]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
f2fs: show simple call stack in fault injection message
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253                                                 0, page->index, META, WRITE);
254
255         unlock_page(page);
256
257         if (unlikely(f2fs_cp_error(sbi)))
258                 f2fs_submit_merged_bio(sbi, META, WRITE);
259
260         return 0;
261
262 redirty_out:
263         redirty_page_for_writepage(wbc, page);
264         return AOP_WRITEPAGE_ACTIVATE;
265 }
266
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268                                 struct writeback_control *wbc)
269 {
270         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271         long diff, written;
272
273         /* collect a number of dirty meta pages and write together */
274         if (wbc->for_kupdate ||
275                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276                 goto skip_write;
277
278         trace_f2fs_writepages(mapping->host, wbc, META);
279
280         /* if mounting is failed, skip writing node pages */
281         mutex_lock(&sbi->cp_mutex);
282         diff = nr_pages_to_write(sbi, META, wbc);
283         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
284         mutex_unlock(&sbi->cp_mutex);
285         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
286         return 0;
287
288 skip_write:
289         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
290         trace_f2fs_writepages(mapping->host, wbc, META);
291         return 0;
292 }
293
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295                                                 long nr_to_write)
296 {
297         struct address_space *mapping = META_MAPPING(sbi);
298         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
299         struct pagevec pvec;
300         long nwritten = 0;
301         struct writeback_control wbc = {
302                 .for_reclaim = 0,
303         };
304         struct blk_plug plug;
305
306         pagevec_init(&pvec, 0);
307
308         blk_start_plug(&plug);
309
310         while (index <= end) {
311                 int i, nr_pages;
312                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313                                 PAGECACHE_TAG_DIRTY,
314                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
315                 if (unlikely(nr_pages == 0))
316                         break;
317
318                 for (i = 0; i < nr_pages; i++) {
319                         struct page *page = pvec.pages[i];
320
321                         if (prev == ULONG_MAX)
322                                 prev = page->index - 1;
323                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
324                                 pagevec_release(&pvec);
325                                 goto stop;
326                         }
327
328                         lock_page(page);
329
330                         if (unlikely(page->mapping != mapping)) {
331 continue_unlock:
332                                 unlock_page(page);
333                                 continue;
334                         }
335                         if (!PageDirty(page)) {
336                                 /* someone wrote it for us */
337                                 goto continue_unlock;
338                         }
339
340                         f2fs_wait_on_page_writeback(page, META, true);
341
342                         BUG_ON(PageWriteback(page));
343                         if (!clear_page_dirty_for_io(page))
344                                 goto continue_unlock;
345
346                         if (mapping->a_ops->writepage(page, &wbc)) {
347                                 unlock_page(page);
348                                 break;
349                         }
350                         nwritten++;
351                         prev = page->index;
352                         if (unlikely(nwritten >= nr_to_write))
353                                 break;
354                 }
355                 pagevec_release(&pvec);
356                 cond_resched();
357         }
358 stop:
359         if (nwritten)
360                 f2fs_submit_merged_bio(sbi, type, WRITE);
361
362         blk_finish_plug(&plug);
363
364         return nwritten;
365 }
366
367 static int f2fs_set_meta_page_dirty(struct page *page)
368 {
369         trace_f2fs_set_page_dirty(page, META);
370
371         if (!PageUptodate(page))
372                 SetPageUptodate(page);
373         if (!PageDirty(page)) {
374                 f2fs_set_page_dirty_nobuffers(page);
375                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
376                 SetPagePrivate(page);
377                 f2fs_trace_pid(page);
378                 return 1;
379         }
380         return 0;
381 }
382
383 const struct address_space_operations f2fs_meta_aops = {
384         .writepage      = f2fs_write_meta_page,
385         .writepages     = f2fs_write_meta_pages,
386         .set_page_dirty = f2fs_set_meta_page_dirty,
387         .invalidatepage = f2fs_invalidate_page,
388         .releasepage    = f2fs_release_page,
389 #ifdef CONFIG_MIGRATION
390         .migratepage    = f2fs_migrate_page,
391 #endif
