]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
f2fs: introduce ra_meta_pages to readahead CP/NAT/SIT pages
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_submit_page_bio(sbi, page, index,
65                                 READ_SYNC | REQ_META | REQ_PRIO))
66                 goto repeat;
67
68         lock_page(page);
69         if (unlikely(page->mapping != mapping)) {
70                 f2fs_put_page(page, 1);
71                 goto repeat;
72         }
73 out:
74         mark_page_accessed(page);
75         return page;
76 }
77
78 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 {
80         switch (type) {
81         case META_NAT:
82                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
83         case META_SIT:
84                 return SIT_BLK_CNT(sbi);
85         case META_CP:
86                 return 0;
87         default:
88                 BUG();
89         }
90 }
91
92 /*
93  * Readahead CP/NAT/SIT pages
94  */
95 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
96 {
97         block_t prev_blk_addr = 0;
98         struct page *page;
99         int blkno = start;
100         int max_blks = get_max_meta_blks(sbi, type);
101
102         struct f2fs_io_info fio = {
103                 .type = META,
104                 .rw = READ_SYNC | REQ_META | REQ_PRIO
105         };
106
107         for (; nrpages-- > 0; blkno++) {
108                 block_t blk_addr;
109
110                 switch (type) {
111                 case META_NAT:
112                         /* get nat block addr */
113                         if (unlikely(blkno >= max_blks))
114                                 blkno = 0;
115                         blk_addr = current_nat_addr(sbi,
116                                         blkno * NAT_ENTRY_PER_BLOCK);
117                         break;
118                 case META_SIT:
119                         /* get sit block addr */
120                         if (unlikely(blkno >= max_blks))
121                                 goto out;
122                         blk_addr = current_sit_addr(sbi,
123                                         blkno * SIT_ENTRY_PER_BLOCK);
124                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
125                                 goto out;
126                         prev_blk_addr = blk_addr;
127                         break;
128                 case META_CP:
129                         /* get cp block addr */
130                         blk_addr = blkno;
131                         break;
132                 default:
133                         BUG();
134                 }
135
136                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137                 if (!page)
138                         continue;
139                 if (PageUptodate(page)) {
140                         mark_page_accessed(page);
141                         f2fs_put_page(page, 1);
142                         continue;
143                 }
144
145                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146                 mark_page_accessed(page);
147                 f2fs_put_page(page, 0);
148         }
149 out:
150         f2fs_submit_merged_bio(sbi, META, READ);
151         return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155                                 struct writeback_control *wbc)
156 {
157         struct inode *inode = page->mapping->host;
158         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160         if (unlikely(sbi->por_doing))
161                 goto redirty_out;
162         if (wbc->for_reclaim)
163                 goto redirty_out;
164
165         /* Should not write any meta pages, if any IO error was occurred */
166         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167                 goto no_write;
168
169         wait_on_page_writeback(page);
170         write_meta_page(sbi, page);
171 no_write:
172         dec_page_count(sbi, F2FS_DIRTY_META);
173         unlock_page(page);
174         return 0;
175
176 redirty_out:
177         dec_page_count(sbi, F2FS_DIRTY_META);
178         wbc->pages_skipped++;
179         set_page_dirty(page);
180         return AOP_WRITEPAGE_ACTIVATE;
181 }
182
183 static int f2fs_write_meta_pages(struct address_space *mapping,
184                                 struct writeback_control *wbc)
185 {
186         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
187         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
188         long written;
189
190         if (wbc->for_kupdate)
191                 return 0;
192
193         /* collect a number of dirty meta pages and write together */
194         if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
195                 return 0;
196
197         /* if mounting is failed, skip writing node pages */
198         mutex_lock(&sbi->cp_mutex);
199         written = sync_meta_pages(sbi, META, nrpages);
200         mutex_unlock(&sbi->cp_mutex);
201         wbc->nr_to_write -= written;
202         return 0;
203 }
204
205 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
206                                                 long nr_to_write)
207 {
208         struct address_space *mapping = META_MAPPING(sbi);
209         pgoff_t index = 0, end = LONG_MAX;
210         struct pagevec pvec;
211         long nwritten = 0;
212         struct writeback_control wbc = {
213                 .for_reclaim = 0,
214         };
215
216         pagevec_init(&pvec, 0);
217
218         while (index <= end) {
219                 int i, nr_pages;
220                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
221                                 PAGECACHE_TAG_DIRTY,
