]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/data.c
Merge remote-tracking branch 'regulator/for-next'
[karo-tx-linux.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         f2fs_release_crypto_ctx(bio->bi_private);
38                 } else {
39                         f2fs_end_io_crypto_work(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 f2fs_restore_and_release_control_page(&page);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_bit(AS_EIO, &page->mapping->flags);
71                         f2fs_stop_checkpoint(sbi);
72                 }
73                 end_page_writeback(page);
74                 dec_page_count(sbi, F2FS_WRITEBACK);
75         }
76
77         if (!get_pages(sbi, F2FS_WRITEBACK) && wq_has_sleeper(&sbi->cp_wait))
78                 wake_up(&sbi->cp_wait);
79
80         bio_put(bio);
81 }
82
83 /*
84  * Low-level block read/write IO operations.
85  */
86 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
87                                 int npages, bool is_read)
88 {
89         struct bio *bio;
90
91         bio = f2fs_bio_alloc(npages);
92
93         bio->bi_bdev = sbi->sb->s_bdev;
94         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
95         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
96         bio->bi_private = is_read ? NULL : sbi;
97
98         return bio;
99 }
100
101 static void __submit_merged_bio(struct f2fs_bio_info *io)
102 {
103         struct f2fs_io_info *fio = &io->fio;
104
105         if (!io->bio)
106                 return;
107
108         if (is_read_io(fio->rw))
109                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
110         else
111                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
112
113         submit_bio(fio->rw, io->bio);
114         io->bio = NULL;
115 }
116
117 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
118                                                 struct page *page, nid_t ino)
119 {
120         struct bio_vec *bvec;
121         struct page *target;
122         int i;
123
124         if (!io->bio)
125                 return false;
126
127         if (!inode && !page && !ino)
128                 return true;
129
130         bio_for_each_segment_all(bvec, io->bio, i) {
131
132                 if (bvec->bv_page->mapping) {
133                         target = bvec->bv_page;
134                 } else {
135                         struct f2fs_crypto_ctx *ctx;
136
137                         /* encrypted page */
138                         ctx = (struct f2fs_crypto_ctx *)page_private(
139                                                                 bvec->bv_page);
140                         target = ctx->w.control_page;
141                 }
142
143                 if (inode && inode == target->mapping->host)
144                         return true;
145                 if (page && page == target)
146                         return true;
147                 if (ino && ino == ino_of_node(target))
148                         return true;
149         }
150
151         return false;
152 }
153
154 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
155                                                 struct page *page, nid_t ino,
156                                                 enum page_type type)
157 {
158         enum page_type btype = PAGE_TYPE_OF_BIO(type);
159         struct f2fs_bio_info *io = &sbi->write_io[btype];
160         bool ret;
161
162         down_read(&io->io_rwsem);
163         ret = __has_merged_page(io, inode, page, ino);
164         up_read(&io->io_rwsem);
165         return ret;
166 }
167
168 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
169                                 struct inode *inode, struct page *page,
170                                 nid_t ino, enum page_type type, int rw)
171 {
172         enum page_type btype = PAGE_TYPE_OF_BIO(type);
173         struct f2fs_bio_info *io;
174
175         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
176
177         down_write(&io->io_rwsem);
178
179         if (!__has_merged_page(io, inode, page, ino))
180                 goto out;
181
182         /* change META to META_FLUSH in the checkpoint procedure */
183         if (type >= META_FLUSH) {
184                 io->fio.type = META_FLUSH;
185                 if (test_opt(sbi, NOBARRIER))
186                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
187                 else
188                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
189         }
190         __submit_merged_bio(io);
191 out:
192         up_write(&io->io_rwsem);
193 }
194
195 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
196                                                                         int rw)
197 {
198         __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
199 }
200
201 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
202                                 struct inode *inode, struct page *page,
203                                 nid_t ino, enum page_type type, int rw)
204 {
205         if (has_merged_page(sbi, inode, page, ino, type))
206                 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
207 }
208
209 /*
210  * Fill the locked page with data located in the block address.
211  * Return unlocked page.
212  */
213 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
214 {
215         struct bio *bio;
216         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
217
218         trace_f2fs_submit_page_bio(page, fio);
219         f2fs_trace_ios(fio, 0);
220
221         /* Allocate a new bio */
222         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
223
224         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
225                 bio_put(bio);
226                 return -EFAULT;
227         }
228
229         submit_bio(fio->rw, bio);
230         return 0;
231 }
232
233 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
234 {
235         struct f2fs_sb_info *sbi = fio->sbi;
236         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
237         struct f2fs_bio_info *io;
238         bool is_read = is_read_io(fio->rw);
239         struct page *bio_page;
240
241         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
242
243         verify_block_addr(sbi, fio->blk_addr);
244
245         down_write(&io->io_rwsem);
246
247         if (!is_read)
248                 inc_page_count(sbi, F2FS_WRITEBACK);
249
250         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
251                                                 io->fio.rw != fio->rw))
252                 __submit_merged_bio(io);
253 alloc_new:
254         if (io->bio == NULL) {
255                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
256
257                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
258                 io->fio = *fio;
259         }
260
261         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
262
263         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
264                                                         PAGE_CACHE_SIZE) {
265                 __submit_merged_bio(io);
266                 goto alloc_new;
267         }
268
269         io->last_block_in_bio = fio->blk_addr;
270         f2fs_trace_ios(fio, 0);
