]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
f2fs: use f2fs_io_info to clean up messy parameters during IO path
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53         struct f2fs_io_info fio = {
54                 .type = META,
55                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
56                 .blk_addr = index,
57         };
58 repeat:
59         page = grab_cache_page(mapping, index);
60         if (!page) {
61                 cond_resched();
62                 goto repeat;
63         }
64         if (PageUptodate(page))
65                 goto out;
66
67         if (f2fs_submit_page_bio(sbi, page, &fio))
68                 goto repeat;
69
70         lock_page(page);
71         if (unlikely(page->mapping != mapping)) {
72                 f2fs_put_page(page, 1);
73                 goto repeat;
74         }
75 out:
76         return page;
77 }
78
79 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
80                                                 block_t blkaddr, int type)
81 {
82         switch (type) {
83         case META_NAT:
84                 break;
85         case META_SIT:
86                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
87                         return false;
88                 break;
89         case META_SSA:
90                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
91                         blkaddr < SM_I(sbi)->ssa_blkaddr))
92                         return false;
93                 break;
94         case META_CP:
95                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
96                         blkaddr < __start_cp_addr(sbi)))
97                         return false;
98                 break;
99         case META_POR:
100                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
101                         blkaddr < MAIN_BLKADDR(sbi)))
102                         return false;
103                 break;
104         default:
105                 BUG();
106         }
107
108         return true;
109 }
110
111 /*
112  * Readahead CP/NAT/SIT/SSA pages
113  */
114 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
115 {
116         block_t prev_blk_addr = 0;
117         struct page *page;
118         block_t blkno = start;
119         struct f2fs_io_info fio = {
120                 .type = META,
121                 .rw = READ_SYNC | REQ_META | REQ_PRIO
122         };
123
124         for (; nrpages-- > 0; blkno++) {
125
126                 if (!is_valid_blkaddr(sbi, blkno, type))
127                         goto out;
128
129                 switch (type) {
130                 case META_NAT:
131                         if (unlikely(blkno >=
132                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
133                                 blkno = 0;
134                         /* get nat block addr */
135                         fio.blk_addr = current_nat_addr(sbi,
136                                         blkno * NAT_ENTRY_PER_BLOCK);
137                         break;
138                 case META_SIT:
139                         /* get sit block addr */
140                         fio.blk_addr = current_sit_addr(sbi,
141                                         blkno * SIT_ENTRY_PER_BLOCK);
142                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
143                                 goto out;
144                         prev_blk_addr = fio.blk_addr;
145                         break;
146                 case META_SSA:
147                 case META_CP:
148                 case META_POR:
149                         fio.blk_addr = blkno;
150                         break;
151                 default:
152                         BUG();
153                 }
154
155                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
156                 if (!page)
157                         continue;
158                 if (PageUptodate(page)) {
159                         f2fs_put_page(page, 1);
160                         continue;
161                 }
162
163                 f2fs_submit_page_mbio(sbi, page, &fio);
164                 f2fs_put_page(page, 0);
165         }
166 out:
167         f2fs_submit_merged_bio(sbi, META, READ);
168         return blkno - start;
169 }
170
171 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
172 {
173         struct page *page;
174         bool readahead = false;
175
176         page = find_get_page(META_MAPPING(sbi), index);
177         if (!page || (page && !PageUptodate(page)))
178                 readahead = true;
179         f2fs_put_page(page, 0);
180
181         if (readahead)
182                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
183 }
184
185 static int f2fs_write_meta_page(struct page *page,
186                                 struct writeback_control *wbc)
187 {
188         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
189
190         trace_f2fs_writepage(page, META);
191
192         if (unlikely(sbi->por_doing))
193                 goto redirty_out;
194         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
195                 goto redirty_out;
196         if (unlikely(f2fs_cp_error(sbi)))
197                 goto redirty_out;
198
199         f2fs_wait_on_page_writeback(page, META);
200         write_meta_page(sbi, page);
