]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
f2fs: avoid free slab cache under spinlock
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         mark_page_accessed(page);
73         return page;
74 }
75
76 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77 {
78         switch (type) {
79         case META_NAT:
80                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81         case META_SIT:
82                 return SIT_BLK_CNT(sbi);
83         case META_SSA:
84         case META_CP:
85                 return 0;
86         default:
87                 BUG();
88         }
89 }
90
91 /*
92  * Readahead CP/NAT/SIT/SSA pages
93  */
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 {
96         block_t prev_blk_addr = 0;
97         struct page *page;
98         int blkno = start;
99         int max_blks = get_max_meta_blks(sbi, type);
100
101         struct f2fs_io_info fio = {
102                 .type = META,
103                 .rw = READ_SYNC | REQ_META | REQ_PRIO
104         };
105
106         for (; nrpages-- > 0; blkno++) {
107                 block_t blk_addr;
108
109                 switch (type) {
110                 case META_NAT:
111                         /* get nat block addr */
112                         if (unlikely(blkno >= max_blks))
113                                 blkno = 0;
114                         blk_addr = current_nat_addr(sbi,
115                                         blkno * NAT_ENTRY_PER_BLOCK);
116                         break;
117                 case META_SIT:
118                         /* get sit block addr */
119                         if (unlikely(blkno >= max_blks))
120                                 goto out;
121                         blk_addr = current_sit_addr(sbi,
122                                         blkno * SIT_ENTRY_PER_BLOCK);
123                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
124                                 goto out;
125                         prev_blk_addr = blk_addr;
126                         break;
127                 case META_SSA:
128                 case META_CP:
129                         /* get ssa/cp block addr */
130                         blk_addr = blkno;
131                         break;
132                 default:
133                         BUG();
134                 }
135
136                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137                 if (!page)
138                         continue;
139                 if (PageUptodate(page)) {
140                         mark_page_accessed(page);
141                         f2fs_put_page(page, 1);
142                         continue;
143                 }
144
145                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146                 mark_page_accessed(page);
147                 f2fs_put_page(page, 0);
148         }
149 out:
150         f2fs_submit_merged_bio(sbi, META, READ);
151         return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155                                 struct writeback_control *wbc)
156 {
157         struct inode *inode = page->mapping->host;
158         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160         if (unlikely(sbi->por_doing))
161                 goto redirty_out;
162         if (wbc->for_reclaim)
163                 goto redirty_out;
164
165         /* Should not write any meta pages, if any IO error was occurred */
166         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167                 goto no_write;
168
169         f2fs_wait_on_page_writeback(page, META);
170         write_meta_page(sbi, page);
171 no_write:
172         dec_page_count(sbi, F2FS_DIRTY_META);
173         unlock_page(page);
174         return 0;
175
176 redirty_out:
177         dec_page_count(sbi, F2FS_DIRTY_META);
178         wbc->pages_skipped++;
179         account_page_redirty(page);
180         set_page_dirty(page);
181         return AOP_WRITEPAGE_ACTIVATE;
182 }
183
184 static int f2fs_write_meta_pages(struct address_space *mapping,
185                                 struct writeback_control *wbc)
186 {
187         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188         long diff, written;
189
190         /* collect a number of dirty meta pages and write together */
191         if (wbc->for_kupdate ||
192                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193                 goto skip_write;
194
195         /* if mounting is failed, skip writing node pages */
196         mutex_lock(&sbi->cp_mutex);
197         diff = nr_pages_to_write(sbi, META, wbc);
198         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199         mutex_unlock(&sbi->cp_mutex);
200         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201         return 0;
202
203 skip_write:
204         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
205         return 0;
206 }
207
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209                                                 long nr_to_write)
210 {
211         struct address_space *mapping = META_MAPPING(sbi);
212         pgoff_t index = 0, end = LONG_MAX;
213         struct pagevec pvec;
214         long nwritten = 0;
215         struct writeback_control wbc = {
216                 .for_reclaim = 0,
217         };
218
219         pagevec_init(&pvec, 0);
220
221         while (index <= end) {
222                 int i, nr_pages;
223                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224                                 PAGECACHE_TAG_DIRTY,
225                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226                 if (unlikely(nr_pages == 0))
227                         break;
