I(inode)->dirty_dir;
715         list_del(&entry->list);
716         F2FS_I(inode)->dirty_dir = NULL;
717         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
718         stat_dec_dirty_dir(sbi);
719         spin_unlock(&sbi->dir_inode_lock);
720         kmem_cache_free(inode_entry_slab, entry);
721
722         /* Only from the recovery routine */
723         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
724                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
725                 iput(inode);
726         }
727 }
728
729 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
730 {
731         struct list_head *head;
732         struct dir_inode_entry *entry;
733         struct inode *inode;
734 retry:
735         spin_lock(&sbi->dir_inode_lock);
736
737         head = &sbi->dir_inode_list;
738         if (list_empty(head)) {
739                 spin_unlock(&sbi->dir_inode_lock);
740                 return;
741         }
742         entry = list_entry(head->next, struct dir_inode_entry, list);
743         inode = igrab(entry->inode);
744         spin_unlock(&sbi->dir_inode_lock);
745         if (inode) {
746                 filemap_fdatawrite(inode->i_mapping);
747                 iput(inode);
748         } else {
749                 /*
750                  * We should submit bio, since it exists several
751                  * wribacking dentry pages in the freeing inode.
752                  */
753                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
754         }
755         goto retry;
756 }
757
758 /*
759  * Freeze all the FS-operations for checkpoint.
760  */
761 static int block_operations(struct f2fs_sb_info *sbi)
762 {
763         struct writeback_control wbc = {
764                 .sync_mode = WB_SYNC_ALL,
765                 .nr_to_write = LONG_MAX,
766                 .for_reclaim = 0,
767         };
768         struct blk_plug plug;
769         int err = 0;
770
771         blk_start_plug(&plug);
772
773 retry_flush_dents:
774         f2fs_lock_all(sbi);
775         /* write all the dirty dentry pages */
776         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
777                 f2fs_unlock_all(sbi);
778                 sync_dirty_dir_inodes(sbi);
779                 if (unlikely(f2fs_cp_error(sbi))) {
780                         err = -EIO;
781                         goto out;
782                 }
783                 goto retry_flush_dents;
784         }
785
786         /*
787          * POR: we should ensure that there are no dirty node pages
788          * until finishing nat/sit flush.
789          */
790 retry_flush_nodes:
791         down_write(&sbi->node_write);
792
793         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
794                 up_write(&sbi->node_write);
795                 sync_node_pages(sbi, 0, &wbc);
796                 if (unlikely(f2fs_cp_error(sbi))) {
797                         f2fs_unlock_all(sbi);
798                         err = -EIO;
799                         goto out;
800                 }
801                 goto retry_flush_nodes;
802         }
803 out:
804         blk_finish_plug(&plug);
805         return err;
806 }
807
808 static void unblock_operations(struct f2fs_sb_info *sbi)
809 {
810         up_write(&sbi->node_write);
811         f2fs_unlock_all(sbi);
812 }
813
814 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
815 {
816         DEFINE_WAIT(wait);
817
818         for (;;) {
819                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
820
821                 if (!get_pages(sbi, F2FS_WRITEBACK))
822                         break;
823
824                 io_schedule();
825         }
826         finish_wait(&sbi->cp_wait, &wait);
827 }
828
829 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
830 {
831         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
832         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
833         struct f2fs_nm_info *nm_i = NM_I(sbi);
834         nid_t last_nid = nm_i->next_scan_nid;
835         block_t start_blk;
836         struct page *cp_page;
837         unsigned int data_sum_blocks, orphan_blocks;
838         __u32 crc32 = 0;
839         void *kaddr;
840         int i;
841         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
842
843         /*
844          * This avoids to conduct wrong roll-forward operations and uses
845          * metapages, so should be called prior to sync_meta_pages below.