201         dec_page_count(sbi, F2FS_DIRTY_META);
202         unlock_page(page);
203
204         if (wbc->for_reclaim)
205                 f2fs_submit_merged_bio(sbi, META, WRITE);
206         return 0;
207
208 redirty_out:
209         redirty_page_for_writepage(wbc, page);
210         return AOP_WRITEPAGE_ACTIVATE;
211 }
212
213 static int f2fs_write_meta_pages(struct address_space *mapping,
214                                 struct writeback_control *wbc)
215 {
216         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
217         long diff, written;
218
219         trace_f2fs_writepages(mapping->host, wbc, META);
220
221         /* collect a number of dirty meta pages and write together */
222         if (wbc->for_kupdate ||
223                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
224                 goto skip_write;
225
226         /* if mounting is failed, skip writing node pages */
227         mutex_lock(&sbi->cp_mutex);
228         diff = nr_pages_to_write(sbi, META, wbc);
229         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
230         mutex_unlock(&sbi->cp_mutex);
231         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
232         return 0;
233
234 skip_write:
235         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
236         return 0;
237 }
238
239 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
240                                                 long nr_to_write)
241 {
242         struct address_space *mapping = META_MAPPING(sbi);
243         pgoff_t index = 0, end = LONG_MAX;
244         struct pagevec pvec;
245         long nwritten = 0;
246         struct writeback_control wbc = {
247                 .for_reclaim = 0,
248         };
249
250         pagevec_init(&pvec, 0);
251
252         while (index <= end) {
253                 int i, nr_pages;
254                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
255                                 PAGECACHE_TAG_DIRTY,
256                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
257                 if (unlikely(nr_pages == 0))
258                         break;
259
260                 for (i = 0; i < nr_pages; i++) {
261                         struct page *page = pvec.pages[i];
262
263                         lock_page(page);
264
265                         if (unlikely(page->mapping != mapping)) {
266 continue_unlock:
267                                 unlock_page(page);
268                                 continue;
269                         }
270                         if (!PageDirty(page)) {
271                                 /* someone wrote it for us */
272                                 goto continue_unlock;
273                         }
274
275                         if (!clear_page_dirty_for_io(page))
276                                 goto continue_unlock;
277
278                         if (f2fs_write_meta_page(page, &wbc)) {
279                                 unlock_page(page);
280                                 break;
281                         }
282                         nwritten++;
283                         if (unlikely(nwritten >= nr_to_write))
284                                 break;
285                 }
286                 pagevec_release(&pvec);
287                 cond_resched();
288         }
289
290         if (nwritten)
291                 f2fs_submit_merged_bio(sbi, type, WRITE);
292
293         return nwritten;
294 }
295
296 static int f2fs_set_meta_page_dirty(struct page *page)
297 {
298         trace_f2fs_set_page_dirty(page, META);
299
300         SetPageUptodate(page);
301         if (!PageDirty(page)) {
302                 __set_page_dirty_nobuffers(page);
303                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
304                 return 1;
305         }
306         return 0;
307 }
308
309 const struct address_space_operations f2fs_meta_aops = {
310         .writepage      = f2fs_write_meta_page,
311         .writepages     = f2fs_write_meta_pages,
312         .set_page_dirty = f2fs_set_meta_page_dirty,
313 };
314
315 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
316 {
317         struct inode_management *im = &sbi->im[type];
318         struct ino_entry *e;
319 retry:
320         if (radix_tree_preload(GFP_NOFS)) {
321                 cond_resched();
322                 goto retry;
323         }
324
325         spin_lock(&im->ino_lock);
326
327         e = radix_tree_lookup(&im->ino_root, ino);
328         if (!e) {
329                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
330                 if (!e) {
331                         spin_unlock(&im->ino_lock);
332                         radix_tree_preload_end();
333                         goto retry;
334                 }
335                 if (radix_tree_insert(&im->ino_root, ino, e)) {
336                         spin_unlock(&im->ino_lock);
337                         kmem_cache_free(ino_entry_slab, e);
338                         radix_tree_preload_end();
339                         goto retry;
340                 }
341                 memset(e, 0, sizeof(struct ino_entry));
342                 e->ino = ino;
343
344                 list_add_tail(&e->list, &im->ino_list);
345                 if (type != ORPHAN_INO)
346                         im->ino_num++;
347         }