271
272         up_write(&io->io_rwsem);
273         trace_f2fs_submit_page_mbio(fio->page, fio);
274 }
275
276 /*
277  * Lock ordering for the change of data block address:
278  * ->data_page
279  *  ->node_page
280  *    update block addresses in the node page
281  */
282 void set_data_blkaddr(struct dnode_of_data *dn)
283 {
284         struct f2fs_node *rn;
285         __le32 *addr_array;
286         struct page *node_page = dn->node_page;
287         unsigned int ofs_in_node = dn->ofs_in_node;
288
289         f2fs_wait_on_page_writeback(node_page, NODE, true);
290
291         rn = F2FS_NODE(node_page);
292
293         /* Get physical address of data block */
294         addr_array = blkaddr_in_node(rn);
295         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
296         if (set_page_dirty(node_page))
297                 dn->node_changed = true;
298 }
299
300 int reserve_new_block(struct dnode_of_data *dn)
301 {
302         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
303
304         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
305                 return -EPERM;
306         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
307                 return -ENOSPC;
308
309         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
310
311         dn->data_blkaddr = NEW_ADDR;
312         set_data_blkaddr(dn);
313         mark_inode_dirty(dn->inode);
314         sync_inode_page(dn);
315         return 0;
316 }
317
318 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
319 {
320         bool need_put = dn->inode_page ? false : true;
321         int err;
322
323         err = get_dnode_of_data(dn, index, ALLOC_NODE);
324         if (err)
325                 return err;
326
327         if (dn->data_blkaddr == NULL_ADDR)
328                 err = reserve_new_block(dn);
329         if (err || need_put)
330                 f2fs_put_dnode(dn);
331         return err;
332 }
333
334 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
335 {
336         struct extent_info ei;
337         struct inode *inode = dn->inode;
338
339         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
340                 dn->data_blkaddr = ei.blk + index - ei.fofs;
341                 return 0;
342         }
343
344         return f2fs_reserve_block(dn, index);
345 }
346
347 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
348                                                 int rw, bool for_write)
349 {
350         struct address_space *mapping = inode->i_mapping;
351         struct dnode_of_data dn;
352         struct page *page;
353         struct extent_info ei;
354         int err;
355         struct f2fs_io_info fio = {
356                 .sbi = F2FS_I_SB(inode),
357                 .type = DATA,
358                 .rw = rw,
359                 .encrypted_page = NULL,
360         };
361
362         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
363                 return read_mapping_page(mapping, index, NULL);
364
365         page = f2fs_grab_cache_page(mapping, index, for_write);
366         if (!page)
367                 return ERR_PTR(-ENOMEM);
368
369         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
370                 dn.data_blkaddr = ei.blk + index - ei.fofs;
371                 goto got_it;
372         }
373
374         set_new_dnode(&dn, inode, NULL, NULL, 0);
375         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
376         if (err)
377                 goto put_err;
378         f2fs_put_dnode(&dn);
379
380         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
381                 err = -ENOENT;
382                 goto put_err;
383         }
384 got_it:
385         if (PageUptodate(page)) {
386                 unlock_page(page);
387                 return page;
388         }
389
390         /*
391          * A new dentry page is allocated but not able to be written, since its
392          * new inode page couldn't be allocated due to -ENOSPC.
393          * In such the case, its blkaddr can be remained as NEW_ADDR.
394          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
395          */
396         if (dn.data_blkaddr == NEW_ADDR) {
397                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
398                 SetPageUptodate(page);
399                 unlock_page(page);
400                 return page;
401         }
402
403         fio.blk_addr = dn.data_blkaddr;
404         fio.page = page;
405         err = f2fs_submit_page_bio(&fio);
406         if (err)
407                 goto put_err;
408         return page;
409
410 put_err:
411         f2fs_put_page(page, 1);
412         return ERR_PTR(err);
413 }
414
415 struct page *find_data_page(struct inode *inode, pgoff_t index)
416 {
417         struct address_space *mapping = inode->i_mapping;
418         struct page *page;
419
420         page = find_get_page(mapping, index);
421         if (page && PageUptodate(page))
422                 return page;
423         f2fs_put_page(page, 0);
424
425         page = get_read_data_page(inode, index, READ_SYNC, false);
426         if (IS_ERR(page))
427                 return page;
428
429         if (PageUptodate(page))
430                 return page;
431
432         wait_on_page_locked(page);
433         if (unlikely(!PageUptodate(page))) {
434                 f2fs_put_page(page, 0);
435                 return ERR_PTR(-EIO);
436         }
437         return page;
438 }
439
440 /*
441  * If it tries to access a hole, return an error.
442  * Because, the callers, functions in dir.c and GC, should be able to know
443  * whether this page exists or not.
444  */
445 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
446                                                         bool for_write)
447 {
448         struct address_space *mapping = inode->i_mapping;
449         struct page *page;
450 repeat:
451         page = get_read_data_page(inode, index, READ_SYNC, for_write);
452         if (IS_ERR(page))
453                 return page;
454
455         /* wait for read completion */
456         lock_page(page);
457         if (unlikely(!PageUptodate(page))) {
458                 f2fs_put_page(page, 1);
459                 return ERR_PTR(-EIO);
460         }
461         if (unlikely(page->mapping != mapping)) {
462                 f2fs_put_page(page, 1);
463                 goto repeat;
464         }
465         return page;
466 }
467
468 /*
469  * Caller ensures that this data page is never allocated.
470  * A new zero-filled data page is allocated in the page cache.
471  *
472  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
473  * f2fs_unlock_op().
474  * Note that, ipage is set only by make_empty_dir, and if any error occur,
475  * ipage should be released by this function.
476  */
477 struct page *get_new_data_page(struct inode *inode,
478                 struct page *ipage, pgoff_t index, bool new_i_size)
479 {
480         struct address_space *mapping = inode->i_mapping;
481         struct page *page;
482         struct dnode_of_data dn;
483         int err;
484
485         page = f2fs_grab_cache_page(mapping, index, true);
486         if (!page) {
487                 /*
488                  * before exiting, we should make sure ipage will be released
489                  * if any error occur.