392 };
393
394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
395 {
396         struct inode_management *im = &sbi->im[type];
397         struct ino_entry *e, *tmp;
398
399         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
400 retry:
401         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
402
403         spin_lock(&im->ino_lock);
404         e = radix_tree_lookup(&im->ino_root, ino);
405         if (!e) {
406                 e = tmp;
407                 if (radix_tree_insert(&im->ino_root, ino, e)) {
408                         spin_unlock(&im->ino_lock);
409                         radix_tree_preload_end();
410                         goto retry;
411                 }
412                 memset(e, 0, sizeof(struct ino_entry));
413                 e->ino = ino;
414
415                 list_add_tail(&e->list, &im->ino_list);
416                 if (type != ORPHAN_INO)
417                         im->ino_num++;
418         }
419         spin_unlock(&im->ino_lock);
420         radix_tree_preload_end();
421
422         if (e != tmp)
423                 kmem_cache_free(ino_entry_slab, tmp);
424 }
425
426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
427 {
428         struct inode_management *im = &sbi->im[type];
429         struct ino_entry *e;
430
431         spin_lock(&im->ino_lock);
432         e = radix_tree_lookup(&im->ino_root, ino);
433         if (e) {
434                 list_del(&e->list);
435                 radix_tree_delete(&im->ino_root, ino);
436                 im->ino_num--;
437                 spin_unlock(&im->ino_lock);
438                 kmem_cache_free(ino_entry_slab, e);
439                 return;
440         }
441         spin_unlock(&im->ino_lock);
442 }
443
444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446         /* add new dirty ino entry into list */
447         __add_ino_entry(sbi, ino, type);
448 }
449
450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
451 {
452         /* remove dirty ino entry from list */
453         __remove_ino_entry(sbi, ino, type);
454 }
455
456 /* mode should be APPEND_INO or UPDATE_INO */
457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
458 {
459         struct inode_management *im = &sbi->im[mode];
460         struct ino_entry *e;
461
462         spin_lock(&im->ino_lock);
463         e = radix_tree_lookup(&im->ino_root, ino);
464         spin_unlock(&im->ino_lock);
465         return e ? true : false;
466 }
467
468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
469 {
470         struct ino_entry *e, *tmp;
471         int i;
472
473         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
474                 struct inode_management *im = &sbi->im[i];
475
476                 spin_lock(&im->ino_lock);
477                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
478                         list_del(&e->list);
479                         radix_tree_delete(&im->ino_root, e->ino);
480                         kmem_cache_free(ino_entry_slab, e);
481                         im->ino_num--;
482                 }
483                 spin_unlock(&im->ino_lock);
484         }
485 }
486
487 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
488 {
489         struct inode_management *im = &sbi->im[ORPHAN_INO];
490         int err = 0;
491
492         spin_lock(&im->ino_lock);
493
494 #ifdef CONFIG_F2FS_FAULT_INJECTION
495         if (time_to_inject(sbi, FAULT_ORPHAN)) {
496                 spin_unlock(&im->ino_lock);
497                 f2fs_show_injection_info(FAULT_ORPHAN);
498                 return -ENOSPC;
499         }
500 #endif
501         if (unlikely(im->ino_num >= sbi->max_orphans))
502                 err = -ENOSPC;
503         else
504                 im->ino_num++;
505         spin_unlock(&im->ino_lock);
506
507         return err;
508 }
509
510 void release_orphan_inode(struct f2fs_sb_info *sbi)
511 {
512         struct inode_management *im = &sbi->im[ORPHAN_INO];
513
514         spin_lock(&im->ino_lock);
515         f2fs_bug_on(sbi, im->ino_num == 0);
516         im->ino_num--;
517         spin_unlock(&im->ino_lock);
518 }
519
520 void add_orphan_inode(struct inode *inode)
521 {
522         /* add new orphan ino entry into list */
523         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
524         update_inode_page(inode);
525 }
526
527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529         /* remove orphan entry from orphan list */
530         __remove_ino_entry(sbi, ino, ORPHAN_INO);
531 }
532
533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
534 {
535         struct inode *inode;
536         struct node_info ni;
537         int err = acquire_orphan_inode(sbi);
538
539         if (err) {
540                 set_sbi_flag(sbi, SBI_NEED_FSCK);
541                 f2fs_msg(sbi->sb, KERN_WARNING,
542                                 "%s: orphan failed (ino=%x), run fsck to fix.",
543                                 __func__, ino);
544                 return err;
545         }
546
547         __add_ino_entry(sbi, ino, ORPHAN_INO);
548
549         inode = f2fs_iget_retry(sbi->sb, ino);
550         if (IS_ERR(inode)) {
551                 /*
552                  * there should be a bug that we can't find the entry
553                  * to orphan inode.