348         spin_unlock(&im->ino_lock);
349         radix_tree_preload_end();
350 }
351
352 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
353 {
354         struct inode_management *im = &sbi->im[type];
355         struct ino_entry *e;
356
357         spin_lock(&im->ino_lock);
358         e = radix_tree_lookup(&im->ino_root, ino);
359         if (e) {
360                 list_del(&e->list);
361                 radix_tree_delete(&im->ino_root, ino);
362                 im->ino_num--;
363                 spin_unlock(&im->ino_lock);
364                 kmem_cache_free(ino_entry_slab, e);
365                 return;
366         }
367         spin_unlock(&im->ino_lock);
368 }
369
370 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
371 {
372         /* add new dirty ino entry into list */
373         __add_ino_entry(sbi, ino, type);
374 }
375
376 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
377 {
378         /* remove dirty ino entry from list */
379         __remove_ino_entry(sbi, ino, type);
380 }
381
382 /* mode should be APPEND_INO or UPDATE_INO */
383 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
384 {
385         struct inode_management *im = &sbi->im[mode];
386         struct ino_entry *e;
387
388         spin_lock(&im->ino_lock);
389         e = radix_tree_lookup(&im->ino_root, ino);
390         spin_unlock(&im->ino_lock);
391         return e ? true : false;
392 }
393
394 void release_dirty_inode(struct f2fs_sb_info *sbi)
395 {
396         struct ino_entry *e, *tmp;
397         int i;
398
399         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
400                 struct inode_management *im = &sbi->im[i];
401
402                 spin_lock(&im->ino_lock);
403                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
404                         list_del(&e->list);
405                         radix_tree_delete(&im->ino_root, e->ino);
406                         kmem_cache_free(ino_entry_slab, e);
407                         im->ino_num--;
408                 }
409                 spin_unlock(&im->ino_lock);
410         }
411 }
412
413 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
414 {
415         struct inode_management *im = &sbi->im[ORPHAN_INO];
416         int err = 0;
417
418         spin_lock(&im->ino_lock);
419         if (unlikely(im->ino_num >= sbi->max_orphans))
420                 err = -ENOSPC;
421         else
422                 im->ino_num++;
423         spin_unlock(&im->ino_lock);
424
425         return err;
426 }
427
428 void release_orphan_inode(struct f2fs_sb_info *sbi)
429 {
430         struct inode_management *im = &sbi->im[ORPHAN_INO];
431
432         spin_lock(&im->ino_lock);
433         f2fs_bug_on(sbi, im->ino_num == 0);
434         im->ino_num--;
435         spin_unlock(&im->ino_lock);
436 }
437
438 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
439 {
440         /* add new orphan ino entry into list */
441         __add_ino_entry(sbi, ino, ORPHAN_INO);
442 }
443
444 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
445 {
446         /* remove orphan entry from orphan list */
447         __remove_ino_entry(sbi, ino, ORPHAN_INO);
448 }
449
450 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
451 {
452         struct inode *inode = f2fs_iget(sbi->sb, ino);
453         f2fs_bug_on(sbi, IS_ERR(inode));
454         clear_nlink(inode);
455
456         /* truncate all the data during iput */
457         iput(inode);
458 }
459
460 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
461 {
462         block_t start_blk, orphan_blkaddr, i, j;
463
464         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
465                 return;
466
467         sbi->por_doing = true;
468
469         start_blk = __start_cp_addr(sbi) + 1 +
470                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
471         orphan_blkaddr = __start_sum_addr(sbi) - 1;
472
473         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
474
475         for (i = 0; i < orphan_blkaddr; i++) {
476                 struct page *page = get_meta_page(sbi, start_blk + i);
477                 struct f2fs_orphan_block *orphan_blk;
478
479                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
480                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
481                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
482                         recover_orphan_inode(sbi, ino);
483                 }
484                 f2fs_put_page(page, 1);
485         }
486         /* clear Orphan Flag */
487         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
488         sbi->por_doing = false;
489         return;
490 }
491
492 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
493 {
494         struct list_head *head;
495         struct f2fs_orphan_block *orphan_blk = NULL;
496         unsigned int nentries = 0;
497         unsigned short index;
498         unsigned short orphan_blocks;
499         struct page *page = NULL;
500         struct ino_entry *orphan = NULL;
501         struct inode_management *im = &sbi->im[ORPHAN_INO];
502
503         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
504
505         for (index = 0; index < orphan_blocks; index++)
506                 grab_meta_page(sbi, start_blk + index);
507
508         index = 1;