490                  */
491                 f2fs_put_page(ipage, 1);
492                 return ERR_PTR(-ENOMEM);
493         }
494
495         set_new_dnode(&dn, inode, ipage, NULL, 0);
496         err = f2fs_reserve_block(&dn, index);
497         if (err) {
498                 f2fs_put_page(page, 1);
499                 return ERR_PTR(err);
500         }
501         if (!ipage)
502                 f2fs_put_dnode(&dn);
503
504         if (PageUptodate(page))
505                 goto got_it;
506
507         if (dn.data_blkaddr == NEW_ADDR) {
508                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
509                 SetPageUptodate(page);
510         } else {
511                 f2fs_put_page(page, 1);
512
513                 /* if ipage exists, blkaddr should be NEW_ADDR */
514                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
515                 page = get_lock_data_page(inode, index, true);
516                 if (IS_ERR(page))
517                         return page;
518         }
519 got_it:
520         if (new_i_size && i_size_read(inode) <
521                                 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
522                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
523                 /* Only the directory inode sets new_i_size */
524                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
525         }
526         return page;
527 }
528
529 static int __allocate_data_block(struct dnode_of_data *dn)
530 {
531         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
532         struct f2fs_summary sum;
533         struct node_info ni;
534         int seg = CURSEG_WARM_DATA;
535         pgoff_t fofs;
536
537         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
538                 return -EPERM;
539
540         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
541         if (dn->data_blkaddr == NEW_ADDR)
542                 goto alloc;
543
544         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
545                 return -ENOSPC;
546
547 alloc:
548         get_node_info(sbi, dn->nid, &ni);
549         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
550
551         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
552                 seg = CURSEG_DIRECT_IO;
553
554         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
555                                                                 &sum, seg);
556         set_data_blkaddr(dn);
557
558         /* update i_size */
559         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
560                                                         dn->ofs_in_node;
561         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
562                 i_size_write(dn->inode,
563                                 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
564         return 0;
565 }
566
567 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
568 {
569         struct inode *inode = file_inode(iocb->ki_filp);
570         struct f2fs_map_blocks map;
571         ssize_t ret = 0;
572
573         map.m_lblk = F2FS_BYTES_TO_BLK(iocb->ki_pos);
574         map.m_len = F2FS_BLK_ALIGN(iov_iter_count(from));
575         map.m_next_pgofs = NULL;
576
577         if (f2fs_encrypted_inode(inode))
578                 return 0;
579
580         if (iocb->ki_flags & IOCB_DIRECT) {
581                 ret = f2fs_convert_inline_inode(inode);
582                 if (ret)
583                         return ret;
584                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
585         }
586         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
587                 ret = f2fs_convert_inline_inode(inode);
588                 if (ret)
589                         return ret;
590         }
591         if (!f2fs_has_inline_data(inode))
592                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
593         return ret;
594 }
595
596 /*
597  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
598  * f2fs_map_blocks structure.
599  * If original data blocks are allocated, then give them to blockdev.
600  * Otherwise,
601  *     a. preallocate requested block addresses
602  *     b. do not use extent cache for better performance
603  *     c. give the block addresses to blockdev
604  */
605 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
606                                                 int create, int flag)
607 {
608         unsigned int maxblocks = map->m_len;
609         struct dnode_of_data dn;
610         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
611         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
612         pgoff_t pgofs, end_offset;
613         int err = 0, ofs = 1;
614         struct extent_info ei;
615         bool allocated = false;
616         block_t blkaddr;
617
618         map->m_len = 0;
619         map->m_flags = 0;
620
621         /* it only supports block size == page size */
622         pgofs = (pgoff_t)map->m_lblk;
623
624         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
625                 map->m_pblk = ei.blk + pgofs - ei.fofs;
626                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
627                 map->m_flags = F2FS_MAP_MAPPED;
628                 goto out;
629         }
630
631 next_dnode:
632         if (create)
633                 f2fs_lock_op(sbi);
634
635         /* When reading holes, we need its node page */
636         set_new_dnode(&dn, inode, NULL, NULL, 0);
637         err = get_dnode_of_data(&dn, pgofs, mode);
638         if (err) {
639                 if (err == -ENOENT) {
640                         err = 0;
641                         if (map->m_next_pgofs)
642                                 *map->m_next_pgofs =
643                                         get_next_page_offset(&dn, pgofs);
644                 }
645                 goto unlock_out;
646         }
647
648         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
649
650 next_block:
651         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
652
653         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
654                 if (create) {
655                         if (unlikely(f2fs_cp_error(sbi))) {
656                                 err = -EIO;
657                                 goto sync_out;
658                         }
659                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
660                                 if (blkaddr == NULL_ADDR)
661                                         err = reserve_new_block(&dn);
662                         } else {
663                                 err = __allocate_data_block(&dn);
664                         }
665                         if (err)
666                                 goto sync_out;
667                         allocated = true;
668                         map->m_flags = F2FS_MAP_NEW;
669                         blkaddr = dn.data_blkaddr;
670                 } else {
671                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
672                                                 blkaddr == NULL_ADDR) {
673                                 if (map->m_next_pgofs)
674                                         *map->m_next_pgofs = pgofs + 1;
675                         }
676                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
677                                                 blkaddr != NEW_ADDR) {
678                                 if (flag == F2FS_GET_BLOCK_BMAP)
679                                         err = -ENOENT;
680                                 goto sync_out;
681                         }
682                 }
683         }
684
685         if (map->m_len == 0) {
686                 /* preallocated unwritten block should be mapped for fiemap. */
687                 if (blkaddr == NEW_ADDR)
688                         map->m_flags |= F2FS_MAP_UNWRITTEN;
689                 map->m_flags |= F2FS_MAP_MAPPED;
690
691                 map->m_pblk = blkaddr;
692                 map->m_len = 1;
693         } else if ((map->m_pblk != NEW_ADDR &&
694                         blkaddr == (map->m_pblk + ofs)) ||
695                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
696                         flag == F2FS_GET_BLOCK_PRE_DIO ||
697                         flag == F2FS_GET_BLOCK_PRE_AIO) {
698                 ofs++;
699                 map->m_len++;
700         } else {
701                 goto sync_out;