228
229                 for (i = 0; i < nr_pages; i++) {
230                         struct page *page = pvec.pages[i];
231
232                         lock_page(page);
233
234                         if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236                                 unlock_page(page);
237                                 continue;
238                         }
239                         if (!PageDirty(page)) {
240                                 /* someone wrote it for us */
241                                 goto continue_unlock;
242                         }
243
244                         if (!clear_page_dirty_for_io(page))
245                                 goto continue_unlock;
246
247                         if (f2fs_write_meta_page(page, &wbc)) {
248                                 unlock_page(page);
249                                 break;
250                         }
251                         nwritten++;
252                         if (unlikely(nwritten >= nr_to_write))
253                                 break;
254                 }
255                 pagevec_release(&pvec);
256                 cond_resched();
257         }
258
259         if (nwritten)
260                 f2fs_submit_merged_bio(sbi, type, WRITE);
261
262         return nwritten;
263 }
264
265 static int f2fs_set_meta_page_dirty(struct page *page)
266 {
267         struct address_space *mapping = page->mapping;
268         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270         trace_f2fs_set_page_dirty(page, META);
271
272         SetPageUptodate(page);
273         if (!PageDirty(page)) {
274                 __set_page_dirty_nobuffers(page);
275                 inc_page_count(sbi, F2FS_DIRTY_META);
276                 return 1;
277         }
278         return 0;
279 }
280
281 const struct address_space_operations f2fs_meta_aops = {
282         .writepage      = f2fs_write_meta_page,
283         .writepages     = f2fs_write_meta_pages,
284         .set_page_dirty = f2fs_set_meta_page_dirty,
285 };
286
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288 {
289         int err = 0;
290
291         spin_lock(&sbi->orphan_inode_lock);
292         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293                 err = -ENOSPC;
294         else
295                 sbi->n_orphans++;
296         spin_unlock(&sbi->orphan_inode_lock);
297
298         return err;
299 }
300
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
302 {
303         spin_lock(&sbi->orphan_inode_lock);
304         f2fs_bug_on(sbi->n_orphans == 0);
305         sbi->n_orphans--;
306         spin_unlock(&sbi->orphan_inode_lock);
307 }
308
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310 {
311         struct list_head *head, *this;
312         struct orphan_inode_entry *new = NULL, *orphan = NULL;
313
314         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315         new->ino = ino;
316
317         spin_lock(&sbi->orphan_inode_lock);
318         head = &sbi->orphan_inode_list;
319         list_for_each(this, head) {
320                 orphan = list_entry(this, struct orphan_inode_entry, list);
321                 if (orphan->ino == ino) {
322                         spin_unlock(&sbi->orphan_inode_lock);
323                         kmem_cache_free(orphan_entry_slab, new);
324                         return;
325                 }
326
327                 if (orphan->ino > ino)
328                         break;
329                 orphan = NULL;
330         }
331
332         /* add new_oentry into list which is sorted by inode number */
333         if (orphan)
334                 list_add(&new->list, this->prev);
335         else
336                 list_add_tail(&new->list, head);
337         spin_unlock(&sbi->orphan_inode_lock);
338 }
339
340 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
341 {
342         struct list_head *head;
343         struct orphan_inode_entry *orphan;
344
345         spin_lock(&sbi->orphan_inode_lock);
346         head = &sbi->orphan_inode_list;
347         list_for_each_entry(orphan, head, list) {
348                 if (orphan->ino == ino) {
349                         list_del(&orphan->list);
350                         f2fs_bug_on(sbi->n_orphans == 0);
351                         sbi->n_orphans--;
352                         spin_unlock(&sbi->orphan_inode_lock);
353                         kmem_cache_free(orphan_entry_slab, orphan);
354                         return;
355                 }
356         }
357         spin_unlock(&sbi->orphan_inode_lock);
358 }
359
360 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
361 {
362         struct inode *inode = f2fs_iget(sbi->sb, ino);
363         f2fs_bug_on(IS_ERR(inode));
364         clear_nlink(inode);
365
366         /* truncate all the data during iput */
367         iput(inode);
368 }
369
370 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
371 {
372         block_t start_blk, orphan_blkaddr, i, j;
373
374         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
375                 return;
376
377         sbi->por_doing = true;
378         start_blk = __start_cp_addr(sbi) + 1;
379         orphan_blkaddr = __start_sum_addr(sbi) - 1;
380
381         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
382
383         for (i = 0; i < orphan_blkaddr; i++) {
384                 struct page *page = get_meta_page(sbi, start_blk + i);
385                 struct f2fs_orphan_block *orphan_blk;
386
387                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
388                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
389                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