222                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
223                 if (unlikely(nr_pages == 0))
224                         break;
225
226                 for (i = 0; i < nr_pages; i++) {
227                         struct page *page = pvec.pages[i];
228
229                         lock_page(page);
230
231                         if (unlikely(page->mapping != mapping)) {
232 continue_unlock:
233                                 unlock_page(page);
234                                 continue;
235                         }
236                         if (!PageDirty(page)) {
237                                 /* someone wrote it for us */
238                                 goto continue_unlock;
239                         }
240
241                         if (!clear_page_dirty_for_io(page))
242                                 goto continue_unlock;
243
244                         if (f2fs_write_meta_page(page, &wbc)) {
245                                 unlock_page(page);
246                                 break;
247                         }
248                         nwritten++;
249                         if (unlikely(nwritten >= nr_to_write))
250                                 break;
251                 }
252                 pagevec_release(&pvec);
253                 cond_resched();
254         }
255
256         if (nwritten)
257                 f2fs_submit_merged_bio(sbi, type, WRITE);
258
259         return nwritten;
260 }
261
262 static int f2fs_set_meta_page_dirty(struct page *page)
263 {
264         struct address_space *mapping = page->mapping;
265         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
266
267         trace_f2fs_set_page_dirty(page, META);
268
269         SetPageUptodate(page);
270         if (!PageDirty(page)) {
271                 __set_page_dirty_nobuffers(page);
272                 inc_page_count(sbi, F2FS_DIRTY_META);
273                 return 1;
274         }
275         return 0;
276 }
277
278 const struct address_space_operations f2fs_meta_aops = {
279         .writepage      = f2fs_write_meta_page,
280         .writepages     = f2fs_write_meta_pages,
281         .set_page_dirty = f2fs_set_meta_page_dirty,
282 };
283
284 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
285 {
286         int err = 0;
287
288         spin_lock(&sbi->orphan_inode_lock);
289         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
290                 err = -ENOSPC;
291         else
292                 sbi->n_orphans++;
293         spin_unlock(&sbi->orphan_inode_lock);
294
295         return err;
296 }
297
298 void release_orphan_inode(struct f2fs_sb_info *sbi)
299 {
300         spin_lock(&sbi->orphan_inode_lock);
301         f2fs_bug_on(sbi->n_orphans == 0);
302         sbi->n_orphans--;
303         spin_unlock(&sbi->orphan_inode_lock);
304 }
305
306 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
307 {
308         struct list_head *head, *this;
309         struct orphan_inode_entry *new = NULL, *orphan = NULL;
310
311         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
312         new->ino = ino;
313
314         spin_lock(&sbi->orphan_inode_lock);
315         head = &sbi->orphan_inode_list;
316         list_for_each(this, head) {
317                 orphan = list_entry(this, struct orphan_inode_entry, list);
318                 if (orphan->ino == ino) {
319                         spin_unlock(&sbi->orphan_inode_lock);
320                         kmem_cache_free(orphan_entry_slab, new);
321                         return;
322                 }
323
324                 if (orphan->ino > ino)
325                         break;
326                 orphan = NULL;
327         }
328
329         /* add new_oentry into list which is sorted by inode number */
330         if (orphan)
331                 list_add(&new->list, this->prev);
332         else
333                 list_add_tail(&new->list, head);
334         spin_unlock(&sbi->orphan_inode_lock);
335 }
336
337 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
338 {
339         struct list_head *head;
340         struct orphan_inode_entry *orphan;
341
342         spin_lock(&sbi->orphan_inode_lock);
343         head = &sbi->orphan_inode_list;
344         list_for_each_entry(orphan, head, list) {
345                 if (orphan->ino == ino) {
346                         list_del(&orphan->list);
347                         kmem_cache_free(orphan_entry_slab, orphan);
348                         f2fs_bug_on(sbi->n_orphans == 0);
349                         sbi->n_orphans--;
350                         break;
351                 }
352         }
353         spin_unlock(&sbi->orphan_inode_lock);
354 }
355
356 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
357 {
358         struct inode *inode = f2fs_iget(sbi->sb, ino);
359         f2fs_bug_on(IS_ERR(inode));
360         clear_nlink(inode);
361
362         /* truncate all the data during iput */
363         iput(inode);
364 }
365
366 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
367 {
368         block_t start_blk, orphan_blkaddr, i, j;
369
370         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
371                 return;
372
373         sbi->por_doing = true;
374         start_blk = __start_cp_addr(sbi) + 1;
375         orphan_blkaddr = __start_sum_addr(sbi) - 1;
376
377         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
378
379         for (i = 0; i < orphan_blkaddr; i++) {
380                 struct page *page = get_meta_page(sbi, start_blk + i);
381                 struct f2fs_orphan_block *orphan_blk;
382
383                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