509         spin_lock(&im->ino_lock);
510         head = &im->ino_list;
511
512         /* loop for each orphan inode entry and write them in Jornal block */
513         list_for_each_entry(orphan, head, list) {
514                 if (!page) {
515                         page = find_get_page(META_MAPPING(sbi), start_blk++);
516                         f2fs_bug_on(sbi, !page);
517                         orphan_blk =
518                                 (struct f2fs_orphan_block *)page_address(page);
519                         memset(orphan_blk, 0, sizeof(*orphan_blk));
520                         f2fs_put_page(page, 0);
521                 }
522
523                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
524
525                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
526                         /*
527                          * an orphan block is full of 1020 entries,
528                          * then we need to flush current orphan blocks
529                          * and bring another one in memory
530                          */
531                         orphan_blk->blk_addr = cpu_to_le16(index);
532                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
533                         orphan_blk->entry_count = cpu_to_le32(nentries);
534                         set_page_dirty(page);
535                         f2fs_put_page(page, 1);
536                         index++;
537                         nentries = 0;
538                         page = NULL;
539                 }
540         }
541
542         if (page) {
543                 orphan_blk->blk_addr = cpu_to_le16(index);
544                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
545                 orphan_blk->entry_count = cpu_to_le32(nentries);
546                 set_page_dirty(page);
547                 f2fs_put_page(page, 1);
548         }
549
550         spin_unlock(&im->ino_lock);
551 }
552
553 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
554                                 block_t cp_addr, unsigned long long *version)
555 {
556         struct page *cp_page_1, *cp_page_2 = NULL;
557         unsigned long blk_size = sbi->blocksize;
558         struct f2fs_checkpoint *cp_block;
559         unsigned long long cur_version = 0, pre_version = 0;
560         size_t crc_offset;
561         __u32 crc = 0;
562
563         /* Read the 1st cp block in this CP pack */
564         cp_page_1 = get_meta_page(sbi, cp_addr);
565
566         /* get the version number */
567         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
568         crc_offset = le32_to_cpu(cp_block->checksum_offset);
569         if (crc_offset >= blk_size)
570                 goto invalid_cp1;
571
572         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
573         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
574                 goto invalid_cp1;
575
576         pre_version = cur_cp_version(cp_block);
577
578         /* Read the 2nd cp block in this CP pack */
579         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
580         cp_page_2 = get_meta_page(sbi, cp_addr);
581
582         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
583         crc_offset = le32_to_cpu(cp_block->checksum_offset);
584         if (crc_offset >= blk_size)
585                 goto invalid_cp2;
586
587         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
588         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
589                 goto invalid_cp2;
590
591         cur_version = cur_cp_version(cp_block);
592
593         if (cur_version == pre_version) {
594                 *version = cur_version;
595                 f2fs_put_page(cp_page_2, 1);
596                 return cp_page_1;
597         }
598 invalid_cp2:
599         f2fs_put_page(cp_page_2, 1);
600 invalid_cp1:
601         f2fs_put_page(cp_page_1, 1);
602         return NULL;
603 }
604
605 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
606 {
607         struct f2fs_checkpoint *cp_block;
608         struct f2fs_super_block *fsb = sbi->raw_super;
609         struct page *cp1, *cp2, *cur_page;
610         unsigned long blk_size = sbi->blocksize;
611         unsigned long long cp1_version = 0, cp2_version = 0;
612         unsigned long long cp_start_blk_no;
613         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
614         block_t cp_blk_no;
615         int i;
616
617         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
618         if (!sbi->ckpt)
619                 return -ENOMEM;
620         /*
621          * Finding out valid cp block involves read both
622          * sets( cp pack1 and cp pack 2)
623          */
624         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
625         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
626
627         /* The second checkpoint pack should start at the next segment */
628         cp_start_blk_no += ((unsigned long long)1) <<
629                                 le32_to_cpu(fsb->log_blocks_per_seg);
630         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
631
632         if (cp1 && cp2) {
633                 if (ver_after(cp2_version, cp1_version))
634                         cur_page = cp2;
635                 else
636                         cur_page = cp1;
637         } else if (cp1) {