846          */
847         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
848
849         /* Flush all the NAT/SIT pages */
850         while (get_pages(sbi, F2FS_DIRTY_META)) {
851                 sync_meta_pages(sbi, META, LONG_MAX);
852                 if (unlikely(f2fs_cp_error(sbi)))
853                         return;
854         }
855
856         next_free_nid(sbi, &last_nid);
857
858         /*
859          * modify checkpoint
860          * version number is already updated
861          */
862         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
863         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
864         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
865         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
866                 ckpt->cur_node_segno[i] =
867                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
868                 ckpt->cur_node_blkoff[i] =
869                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
870                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
871                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
872         }
873         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
874                 ckpt->cur_data_segno[i] =
875                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
876                 ckpt->cur_data_blkoff[i] =
877                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
878                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
879                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
880         }
881
882         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
883         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
884         ckpt->next_free_nid = cpu_to_le32(last_nid);
885
886         /* 2 cp  + n data seg summary + orphan inode blocks */
887         data_sum_blocks = npages_for_summary_flush(sbi);
888         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
889                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
890         else
891                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
892
893         orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
894         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
895                         orphan_blocks);
896
897         if (cpc->reason == CP_UMOUNT) {
898                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
899                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
900                                 cp_payload_blks + data_sum_blocks +
901                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
902         } else {
903                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
904                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
905                                 cp_payload_blks + data_sum_blocks +
906                                 orphan_blocks);
907         }
908
909         if (sbi->n_orphans)
910                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
911         else
912                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
913
914         if (sbi->need_fsck)
915                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
916
917         /* update SIT/NAT bitmap */
918         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
919         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
920
921         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
922         *((__le32 *)((unsigned char *)ckpt +
923                                 le32_to_cpu(ckpt->checksum_offset)))
924                                 = cpu_to_le32(crc32);
925
926         start_blk = __start_cp_addr(sbi);
927
928         /* write out checkpoint buffer at block 0 */
929         cp_page = grab_meta_page(sbi, start_blk++);
930         kaddr = page_address(cp_page);
931         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
932         set_page_dirty(cp_page);
933         f2fs_put_page(cp_page, 1);
934
935         for (i = 1; i < 1 + cp_payload_blks; i++) {
936                 cp_page = grab_meta_page(sbi, start_blk++);
937                 kaddr = page_address(cp_page);
938                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
939                                 (1 << sbi->log_blocksize));
940                 set_page_dirty(cp_page);
941                 f2fs_put_page(cp_page, 1);
942         }
943
944         if (sbi->n_orphans) {
945                 write_orphan_inodes(sbi, start_blk);
946                 start_blk += orphan_blocks;
947         }
948
949         write_data_summaries(sbi, start_blk);
950         start_blk += data_sum_blocks;
951         if (cpc->reason == CP_UMOUNT) {
952                 write_node_summaries(sbi, start_blk);
953                 start_blk += NR_CURSEG_NODE_TYPE;
954         }
955
956         /* writeout checkpoint block */
957         cp_page = grab_meta_page(sbi, start_blk);
958         kaddr = page_address(cp_page);
959         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
960         set_page_dirty(cp_page);
961         f2fs_put_page(cp_page, 1);
962
963         /* wait for previous submitted node/meta pages writeback */
964         wait_on_all_pages_writeback(sbi);
965
966         if (unlikely(f2fs_cp_error(sbi)))
967                 return;
968
969         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
970         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
971
972         /* update user_block_counts */
973         sbi->last_valid_block_count = sbi->total_valid_block_count;
974         sbi->alloc_valid_block_count = 0;
975
976         /* Here, we only have one bio having CP pack */
977         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
978
979         release_dirty_inode(sbi);
980
981         if (unlikely(f2fs_cp_error(sbi)))
982                 return;
983
984         clear_prefree_segments(sbi);
985         F2FS_RESET_SB_DIRT(sbi);
986 }
987
988 /*
989  * We guarantee that this checkpoint procedure will not fail.
990  */
991 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
992 {
993         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
994         unsigned long long ckpt_ver;
995
996         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
997
998         mutex_lock(&sbi->cp_mutex);
999
1000         if (!sbi->s_dirty)
1001                 goto out;
1002         if (unlikely(f2fs_cp_error(sbi)))
1003                 goto out;
1004         if (block_operations(sbi))
1005                 goto out;
1006
1007         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1008
1009         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1010         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1011         f2fs_submit_merged_bio(sbi, META, WRITE);
1012
1013         /*
1014          * update checkpoint pack index
1015          * Increase the version number so that
1016          * SIT entries and seg summaries are written at correct place
1017          */
1018         ckpt_ver = cur_cp_version(ckpt);
1019         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1020
1021         /* write cached NAT/SIT entries to NAT/SIT area */
1022         flush_nat_entries(sbi);
1023         flush_sit_entries(sbi);
1024
1025         /* unlock all the fs_lock[] in do_checkpoint() */
1026         do_checkpoint(sbi, cpc);
1027
1028         unblock_operations(sbi);
1029         stat_inc_cp_count(sbi->stat_info);
1030 out:
1031         mutex_unlock(&sbi->cp_mutex);
1032         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1033 }
1034
1035 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1036 {
1037         int i;
1038
1039         for (i = 0; i < MAX_INO_ENTRY; i++) {
1040                 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
1041                 spin_lock_init(&sbi->ino_lock[i]);
1042                 INIT_LIST_HEAD(&sbi->ino_list[i]);
1043         }
1044
1045         /*
1046          * considering 512 blocks in a segment 8 blocks are needed for cp
1047          * and log segment summaries. Remaining blocks are used to keep
1048          * orphan entries with the limitation one reserved segment
1049          * for cp pack we can have max 1020*504 orphan entries
1050          */
1051         sbi->n_orphans = 0;
1052         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1053                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1054 }
1055
1056 int __init create_checkpoint_caches(void)
1057 {
1058         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1059                         sizeof(struct ino_entry));
1060         if (!ino_entry_slab)
1061                 return -ENOMEM;
1062         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1063                         sizeof(struct dir_inode_entry));
1064         if (!inode_entry_slab) {
1065                 kmem_cache_destroy(ino_entry_slab);
1066                 return -ENOMEM;
1067         }
1068         return 0;
1069 }
1070
1071 void destroy_checkpoint_caches(void)
1072 {
1073         kmem_cache_destroy(ino_entry_slab);
1074         kmem_cache_destroy(inode_entry_slab);
1075 }