702         }
703
704         dn.ofs_in_node++;
705         pgofs++;
706
707         if (map->m_len < maxblocks) {
708                 if (dn.ofs_in_node < end_offset)
709                         goto next_block;
710
711                 if (allocated)
712                         sync_inode_page(&dn);
713                 f2fs_put_dnode(&dn);
714
715                 if (create) {
716                         f2fs_unlock_op(sbi);
717                         f2fs_balance_fs(sbi, allocated);
718                 }
719                 allocated = false;
720                 goto next_dnode;
721         }
722
723 sync_out:
724         if (allocated)
725                 sync_inode_page(&dn);
726         f2fs_put_dnode(&dn);
727 unlock_out:
728         if (create) {
729                 f2fs_unlock_op(sbi);
730                 f2fs_balance_fs(sbi, allocated);
731         }
732 out:
733         trace_f2fs_map_blocks(inode, map, err);
734         return err;
735 }
736
737 static int __get_data_block(struct inode *inode, sector_t iblock,
738                         struct buffer_head *bh, int create, int flag,
739                         pgoff_t *next_pgofs)
740 {
741         struct f2fs_map_blocks map;
742         int ret;
743
744         map.m_lblk = iblock;
745         map.m_len = bh->b_size >> inode->i_blkbits;
746         map.m_next_pgofs = next_pgofs;
747
748         ret = f2fs_map_blocks(inode, &map, create, flag);
749         if (!ret) {
750                 map_bh(bh, inode->i_sb, map.m_pblk);
751                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
752                 bh->b_size = map.m_len << inode->i_blkbits;
753         }
754         return ret;
755 }
756
757 static int get_data_block(struct inode *inode, sector_t iblock,
758                         struct buffer_head *bh_result, int create, int flag,
759                         pgoff_t *next_pgofs)
760 {
761         return __get_data_block(inode, iblock, bh_result, create,
762                                                         flag, next_pgofs);
763 }
764
765 static int get_data_block_dio(struct inode *inode, sector_t iblock,
766                         struct buffer_head *bh_result, int create)
767 {
768         return __get_data_block(inode, iblock, bh_result, create,
769                                                 F2FS_GET_BLOCK_DIO, NULL);
770 }
771
772 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
773                         struct buffer_head *bh_result, int create)
774 {
775         /* Block number less than F2FS MAX BLOCKS */
776         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
777                 return -EFBIG;
778
779         return __get_data_block(inode, iblock, bh_result, create,
780                                                 F2FS_GET_BLOCK_BMAP, NULL);
781 }
782
783 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
784 {
785         return (offset >> inode->i_blkbits);
786 }
787
788 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
789 {
790         return (blk << inode->i_blkbits);
791 }
792
793 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
794                 u64 start, u64 len)
795 {
796         struct buffer_head map_bh;
797         sector_t start_blk, last_blk;
798         pgoff_t next_pgofs;
799         loff_t isize;
800         u64 logical = 0, phys = 0, size = 0;
801         u32 flags = 0;
802         int ret = 0;
803
804         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
805         if (ret)
806                 return ret;
807
808         if (f2fs_has_inline_data(inode)) {
809                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
810                 if (ret != -EAGAIN)
811                         return ret;
812         }
813
814         inode_lock(inode);
815
816         isize = i_size_read(inode);
817         if (start >= isize)
818                 goto out;
819
820         if (start + len > isize)
821                 len = isize - start;
822
823         if (logical_to_blk(inode, len) == 0)
824                 len = blk_to_logical(inode, 1);
825
826         start_blk = logical_to_blk(inode, start);
827         last_blk = logical_to_blk(inode, start + len - 1);
828
829 next:
830         memset(&map_bh, 0, sizeof(struct buffer_head));
831         map_bh.b_size = len;
832
833         ret = get_data_block(inode, start_blk, &map_bh, 0,
834                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
835         if (ret)
836                 goto out;
837
838         /* HOLE */
839         if (!buffer_mapped(&map_bh)) {
840                 start_blk = next_pgofs;
841                 /* Go through holes util pass the EOF */
842                 if (blk_to_logical(inode, start_blk) < isize)
843                         goto prep_next;
844                 /* Found a hole beyond isize means no more extents.
845                  * Note that the premise is that filesystems don't
846                  * punch holes beyond isize and keep size unchanged.
847                  */
848                 flags |= FIEMAP_EXTENT_LAST;
849         }
850
851         if (size) {
852                 if (f2fs_encrypted_inode(inode))
853                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
854
855                 ret = fiemap_fill_next_extent(fieinfo, logical,
856                                 phys, size, flags);
857         }
858
859         if (start_blk > last_blk || ret)
860                 goto out;
861
862         logical = blk_to_logical(inode, start_blk);
863         phys = blk_to_logical(inode, map_bh.b_blocknr);
864         size = map_bh.b_size;
865         flags = 0;
866         if (buffer_unwritten(&map_bh))
867                 flags = FIEMAP_EXTENT_UNWRITTEN;
868
869         start_blk += logical_to_blk(inode, size);
870
871 prep_next:
872         cond_resched();
873         if (fatal_signal_pending(current))
874                 ret = -EINTR;
875         else
876                 goto next;
877 out:
878         if (ret == 1)
879                 ret = 0;
880
881         inode_unlock(inode);
882         return ret;
883 }
884
885 /*
886  * This function was originally taken from fs/mpage.c, and customized for f2fs.
887  * Major change was from block_size == page_size in f2fs by default.
888  */
889 static int f2fs_mpage_readpages(struct address_space *mapping,
890                         struct list_head *pages, struct page *page,
891                         unsigned nr_pages)
892 {
893         struct bio *bio = NULL;
894         unsigned page_idx;
895         sector_t last_block_in_bio = 0;
896         struct inode *inode = mapping->host;
897         const unsigned blkbits = inode->i_blkbits;
898         const unsigned blocksize = 1 << blkbits;
899         sector_t block_in_file;
900         sector_t last_block;
901         sector_t last_block_in_file;
902         sector_t block_nr;
903         struct block_device *bdev = inode->i_sb->s_bdev;
904         struct f2fs_map_blocks map;
905
906         map.m_pblk = 0;
907         map.m_lblk = 0;
908         map.m_len = 0;
909         map.m_flags = 0;
910         map.m_next_pgofs = NULL;
911
912         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
913
914                 prefetchw(&page->flags);
915                 if (pages) {
916                         page = list_entry(pages->prev, struct page, lru);
917                         list_del(&page->lru);
918                         if (add_to_page_cache_lru(page, mapping,
919                                                   page->index, GFP_KERNEL))
920                                 goto next_page;
921                 }
922
923                 block_in_file = (sector_t)page->index;
924                 last_block = block_in_file + nr_pages;
925                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
926                                                                 blkbits;
927                 if (last_block > last_block_in_file)
928                         last_block = last_block_in_file;
929
930                 /*
931                  * Map blocks using the previous result first.
932                  */
933                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
934                                 block_in_file > map.m_lblk &&
935                                 block_in_file < (map.m_lblk + map.m_len))
936                         goto got_it;
937
938                 /*
939                  * Then do more f2fs_map_blocks() calls until we are
940                  * done with this page.