638                 cur_page = cp1;
639         } else if (cp2) {
640                 cur_page = cp2;
641         } else {
642                 goto fail_no_cp;
643         }
644
645         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
646         memcpy(sbi->ckpt, cp_block, blk_size);
647
648         if (cp_blks <= 1)
649                 goto done;
650
651         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
652         if (cur_page == cp2)
653                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
654
655         for (i = 1; i < cp_blks; i++) {
656                 void *sit_bitmap_ptr;
657                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
658
659                 cur_page = get_meta_page(sbi, cp_blk_no + i);
660                 sit_bitmap_ptr = page_address(cur_page);
661                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
662                 f2fs_put_page(cur_page, 1);
663         }
664 done:
665         f2fs_put_page(cp1, 1);
666         f2fs_put_page(cp2, 1);
667         return 0;
668
669 fail_no_cp:
670         kfree(sbi->ckpt);
671         return -EINVAL;
672 }
673
674 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
675 {
676         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
677
678         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
679                 return -EEXIST;
680
681         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
682         F2FS_I(inode)->dirty_dir = new;
683         list_add_tail(&new->list, &sbi->dir_inode_list);
684         stat_inc_dirty_dir(sbi);
685         return 0;
686 }
687
688 void update_dirty_page(struct inode *inode, struct page *page)
689 {
690         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
691         struct dir_inode_entry *new;
692         int ret = 0;
693
694         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
695                 return;
696
697         if (!S_ISDIR(inode->i_mode)) {
698                 inode_inc_dirty_pages(inode);
699                 goto out;
700         }
701
702         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
703         new->inode = inode;
704         INIT_LIST_HEAD(&new->list);
705
706         spin_lock(&sbi->dir_inode_lock);
707         ret = __add_dirty_inode(inode, new);
708         inode_inc_dirty_pages(inode);
709         spin_unlock(&sbi->dir_inode_lock);
710
711         if (ret)
712                 kmem_cache_free(inode_entry_slab, new);
713 out:
714         SetPagePrivate(page);
715 }
716
717 void add_dirty_dir_inode(struct inode *inode)
718 {
719         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
720         struct dir_inode_entry *new =
721                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
722         int ret = 0;
723
724         new->inode = inode;
725         INIT_LIST_HEAD(&new->list);
726
727         spin_lock(&sbi->dir_inode_lock);
728         ret = __add_dirty_inode(inode, new);
729         spin_unlock(&sbi->dir_inode_lock);
730
731         if (ret)
732                 kmem_cache_free(inode_entry_slab, new);
733 }
734
735 void remove_dirty_dir_inode(struct inode *inode)
736 {
737         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
738         struct dir_inode_entry *entry;
739
740         if (!S_ISDIR(inode->i_mode))
741                 return;
742
743         spin_lock(&sbi->dir_inode_lock);
744         if (get_dirty_pages(inode) ||
745                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
746                 spin_unlock(&sbi->dir_inode_lock);
747                 return;
748         }
749
750         entry = F2FS_I(inode)->dirty_dir;
751         list_del(&entry->list);
752         F2FS_I(inode)->dirty_dir = NULL;
753         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
754         stat_dec_dirty_dir(sbi);
755         spin_unlock(&sbi->dir_inode_lock);
756         kmem_cache_free(inode_entry_slab, entry);
757
758         /* Only from the recovery routine */
759         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
760                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
761                 iput(inode);
762         }
763 }
764
765 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
766 {
767         struct list_head *head;
768         struct dir_inode_entry *entry;
769         struct inode *inode;
770 retry:
771         if (unlikely(f2fs_cp_error(sbi)))
772                 return;
773
774         spin_lock(&sbi->dir_inode_lock);
775
776         head = &sbi->dir_inode_list;
777         if (list_empty(head)) {
778                 spin_unlock(&sbi->dir_inode_lock);
779                 return;
780         }
781         entry = list_entry(head->next, struct dir_inode_entry, list);
782         inode = igrab(entry->inode);
783         spin_unlock(&sbi->dir_inode_lock);
784         if (inode) {
785                 filemap_fdatawrite(inode->i_mapping);
786                 iput(inode);
787         } else {
788                 /*
789                  * We should submit bio, since it exists several
790                  * wribacking dentry pages in the freeing inode.
791                  */
792                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
793         }
794         goto retry;
795 }
796
797 /*
798  * Freeze all the FS-operations for checkpoint.