554                  */
555                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
556                 return PTR_ERR(inode);
557         }
558
559         clear_nlink(inode);
560
561         /* truncate all the data during iput */
562         iput(inode);
563
564         get_node_info(sbi, ino, &ni);
565
566         /* ENOMEM was fully retried in f2fs_evict_inode. */
567         if (ni.blk_addr != NULL_ADDR) {
568                 set_sbi_flag(sbi, SBI_NEED_FSCK);
569                 f2fs_msg(sbi->sb, KERN_WARNING,
570                         "%s: orphan failed (ino=%x), run fsck to fix.",
571                                 __func__, ino);
572                 return -EIO;
573         }
574         __remove_ino_entry(sbi, ino, ORPHAN_INO);
575         return 0;
576 }
577
578 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
579 {
580         block_t start_blk, orphan_blocks, i, j;
581         int err;
582
583         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
584                 return 0;
585
586         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
587         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
588
589         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
590
591         for (i = 0; i < orphan_blocks; i++) {
592                 struct page *page = get_meta_page(sbi, start_blk + i);
593                 struct f2fs_orphan_block *orphan_blk;
594
595                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
596                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
597                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
598                         err = recover_orphan_inode(sbi, ino);
599                         if (err) {
600                                 f2fs_put_page(page, 1);
601                                 return err;
602                         }
603                 }
604                 f2fs_put_page(page, 1);
605         }
606         /* clear Orphan Flag */
607         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
608         return 0;
609 }
610
611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
612 {
613         struct list_head *head;
614         struct f2fs_orphan_block *orphan_blk = NULL;
615         unsigned int nentries = 0;
616         unsigned short index = 1;
617         unsigned short orphan_blocks;
618         struct page *page = NULL;
619         struct ino_entry *orphan = NULL;
620         struct inode_management *im = &sbi->im[ORPHAN_INO];
621
622         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
623
624         /*
625          * we don't need to do spin_lock(&im->ino_lock) here, since all the
626          * orphan inode operations are covered under f2fs_lock_op().
627          * And, spin_lock should be avoided due to page operations below.