941                  */
942                 map.m_flags = 0;
943
944                 if (block_in_file < last_block) {
945                         map.m_lblk = block_in_file;
946                         map.m_len = last_block - block_in_file;
947
948                         if (f2fs_map_blocks(inode, &map, 0,
949                                                 F2FS_GET_BLOCK_READ))
950                                 goto set_error_page;
951                 }
952 got_it:
953                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
954                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
955                         SetPageMappedToDisk(page);
956
957                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
958                                 SetPageUptodate(page);
959                                 goto confused;
960                         }
961                 } else {
962                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
963                         SetPageUptodate(page);
964                         unlock_page(page);
965                         goto next_page;
966                 }
967
968                 /*
969                  * This page will go to BIO.  Do we need to send this
970                  * BIO off first?
971                  */
972                 if (bio && (last_block_in_bio != block_nr - 1)) {
973 submit_and_realloc:
974                         submit_bio(READ, bio);
975                         bio = NULL;
976                 }
977                 if (bio == NULL) {
978                         struct f2fs_crypto_ctx *ctx = NULL;
979
980                         if (f2fs_encrypted_inode(inode) &&
981                                         S_ISREG(inode->i_mode)) {
982
983                                 ctx = f2fs_get_crypto_ctx(inode);
984                                 if (IS_ERR(ctx))
985                                         goto set_error_page;
986
987                                 /* wait the page to be moved by cleaning */
988                                 f2fs_wait_on_encrypted_page_writeback(
989                                                 F2FS_I_SB(inode), block_nr);
990                         }
991
992                         bio = bio_alloc(GFP_KERNEL,
993                                 min_t(int, nr_pages, BIO_MAX_PAGES));
994                         if (!bio) {
995                                 if (ctx)
996                                         f2fs_release_crypto_ctx(ctx);
997                                 goto set_error_page;
998                         }
999                         bio->bi_bdev = bdev;
1000                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1001                         bio->bi_end_io = f2fs_read_end_io;
1002                         bio->bi_private = ctx;
1003                 }
1004
1005                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1006                         goto submit_and_realloc;
1007
1008                 last_block_in_bio = block_nr;
1009                 goto next_page;
1010 set_error_page:
1011                 SetPageError(page);
1012                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1013                 unlock_page(page);
1014                 goto next_page;
1015 confused:
1016                 if (bio) {
1017                         submit_bio(READ, bio);
1018                         bio = NULL;
1019                 }
1020                 unlock_page(page);
1021 next_page:
1022                 if (pages)
1023                         page_cache_release(page);
1024         }
1025         BUG_ON(pages && !list_empty(pages));
1026         if (bio)
1027                 submit_bio(READ, bio);
1028         return 0;
1029 }
1030
1031 static int f2fs_read_data_page(struct file *file, struct page *page)
1032 {
1033         struct inode *inode = page->mapping->host;
1034         int ret = -EAGAIN;
1035
1036         trace_f2fs_readpage(page, DATA);
1037
1038         /* If the file has inline data, try to read it directly */
1039         if (f2fs_has_inline_data(inode))
1040                 ret = f2fs_read_inline_data(inode, page);
1041         if (ret == -EAGAIN)
1042                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1043         return ret;
1044 }
1045
1046 static int f2fs_read_data_pages(struct file *file,
1047                         struct address_space *mapping,
1048                         struct list_head *pages, unsigned nr_pages)
1049 {
1050         struct inode *inode = file->f_mapping->host;
1051         struct page *page = list_entry(pages->prev, struct page, lru);
1052
1053         trace_f2fs_readpages(inode, page, nr_pages);
1054
1055         /* If the file has inline data, skip readpages */
1056         if (f2fs_has_inline_data(inode))
1057                 return 0;
1058
1059         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1060 }
1061
1062 int do_write_data_page(struct f2fs_io_info *fio)
1063 {
1064         struct page *page = fio->page;
1065         struct inode *inode = page->mapping->host;
1066         struct dnode_of_data dn;
1067         int err = 0;
1068
1069         set_new_dnode(&dn, inode, NULL, NULL, 0);
1070         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1071         if (err)
1072                 return err;
1073
1074         fio->blk_addr = dn.data_blkaddr;
1075
1076         /* This page is already truncated */
1077         if (fio->blk_addr == NULL_ADDR) {
1078                 ClearPageUptodate(page);
1079                 goto out_writepage;
1080         }
1081
1082         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1083
1084                 /* wait for GCed encrypted page writeback */
1085                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1086                                                         fio->blk_addr);
1087
1088                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1089                 if (IS_ERR(fio->encrypted_page)) {
1090                         err = PTR_ERR(fio->encrypted_page);
1091                         goto out_writepage;
1092                 }
1093         }
1094
1095         set_page_writeback(page);
1096
1097         /*
1098          * If current allocation needs SSR,
1099          * it had better in-place writes for updated data.
1100          */
1101         if (unlikely(fio->blk_addr != NEW_ADDR &&
1102                         !is_cold_data(page) &&
1103                         !IS_ATOMIC_WRITTEN_PAGE(page) &&
1104                         need_inplace_update(inode))) {
1105                 rewrite_data_page(fio);
1106                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1107                 trace_f2fs_do_write_data_page(page, IPU);
1108         } else {
1109                 write_data_page(&dn, fio);
1110                 set_data_blkaddr(&dn);
1111                 f2fs_update_extent_cache(&dn);
1112                 trace_f2fs_do_write_data_page(page, OPU);
1113                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1114                 if (page->index == 0)
1115                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1116         }
1117 out_writepage:
1118         f2fs_put_dnode(&dn);
1119         return err;
1120 }
1121
1122 static int f2fs_write_data_page(struct page *page,
1123                                         struct writeback_control *wbc)
1124 {
1125         struct inode *inode = page->mapping->host;
1126         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127         loff_t i_size = i_size_read(inode);
1128         const pgoff_t end_index = ((unsigned long long) i_size)
1129                                                         >> PAGE_CACHE_SHIFT;
1130         unsigned offset = 0;
1131         bool need_balance_fs = false;
1132         int err = 0;
1133         struct f2fs_io_info fio = {
1134                 .sbi = sbi,
1135                 .type = DATA,
1136                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1137                 .page = page,
1138                 .encrypted_page = NULL,
1139         };
1140
1141         trace_f2fs_writepage(page, DATA);
1142
1143         if (page->index < end_index)
1144                 goto write;
1145
1146         /*
1147          * If the offset is out-of-range of file size,
1148          * this page does not have to be written to disk.