384                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
385                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
386                         recover_orphan_inode(sbi, ino);
387                 }
388                 f2fs_put_page(page, 1);
389         }
390         /* clear Orphan Flag */
391         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
392         sbi->por_doing = false;
393         return;
394 }
395
396 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
397 {
398         struct list_head *head;
399         struct f2fs_orphan_block *orphan_blk = NULL;
400         unsigned int nentries = 0;
401         unsigned short index;
402         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
403                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
404         struct page *page = NULL;
405         struct orphan_inode_entry *orphan = NULL;
406
407         for (index = 0; index < orphan_blocks; index++)
408                 grab_meta_page(sbi, start_blk + index);
409
410         index = 1;
411         spin_lock(&sbi->orphan_inode_lock);
412         head = &sbi->orphan_inode_list;
413
414         /* loop for each orphan inode entry and write them in Jornal block */
415         list_for_each_entry(orphan, head, list) {
416                 if (!page) {
417                         page = find_get_page(META_MAPPING(sbi), start_blk++);
418                         f2fs_bug_on(!page);
419                         orphan_blk =
420                                 (struct f2fs_orphan_block *)page_address(page);
421                         memset(orphan_blk, 0, sizeof(*orphan_blk));
422                         f2fs_put_page(page, 0);
423                 }
424
425                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
426
427                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
428                         /*
429                          * an orphan block is full of 1020 entries,
430                          * then we need to flush current orphan blocks
431                          * and bring another one in memory
432                          */
433                         orphan_blk->blk_addr = cpu_to_le16(index);
434                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
435                         orphan_blk->entry_count = cpu_to_le32(nentries);
436                         set_page_dirty(page);
437                         f2fs_put_page(page, 1);
438                         index++;
439                         nentries = 0;
440                         page = NULL;
441                 }
442         }
443
444         if (page) {
445                 orphan_blk->blk_addr = cpu_to_le16(index);
446                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
447                 orphan_blk->entry_count = cpu_to_le32(nentries);
448                 set_page_dirty(page);
449                 f2fs_put_page(page, 1);
450         }
451
452         spin_unlock(&sbi->orphan_inode_lock);
453 }
454
455 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
456                                 block_t cp_addr, unsigned long long *version)
457 {
458         struct page *cp_page_1, *cp_page_2 = NULL;
459         unsigned long blk_size = sbi->blocksize;
460         struct f2fs_checkpoint *cp_block;
461         unsigned long long cur_version = 0, pre_version = 0;
462         size_t crc_offset;
463         __u32 crc = 0;
464
465         /* Read the 1st cp block in this CP pack */
466         cp_page_1 = get_meta_page(sbi, cp_addr);
467
468         /* get the version number */
469         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
470         crc_offset = le32_to_cpu(cp_block->checksum_offset);
471         if (crc_offset >= blk_size)
472                 goto invalid_cp1;
473
474         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
475         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
476                 goto invalid_cp1;
477
478         pre_version = cur_cp_version(cp_block);
479
480         /* Read the 2nd cp block in this CP pack */
481         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
482         cp_page_2 = get_meta_page(sbi, cp_addr);
483
484         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
485         crc_offset = le32_to_cpu(cp_block->checksum_offset);
486         if (crc_offset >= blk_size)
487                 goto invalid_cp2;
488
489         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
490         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
491                 goto invalid_cp2;
492
493         cur_version = cur_cp_version(cp_block);
494
495         if (cur_version == pre_version) {
496                 *version = cur_version;
497                 f2fs_put_page(cp_page_2, 1);
498                 return cp_page_1;
499         }
500 invalid_cp2:
501         f2fs_put_page(cp_page_2, 1);
502 invalid_cp1:
503         f2fs_put_page(cp_page_1, 1);
504         return NULL;
505 }
506
507 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
508 {
509         struct f2fs_checkpoint *cp_block;
510         struct f2fs_super_block *fsb = sbi->raw_super;
511         struct page *cp1, *cp2, *cur_page;
512         unsigned long blk_size = sbi->blocksize;
513         unsigned long long cp1_version = 0, cp2_version = 0;
514         unsigned long long cp_start_blk_no;
515
516         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
517         if (!sbi->ckpt)
518                 return -ENOMEM;
519         /*
520          * Finding out valid cp block involves read both
521          * sets( cp pack1 and cp pack 2)
522          */
523         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