628          */
629         head = &im->ino_list;
630
631         /* loop for each orphan inode entry and write them in Jornal block */
632         list_for_each_entry(orphan, head, list) {
633                 if (!page) {
634                         page = grab_meta_page(sbi, start_blk++);
635                         orphan_blk =
636                                 (struct f2fs_orphan_block *)page_address(page);
637                         memset(orphan_blk, 0, sizeof(*orphan_blk));
638                 }
639
640                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
641
642                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
643                         /*
644                          * an orphan block is full of 1020 entries,
645                          * then we need to flush current orphan blocks
646                          * and bring another one in memory
647                          */
648                         orphan_blk->blk_addr = cpu_to_le16(index);
649                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
650                         orphan_blk->entry_count = cpu_to_le32(nentries);
651                         set_page_dirty(page);
652                         f2fs_put_page(page, 1);
653                         index++;
654                         nentries = 0;
655                         page = NULL;
656                 }
657         }
658
659         if (page) {
660                 orphan_blk->blk_addr = cpu_to_le16(index);
661                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
662                 orphan_blk->entry_count = cpu_to_le32(nentries);
663                 set_page_dirty(page);
664                 f2fs_put_page(page, 1);
665         }
666 }
667
668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
669                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
670                 unsigned long long *version)
671 {
672         unsigned long blk_size = sbi->blocksize;
673         size_t crc_offset = 0;
674         __u32 crc = 0;
675
676         *cp_page = get_meta_page(sbi, cp_addr);
677         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
678
679         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
680         if (crc_offset >= blk_size) {
681                 f2fs_msg(sbi->sb, KERN_WARNING,
682                         "invalid crc_offset: %zu", crc_offset);
683                 return -EINVAL;
684         }
685
686         crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
687                                                         + crc_offset)));
688         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
689                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
690                 return -EINVAL;
691         }
692
693         *version = cur_cp_version(*cp_block);
694         return 0;
695 }
696
697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
698                                 block_t cp_addr, unsigned long long *version)
699 {
700         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
701         struct f2fs_checkpoint *cp_block = NULL;
702         unsigned long long cur_version = 0, pre_version = 0;
703         int err;
704
705         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
706                                         &cp_page_1, version);
707         if (err)
708                 goto invalid_cp1;
709         pre_version = *version;
710
711         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
712         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
713                                         &cp_page_2, version);
714         if (err)
715                 goto invalid_cp2;
716         cur_version = *version;
717
718         if (cur_version == pre_version) {
719                 *version = cur_version;
720                 f2fs_put_page(cp_page_2, 1);
721                 return cp_page_1;
722         }
723 invalid_cp2:
724         f2fs_put_page(cp_page_2, 1);
725 invalid_cp1:
726         f2fs_put_page(cp_page_1, 1);
727         return NULL;
728 }
729
730 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 {
732         struct f2fs_checkpoint *cp_block;
733         struct f2fs_super_block *fsb = sbi->raw_super;
734         struct page *cp1, *cp2, *cur_page;
735         unsigned long blk_size = sbi->blocksize;
736         unsigned long long cp1_version = 0, cp2_version = 0;
737         unsigned long long cp_start_blk_no;
738         unsigned int cp_blks = 1 + __cp_payload(sbi);
739         block_t cp_blk_no;
740         int i;
741
742         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
743         if (!sbi->ckpt)
744                 return -ENOMEM;
745         /*
746          * Finding out valid cp block involves read both
747          * sets( cp pack1 and cp pack 2)
748          */
749         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751
752         /* The second checkpoint pack should start at the next segment */
753         cp_start_blk_no += ((unsigned long long)1) <<
754                                 le32_to_cpu(fsb->log_blocks_per_seg);
755         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756
757         if (cp1 && cp2) {
758                 if (ver_after(cp2_version, cp1_version))
759                         cur_page = cp2;
760                 else
761                         cur_page = cp1;
762         } else if (cp1) {
763                 cur_page = cp1;
764         } else if (cp2) {
765                 cur_page = cp2;
766         } else {
767                 goto fail_no_cp;
768         }
769
770         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
771         memcpy(sbi->ckpt, cp_block, blk_size);
772
773         /* Sanity checking of checkpoint */
774         if (sanity_check_ckpt(sbi))
775                 goto free_fail_no_cp;
776
777         if (cur_page == cp1)
778                 sbi->cur_cp_pack = 1;