1149          */
1150         offset = i_size & (PAGE_CACHE_SIZE - 1);
1151         if ((page->index >= end_index + 1) || !offset)
1152                 goto out;
1153
1154         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1155 write:
1156         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1157                 goto redirty_out;
1158         if (f2fs_is_drop_cache(inode))
1159                 goto out;
1160         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1161                         available_free_memory(sbi, BASE_CHECK))
1162                 goto redirty_out;
1163
1164         /* Dentry blocks are controlled by checkpoint */
1165         if (S_ISDIR(inode->i_mode)) {
1166                 if (unlikely(f2fs_cp_error(sbi)))
1167                         goto redirty_out;
1168                 err = do_write_data_page(&fio);
1169                 goto done;
1170         }
1171
1172         /* we should bypass data pages to proceed the kworkder jobs */
1173         if (unlikely(f2fs_cp_error(sbi))) {
1174                 SetPageError(page);
1175                 goto out;
1176         }
1177
1178         if (!wbc->for_reclaim)
1179                 need_balance_fs = true;
1180         else if (has_not_enough_free_secs(sbi, 0))
1181                 goto redirty_out;
1182
1183         err = -EAGAIN;
1184         f2fs_lock_op(sbi);
1185         if (f2fs_has_inline_data(inode))
1186                 err = f2fs_write_inline_data(inode, page);
1187         if (err == -EAGAIN)
1188                 err = do_write_data_page(&fio);
1189         f2fs_unlock_op(sbi);
1190 done:
1191         if (err && err != -ENOENT)
1192                 goto redirty_out;
1193
1194         clear_cold_data(page);
1195 out:
1196         inode_dec_dirty_pages(inode);
1197         if (err)
1198                 ClearPageUptodate(page);
1199
1200         if (wbc->for_reclaim) {
1201                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1202                 remove_dirty_inode(inode);
1203         }
1204
1205         unlock_page(page);
1206         f2fs_balance_fs(sbi, need_balance_fs);
1207
1208         if (unlikely(f2fs_cp_error(sbi)))
1209                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1210
1211         return 0;
1212
1213 redirty_out:
1214         redirty_page_for_writepage(wbc, page);
1215         return AOP_WRITEPAGE_ACTIVATE;
1216 }
1217
1218 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1219                         void *data)
1220 {
1221         struct address_space *mapping = data;
1222         int ret = mapping->a_ops->writepage(page, wbc);
1223         mapping_set_error(mapping, ret);
1224         return ret;
1225 }
1226
1227 /*
1228  * This function was copied from write_cche_pages from mm/page-writeback.c.
1229  * The major change is making write step of cold data page separately from
1230  * warm/hot data page.
1231  */
1232 static int f2fs_write_cache_pages(struct address_space *mapping,
1233                         struct writeback_control *wbc, writepage_t writepage,
1234                         void *data)
1235 {
1236         int ret = 0;
1237         int done = 0;
1238         struct pagevec pvec;
1239         int nr_pages;
1240         pgoff_t uninitialized_var(writeback_index);
1241         pgoff_t index;
1242         pgoff_t end;            /* Inclusive */
1243         pgoff_t done_index;
1244         int cycled;
1245         int range_whole = 0;
1246         int tag;
1247         int step = 0;
1248
1249         pagevec_init(&pvec, 0);
1250 next:
1251         if (wbc->range_cyclic) {
1252                 writeback_index = mapping->writeback_index; /* prev offset */
1253                 index = writeback_index;
1254                 if (index == 0)
1255                         cycled = 1;
1256                 else
1257                         cycled = 0;
1258                 end = -1;
1259         } else {
1260                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1261                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1262                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1263                         range_whole = 1;
1264                 cycled = 1; /* ignore range_cyclic tests */
1265         }
1266         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1267                 tag = PAGECACHE_TAG_TOWRITE;
1268         else
1269                 tag = PAGECACHE_TAG_DIRTY;
1270 retry:
1271         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1272                 tag_pages_for_writeback(mapping, index, end);
1273         done_index = index;
1274         while (!done && (index <= end)) {
1275                 int i;
1276
1277                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1278                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1279                 if (nr_pages == 0)
1280                         break;
1281
1282                 for (i = 0; i < nr_pages; i++) {
1283                         struct page *page = pvec.pages[i];
1284
1285                         if (page->index > end) {
1286                                 done = 1;
1287                                 break;
1288                         }
1289
1290                         done_index = page->index;
1291
1292                         lock_page(page);
1293
1294                         if (unlikely(page->mapping != mapping)) {
1295 continue_unlock:
1296                                 unlock_page(page);
1297                                 continue;
1298                         }
1299
1300                         if (!PageDirty(page)) {
1301                                 /* someone wrote it for us */
1302                                 goto continue_unlock;
1303                         }
1304
1305                         if (step == is_cold_data(page))
1306                                 goto continue_unlock;
1307
1308                         if (PageWriteback(page)) {
1309                                 if (wbc->sync_mode != WB_SYNC_NONE)
1310                                         f2fs_wait_on_page_writeback(page,
1311                                                                 DATA, true);
1312                                 else
1313                                         goto continue_unlock;
1314                         }
1315
1316                         BUG_ON(PageWriteback(page));
1317                         if (!clear_page_dirty_for_io(page))
1318                                 goto continue_unlock;
1319
1320                         ret = (*writepage)(page, wbc, data);
1321                         if (unlikely(ret)) {
1322                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1323                                         unlock_page(page);
1324                                         ret = 0;
1325                                 } else {
1326                                         done_index = page->index + 1;
1327                                         done = 1;
1328                                         break;
1329                                 }
1330                         }
1331
1332                         if (--wbc->nr_to_write <= 0 &&
1333                             wbc->sync_mode == WB_SYNC_NONE) {
1334                                 done = 1;
1335                                 break;
1336                         }
1337                 }
1338                 pagevec_release(&pvec);
1339                 cond_resched();
1340         }
1341
1342         if (step < 1) {
1343                 step++;
1344                 goto next;
1345         }
1346
1347         if (!cycled && !done) {
1348                 cycled = 1;
1349                 index = 0;
1350                 end = writeback_index - 1;