524         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
525
526         /* The second checkpoint pack should start at the next segment */
527         cp_start_blk_no += ((unsigned long long)1) <<
528                                 le32_to_cpu(fsb->log_blocks_per_seg);
529         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
530
531         if (cp1 && cp2) {
532                 if (ver_after(cp2_version, cp1_version))
533                         cur_page = cp2;
534                 else
535                         cur_page = cp1;
536         } else if (cp1) {
537                 cur_page = cp1;
538         } else if (cp2) {
539                 cur_page = cp2;
540         } else {
541                 goto fail_no_cp;
542         }
543
544         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
545         memcpy(sbi->ckpt, cp_block, blk_size);
546
547         f2fs_put_page(cp1, 1);
548         f2fs_put_page(cp2, 1);
549         return 0;
550
551 fail_no_cp:
552         kfree(sbi->ckpt);
553         return -EINVAL;
554 }
555
556 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
557 {
558         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
559         struct list_head *head = &sbi->dir_inode_list;
560         struct list_head *this;
561
562         list_for_each(this, head) {
563                 struct dir_inode_entry *entry;
564                 entry = list_entry(this, struct dir_inode_entry, list);
565                 if (unlikely(entry->inode == inode))
566                         return -EEXIST;
567         }
568         list_add_tail(&new->list, head);
569         stat_inc_dirty_dir(sbi);
570         return 0;
571 }
572
573 void set_dirty_dir_page(struct inode *inode, struct page *page)
574 {
575         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
576         struct dir_inode_entry *new;
577
578         if (!S_ISDIR(inode->i_mode))
579                 return;
580
581         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
582         new->inode = inode;
583         INIT_LIST_HEAD(&new->list);
584
585         spin_lock(&sbi->dir_inode_lock);
586         if (__add_dirty_inode(inode, new))
587                 kmem_cache_free(inode_entry_slab, new);
588
589         inode_inc_dirty_dents(inode);
590         SetPagePrivate(page);
591         spin_unlock(&sbi->dir_inode_lock);
592 }
593
594 void add_dirty_dir_inode(struct inode *inode)
595 {
596         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
597         struct dir_inode_entry *new =
598                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
599
600         new->inode = inode;
601         INIT_LIST_HEAD(&new->list);
602
603         spin_lock(&sbi->dir_inode_lock);
604         if (__add_dirty_inode(inode, new))
605                 kmem_cache_free(inode_entry_slab, new);
606         spin_unlock(&sbi->dir_inode_lock);
607 }
608
609 void remove_dirty_dir_inode(struct inode *inode)
610 {
611         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
612
613         struct list_head *this, *head;
614
615         if (!S_ISDIR(inode->i_mode))
616                 return;
617
618         spin_lock(&sbi->dir_inode_lock);
619         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
620                 spin_unlock(&sbi->dir_inode_lock);
621                 return;
622         }
623
624         head = &sbi->dir_inode_list;
625         list_for_each(this, head) {
626                 struct dir_inode_entry *entry;
627                 entry = list_entry(this, struct dir_inode_entry, list);
628                 if (entry->inode == inode) {
629                         list_del(&entry->list);
630                         kmem_cache_free(inode_entry_slab, entry);
631                         stat_dec_dirty_dir(sbi);
632                         break;
633                 }
634         }
635         spin_unlock(&sbi->dir_inode_lock);
636
637         /* Only from the recovery routine */
638         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
639                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
640                 iput(inode);
641         }
642 }
643
644 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
645 {
646
647         struct list_head *this, *head;
648         struct inode *inode = NULL;
649
650         spin_lock(&sbi->dir_inode_lock);
651
652         head = &sbi->dir_inode_list;
653         list_for_each(this, head) {
654                 struct dir_inode_entry *entry;
655                 entry = list_entry(this, struct dir_inode_entry, list);
656                 if (entry->inode->i_ino == ino) {
657                         inode = entry->inode;
658                         break;
659                 }
660         }
661         spin_unlock(&sbi->dir_inode_lock);
662         return inode;
663 }
664
665 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
666 {
667         struct list_head *head;
668         struct dir_inode_entry *entry;
669         struct inode *inode;
670 retry:
671         spin_lock(&sbi->dir_inode_lock);
672
673         head = &sbi->dir_inode_list;
674         if (list_empty(head)) {
675                 spin_unlock(&sbi->dir_inode_lock);
676                 return;
677         }
678         entry = list_entry(head->next, struct dir_inode_entry, list);
679         inode = igrab(entry->inode);
680         spin_unlock(&sbi->dir_inode_lock);
681         if (inode) {
682                 filemap_flush(inode->i_mapping);
683                 iput(inode);
684         } else {
685                 /*
686                  * We should submit bio, since it exists several
687                  * wribacking dentry pages in the freeing inode.