390                         recover_orphan_inode(sbi, ino);
391                 }
392                 f2fs_put_page(page, 1);
393         }
394         /* clear Orphan Flag */
395         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
396         sbi->por_doing = false;
397         return;
398 }
399
400 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
401 {
402         struct list_head *head;
403         struct f2fs_orphan_block *orphan_blk = NULL;
404         unsigned int nentries = 0;
405         unsigned short index;
406         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
407                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
408         struct page *page = NULL;
409         struct orphan_inode_entry *orphan = NULL;
410
411         for (index = 0; index < orphan_blocks; index++)
412                 grab_meta_page(sbi, start_blk + index);
413
414         index = 1;
415         spin_lock(&sbi->orphan_inode_lock);
416         head = &sbi->orphan_inode_list;
417
418         /* loop for each orphan inode entry and write them in Jornal block */
419         list_for_each_entry(orphan, head, list) {
420                 if (!page) {
421                         page = find_get_page(META_MAPPING(sbi), start_blk++);
422                         f2fs_bug_on(!page);
423                         orphan_blk =
424                                 (struct f2fs_orphan_block *)page_address(page);
425                         memset(orphan_blk, 0, sizeof(*orphan_blk));
426                         f2fs_put_page(page, 0);
427                 }
428
429                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
430
431                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
432                         /*
433                          * an orphan block is full of 1020 entries,
434                          * then we need to flush current orphan blocks
435                          * and bring another one in memory
436                          */
437                         orphan_blk->blk_addr = cpu_to_le16(index);
438                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
439                         orphan_blk->entry_count = cpu_to_le32(nentries);
440                         set_page_dirty(page);
441                         f2fs_put_page(page, 1);
442                         index++;
443                         nentries = 0;
444                         page = NULL;
445                 }
446         }
447
448         if (page) {
449                 orphan_blk->blk_addr = cpu_to_le16(index);
450                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
451                 orphan_blk->entry_count = cpu_to_le32(nentries);
452                 set_page_dirty(page);
453                 f2fs_put_page(page, 1);
454         }
455
456         spin_unlock(&sbi->orphan_inode_lock);
457 }
458
459 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
460                                 block_t cp_addr, unsigned long long *version)
461 {
462         struct page *cp_page_1, *cp_page_2 = NULL;
463         unsigned long blk_size = sbi->blocksize;
464         struct f2fs_checkpoint *cp_block;
465         unsigned long long cur_version = 0, pre_version = 0;
466         size_t crc_offset;
467         __u32 crc = 0;
468
469         /* Read the 1st cp block in this CP pack */
470         cp_page_1 = get_meta_page(sbi, cp_addr);
471
472         /* get the version number */
473         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
474         crc_offset = le32_to_cpu(cp_block->checksum_offset);
475         if (crc_offset >= blk_size)
476                 goto invalid_cp1;
477
478         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
479         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
480                 goto invalid_cp1;
481
482         pre_version = cur_cp_version(cp_block);
483
484         /* Read the 2nd cp block in this CP pack */
485         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
486         cp_page_2 = get_meta_page(sbi, cp_addr);
487
488         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
489         crc_offset = le32_to_cpu(cp_block->checksum_offset);
490         if (crc_offset >= blk_size)
491                 goto invalid_cp2;
492
493         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
494         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
495                 goto invalid_cp2;
496
497         cur_version = cur_cp_version(cp_block);
498
499         if (cur_version == pre_version) {
500                 *version = cur_version;
501                 f2fs_put_page(cp_page_2, 1);
502                 return cp_page_1;
503         }
504 invalid_cp2:
505         f2fs_put_page(cp_page_2, 1);
506 invalid_cp1:
507         f2fs_put_page(cp_page_1, 1);
508         return NULL;
509 }
510
511 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
512 {
513         struct f2fs_checkpoint *cp_block;
514         struct f2fs_super_block *fsb = sbi->raw_super;
515         struct page *cp1, *cp2, *cur_page;
516         unsigned long blk_size = sbi->blocksize;
517         unsigned long long cp1_version = 0, cp2_version = 0;
518         unsigned long long cp_start_blk_no;
519
520         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
521         if (!sbi->ckpt)
522                 return -ENOMEM;
523         /*
524          * Finding out valid cp block involves read both
525          * sets( cp pack1 and cp pack 2)
526          */
527         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
528         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
529
530         /* The second checkpoint pack should start at the next segment */