1351                 goto retry;
1352         }
1353         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1354                 mapping->writeback_index = done_index;
1355
1356         return ret;
1357 }
1358
1359 static int f2fs_write_data_pages(struct address_space *mapping,
1360                             struct writeback_control *wbc)
1361 {
1362         struct inode *inode = mapping->host;
1363         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1364         bool locked = false;
1365         int ret;
1366         long diff;
1367
1368         /* deal with chardevs and other special file */
1369         if (!mapping->a_ops->writepage)
1370                 return 0;
1371
1372         /* skip writing if there is no dirty page in this inode */
1373         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1374                 return 0;
1375
1376         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1377                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1378                         available_free_memory(sbi, DIRTY_DENTS))
1379                 goto skip_write;
1380
1381         /* skip writing during file defragment */
1382         if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1383                 goto skip_write;
1384
1385         /* during POR, we don't need to trigger writepage at all. */
1386         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1387                 goto skip_write;
1388
1389         trace_f2fs_writepages(mapping->host, wbc, DATA);
1390
1391         diff = nr_pages_to_write(sbi, DATA, wbc);
1392
1393         if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1394                 mutex_lock(&sbi->writepages);
1395                 locked = true;
1396         }
1397         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1398         f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1399         if (locked)
1400                 mutex_unlock(&sbi->writepages);
1401
1402         remove_dirty_inode(inode);
1403
1404         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1405         return ret;
1406
1407 skip_write:
1408         wbc->pages_skipped += get_dirty_pages(inode);
1409         trace_f2fs_writepages(mapping->host, wbc, DATA);
1410         return 0;
1411 }
1412
1413 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1414 {
1415         struct inode *inode = mapping->host;
1416         loff_t i_size = i_size_read(inode);
1417
1418         if (to > i_size) {
1419                 truncate_pagecache(inode, i_size);
1420                 truncate_blocks(inode, i_size, true);
1421         }
1422 }
1423
1424 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1425                         struct page *page, loff_t pos, unsigned len,
1426                         block_t *blk_addr, bool *node_changed)
1427 {
1428         struct inode *inode = page->mapping->host;
1429         pgoff_t index = page->index;
1430         struct dnode_of_data dn;
1431         struct page *ipage;
1432         bool locked = false;
1433         struct extent_info ei;
1434         int err = 0;
1435
1436         /*
1437          * we already allocated all the blocks, so we don't need to get
1438          * the block addresses when there is no need to fill the page.
1439          */
1440         if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1441                                         len == PAGE_CACHE_SIZE)
1442                 return 0;
1443
1444         if (f2fs_has_inline_data(inode) ||
1445                         (pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1446                 f2fs_lock_op(sbi);
1447                 locked = true;
1448         }
1449 restart:
1450         /* check inline_data */
1451         ipage = get_node_page(sbi, inode->i_ino);
1452         if (IS_ERR(ipage)) {
1453                 err = PTR_ERR(ipage);
1454                 goto unlock_out;
1455         }
1456
1457         set_new_dnode(&dn, inode, ipage, ipage, 0);
1458
1459         if (f2fs_has_inline_data(inode)) {
1460                 if (pos + len <= MAX_INLINE_DATA) {
1461                         read_inline_data(page, ipage);
1462                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1463                         set_inline_node(ipage);
1464                 } else {
1465                         err = f2fs_convert_inline_page(&dn, page);
1466                         if (err)
1467                                 goto out;
1468                         if (dn.data_blkaddr == NULL_ADDR)
1469                                 err = f2fs_get_block(&dn, index);
1470                 }
1471         } else if (locked) {
1472                 err = f2fs_get_block(&dn, index);
1473         } else {
1474                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1475                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1476                 } else {
1477                         /* hole case */
1478                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1479                         if (err || (!err && dn.data_blkaddr == NULL_ADDR)) {
1480                                 f2fs_put_dnode(&dn);
1481                                 f2fs_lock_op(sbi);
1482                                 locked = true;
1483                                 goto restart;
1484                         }
1485                 }
1486         }
1487
1488         /* convert_inline_page can make node_changed */
1489         *blk_addr = dn.data_blkaddr;
1490         *node_changed = dn.node_changed;
1491 out:
1492         f2fs_put_dnode(&dn);
1493 unlock_out:
1494         if (locked)
1495                 f2fs_unlock_op(sbi);
1496         return err;
1497 }
1498
1499 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1500                 loff_t pos, unsigned len, unsigned flags,
1501                 struct page **pagep, void **fsdata)
1502 {
1503         struct inode *inode = mapping->host;
1504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1505         struct page *page = NULL;
1506         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1507         bool need_balance = false;
1508         block_t blkaddr = NULL_ADDR;
1509         int err = 0;
1510
1511         trace_f2fs_write_begin(inode, pos, len, flags);
1512
1513         /*
1514          * We should check this at this moment to avoid deadlock on inode page
1515          * and #0 page. The locking rule for inline_data conversion should be:
1516          * lock_page(page #0) -> lock_page(inode_page)
1517          */
1518         if (index != 0) {
1519                 err = f2fs_convert_inline_inode(inode);
1520                 if (err)
1521                         goto fail;
1522         }
1523 repeat:
1524         page = grab_cache_page_write_begin(mapping, index, flags);
1525         if (!page) {
1526                 err = -ENOMEM;
1527                 goto fail;
1528         }
1529
1530         *pagep = page;
1531
1532         err = prepare_write_begin(sbi, page, pos, len,
1533                                         &blkaddr, &need_balance);
1534         if (err)
1535                 goto fail;
1536
1537         if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1538                 unlock_page(page);
1539                 f2fs_balance_fs(sbi, true);
1540                 lock_page(page);
1541                 if (page->mapping != mapping) {
1542                         /* The page got truncated from under us */
1543                         f2fs_put_page(page, 1);
1544                         goto repeat;
1545                 }
1546         }
1547
1548         f2fs_wait_on_page_writeback(page, DATA, false);
1549
1550         /* wait for GCed encrypted page writeback */