779         else
780                 sbi->cur_cp_pack = 2;
781
782         if (cp_blks <= 1)
783                 goto done;
784
785         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
786         if (cur_page == cp2)
787                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788
789         for (i = 1; i < cp_blks; i++) {
790                 void *sit_bitmap_ptr;
791                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792
793                 cur_page = get_meta_page(sbi, cp_blk_no + i);
794                 sit_bitmap_ptr = page_address(cur_page);
795                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
796                 f2fs_put_page(cur_page, 1);
797         }
798 done:
799         f2fs_put_page(cp1, 1);
800         f2fs_put_page(cp2, 1);
801         return 0;
802
803 free_fail_no_cp:
804         f2fs_put_page(cp1, 1);
805         f2fs_put_page(cp2, 1);
806 fail_no_cp:
807         kfree(sbi->ckpt);
808         return -EINVAL;
809 }
810
811 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 {
813         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815
816         if (is_inode_flag_set(inode, flag))
817                 return;
818
819         set_inode_flag(inode, flag);
820         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
821         stat_inc_dirty_inode(sbi, type);
822 }
823
824 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
825 {
826         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
827
828         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
829                 return;
830
831         list_del_init(&F2FS_I(inode)->dirty_list);
832         clear_inode_flag(inode, flag);
833         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
834 }
835
836 void update_dirty_page(struct inode *inode, struct page *page)
837 {
838         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
839         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
840
841         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
842                         !S_ISLNK(inode->i_mode))
843                 return;
844
845         spin_lock(&sbi->inode_lock[type]);
846         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
847                 __add_dirty_inode(inode, type);
848         inode_inc_dirty_pages(inode);
849         spin_unlock(&sbi->inode_lock[type]);
850
851         SetPagePrivate(page);
852         f2fs_trace_pid(page);
853 }
854
855 void remove_dirty_inode(struct inode *inode)
856 {
857         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
859
860         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
861                         !S_ISLNK(inode->i_mode))
862                 return;
863
864         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
865                 return;
866
867         spin_lock(&sbi->inode_lock[type]);
868         __remove_dirty_inode(inode, type);
869         spin_unlock(&sbi->inode_lock[type]);
870 }
871
872 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
873 {
874         struct list_head *head;
875         struct inode *inode;
876         struct f2fs_inode_info *fi;
877         bool is_dir = (type == DIR_INODE);
878
879         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
880                                 get_pages(sbi, is_dir ?
881                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
882 retry:
883         if (unlikely(f2fs_cp_error(sbi)))
884                 return -EIO;
885
886         spin_lock(&sbi->inode_lock[type]);
887
888         head = &sbi->inode_list[type];
889         if (list_empty(head)) {
890                 spin_unlock(&sbi->inode_lock[type]);
891                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
892                                 get_pages(sbi, is_dir ?
893                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
894                 return 0;
895         }
896         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
897         inode = igrab(&fi->vfs_inode);
898         spin_unlock(&sbi->inode_lock[type]);
899         if (inode) {
900                 filemap_fdatawrite(inode->i_mapping);
901                 iput(inode);
902         } else {
903                 /*
904                  * We should submit bio, since it exists several
905                  * wribacking dentry pages in the freeing inode.
906                  */
907                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
908                 cond_resched();
909         }
910         goto retry;
911 }
912
913 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
914 {
915         struct list_head *head = &sbi->inode_list[DIRTY_META];
916         struct inode *inode;
917         struct f2fs_inode_info *fi;
918         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
919
920         while (total--) {
921                 if (unlikely(f2fs_cp_error(sbi)))
922                         return -EIO;
923
924                 spin_lock(&sbi->inode_lock[DIRTY_META]);
925                 if (list_empty(head)) {
926                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
927                         return 0;
928                 }
929                 fi = list_first_entry(head, struct f2fs_inode_info,
930                                                         gdirty_list);
931                 inode = igrab(&fi->vfs_inode);
932                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
933                 if (inode) {
934                         sync_inode_metadata(inode, 0);
935
936                         /* it's on eviction */
937                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
938                                 update_inode_page(inode);
939                         iput(inode);
940                 }
941         };
942         return 0;
943 }
944
945 /*
946  * Freeze all the FS-operations for checkpoint.