531         cp_start_blk_no += ((unsigned long long)1) <<
532                                 le32_to_cpu(fsb->log_blocks_per_seg);
533         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
534
535         if (cp1 && cp2) {
536                 if (ver_after(cp2_version, cp1_version))
537                         cur_page = cp2;
538                 else
539                         cur_page = cp1;
540         } else if (cp1) {
541                 cur_page = cp1;
542         } else if (cp2) {
543                 cur_page = cp2;
544         } else {
545                 goto fail_no_cp;
546         }
547
548         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
549         memcpy(sbi->ckpt, cp_block, blk_size);
550
551         f2fs_put_page(cp1, 1);
552         f2fs_put_page(cp2, 1);
553         return 0;
554
555 fail_no_cp:
556         kfree(sbi->ckpt);
557         return -EINVAL;
558 }
559
560 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
561 {
562         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
563         struct list_head *head = &sbi->dir_inode_list;
564         struct list_head *this;
565
566         list_for_each(this, head) {
567                 struct dir_inode_entry *entry;
568                 entry = list_entry(this, struct dir_inode_entry, list);
569                 if (unlikely(entry->inode == inode))
570                         return -EEXIST;
571         }
572         list_add_tail(&new->list, head);
573         stat_inc_dirty_dir(sbi);
574         return 0;
575 }
576
577 void set_dirty_dir_page(struct inode *inode, struct page *page)
578 {
579         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
580         struct dir_inode_entry *new;
581         int ret = 0;
582
583         if (!S_ISDIR(inode->i_mode))
584                 return;
585
586         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
587         new->inode = inode;
588         INIT_LIST_HEAD(&new->list);
589
590         spin_lock(&sbi->dir_inode_lock);
591         ret = __add_dirty_inode(inode, new);
592         inode_inc_dirty_dents(inode);
593         SetPagePrivate(page);
594         spin_unlock(&sbi->dir_inode_lock);
595
596         if (ret)
597                 kmem_cache_free(inode_entry_slab, new);
598 }
599
600 void add_dirty_dir_inode(struct inode *inode)
601 {
602         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
603         struct dir_inode_entry *new =
604                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
605         int ret = 0;
606
607         new->inode = inode;
608         INIT_LIST_HEAD(&new->list);
609
610         spin_lock(&sbi->dir_inode_lock);
611         ret = __add_dirty_inode(inode, new);
612         spin_unlock(&sbi->dir_inode_lock);
613
614         if (ret)
615                 kmem_cache_free(inode_entry_slab, new);
616 }
617
618 void remove_dirty_dir_inode(struct inode *inode)
619 {
620         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
621         struct list_head *this, *head;
622
623         if (!S_ISDIR(inode->i_mode))
624                 return;
625
626         spin_lock(&sbi->dir_inode_lock);
627         if (get_dirty_dents(inode)) {
628                 spin_unlock(&sbi->dir_inode_lock);
629                 return;
630         }
631
632         head = &sbi->dir_inode_list;
633         list_for_each(this, head) {
634                 struct dir_inode_entry *entry;
635                 entry = list_entry(this, struct dir_inode_entry, list);
636                 if (entry->inode == inode) {
637                         list_del(&entry->list);
638                         stat_dec_dirty_dir(sbi);
639                         spin_unlock(&sbi->dir_inode_lock);
640                         kmem_cache_free(inode_entry_slab, entry);
641                         goto done;
642                 }
643         }
644         spin_unlock(&sbi->dir_inode_lock);
645
646 done:
647         /* Only from the recovery routine */
648         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
649                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
650                 iput(inode);
651         }
652 }
653
654 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
655 {
656
657         struct list_head *this, *head;
658         struct inode *inode = NULL;
659
660         spin_lock(&sbi->dir_inode_lock);
661
662         head = &sbi->dir_inode_list;
663         list_for_each(this, head) {
664                 struct dir_inode_entry *entry;
665                 entry = list_entry(this, struct dir_inode_entry, list);
666                 if (entry->inode->i_ino == ino) {
667                         inode = entry->inode;
668                         break;
669                 }
670         }
671         spin_unlock(&sbi->dir_inode_lock);
672         return inode;
673 }
674
675 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
676 {
677         struct list_head *head;
678         struct dir_inode_entry *entry;
679         struct inode *inode;
680 retry:
681         spin_lock(&sbi->dir_inode_lock);
682
683         head = &sbi->dir_inode_list;
684         if (list_empty(head)) {
685                 spin_unlock(&sbi->dir_inode_lock);
686                 return;
687         }
688         entry = list_entry(head->next, struct dir_inode_entry, list);
689         inode = igrab(entry->inode);
690         spin_unlock(&sbi->dir_inode_lock);
691         if (inode) {
692                 filemap_fdatawrite(inode->i_mapping);
693                 iput(inode);
694         } else {
695                 /*
696                  * We should submit bio, since it exists several
697                  * wribacking dentry pages in the freeing inode.