799  */
800 static int block_operations(struct f2fs_sb_info *sbi)
801 {
802         struct writeback_control wbc = {
803                 .sync_mode = WB_SYNC_ALL,
804                 .nr_to_write = LONG_MAX,
805                 .for_reclaim = 0,
806         };
807         struct blk_plug plug;
808         int err = 0;
809
810         blk_start_plug(&plug);
811
812 retry_flush_dents:
813         f2fs_lock_all(sbi);
814         /* write all the dirty dentry pages */
815         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
816                 f2fs_unlock_all(sbi);
817                 sync_dirty_dir_inodes(sbi);
818                 if (unlikely(f2fs_cp_error(sbi))) {
819                         err = -EIO;
820                         goto out;
821                 }
822                 goto retry_flush_dents;
823         }
824
825         /*
826          * POR: we should ensure that there are no dirty node pages
827          * until finishing nat/sit flush.
828          */
829 retry_flush_nodes:
830         down_write(&sbi->node_write);
831
832         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
833                 up_write(&sbi->node_write);
834                 sync_node_pages(sbi, 0, &wbc);
835                 if (unlikely(f2fs_cp_error(sbi))) {
836                         f2fs_unlock_all(sbi);
837                         err = -EIO;
838                         goto out;
839                 }
840                 goto retry_flush_nodes;
841         }
842 out:
843         blk_finish_plug(&plug);
844         return err;
845 }
846
847 static void unblock_operations(struct f2fs_sb_info *sbi)
848 {
849         up_write(&sbi->node_write);
850         f2fs_unlock_all(sbi);
851 }
852
853 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
854 {
855         DEFINE_WAIT(wait);
856
857         for (;;) {
858                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
859
860                 if (!get_pages(sbi, F2FS_WRITEBACK))
861                         break;
862
863                 io_schedule();
864         }
865         finish_wait(&sbi->cp_wait, &wait);
866 }
867
868 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
869 {
870         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
871         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
872         struct f2fs_nm_info *nm_i = NM_I(sbi);
873         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
874         nid_t last_nid = nm_i->next_scan_nid;
875         block_t start_blk;
876         struct page *cp_page;
877         unsigned int data_sum_blocks, orphan_blocks;
878         __u32 crc32 = 0;
879         void *kaddr;
880         int i;
881         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
882
883         /*
884          * This avoids to conduct wrong roll-forward operations and uses
885          * metapages, so should be called prior to sync_meta_pages below.
886          */
887         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
888
889         /* Flush all the NAT/SIT pages */
890         while (get_pages(sbi, F2FS_DIRTY_META)) {
891                 sync_meta_pages(sbi, META, LONG_MAX);
892                 if (unlikely(f2fs_cp_error(sbi)))
893                         return;
894         }
895
896         next_free_nid(sbi, &last_nid);
897
898         /*
899          * modify checkpoint
900          * version number is already updated
901          */
902         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
903         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
904         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
905         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
906                 ckpt->cur_node_segno[i] =
907                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
908                 ckpt->cur_node_blkoff[i] =
909                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
910                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
911                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
912         }
913         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
914                 ckpt->cur_data_segno[i] =
915                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
916                 ckpt->cur_data_blkoff[i] =
917                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
918                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
919                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
920         }
921
922         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
923         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
924         ckpt->next_free_nid = cpu_to_le32(last_nid);
925
926         /* 2 cp  + n data seg summary + orphan inode blocks */
927         data_sum_blocks = npages_for_summary_flush(sbi, false);
928         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
929                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
930         else
931                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
932
933         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
934         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
935                         orphan_blocks);
936
937         if (cpc->reason == CP_UMOUNT) {
938                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
939                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
940                                 cp_payload_blks + data_sum_blocks +
941                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
942         } else {
943                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
944                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
945                                 cp_payload_blks + data_sum_blocks +
946                                 orphan_blocks);
947         }
948
949         if (orphan_num)
950                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
951         else
952                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
953
954         if (sbi->need_fsck)
955                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