688                  */
689                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
690         }
691         goto retry;
692 }
693
694 /*
695  * Freeze all the FS-operations for checkpoint.
696  */
697 static void block_operations(struct f2fs_sb_info *sbi)
698 {
699         struct writeback_control wbc = {
700                 .sync_mode = WB_SYNC_ALL,
701                 .nr_to_write = LONG_MAX,
702                 .for_reclaim = 0,
703         };
704         struct blk_plug plug;
705
706         blk_start_plug(&plug);
707
708 retry_flush_dents:
709         f2fs_lock_all(sbi);
710         /* write all the dirty dentry pages */
711         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
712                 f2fs_unlock_all(sbi);
713                 sync_dirty_dir_inodes(sbi);
714                 goto retry_flush_dents;
715         }
716
717         /*
718          * POR: we should ensure that there is no dirty node pages
719          * until finishing nat/sit flush.
720          */
721 retry_flush_nodes:
722         mutex_lock(&sbi->node_write);
723
724         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
725                 mutex_unlock(&sbi->node_write);
726                 sync_node_pages(sbi, 0, &wbc);
727                 goto retry_flush_nodes;
728         }
729         blk_finish_plug(&plug);
730 }
731
732 static void unblock_operations(struct f2fs_sb_info *sbi)
733 {
734         mutex_unlock(&sbi->node_write);
735         f2fs_unlock_all(sbi);
736 }
737
738 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
739 {
740         DEFINE_WAIT(wait);
741
742         for (;;) {
743                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
744
745                 if (!get_pages(sbi, F2FS_WRITEBACK))
746                         break;
747
748                 io_schedule();
749         }
750         finish_wait(&sbi->cp_wait, &wait);
751 }
752
753 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
754 {
755         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
756         nid_t last_nid = 0;
757         block_t start_blk;
758         struct page *cp_page;
759         unsigned int data_sum_blocks, orphan_blocks;
760         __u32 crc32 = 0;
761         void *kaddr;
762         int i;
763
764         /* Flush all the NAT/SIT pages */
765         while (get_pages(sbi, F2FS_DIRTY_META))
766                 sync_meta_pages(sbi, META, LONG_MAX);
767
768         next_free_nid(sbi, &last_nid);
769
770         /*
771          * modify checkpoint
772          * version number is already updated
773          */
774         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
775         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
776         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
777         for (i = 0; i < 3; i++) {
778                 ckpt->cur_node_segno[i] =
779                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
780                 ckpt->cur_node_blkoff[i] =
781                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
782                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
783                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
784         }
785         for (i = 0; i < 3; i++) {
786                 ckpt->cur_data_segno[i] =
787                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
788                 ckpt->cur_data_blkoff[i] =
789                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
790                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
791                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
792         }
793
794         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
795         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
796         ckpt->next_free_nid = cpu_to_le32(last_nid);
797
798         /* 2 cp  + n data seg summary + orphan inode blocks */
799         data_sum_blocks = npages_for_summary_flush(sbi);
800         if (data_sum_blocks < 3)
801                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
802         else
803                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
804
805         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
806                                         / F2FS_ORPHANS_PER_BLOCK;
807         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
808
809         if (is_umount) {
810                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
811                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
812                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
813         } else {
814                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
815                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
816                         data_sum_blocks + orphan_blocks);
817         }
818
819         if (sbi->n_orphans)
820                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
821         else