947  */
948 static int block_operations(struct f2fs_sb_info *sbi)
949 {
950         struct writeback_control wbc = {
951                 .sync_mode = WB_SYNC_ALL,
952                 .nr_to_write = LONG_MAX,
953                 .for_reclaim = 0,
954         };
955         struct blk_plug plug;
956         int err = 0;
957
958         blk_start_plug(&plug);
959
960 retry_flush_dents:
961         f2fs_lock_all(sbi);
962         /* write all the dirty dentry pages */
963         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
964                 f2fs_unlock_all(sbi);
965                 err = sync_dirty_inodes(sbi, DIR_INODE);
966                 if (err)
967                         goto out;
968                 goto retry_flush_dents;
969         }
970
971         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
972                 f2fs_unlock_all(sbi);
973                 err = f2fs_sync_inode_meta(sbi);
974                 if (err)
975                         goto out;
976                 goto retry_flush_dents;
977         }
978
979         /*
980          * POR: we should ensure that there are no dirty node pages
981          * until finishing nat/sit flush.
982          */
983 retry_flush_nodes:
984         down_write(&sbi->node_write);
985
986         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
987                 up_write(&sbi->node_write);
988                 err = sync_node_pages(sbi, &wbc);
989                 if (err) {
990                         f2fs_unlock_all(sbi);
991                         goto out;
992                 }
993                 goto retry_flush_nodes;
994         }
995 out:
996         blk_finish_plug(&plug);
997         return err;
998 }
999
1000 static void unblock_operations(struct f2fs_sb_info *sbi)
1001 {
1002         up_write(&sbi->node_write);
1003         f2fs_unlock_all(sbi);
1004 }
1005
1006 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1007 {
1008         DEFINE_WAIT(wait);
1009
1010         for (;;) {
1011                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1012
1013                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1014                         break;
1015
1016                 io_schedule_timeout(5*HZ);
1017         }
1018         finish_wait(&sbi->cp_wait, &wait);
1019 }
1020
1021 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1022 {
1023         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1024         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025
1026         spin_lock(&sbi->cp_lock);
1027
1028         if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count >
1029                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1030                 disable_nat_bits(sbi, false);
1031
1032         if (cpc->reason == CP_UMOUNT)
1033                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1034         else
1035                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1036
1037         if (cpc->reason == CP_FASTBOOT)
1038                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1039         else
1040                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1041
1042         if (orphan_num)
1043                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1044         else
1045                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1046
1047         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1048                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1049
1050         /* set this flag to activate crc|cp_ver for recovery */
1051         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1052
1053         spin_unlock(&sbi->cp_lock);
1054 }
1055
1056 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1057 {
1058         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1059         struct f2fs_nm_info *nm_i = NM_I(sbi);
1060         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1061         nid_t last_nid = nm_i->next_scan_nid;
1062         block_t start_blk;
1063         unsigned int data_sum_blocks, orphan_blocks;
1064         __u32 crc32 = 0;
1065         int i;
1066         int cp_payload_blks = __cp_payload(sbi);
1067         struct super_block *sb = sbi->sb;
1068         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1069         u64 kbytes_written;
1070
1071         /* Flush all the NAT/SIT pages */
1072         while (get_pages(sbi, F2FS_DIRTY_META)) {
1073                 sync_meta_pages(sbi, META, LONG_MAX);
1074                 if (unlikely(f2fs_cp_error(sbi)))
1075                         return -EIO;
1076         }
1077
1078         next_free_nid(sbi, &last_nid);
1079
1080         /*
1081          * modify checkpoint
1082          * version number is already updated
1083          */
1084         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1085         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1086         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1087         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1088                 ckpt->cur_node_segno[i] =
1089                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1090                 ckpt->cur_node_blkoff[i] =
1091                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1092                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1093                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1094         }
1095         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1096                 ckpt->cur_data_segno[i] =
1097                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1098                 ckpt->cur_data_blkoff[i] =