698                  */
699                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
700         }
701         goto retry;
702 }
703
704 /*
705  * Freeze all the FS-operations for checkpoint.
706  */
707 static void block_operations(struct f2fs_sb_info *sbi)
708 {
709         struct writeback_control wbc = {
710                 .sync_mode = WB_SYNC_ALL,
711                 .nr_to_write = LONG_MAX,
712                 .for_reclaim = 0,
713         };
714         struct blk_plug plug;
715
716         blk_start_plug(&plug);
717
718 retry_flush_dents:
719         f2fs_lock_all(sbi);
720         /* write all the dirty dentry pages */
721         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
722                 f2fs_unlock_all(sbi);
723                 sync_dirty_dir_inodes(sbi);
724                 goto retry_flush_dents;
725         }
726
727         /*
728          * POR: we should ensure that there is no dirty node pages
729          * until finishing nat/sit flush.
730          */
731 retry_flush_nodes:
732         mutex_lock(&sbi->node_write);
733
734         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
735                 mutex_unlock(&sbi->node_write);
736                 sync_node_pages(sbi, 0, &wbc);
737                 goto retry_flush_nodes;
738         }
739         blk_finish_plug(&plug);
740 }
741
742 static void unblock_operations(struct f2fs_sb_info *sbi)
743 {
744         mutex_unlock(&sbi->node_write);
745         f2fs_unlock_all(sbi);
746 }
747
748 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
749 {
750         DEFINE_WAIT(wait);
751
752         for (;;) {
753                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
754
755                 if (!get_pages(sbi, F2FS_WRITEBACK))
756                         break;
757
758                 io_schedule();
759         }
760         finish_wait(&sbi->cp_wait, &wait);
761 }
762
763 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
764 {
765         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
766         nid_t last_nid = 0;
767         block_t start_blk;
768         struct page *cp_page;
769         unsigned int data_sum_blocks, orphan_blocks;
770         __u32 crc32 = 0;
771         void *kaddr;
772         int i;
773
774         /* Flush all the NAT/SIT pages */
775         while (get_pages(sbi, F2FS_DIRTY_META))
776                 sync_meta_pages(sbi, META, LONG_MAX);
777
778         next_free_nid(sbi, &last_nid);
779
780         /*
781          * modify checkpoint
782          * version number is already updated
783          */
784         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
785         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
786         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
787         for (i = 0; i < 3; i++) {
788                 ckpt->cur_node_segno[i] =
789                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
790                 ckpt->cur_node_blkoff[i] =
791                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
792                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
793                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
794         }
795         for (i = 0; i < 3; i++) {
796                 ckpt->cur_data_segno[i] =
797                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
798                 ckpt->cur_data_blkoff[i] =
799                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
800                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
801                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
802         }
803
804         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
805         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
806         ckpt->next_free_nid = cpu_to_le32(last_nid);
807
808         /* 2 cp  + n data seg summary + orphan inode blocks */
809         data_sum_blocks = npages_for_summary_flush(sbi);
810         if (data_sum_blocks < 3)
811                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
812         else
813                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
814
815         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
816                                         / F2FS_ORPHANS_PER_BLOCK;
817         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
818
819         if (is_umount) {
820                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
821                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
822                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
823         } else {
824                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
825                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
826                         data_sum_blocks + orphan_blocks);
827         }
828
829         if (sbi->n_orphans)
830                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
831         else