822                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
823
824         /* update SIT/NAT bitmap */
825         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
826         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
827
828         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
829         *((__le32 *)((unsigned char *)ckpt +
830                                 le32_to_cpu(ckpt->checksum_offset)))
831                                 = cpu_to_le32(crc32);
832
833         start_blk = __start_cp_addr(sbi);
834
835         /* write out checkpoint buffer at block 0 */
836         cp_page = grab_meta_page(sbi, start_blk++);
837         kaddr = page_address(cp_page);
838         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
839         set_page_dirty(cp_page);
840         f2fs_put_page(cp_page, 1);
841
842         if (sbi->n_orphans) {
843                 write_orphan_inodes(sbi, start_blk);
844                 start_blk += orphan_blocks;
845         }
846
847         write_data_summaries(sbi, start_blk);
848         start_blk += data_sum_blocks;
849         if (is_umount) {
850                 write_node_summaries(sbi, start_blk);
851                 start_blk += NR_CURSEG_NODE_TYPE;
852         }
853
854         /* writeout checkpoint block */
855         cp_page = grab_meta_page(sbi, start_blk);
856         kaddr = page_address(cp_page);
857         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
858         set_page_dirty(cp_page);
859         f2fs_put_page(cp_page, 1);
860
861         /* wait for previous submitted node/meta pages writeback */
862         wait_on_all_pages_writeback(sbi);
863
864         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
865         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
866
867         /* update user_block_counts */
868         sbi->last_valid_block_count = sbi->total_valid_block_count;
869         sbi->alloc_valid_block_count = 0;
870
871         /* Here, we only have one bio having CP pack */
872         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
873
874         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
875                 clear_prefree_segments(sbi);
876                 F2FS_RESET_SB_DIRT(sbi);
877         }
878 }
879
880 /*
881  * We guarantee that this checkpoint procedure should not fail.
882  */
883 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
884 {
885         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886         unsigned long long ckpt_ver;
887
888         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
889
890         mutex_lock(&sbi->cp_mutex);
891         block_operations(sbi);
892
893         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
894
895         f2fs_submit_merged_bio(sbi, DATA, WRITE);
896         f2fs_submit_merged_bio(sbi, NODE, WRITE);
897         f2fs_submit_merged_bio(sbi, META, WRITE);
898
899         /*
900          * update checkpoint pack index
901          * Increase the version number so that
902          * SIT entries and seg summaries are written at correct place
903          */
904         ckpt_ver = cur_cp_version(ckpt);
905         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
906
907         /* write cached NAT/SIT entries to NAT/SIT area */
908         flush_nat_entries(sbi);
909         flush_sit_entries(sbi);
910
911         /* unlock all the fs_lock[] in do_checkpoint() */
912         do_checkpoint(sbi, is_umount);
913
914         unblock_operations(sbi);
915         mutex_unlock(&sbi->cp_mutex);
916
917         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
918 }
919
920 void init_orphan_info(struct f2fs_sb_info *sbi)
921 {
922         spin_lock_init(&sbi->orphan_inode_lock);
923         INIT_LIST_HEAD(&sbi->orphan_inode_list);
924         sbi->n_orphans = 0;
925         /*
926          * considering 512 blocks in a segment 8 blocks are needed for cp
927          * and log segment summaries. Remaining blocks are used to keep
928          * orphan entries with the limitation one reserved segment
929          * for cp pack we can have max 1020*504 orphan entries
930          */
931         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
932                                 * F2FS_ORPHANS_PER_BLOCK;
933 }
934
935 int __init create_checkpoint_caches(void)
936 {
937         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
938                         sizeof(struct orphan_inode_entry), NULL);
939         if (!orphan_entry_slab)
940                 return -ENOMEM;
941         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
942                         sizeof(struct dir_inode_entry), NULL);
943         if (!inode_entry_slab) {
944                 kmem_cache_destroy(orphan_entry_slab);
945                 return -ENOMEM;
946         }
947         return 0;
948 }
949
950 void destroy_checkpoint_caches(void)
951 {
952         kmem_cache_destroy(orphan_entry_slab);
953         kmem_cache_destroy(inode_entry_slab);
954 }