1099                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1100                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1101                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1102         }
1103
1104         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1105         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1106         ckpt->next_free_nid = cpu_to_le32(last_nid);
1107
1108         /* 2 cp  + n data seg summary + orphan inode blocks */
1109         data_sum_blocks = npages_for_summary_flush(sbi, false);
1110         spin_lock(&sbi->cp_lock);
1111         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1112                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1113         else
1114                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1115         spin_unlock(&sbi->cp_lock);
1116
1117         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1118         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1119                         orphan_blocks);
1120
1121         if (__remain_node_summaries(cpc->reason))
1122                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1123                                 cp_payload_blks + data_sum_blocks +
1124                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1125         else
1126                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1127                                 cp_payload_blks + data_sum_blocks +
1128                                 orphan_blocks);
1129
1130         /* update ckpt flag for checkpoint */
1131         update_ckpt_flags(sbi, cpc);
1132
1133         /* update SIT/NAT bitmap */
1134         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1135         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1136
1137         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1138         *((__le32 *)((unsigned char *)ckpt +
1139                                 le32_to_cpu(ckpt->checksum_offset)))
1140                                 = cpu_to_le32(crc32);
1141
1142         start_blk = __start_cp_next_addr(sbi);
1143
1144         /* write nat bits */
1145         if (enabled_nat_bits(sbi, cpc)) {
1146                 __u64 cp_ver = cur_cp_version(ckpt);
1147                 unsigned int i;
1148                 block_t blk;
1149
1150                 cp_ver |= ((__u64)crc32 << 32);
1151                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1152
1153                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1154                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1155                         update_meta_page(sbi, nm_i->nat_bits +
1156                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1157
1158                 /* Flush all the NAT BITS pages */
1159                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1160                         sync_meta_pages(sbi, META, LONG_MAX);
1161                         if (unlikely(f2fs_cp_error(sbi)))
1162                                 return -EIO;
1163                 }
1164         }
1165
1166         /* need to wait for end_io results */
1167         wait_on_all_pages_writeback(sbi);
1168         if (unlikely(f2fs_cp_error(sbi)))
1169                 return -EIO;
1170
1171         /* write out checkpoint buffer at block 0 */
1172         update_meta_page(sbi, ckpt, start_blk++);
1173
1174         for (i = 1; i < 1 + cp_payload_blks; i++)
1175                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1176                                                         start_blk++);
1177
1178         if (orphan_num) {
1179                 write_orphan_inodes(sbi, start_blk);
1180                 start_blk += orphan_blocks;
1181         }
1182
1183         write_data_summaries(sbi, start_blk);
1184         start_blk += data_sum_blocks;
1185
1186         /* Record write statistics in the hot node summary */
1187         kbytes_written = sbi->kbytes_written;
1188         if (sb->s_bdev->bd_part)
1189                 kbytes_written += BD_PART_WRITTEN(sbi);
1190
1191         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1192
1193         if (__remain_node_summaries(cpc->reason)) {
1194                 write_node_summaries(sbi, start_blk);
1195                 start_blk += NR_CURSEG_NODE_TYPE;
1196         }
1197
1198         /* writeout checkpoint block */
1199         update_meta_page(sbi, ckpt, start_blk);
1200
1201         /* wait for previous submitted node/meta pages writeback */
1202         wait_on_all_pages_writeback(sbi);
1203
1204         if (unlikely(f2fs_cp_error(sbi)))
1205                 return -EIO;
1206
1207         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1208         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1209
1210         /* update user_block_counts */
1211         sbi->last_valid_block_count = sbi->total_valid_block_count;
1212         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1213
1214         /* Here, we only have one bio having CP pack */
1215         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1216
1217         /* wait for previous submitted meta pages writeback */
1218         wait_on_all_pages_writeback(sbi);
1219
1220         release_ino_entry(sbi, false);
1221
1222         if (unlikely(f2fs_cp_error(sbi)))
1223                 return -EIO;
1224
1225         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1226         clear_sbi_flag(sbi, SBI_NEED_CP);
1227         __set_cp_next_pack(sbi);
1228
1229         /*
1230          * redirty superblock if metadata like node page or inode cache is
1231          * updated during writing checkpoint.