832                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
833
834         /* update SIT/NAT bitmap */
835         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
836         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
837
838         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
839         *((__le32 *)((unsigned char *)ckpt +
840                                 le32_to_cpu(ckpt->checksum_offset)))
841                                 = cpu_to_le32(crc32);
842
843         start_blk = __start_cp_addr(sbi);
844
845         /* write out checkpoint buffer at block 0 */
846         cp_page = grab_meta_page(sbi, start_blk++);
847         kaddr = page_address(cp_page);
848         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
849         set_page_dirty(cp_page);
850         f2fs_put_page(cp_page, 1);
851
852         if (sbi->n_orphans) {
853                 write_orphan_inodes(sbi, start_blk);
854                 start_blk += orphan_blocks;
855         }
856
857         write_data_summaries(sbi, start_blk);
858         start_blk += data_sum_blocks;
859         if (is_umount) {
860                 write_node_summaries(sbi, start_blk);
861                 start_blk += NR_CURSEG_NODE_TYPE;
862         }
863
864         /* writeout checkpoint block */
865         cp_page = grab_meta_page(sbi, start_blk);
866         kaddr = page_address(cp_page);
867         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
868         set_page_dirty(cp_page);
869         f2fs_put_page(cp_page, 1);
870
871         /* wait for previous submitted node/meta pages writeback */
872         wait_on_all_pages_writeback(sbi);
873
874         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
875         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
876
877         /* update user_block_counts */
878         sbi->last_valid_block_count = sbi->total_valid_block_count;
879         sbi->alloc_valid_block_count = 0;
880
881         /* Here, we only have one bio having CP pack */
882         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
883
884         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
885                 clear_prefree_segments(sbi);
886                 F2FS_RESET_SB_DIRT(sbi);
887         }
888 }
889
890 /*
891  * We guarantee that this checkpoint procedure should not fail.
892  */
893 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
894 {
895         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
896         unsigned long long ckpt_ver;
897
898         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
899
900         mutex_lock(&sbi->cp_mutex);
901         block_operations(sbi);
902
903         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
904
905         f2fs_submit_merged_bio(sbi, DATA, WRITE);
906         f2fs_submit_merged_bio(sbi, NODE, WRITE);
907         f2fs_submit_merged_bio(sbi, META, WRITE);
908
909         /*
910          * update checkpoint pack index
911          * Increase the version number so that
912          * SIT entries and seg summaries are written at correct place
913          */
914         ckpt_ver = cur_cp_version(ckpt);
915         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
916
917         /* write cached NAT/SIT entries to NAT/SIT area */
918         flush_nat_entries(sbi);
919         flush_sit_entries(sbi);
920
921         /* unlock all the fs_lock[] in do_checkpoint() */
922         do_checkpoint(sbi, is_umount);
923
924         unblock_operations(sbi);
925         mutex_unlock(&sbi->cp_mutex);
926
927         stat_inc_cp_count(sbi->stat_info);
928         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
929 }
930
931 void init_orphan_info(struct f2fs_sb_info *sbi)
932 {
933         spin_lock_init(&sbi->orphan_inode_lock);
934         INIT_LIST_HEAD(&sbi->orphan_inode_list);
935         sbi->n_orphans = 0;
936         /*
937          * considering 512 blocks in a segment 8 blocks are needed for cp
938          * and log segment summaries. Remaining blocks are used to keep
939          * orphan entries with the limitation one reserved segment
940          * for cp pack we can have max 1020*504 orphan entries
941          */
942         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
943                                 * F2FS_ORPHANS_PER_BLOCK;
944 }
945
946 int __init create_checkpoint_caches(void)
947 {
948         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
949                         sizeof(struct orphan_inode_entry));
950         if (!orphan_entry_slab)
951                 return -ENOMEM;
952         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
953                         sizeof(struct dir_inode_entry));
954         if (!inode_entry_slab) {
955                 kmem_cache_destroy(orphan_entry_slab);
956                 return -ENOMEM;
957         }
958         return 0;
959 }
960
961 void destroy_checkpoint_caches(void)
962 {
963         kmem_cache_destroy(orphan_entry_slab);
964         kmem_cache_destroy(inode_entry_slab);
965 }