956
957         /* update SIT/NAT bitmap */
958         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
959         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
960
961         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
962         *((__le32 *)((unsigned char *)ckpt +
963                                 le32_to_cpu(ckpt->checksum_offset)))
964                                 = cpu_to_le32(crc32);
965
966         start_blk = __start_cp_addr(sbi);
967
968         /* write out checkpoint buffer at block 0 */
969         cp_page = grab_meta_page(sbi, start_blk++);
970         kaddr = page_address(cp_page);
971         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
972         set_page_dirty(cp_page);
973         f2fs_put_page(cp_page, 1);
974
975         for (i = 1; i < 1 + cp_payload_blks; i++) {
976                 cp_page = grab_meta_page(sbi, start_blk++);
977                 kaddr = page_address(cp_page);
978                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
979                                 (1 << sbi->log_blocksize));
980                 set_page_dirty(cp_page);
981                 f2fs_put_page(cp_page, 1);
982         }
983
984         if (orphan_num) {
985                 write_orphan_inodes(sbi, start_blk);
986                 start_blk += orphan_blocks;
987         }
988
989         write_data_summaries(sbi, start_blk);
990         start_blk += data_sum_blocks;
991         if (cpc->reason == CP_UMOUNT) {
992                 write_node_summaries(sbi, start_blk);
993                 start_blk += NR_CURSEG_NODE_TYPE;
994         }
995
996         /* writeout checkpoint block */
997         cp_page = grab_meta_page(sbi, start_blk);
998         kaddr = page_address(cp_page);
999         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1000         set_page_dirty(cp_page);
1001         f2fs_put_page(cp_page, 1);
1002
1003         /* wait for previous submitted node/meta pages writeback */
1004         wait_on_all_pages_writeback(sbi);
1005
1006         if (unlikely(f2fs_cp_error(sbi)))
1007                 return;
1008
1009         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1010         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1011
1012         /* update user_block_counts */
1013         sbi->last_valid_block_count = sbi->total_valid_block_count;
1014         sbi->alloc_valid_block_count = 0;
1015
1016         /* Here, we only have one bio having CP pack */
1017         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1018
1019         /* wait for previous submitted meta pages writeback */
1020         wait_on_all_pages_writeback(sbi);
1021
1022         release_dirty_inode(sbi);
1023
1024         if (unlikely(f2fs_cp_error(sbi)))
1025                 return;
1026
1027         clear_prefree_segments(sbi);
1028         F2FS_RESET_SB_DIRT(sbi);
1029 }
1030
1031 /*
1032  * We guarantee that this checkpoint procedure will not fail.
1033  */
1034 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1035 {
1036         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1037         unsigned long long ckpt_ver;
1038
1039         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1040
1041         mutex_lock(&sbi->cp_mutex);
1042
1043         if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1044                 goto out;
1045         if (unlikely(f2fs_cp_error(sbi)))
1046                 goto out;
1047         if (block_operations(sbi))
1048                 goto out;
1049
1050         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1051
1052         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1053         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1054         f2fs_submit_merged_bio(sbi, META, WRITE);
1055
1056         /*
1057          * update checkpoint pack index
1058          * Increase the version number so that
1059          * SIT entries and seg summaries are written at correct place
1060          */
1061         ckpt_ver = cur_cp_version(ckpt);
1062         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1063
1064         /* write cached NAT/SIT entries to NAT/SIT area */
1065         flush_nat_entries(sbi);
1066         flush_sit_entries(sbi, cpc);
1067
1068         /* unlock all the fs_lock[] in do_checkpoint() */
1069         do_checkpoint(sbi, cpc);
1070
1071         unblock_operations(sbi);
1072         stat_inc_cp_count(sbi->stat_info);
1073 out:
1074         mutex_unlock(&sbi->cp_mutex);
1075         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1076 }
1077
1078 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1079 {
1080         int i;
1081
1082         for (i = 0; i < MAX_INO_ENTRY; i++) {
1083                 struct inode_management *im = &sbi->im[i];
1084
1085                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1086                 spin_lock_init(&im->ino_lock);
1087                 INIT_LIST_HEAD(&im->ino_list);
1088                 im->ino_num = 0;
1089         }
1090
1091         /*
1092          * considering 512 blocks in a segment 8 blocks are needed for cp
1093          * and log segment summaries. Remaining blocks are used to keep
1094          * orphan entries with the limitation one reserved segment
1095          * for cp pack we can have max 1020*504 orphan entries
1096          */
1097         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1098                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1099 }
1100
1101 int __init create_checkpoint_caches(void)
1102 {
1103         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1104                         sizeof(struct ino_entry));
1105         if (!ino_entry_slab)
1106                 return -ENOMEM;
1107         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1108                         sizeof(struct dir_inode_entry));
1109         if (!inode_entry_slab) {
1110                 kmem_cache_destroy(ino_entry_slab);
1111                 return -ENOMEM;
1112         }
1113         return 0;
1114 }
1115
1116 void destroy_checkpoint_caches(void)
1117 {
1118         kmem_cache_destroy(ino_entry_slab);
1119         kmem_cache_destroy(inode_entry_slab);
1120 }