1551         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1552                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1553
1554         if (len == PAGE_CACHE_SIZE)
1555                 goto out_update;
1556         if (PageUptodate(page))
1557                 goto out_clear;
1558
1559         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1560                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1561                 unsigned end = start + len;
1562
1563                 /* Reading beyond i_size is simple: memset to zero */
1564                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1565                 goto out_update;
1566         }
1567
1568         if (blkaddr == NEW_ADDR) {
1569                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1570         } else {
1571                 struct f2fs_io_info fio = {
1572                         .sbi = sbi,
1573                         .type = DATA,
1574                         .rw = READ_SYNC,
1575                         .blk_addr = blkaddr,
1576                         .page = page,
1577                         .encrypted_page = NULL,
1578                 };
1579                 err = f2fs_submit_page_bio(&fio);
1580                 if (err)
1581                         goto fail;
1582
1583                 lock_page(page);
1584                 if (unlikely(!PageUptodate(page))) {
1585                         err = -EIO;
1586                         goto fail;
1587                 }
1588                 if (unlikely(page->mapping != mapping)) {
1589                         f2fs_put_page(page, 1);
1590                         goto repeat;
1591                 }
1592
1593                 /* avoid symlink page */
1594                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1595                         err = f2fs_decrypt_one(inode, page);
1596                         if (err)
1597                                 goto fail;
1598                 }
1599         }
1600 out_update:
1601         SetPageUptodate(page);
1602 out_clear:
1603         clear_cold_data(page);
1604         return 0;
1605
1606 fail:
1607         f2fs_put_page(page, 1);
1608         f2fs_write_failed(mapping, pos + len);
1609         return err;
1610 }
1611
1612 static int f2fs_write_end(struct file *file,
1613                         struct address_space *mapping,
1614                         loff_t pos, unsigned len, unsigned copied,
1615                         struct page *page, void *fsdata)
1616 {
1617         struct inode *inode = page->mapping->host;
1618
1619         trace_f2fs_write_end(inode, pos, len, copied);
1620
1621         set_page_dirty(page);
1622
1623         if (pos + copied > i_size_read(inode)) {
1624                 i_size_write(inode, pos + copied);
1625                 mark_inode_dirty(inode);
1626         }
1627
1628         f2fs_put_page(page, 1);
1629         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1630         return copied;
1631 }
1632
1633 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1634                            loff_t offset)
1635 {
1636         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1637
1638         if (offset & blocksize_mask)
1639                 return -EINVAL;
1640
1641         if (iov_iter_alignment(iter) & blocksize_mask)
1642                 return -EINVAL;
1643
1644         return 0;
1645 }
1646
1647 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1648                               loff_t offset)
1649 {
1650         struct address_space *mapping = iocb->ki_filp->f_mapping;
1651         struct inode *inode = mapping->host;
1652         size_t count = iov_iter_count(iter);
1653         int err;
1654
1655         err = check_direct_IO(inode, iter, offset);
1656         if (err)
1657                 return err;
1658
1659         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1660                 return 0;
1661
1662         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1663
1664         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1665         if (err < 0 && iov_iter_rw(iter) == WRITE)
1666                 f2fs_write_failed(mapping, offset + count);
1667
1668         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1669
1670         return err;
1671 }
1672
1673 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1674                                                         unsigned int length)
1675 {
1676         struct inode *inode = page->mapping->host;
1677         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1678
1679         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1680                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1681                 return;
1682
1683         if (PageDirty(page)) {
1684                 if (inode->i_ino == F2FS_META_INO(sbi))
1685                         dec_page_count(sbi, F2FS_DIRTY_META);
1686                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1687                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1688                 else
1689                         inode_dec_dirty_pages(inode);
1690         }
1691
1692         /* This is atomic written page, keep Private */
1693         if (IS_ATOMIC_WRITTEN_PAGE(page))
1694                 return;
1695
1696         ClearPagePrivate(page);
1697 }
1698
1699 int f2fs_release_page(struct page *page, gfp_t wait)
1700 {
1701         /* If this is dirty page, keep PagePrivate */
1702         if (PageDirty(page))
1703                 return 0;
1704
1705         /* This is atomic written page, keep Private */
1706         if (IS_ATOMIC_WRITTEN_PAGE(page))
1707                 return 0;
1708
1709         ClearPagePrivate(page);
1710         return 1;
1711 }
1712
1713 static int f2fs_set_data_page_dirty(struct page *page)
1714 {
1715         struct address_space *mapping = page->mapping;
1716         struct inode *inode = mapping->host;
1717
1718         trace_f2fs_set_page_dirty(page, DATA);
1719
1720         SetPageUptodate(page);
1721
1722         if (f2fs_is_atomic_file(inode)) {
1723                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1724                         register_inmem_page(inode, page);
1725                         return 1;
1726                 }
1727                 /*
1728                  * Previously, this page has been registered, we just
1729                  * return here.
1730                  */
1731                 return 0;
1732         }
1733
1734         if (!PageDirty(page)) {
1735                 __set_page_dirty_nobuffers(page);
1736                 update_dirty_page(inode, page);
1737                 return 1;
1738         }
1739         return 0;
1740 }
1741
1742 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1743 {
1744         struct inode *inode = mapping->host;
1745
1746         if (f2fs_has_inline_data(inode))
1747                 return 0;
1748
1749         /* make sure allocating whole blocks */
1750         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1751                 filemap_write_and_wait(mapping);
1752
1753         return generic_block_bmap(mapping, block, get_data_block_bmap);
1754 }
1755
1756 const struct address_space_operations f2fs_dblock_aops = {
1757         .readpage       = f2fs_read_data_page,
1758         .readpages      = f2fs_read_data_pages,
1759         .writepage      = f2fs_write_data_page,
1760         .writepages     = f2fs_write_data_pages,
1761         .write_begin    = f2fs_write_begin,
1762         .write_end      = f2fs_write_end,
1763         .set_page_dirty = f2fs_set_data_page_dirty,
1764         .invalidatepage = f2fs_invalidate_page,
1765         .releasepage    = f2fs_release_page,
1766         .direct_IO      = f2fs_direct_IO,
1767         .bmap           = f2fs_bmap,
1768 };