1232          */
1233         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1234                         get_pages(sbi, F2FS_DIRTY_IMETA))
1235                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1236
1237         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1238
1239         return 0;
1240 }
1241
1242 /*
1243  * We guarantee that this checkpoint procedure will not fail.
1244  */
1245 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1246 {
1247         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1248         unsigned long long ckpt_ver;
1249         int err = 0;
1250
1251         mutex_lock(&sbi->cp_mutex);
1252
1253         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1254                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1255                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1256                 goto out;
1257         if (unlikely(f2fs_cp_error(sbi))) {
1258                 err = -EIO;
1259                 goto out;
1260         }
1261         if (f2fs_readonly(sbi->sb)) {
1262                 err = -EROFS;
1263                 goto out;
1264         }
1265
1266         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1267
1268         err = block_operations(sbi);
1269         if (err)
1270                 goto out;
1271
1272         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1273
1274         f2fs_flush_merged_bios(sbi);
1275
1276         /* this is the case of multiple fstrims without any changes */
1277         if (cpc->reason == CP_DISCARD) {
1278                 if (!exist_trim_candidates(sbi, cpc)) {
1279                         unblock_operations(sbi);
1280                         goto out;
1281                 }
1282
1283                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1284                                 SIT_I(sbi)->dirty_sentries == 0 &&
1285                                 prefree_segments(sbi) == 0) {
1286                         flush_sit_entries(sbi, cpc);
1287                         clear_prefree_segments(sbi, cpc);
1288                         unblock_operations(sbi);
1289                         goto out;
1290                 }
1291         }
1292
1293         /*
1294          * update checkpoint pack index
1295          * Increase the version number so that
1296          * SIT entries and seg summaries are written at correct place
1297          */
1298         ckpt_ver = cur_cp_version(ckpt);
1299         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1300
1301         /* write cached NAT/SIT entries to NAT/SIT area */
1302         flush_nat_entries(sbi, cpc);
1303         flush_sit_entries(sbi, cpc);
1304
1305         /* unlock all the fs_lock[] in do_checkpoint() */
1306         err = do_checkpoint(sbi, cpc);
1307         if (err)
1308                 release_discard_addrs(sbi);
1309         else
1310                 clear_prefree_segments(sbi, cpc);
1311
1312         unblock_operations(sbi);
1313         stat_inc_cp_count(sbi->stat_info);
1314
1315         if (cpc->reason == CP_RECOVERY)
1316                 f2fs_msg(sbi->sb, KERN_NOTICE,
1317                         "checkpoint: version = %llx", ckpt_ver);
1318
1319         /* do checkpoint periodically */
1320         f2fs_update_time(sbi, CP_TIME);
1321         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1322 out:
1323         mutex_unlock(&sbi->cp_mutex);
1324         return err;
1325 }
1326
1327 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1328 {
1329         int i;
1330
1331         for (i = 0; i < MAX_INO_ENTRY; i++) {
1332                 struct inode_management *im = &sbi->im[i];
1333
1334                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1335                 spin_lock_init(&im->ino_lock);
1336                 INIT_LIST_HEAD(&im->ino_list);
1337                 im->ino_num = 0;
1338         }
1339
1340         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1341                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1342                                 F2FS_ORPHANS_PER_BLOCK;
1343 }
1344
1345 int __init create_checkpoint_caches(void)
1346 {
1347         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1348                         sizeof(struct ino_entry));
1349         if (!ino_entry_slab)
1350                 return -ENOMEM;
1351         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1352                         sizeof(struct inode_entry));
1353         if (!inode_entry_slab) {
1354                 kmem_cache_destroy(ino_entry_slab);
1355                 return -ENOMEM;
1356         }
1357         return 0;
1358 }
1359
1360 void destroy_checkpoint_caches(void)
1361 {
1362         kmem_cache_destroy(ino_entry_slab);
1363         kmem_cache_destroy(inode_entry_slab);
1364 }